linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
  26#include <linux/rbtree.h>
  27#include "util/symbol.h"
  28#include "util/callchain.h"
  29#include "util/strlist.h"
  30
  31#include "perf.h"
  32#include "util/header.h"
  33#include <subcmd/parse-options.h>
  34#include "util/parse-events.h"
  35#include "util/event.h"
  36#include "util/session.h"
  37#include "util/svghelper.h"
  38#include "util/tool.h"
  39#include "util/data.h"
  40#include "util/debug.h"
  41
  42#define SUPPORT_OLD_POWER_EVENTS 1
  43#define PWR_EVENT_EXIT -1
  44
  45struct per_pid;
  46struct power_event;
  47struct wake_event;
  48
  49struct timechart {
  50        struct perf_tool        tool;
  51        struct per_pid          *all_data;
  52        struct power_event      *power_events;
  53        struct wake_event       *wake_events;
  54        int                     proc_num;
  55        unsigned int            numcpus;
  56        u64                     min_freq,       /* Lowest CPU frequency seen */
  57                                max_freq,       /* Highest CPU frequency seen */
  58                                turbo_frequency,
  59                                first_time, last_time;
  60        bool                    power_only,
  61                                tasks_only,
  62                                with_backtrace,
  63                                topology;
  64        bool                    force;
  65        /* IO related settings */
  66        bool                    io_only,
  67                                skip_eagain;
  68        u64                     io_events;
  69        u64                     min_time,
  70                                merge_dist;
  71};
  72
  73struct per_pidcomm;
  74struct cpu_sample;
  75struct io_sample;
  76
  77/*
  78 * Datastructure layout:
  79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  80 * Each "pid" entry, has a list of "comm"s.
  81 *      this is because we want to track different programs different, while
  82 *      exec will reuse the original pid (by design).
  83 * Each comm has a list of samples that will be used to draw
  84 * final graph.
  85 */
  86
  87struct per_pid {
  88        struct per_pid *next;
  89
  90        int             pid;
  91        int             ppid;
  92
  93        u64             start_time;
  94        u64             end_time;
  95        u64             total_time;
  96        u64             total_bytes;
  97        int             display;
  98
  99        struct per_pidcomm *all;
 100        struct per_pidcomm *current;
 101};
 102
 103
 104struct per_pidcomm {
 105        struct per_pidcomm *next;
 106
 107        u64             start_time;
 108        u64             end_time;
 109        u64             total_time;
 110        u64             max_bytes;
 111        u64             total_bytes;
 112
 113        int             Y;
 114        int             display;
 115
 116        long            state;
 117        u64             state_since;
 118
 119        char            *comm;
 120
 121        struct cpu_sample *samples;
 122        struct io_sample  *io_samples;
 123};
 124
 125struct sample_wrapper {
 126        struct sample_wrapper *next;
 127
 128        u64             timestamp;
 129        unsigned char   data[0];
 130};
 131
 132#define TYPE_NONE       0
 133#define TYPE_RUNNING    1
 134#define TYPE_WAITING    2
 135#define TYPE_BLOCKED    3
 136
 137struct cpu_sample {
 138        struct cpu_sample *next;
 139
 140        u64 start_time;
 141        u64 end_time;
 142        int type;
 143        int cpu;
 144        const char *backtrace;
 145};
 146
 147enum {
 148        IOTYPE_READ,
 149        IOTYPE_WRITE,
 150        IOTYPE_SYNC,
 151        IOTYPE_TX,
 152        IOTYPE_RX,
 153        IOTYPE_POLL,
 154};
 155
 156struct io_sample {
 157        struct io_sample *next;
 158
 159        u64 start_time;
 160        u64 end_time;
 161        u64 bytes;
 162        int type;
 163        int fd;
 164        int err;
 165        int merges;
 166};
 167
 168#define CSTATE 1
 169#define PSTATE 2
 170
 171struct power_event {
 172        struct power_event *next;
 173        int type;
 174        int state;
 175        u64 start_time;
 176        u64 end_time;
 177        int cpu;
 178};
 179
 180struct wake_event {
 181        struct wake_event *next;
 182        int waker;
 183        int wakee;
 184        u64 time;
 185        const char *backtrace;
 186};
 187
 188struct process_filter {
 189        char                    *name;
 190        int                     pid;
 191        struct process_filter   *next;
 192};
 193
 194static struct process_filter *process_filter;
 195
 196
 197static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 198{
 199        struct per_pid *cursor = tchart->all_data;
 200
 201        while (cursor) {
 202                if (cursor->pid == pid)
 203                        return cursor;
 204                cursor = cursor->next;
 205        }
 206        cursor = zalloc(sizeof(*cursor));
 207        assert(cursor != NULL);
 208        cursor->pid = pid;
 209        cursor->next = tchart->all_data;
 210        tchart->all_data = cursor;
 211        return cursor;
 212}
 213
 214static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 215{
 216        struct per_pid *p;
 217        struct per_pidcomm *c;
 218        p = find_create_pid(tchart, pid);
 219        c = p->all;
 220        while (c) {
 221                if (c->comm && strcmp(c->comm, comm) == 0) {
 222                        p->current = c;
 223                        return;
 224                }
 225                if (!c->comm) {
 226                        c->comm = strdup(comm);
 227                        p->current = c;
 228                        return;
 229                }
 230                c = c->next;
 231        }
 232        c = zalloc(sizeof(*c));
 233        assert(c != NULL);
 234        c->comm = strdup(comm);
 235        p->current = c;
 236        c->next = p->all;
 237        p->all = c;
 238}
 239
 240static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 241{
 242        struct per_pid *p, *pp;
 243        p = find_create_pid(tchart, pid);
 244        pp = find_create_pid(tchart, ppid);
 245        p->ppid = ppid;
 246        if (pp->current && pp->current->comm && !p->current)
 247                pid_set_comm(tchart, pid, pp->current->comm);
 248
 249        p->start_time = timestamp;
 250        if (p->current && !p->current->start_time) {
 251                p->current->start_time = timestamp;
 252                p->current->state_since = timestamp;
 253        }
 254}
 255
 256static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 257{
 258        struct per_pid *p;
 259        p = find_create_pid(tchart, pid);
 260        p->end_time = timestamp;
 261        if (p->current)
 262                p->current->end_time = timestamp;
 263}
 264
 265static void pid_put_sample(struct timechart *tchart, int pid, int type,
 266                           unsigned int cpu, u64 start, u64 end,
 267                           const char *backtrace)
 268{
 269        struct per_pid *p;
 270        struct per_pidcomm *c;
 271        struct cpu_sample *sample;
 272
 273        p = find_create_pid(tchart, pid);
 274        c = p->current;
 275        if (!c) {
 276                c = zalloc(sizeof(*c));
 277                assert(c != NULL);
 278                p->current = c;
 279                c->next = p->all;
 280                p->all = c;
 281        }
 282
 283        sample = zalloc(sizeof(*sample));
 284        assert(sample != NULL);
 285        sample->start_time = start;
 286        sample->end_time = end;
 287        sample->type = type;
 288        sample->next = c->samples;
 289        sample->cpu = cpu;
 290        sample->backtrace = backtrace;
 291        c->samples = sample;
 292
 293        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 294                c->total_time += (end-start);
 295                p->total_time += (end-start);
 296        }
 297
 298        if (c->start_time == 0 || c->start_time > start)
 299                c->start_time = start;
 300        if (p->start_time == 0 || p->start_time > start)
 301                p->start_time = start;
 302}
 303
 304#define MAX_CPUS 4096
 305
 306static u64 cpus_cstate_start_times[MAX_CPUS];
 307static int cpus_cstate_state[MAX_CPUS];
 308static u64 cpus_pstate_start_times[MAX_CPUS];
 309static u64 cpus_pstate_state[MAX_CPUS];
 310
 311static int process_comm_event(struct perf_tool *tool,
 312                              union perf_event *event,
 313                              struct perf_sample *sample __maybe_unused,
 314                              struct machine *machine __maybe_unused)
 315{
 316        struct timechart *tchart = container_of(tool, struct timechart, tool);
 317        pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 318        return 0;
 319}
 320
 321static int process_fork_event(struct perf_tool *tool,
 322                              union perf_event *event,
 323                              struct perf_sample *sample __maybe_unused,
 324                              struct machine *machine __maybe_unused)
 325{
 326        struct timechart *tchart = container_of(tool, struct timechart, tool);
 327        pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 328        return 0;
 329}
 330
 331static int process_exit_event(struct perf_tool *tool,
 332                              union perf_event *event,
 333                              struct perf_sample *sample __maybe_unused,
 334                              struct machine *machine __maybe_unused)
 335{
 336        struct timechart *tchart = container_of(tool, struct timechart, tool);
 337        pid_exit(tchart, event->fork.pid, event->fork.time);
 338        return 0;
 339}
 340
 341#ifdef SUPPORT_OLD_POWER_EVENTS
 342static int use_old_power_events;
 343#endif
 344
 345static void c_state_start(int cpu, u64 timestamp, int state)
 346{
 347        cpus_cstate_start_times[cpu] = timestamp;
 348        cpus_cstate_state[cpu] = state;
 349}
 350
 351static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 352{
 353        struct power_event *pwr = zalloc(sizeof(*pwr));
 354
 355        if (!pwr)
 356                return;
 357
 358        pwr->state = cpus_cstate_state[cpu];
 359        pwr->start_time = cpus_cstate_start_times[cpu];
 360        pwr->end_time = timestamp;
 361        pwr->cpu = cpu;
 362        pwr->type = CSTATE;
 363        pwr->next = tchart->power_events;
 364
 365        tchart->power_events = pwr;
 366}
 367
 368static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 369{
 370        struct power_event *pwr;
 371
 372        if (new_freq > 8000000) /* detect invalid data */
 373                return;
 374
 375        pwr = zalloc(sizeof(*pwr));
 376        if (!pwr)
 377                return;
 378
 379        pwr->state = cpus_pstate_state[cpu];
 380        pwr->start_time = cpus_pstate_start_times[cpu];
 381        pwr->end_time = timestamp;
 382        pwr->cpu = cpu;
 383        pwr->type = PSTATE;
 384        pwr->next = tchart->power_events;
 385
 386        if (!pwr->start_time)
 387                pwr->start_time = tchart->first_time;
 388
 389        tchart->power_events = pwr;
 390
 391        cpus_pstate_state[cpu] = new_freq;
 392        cpus_pstate_start_times[cpu] = timestamp;
 393
 394        if ((u64)new_freq > tchart->max_freq)
 395                tchart->max_freq = new_freq;
 396
 397        if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 398                tchart->min_freq = new_freq;
 399
 400        if (new_freq == tchart->max_freq - 1000)
 401                tchart->turbo_frequency = tchart->max_freq;
 402}
 403
 404static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 405                         int waker, int wakee, u8 flags, const char *backtrace)
 406{
 407        struct per_pid *p;
 408        struct wake_event *we = zalloc(sizeof(*we));
 409
 410        if (!we)
 411                return;
 412
 413        we->time = timestamp;
 414        we->waker = waker;
 415        we->backtrace = backtrace;
 416
 417        if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 418                we->waker = -1;
 419
 420        we->wakee = wakee;
 421        we->next = tchart->wake_events;
 422        tchart->wake_events = we;
 423        p = find_create_pid(tchart, we->wakee);
 424
 425        if (p && p->current && p->current->state == TYPE_NONE) {
 426                p->current->state_since = timestamp;
 427                p->current->state = TYPE_WAITING;
 428        }
 429        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 430                pid_put_sample(tchart, p->pid, p->current->state, cpu,
 431                               p->current->state_since, timestamp, NULL);
 432                p->current->state_since = timestamp;
 433                p->current->state = TYPE_WAITING;
 434        }
 435}
 436
 437static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 438                         int prev_pid, int next_pid, u64 prev_state,
 439                         const char *backtrace)
 440{
 441        struct per_pid *p = NULL, *prev_p;
 442
 443        prev_p = find_create_pid(tchart, prev_pid);
 444
 445        p = find_create_pid(tchart, next_pid);
 446
 447        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 448                pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 449                               prev_p->current->state_since, timestamp,
 450                               backtrace);
 451        if (p && p->current) {
 452                if (p->current->state != TYPE_NONE)
 453                        pid_put_sample(tchart, next_pid, p->current->state, cpu,
 454                                       p->current->state_since, timestamp,
 455                                       backtrace);
 456
 457                p->current->state_since = timestamp;
 458                p->current->state = TYPE_RUNNING;
 459        }
 460
 461        if (prev_p->current) {
 462                prev_p->current->state = TYPE_NONE;
 463                prev_p->current->state_since = timestamp;
 464                if (prev_state & 2)
 465                        prev_p->current->state = TYPE_BLOCKED;
 466                if (prev_state == 0)
 467                        prev_p->current->state = TYPE_WAITING;
 468        }
 469}
 470
 471static const char *cat_backtrace(union perf_event *event,
 472                                 struct perf_sample *sample,
 473                                 struct machine *machine)
 474{
 475        struct addr_location al;
 476        unsigned int i;
 477        char *p = NULL;
 478        size_t p_len;
 479        u8 cpumode = PERF_RECORD_MISC_USER;
 480        struct addr_location tal;
 481        struct ip_callchain *chain = sample->callchain;
 482        FILE *f = open_memstream(&p, &p_len);
 483
 484        if (!f) {
 485                perror("open_memstream error");
 486                return NULL;
 487        }
 488
 489        if (!chain)
 490                goto exit;
 491
 492        if (machine__resolve(machine, &al, sample) < 0) {
 493                fprintf(stderr, "problem processing %d event, skipping it.\n",
 494                        event->header.type);
 495                goto exit;
 496        }
 497
 498        for (i = 0; i < chain->nr; i++) {
 499                u64 ip;
 500
 501                if (callchain_param.order == ORDER_CALLEE)
 502                        ip = chain->ips[i];
 503                else
 504                        ip = chain->ips[chain->nr - i - 1];
 505
 506                if (ip >= PERF_CONTEXT_MAX) {
 507                        switch (ip) {
 508                        case PERF_CONTEXT_HV:
 509                                cpumode = PERF_RECORD_MISC_HYPERVISOR;
 510                                break;
 511                        case PERF_CONTEXT_KERNEL:
 512                                cpumode = PERF_RECORD_MISC_KERNEL;
 513                                break;
 514                        case PERF_CONTEXT_USER:
 515                                cpumode = PERF_RECORD_MISC_USER;
 516                                break;
 517                        default:
 518                                pr_debug("invalid callchain context: "
 519                                         "%"PRId64"\n", (s64) ip);
 520
 521                                /*
 522                                 * It seems the callchain is corrupted.
 523                                 * Discard all.
 524                                 */
 525                                zfree(&p);
 526                                goto exit_put;
 527                        }
 528                        continue;
 529                }
 530
 531                tal.filtered = 0;
 532                thread__find_addr_location(al.thread, cpumode,
 533                                           MAP__FUNCTION, ip, &tal);
 534
 535                if (tal.sym)
 536                        fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 537                                tal.sym->name);
 538                else
 539                        fprintf(f, "..... %016" PRIx64 "\n", ip);
 540        }
 541exit_put:
 542        addr_location__put(&al);
 543exit:
 544        fclose(f);
 545
 546        return p;
 547}
 548
 549typedef int (*tracepoint_handler)(struct timechart *tchart,
 550                                  struct perf_evsel *evsel,
 551                                  struct perf_sample *sample,
 552                                  const char *backtrace);
 553
 554static int process_sample_event(struct perf_tool *tool,
 555                                union perf_event *event,
 556                                struct perf_sample *sample,
 557                                struct perf_evsel *evsel,
 558                                struct machine *machine)
 559{
 560        struct timechart *tchart = container_of(tool, struct timechart, tool);
 561
 562        if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 563                if (!tchart->first_time || tchart->first_time > sample->time)
 564                        tchart->first_time = sample->time;
 565                if (tchart->last_time < sample->time)
 566                        tchart->last_time = sample->time;
 567        }
 568
 569        if (evsel->handler != NULL) {
 570                tracepoint_handler f = evsel->handler;
 571                return f(tchart, evsel, sample,
 572                         cat_backtrace(event, sample, machine));
 573        }
 574
 575        return 0;
 576}
 577
 578static int
 579process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 580                        struct perf_evsel *evsel,
 581                        struct perf_sample *sample,
 582                        const char *backtrace __maybe_unused)
 583{
 584        u32 state = perf_evsel__intval(evsel, sample, "state");
 585        u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 586
 587        if (state == (u32)PWR_EVENT_EXIT)
 588                c_state_end(tchart, cpu_id, sample->time);
 589        else
 590                c_state_start(cpu_id, sample->time, state);
 591        return 0;
 592}
 593
 594static int
 595process_sample_cpu_frequency(struct timechart *tchart,
 596                             struct perf_evsel *evsel,
 597                             struct perf_sample *sample,
 598                             const char *backtrace __maybe_unused)
 599{
 600        u32 state = perf_evsel__intval(evsel, sample, "state");
 601        u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 602
 603        p_state_change(tchart, cpu_id, sample->time, state);
 604        return 0;
 605}
 606
 607static int
 608process_sample_sched_wakeup(struct timechart *tchart,
 609                            struct perf_evsel *evsel,
 610                            struct perf_sample *sample,
 611                            const char *backtrace)
 612{
 613        u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 614        int waker = perf_evsel__intval(evsel, sample, "common_pid");
 615        int wakee = perf_evsel__intval(evsel, sample, "pid");
 616
 617        sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 618        return 0;
 619}
 620
 621static int
 622process_sample_sched_switch(struct timechart *tchart,
 623                            struct perf_evsel *evsel,
 624                            struct perf_sample *sample,
 625                            const char *backtrace)
 626{
 627        int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 628        int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 629        u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 630
 631        sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 632                     prev_state, backtrace);
 633        return 0;
 634}
 635
 636#ifdef SUPPORT_OLD_POWER_EVENTS
 637static int
 638process_sample_power_start(struct timechart *tchart __maybe_unused,
 639                           struct perf_evsel *evsel,
 640                           struct perf_sample *sample,
 641                           const char *backtrace __maybe_unused)
 642{
 643        u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 644        u64 value = perf_evsel__intval(evsel, sample, "value");
 645
 646        c_state_start(cpu_id, sample->time, value);
 647        return 0;
 648}
 649
 650static int
 651process_sample_power_end(struct timechart *tchart,
 652                         struct perf_evsel *evsel __maybe_unused,
 653                         struct perf_sample *sample,
 654                         const char *backtrace __maybe_unused)
 655{
 656        c_state_end(tchart, sample->cpu, sample->time);
 657        return 0;
 658}
 659
 660static int
 661process_sample_power_frequency(struct timechart *tchart,
 662                               struct perf_evsel *evsel,
 663                               struct perf_sample *sample,
 664                               const char *backtrace __maybe_unused)
 665{
 666        u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 667        u64 value = perf_evsel__intval(evsel, sample, "value");
 668
 669        p_state_change(tchart, cpu_id, sample->time, value);
 670        return 0;
 671}
 672#endif /* SUPPORT_OLD_POWER_EVENTS */
 673
 674/*
 675 * After the last sample we need to wrap up the current C/P state
 676 * and close out each CPU for these.
 677 */
 678static void end_sample_processing(struct timechart *tchart)
 679{
 680        u64 cpu;
 681        struct power_event *pwr;
 682
 683        for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 684                /* C state */
 685#if 0
 686                pwr = zalloc(sizeof(*pwr));
 687                if (!pwr)
 688                        return;
 689
 690                pwr->state = cpus_cstate_state[cpu];
 691                pwr->start_time = cpus_cstate_start_times[cpu];
 692                pwr->end_time = tchart->last_time;
 693                pwr->cpu = cpu;
 694                pwr->type = CSTATE;
 695                pwr->next = tchart->power_events;
 696
 697                tchart->power_events = pwr;
 698#endif
 699                /* P state */
 700
 701                pwr = zalloc(sizeof(*pwr));
 702                if (!pwr)
 703                        return;
 704
 705                pwr->state = cpus_pstate_state[cpu];
 706                pwr->start_time = cpus_pstate_start_times[cpu];
 707                pwr->end_time = tchart->last_time;
 708                pwr->cpu = cpu;
 709                pwr->type = PSTATE;
 710                pwr->next = tchart->power_events;
 711
 712                if (!pwr->start_time)
 713                        pwr->start_time = tchart->first_time;
 714                if (!pwr->state)
 715                        pwr->state = tchart->min_freq;
 716                tchart->power_events = pwr;
 717        }
 718}
 719
 720static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 721                               u64 start, int fd)
 722{
 723        struct per_pid *p = find_create_pid(tchart, pid);
 724        struct per_pidcomm *c = p->current;
 725        struct io_sample *sample;
 726        struct io_sample *prev;
 727
 728        if (!c) {
 729                c = zalloc(sizeof(*c));
 730                if (!c)
 731                        return -ENOMEM;
 732                p->current = c;
 733                c->next = p->all;
 734                p->all = c;
 735        }
 736
 737        prev = c->io_samples;
 738
 739        if (prev && prev->start_time && !prev->end_time) {
 740                pr_warning("Skip invalid start event: "
 741                           "previous event already started!\n");
 742
 743                /* remove previous event that has been started,
 744                 * we are not sure we will ever get an end for it */
 745                c->io_samples = prev->next;
 746                free(prev);
 747                return 0;
 748        }
 749
 750        sample = zalloc(sizeof(*sample));
 751        if (!sample)
 752                return -ENOMEM;
 753        sample->start_time = start;
 754        sample->type = type;
 755        sample->fd = fd;
 756        sample->next = c->io_samples;
 757        c->io_samples = sample;
 758
 759        if (c->start_time == 0 || c->start_time > start)
 760                c->start_time = start;
 761
 762        return 0;
 763}
 764
 765static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 766                             u64 end, long ret)
 767{
 768        struct per_pid *p = find_create_pid(tchart, pid);
 769        struct per_pidcomm *c = p->current;
 770        struct io_sample *sample, *prev;
 771
 772        if (!c) {
 773                pr_warning("Invalid pidcomm!\n");
 774                return -1;
 775        }
 776
 777        sample = c->io_samples;
 778
 779        if (!sample) /* skip partially captured events */
 780                return 0;
 781
 782        if (sample->end_time) {
 783                pr_warning("Skip invalid end event: "
 784                           "previous event already ended!\n");
 785                return 0;
 786        }
 787
 788        if (sample->type != type) {
 789                pr_warning("Skip invalid end event: invalid event type!\n");
 790                return 0;
 791        }
 792
 793        sample->end_time = end;
 794        prev = sample->next;
 795
 796        /* we want to be able to see small and fast transfers, so make them
 797         * at least min_time long, but don't overlap them */
 798        if (sample->end_time - sample->start_time < tchart->min_time)
 799                sample->end_time = sample->start_time + tchart->min_time;
 800        if (prev && sample->start_time < prev->end_time) {
 801                if (prev->err) /* try to make errors more visible */
 802                        sample->start_time = prev->end_time;
 803                else
 804                        prev->end_time = sample->start_time;
 805        }
 806
 807        if (ret < 0) {
 808                sample->err = ret;
 809        } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 810                   type == IOTYPE_TX || type == IOTYPE_RX) {
 811
 812                if ((u64)ret > c->max_bytes)
 813                        c->max_bytes = ret;
 814
 815                c->total_bytes += ret;
 816                p->total_bytes += ret;
 817                sample->bytes = ret;
 818        }
 819
 820        /* merge two requests to make svg smaller and render-friendly */
 821        if (prev &&
 822            prev->type == sample->type &&
 823            prev->err == sample->err &&
 824            prev->fd == sample->fd &&
 825            prev->end_time + tchart->merge_dist >= sample->start_time) {
 826
 827                sample->bytes += prev->bytes;
 828                sample->merges += prev->merges + 1;
 829
 830                sample->start_time = prev->start_time;
 831                sample->next = prev->next;
 832                free(prev);
 833
 834                if (!sample->err && sample->bytes > c->max_bytes)
 835                        c->max_bytes = sample->bytes;
 836        }
 837
 838        tchart->io_events++;
 839
 840        return 0;
 841}
 842
 843static int
 844process_enter_read(struct timechart *tchart,
 845                   struct perf_evsel *evsel,
 846                   struct perf_sample *sample)
 847{
 848        long fd = perf_evsel__intval(evsel, sample, "fd");
 849        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 850                                   sample->time, fd);
 851}
 852
 853static int
 854process_exit_read(struct timechart *tchart,
 855                  struct perf_evsel *evsel,
 856                  struct perf_sample *sample)
 857{
 858        long ret = perf_evsel__intval(evsel, sample, "ret");
 859        return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 860                                 sample->time, ret);
 861}
 862
 863static int
 864process_enter_write(struct timechart *tchart,
 865                    struct perf_evsel *evsel,
 866                    struct perf_sample *sample)
 867{
 868        long fd = perf_evsel__intval(evsel, sample, "fd");
 869        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 870                                   sample->time, fd);
 871}
 872
 873static int
 874process_exit_write(struct timechart *tchart,
 875                   struct perf_evsel *evsel,
 876                   struct perf_sample *sample)
 877{
 878        long ret = perf_evsel__intval(evsel, sample, "ret");
 879        return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 880                                 sample->time, ret);
 881}
 882
 883static int
 884process_enter_sync(struct timechart *tchart,
 885                   struct perf_evsel *evsel,
 886                   struct perf_sample *sample)
 887{
 888        long fd = perf_evsel__intval(evsel, sample, "fd");
 889        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 890                                   sample->time, fd);
 891}
 892
 893static int
 894process_exit_sync(struct timechart *tchart,
 895                  struct perf_evsel *evsel,
 896                  struct perf_sample *sample)
 897{
 898        long ret = perf_evsel__intval(evsel, sample, "ret");
 899        return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 900                                 sample->time, ret);
 901}
 902
 903static int
 904process_enter_tx(struct timechart *tchart,
 905                 struct perf_evsel *evsel,
 906                 struct perf_sample *sample)
 907{
 908        long fd = perf_evsel__intval(evsel, sample, "fd");
 909        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 910                                   sample->time, fd);
 911}
 912
 913static int
 914process_exit_tx(struct timechart *tchart,
 915                struct perf_evsel *evsel,
 916                struct perf_sample *sample)
 917{
 918        long ret = perf_evsel__intval(evsel, sample, "ret");
 919        return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 920                                 sample->time, ret);
 921}
 922
 923static int
 924process_enter_rx(struct timechart *tchart,
 925                 struct perf_evsel *evsel,
 926                 struct perf_sample *sample)
 927{
 928        long fd = perf_evsel__intval(evsel, sample, "fd");
 929        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 930                                   sample->time, fd);
 931}
 932
 933static int
 934process_exit_rx(struct timechart *tchart,
 935                struct perf_evsel *evsel,
 936                struct perf_sample *sample)
 937{
 938        long ret = perf_evsel__intval(evsel, sample, "ret");
 939        return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 940                                 sample->time, ret);
 941}
 942
 943static int
 944process_enter_poll(struct timechart *tchart,
 945                   struct perf_evsel *evsel,
 946                   struct perf_sample *sample)
 947{
 948        long fd = perf_evsel__intval(evsel, sample, "fd");
 949        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 950                                   sample->time, fd);
 951}
 952
 953static int
 954process_exit_poll(struct timechart *tchart,
 955                  struct perf_evsel *evsel,
 956                  struct perf_sample *sample)
 957{
 958        long ret = perf_evsel__intval(evsel, sample, "ret");
 959        return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 960                                 sample->time, ret);
 961}
 962
 963/*
 964 * Sort the pid datastructure
 965 */
 966static void sort_pids(struct timechart *tchart)
 967{
 968        struct per_pid *new_list, *p, *cursor, *prev;
 969        /* sort by ppid first, then by pid, lowest to highest */
 970
 971        new_list = NULL;
 972
 973        while (tchart->all_data) {
 974                p = tchart->all_data;
 975                tchart->all_data = p->next;
 976                p->next = NULL;
 977
 978                if (new_list == NULL) {
 979                        new_list = p;
 980                        p->next = NULL;
 981                        continue;
 982                }
 983                prev = NULL;
 984                cursor = new_list;
 985                while (cursor) {
 986                        if (cursor->ppid > p->ppid ||
 987                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 988                                /* must insert before */
 989                                if (prev) {
 990                                        p->next = prev->next;
 991                                        prev->next = p;
 992                                        cursor = NULL;
 993                                        continue;
 994                                } else {
 995                                        p->next = new_list;
 996                                        new_list = p;
 997                                        cursor = NULL;
 998                                        continue;
 999                                }
1000                        }
1001
1002                        prev = cursor;
1003                        cursor = cursor->next;
1004                        if (!cursor)
1005                                prev->next = p;
1006                }
1007        }
1008        tchart->all_data = new_list;
1009}
1010
1011
1012static void draw_c_p_states(struct timechart *tchart)
1013{
1014        struct power_event *pwr;
1015        pwr = tchart->power_events;
1016
1017        /*
1018         * two pass drawing so that the P state bars are on top of the C state blocks
1019         */
1020        while (pwr) {
1021                if (pwr->type == CSTATE)
1022                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023                pwr = pwr->next;
1024        }
1025
1026        pwr = tchart->power_events;
1027        while (pwr) {
1028                if (pwr->type == PSTATE) {
1029                        if (!pwr->state)
1030                                pwr->state = tchart->min_freq;
1031                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032                }
1033                pwr = pwr->next;
1034        }
1035}
1036
1037static void draw_wakeups(struct timechart *tchart)
1038{
1039        struct wake_event *we;
1040        struct per_pid *p;
1041        struct per_pidcomm *c;
1042
1043        we = tchart->wake_events;
1044        while (we) {
1045                int from = 0, to = 0;
1046                char *task_from = NULL, *task_to = NULL;
1047
1048                /* locate the column of the waker and wakee */
1049                p = tchart->all_data;
1050                while (p) {
1051                        if (p->pid == we->waker || p->pid == we->wakee) {
1052                                c = p->all;
1053                                while (c) {
1054                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055                                                if (p->pid == we->waker && !from) {
1056                                                        from = c->Y;
1057                                                        task_from = strdup(c->comm);
1058                                                }
1059                                                if (p->pid == we->wakee && !to) {
1060                                                        to = c->Y;
1061                                                        task_to = strdup(c->comm);
1062                                                }
1063                                        }
1064                                        c = c->next;
1065                                }
1066                                c = p->all;
1067                                while (c) {
1068                                        if (p->pid == we->waker && !from) {
1069                                                from = c->Y;
1070                                                task_from = strdup(c->comm);
1071                                        }
1072                                        if (p->pid == we->wakee && !to) {
1073                                                to = c->Y;
1074                                                task_to = strdup(c->comm);
1075                                        }
1076                                        c = c->next;
1077                                }
1078                        }
1079                        p = p->next;
1080                }
1081
1082                if (!task_from) {
1083                        task_from = malloc(40);
1084                        sprintf(task_from, "[%i]", we->waker);
1085                }
1086                if (!task_to) {
1087                        task_to = malloc(40);
1088                        sprintf(task_to, "[%i]", we->wakee);
1089                }
1090
1091                if (we->waker == -1)
1092                        svg_interrupt(we->time, to, we->backtrace);
1093                else if (from && to && abs(from - to) == 1)
1094                        svg_wakeline(we->time, from, to, we->backtrace);
1095                else
1096                        svg_partial_wakeline(we->time, from, task_from, to,
1097                                             task_to, we->backtrace);
1098                we = we->next;
1099
1100                free(task_from);
1101                free(task_to);
1102        }
1103}
1104
1105static void draw_cpu_usage(struct timechart *tchart)
1106{
1107        struct per_pid *p;
1108        struct per_pidcomm *c;
1109        struct cpu_sample *sample;
1110        p = tchart->all_data;
1111        while (p) {
1112                c = p->all;
1113                while (c) {
1114                        sample = c->samples;
1115                        while (sample) {
1116                                if (sample->type == TYPE_RUNNING) {
1117                                        svg_process(sample->cpu,
1118                                                    sample->start_time,
1119                                                    sample->end_time,
1120                                                    p->pid,
1121                                                    c->comm,
1122                                                    sample->backtrace);
1123                                }
1124
1125                                sample = sample->next;
1126                        }
1127                        c = c->next;
1128                }
1129                p = p->next;
1130        }
1131}
1132
1133static void draw_io_bars(struct timechart *tchart)
1134{
1135        const char *suf;
1136        double bytes;
1137        char comm[256];
1138        struct per_pid *p;
1139        struct per_pidcomm *c;
1140        struct io_sample *sample;
1141        int Y = 1;
1142
1143        p = tchart->all_data;
1144        while (p) {
1145                c = p->all;
1146                while (c) {
1147                        if (!c->display) {
1148                                c->Y = 0;
1149                                c = c->next;
1150                                continue;
1151                        }
1152
1153                        svg_box(Y, c->start_time, c->end_time, "process3");
1154                        sample = c->io_samples;
1155                        for (sample = c->io_samples; sample; sample = sample->next) {
1156                                double h = (double)sample->bytes / c->max_bytes;
1157
1158                                if (tchart->skip_eagain &&
1159                                    sample->err == -EAGAIN)
1160                                        continue;
1161
1162                                if (sample->err)
1163                                        h = 1;
1164
1165                                if (sample->type == IOTYPE_SYNC)
1166                                        svg_fbox(Y,
1167                                                sample->start_time,
1168                                                sample->end_time,
1169                                                1,
1170                                                sample->err ? "error" : "sync",
1171                                                sample->fd,
1172                                                sample->err,
1173                                                sample->merges);
1174                                else if (sample->type == IOTYPE_POLL)
1175                                        svg_fbox(Y,
1176                                                sample->start_time,
1177                                                sample->end_time,
1178                                                1,
1179                                                sample->err ? "error" : "poll",
1180                                                sample->fd,
1181                                                sample->err,
1182                                                sample->merges);
1183                                else if (sample->type == IOTYPE_READ)
1184                                        svg_ubox(Y,
1185                                                sample->start_time,
1186                                                sample->end_time,
1187                                                h,
1188                                                sample->err ? "error" : "disk",
1189                                                sample->fd,
1190                                                sample->err,
1191                                                sample->merges);
1192                                else if (sample->type == IOTYPE_WRITE)
1193                                        svg_lbox(Y,
1194                                                sample->start_time,
1195                                                sample->end_time,
1196                                                h,
1197                                                sample->err ? "error" : "disk",
1198                                                sample->fd,
1199                                                sample->err,
1200                                                sample->merges);
1201                                else if (sample->type == IOTYPE_RX)
1202                                        svg_ubox(Y,
1203                                                sample->start_time,
1204                                                sample->end_time,
1205                                                h,
1206                                                sample->err ? "error" : "net",
1207                                                sample->fd,
1208                                                sample->err,
1209                                                sample->merges);
1210                                else if (sample->type == IOTYPE_TX)
1211                                        svg_lbox(Y,
1212                                                sample->start_time,
1213                                                sample->end_time,
1214                                                h,
1215                                                sample->err ? "error" : "net",
1216                                                sample->fd,
1217                                                sample->err,
1218                                                sample->merges);
1219                        }
1220
1221                        suf = "";
1222                        bytes = c->total_bytes;
1223                        if (bytes > 1024) {
1224                                bytes = bytes / 1024;
1225                                suf = "K";
1226                        }
1227                        if (bytes > 1024) {
1228                                bytes = bytes / 1024;
1229                                suf = "M";
1230                        }
1231                        if (bytes > 1024) {
1232                                bytes = bytes / 1024;
1233                                suf = "G";
1234                        }
1235
1236
1237                        sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238                        svg_text(Y, c->start_time, comm);
1239
1240                        c->Y = Y;
1241                        Y++;
1242                        c = c->next;
1243                }
1244                p = p->next;
1245        }
1246}
1247
1248static void draw_process_bars(struct timechart *tchart)
1249{
1250        struct per_pid *p;
1251        struct per_pidcomm *c;
1252        struct cpu_sample *sample;
1253        int Y = 0;
1254
1255        Y = 2 * tchart->numcpus + 2;
1256
1257        p = tchart->all_data;
1258        while (p) {
1259                c = p->all;
1260                while (c) {
1261                        if (!c->display) {
1262                                c->Y = 0;
1263                                c = c->next;
1264                                continue;
1265                        }
1266
1267                        svg_box(Y, c->start_time, c->end_time, "process");
1268                        sample = c->samples;
1269                        while (sample) {
1270                                if (sample->type == TYPE_RUNNING)
1271                                        svg_running(Y, sample->cpu,
1272                                                    sample->start_time,
1273                                                    sample->end_time,
1274                                                    sample->backtrace);
1275                                if (sample->type == TYPE_BLOCKED)
1276                                        svg_blocked(Y, sample->cpu,
1277                                                    sample->start_time,
1278                                                    sample->end_time,
1279                                                    sample->backtrace);
1280                                if (sample->type == TYPE_WAITING)
1281                                        svg_waiting(Y, sample->cpu,
1282                                                    sample->start_time,
1283                                                    sample->end_time,
1284                                                    sample->backtrace);
1285                                sample = sample->next;
1286                        }
1287
1288                        if (c->comm) {
1289                                char comm[256];
1290                                if (c->total_time > 5000000000) /* 5 seconds */
1291                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1292                                else
1293                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1294
1295                                svg_text(Y, c->start_time, comm);
1296                        }
1297                        c->Y = Y;
1298                        Y++;
1299                        c = c->next;
1300                }
1301                p = p->next;
1302        }
1303}
1304
1305static void add_process_filter(const char *string)
1306{
1307        int pid = strtoull(string, NULL, 10);
1308        struct process_filter *filt = malloc(sizeof(*filt));
1309
1310        if (!filt)
1311                return;
1312
1313        filt->name = strdup(string);
1314        filt->pid  = pid;
1315        filt->next = process_filter;
1316
1317        process_filter = filt;
1318}
1319
1320static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321{
1322        struct process_filter *filt;
1323        if (!process_filter)
1324                return 1;
1325
1326        filt = process_filter;
1327        while (filt) {
1328                if (filt->pid && p->pid == filt->pid)
1329                        return 1;
1330                if (strcmp(filt->name, c->comm) == 0)
1331                        return 1;
1332                filt = filt->next;
1333        }
1334        return 0;
1335}
1336
1337static int determine_display_tasks_filtered(struct timechart *tchart)
1338{
1339        struct per_pid *p;
1340        struct per_pidcomm *c;
1341        int count = 0;
1342
1343        p = tchart->all_data;
1344        while (p) {
1345                p->display = 0;
1346                if (p->start_time == 1)
1347                        p->start_time = tchart->first_time;
1348
1349                /* no exit marker, task kept running to the end */
1350                if (p->end_time == 0)
1351                        p->end_time = tchart->last_time;
1352
1353                c = p->all;
1354
1355                while (c) {
1356                        c->display = 0;
1357
1358                        if (c->start_time == 1)
1359                                c->start_time = tchart->first_time;
1360
1361                        if (passes_filter(p, c)) {
1362                                c->display = 1;
1363                                p->display = 1;
1364                                count++;
1365                        }
1366
1367                        if (c->end_time == 0)
1368                                c->end_time = tchart->last_time;
1369
1370                        c = c->next;
1371                }
1372                p = p->next;
1373        }
1374        return count;
1375}
1376
1377static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378{
1379        struct per_pid *p;
1380        struct per_pidcomm *c;
1381        int count = 0;
1382
1383        p = tchart->all_data;
1384        while (p) {
1385                p->display = 0;
1386                if (p->start_time == 1)
1387                        p->start_time = tchart->first_time;
1388
1389                /* no exit marker, task kept running to the end */
1390                if (p->end_time == 0)
1391                        p->end_time = tchart->last_time;
1392                if (p->total_time >= threshold)
1393                        p->display = 1;
1394
1395                c = p->all;
1396
1397                while (c) {
1398                        c->display = 0;
1399
1400                        if (c->start_time == 1)
1401                                c->start_time = tchart->first_time;
1402
1403                        if (c->total_time >= threshold) {
1404                                c->display = 1;
1405                                count++;
1406                        }
1407
1408                        if (c->end_time == 0)
1409                                c->end_time = tchart->last_time;
1410
1411                        c = c->next;
1412                }
1413                p = p->next;
1414        }
1415        return count;
1416}
1417
1418static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419{
1420        struct per_pid *p;
1421        struct per_pidcomm *c;
1422        int count = 0;
1423
1424        p = timechart->all_data;
1425        while (p) {
1426                /* no exit marker, task kept running to the end */
1427                if (p->end_time == 0)
1428                        p->end_time = timechart->last_time;
1429
1430                c = p->all;
1431
1432                while (c) {
1433                        c->display = 0;
1434
1435                        if (c->total_bytes >= threshold) {
1436                                c->display = 1;
1437                                count++;
1438                        }
1439
1440                        if (c->end_time == 0)
1441                                c->end_time = timechart->last_time;
1442
1443                        c = c->next;
1444                }
1445                p = p->next;
1446        }
1447        return count;
1448}
1449
1450#define BYTES_THRESH (1 * 1024 * 1024)
1451#define TIME_THRESH 10000000
1452
1453static void write_svg_file(struct timechart *tchart, const char *filename)
1454{
1455        u64 i;
1456        int count;
1457        int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458
1459        if (tchart->power_only)
1460                tchart->proc_num = 0;
1461
1462        /* We'd like to show at least proc_num tasks;
1463         * be less picky if we have fewer */
1464        do {
1465                if (process_filter)
1466                        count = determine_display_tasks_filtered(tchart);
1467                else if (tchart->io_events)
1468                        count = determine_display_io_tasks(tchart, thresh);
1469                else
1470                        count = determine_display_tasks(tchart, thresh);
1471                thresh /= 10;
1472        } while (!process_filter && thresh && count < tchart->proc_num);
1473
1474        if (!tchart->proc_num)
1475                count = 0;
1476
1477        if (tchart->io_events) {
1478                open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479
1480                svg_time_grid(0.5);
1481                svg_io_legenda();
1482
1483                draw_io_bars(tchart);
1484        } else {
1485                open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486
1487                svg_time_grid(0);
1488
1489                svg_legenda();
1490
1491                for (i = 0; i < tchart->numcpus; i++)
1492                        svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493
1494                draw_cpu_usage(tchart);
1495                if (tchart->proc_num)
1496                        draw_process_bars(tchart);
1497                if (!tchart->tasks_only)
1498                        draw_c_p_states(tchart);
1499                if (tchart->proc_num)
1500                        draw_wakeups(tchart);
1501        }
1502
1503        svg_close();
1504}
1505
1506static int process_header(struct perf_file_section *section __maybe_unused,
1507                          struct perf_header *ph,
1508                          int feat,
1509                          int fd __maybe_unused,
1510                          void *data)
1511{
1512        struct timechart *tchart = data;
1513
1514        switch (feat) {
1515        case HEADER_NRCPUS:
1516                tchart->numcpus = ph->env.nr_cpus_avail;
1517                break;
1518
1519        case HEADER_CPU_TOPOLOGY:
1520                if (!tchart->topology)
1521                        break;
1522
1523                if (svg_build_topology_map(ph->env.sibling_cores,
1524                                           ph->env.nr_sibling_cores,
1525                                           ph->env.sibling_threads,
1526                                           ph->env.nr_sibling_threads))
1527                        fprintf(stderr, "problem building topology\n");
1528                break;
1529
1530        default:
1531                break;
1532        }
1533
1534        return 0;
1535}
1536
1537static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538{
1539        const struct perf_evsel_str_handler power_tracepoints[] = {
1540                { "power:cpu_idle",             process_sample_cpu_idle },
1541                { "power:cpu_frequency",        process_sample_cpu_frequency },
1542                { "sched:sched_wakeup",         process_sample_sched_wakeup },
1543                { "sched:sched_switch",         process_sample_sched_switch },
1544#ifdef SUPPORT_OLD_POWER_EVENTS
1545                { "power:power_start",          process_sample_power_start },
1546                { "power:power_end",            process_sample_power_end },
1547                { "power:power_frequency",      process_sample_power_frequency },
1548#endif
1549
1550                { "syscalls:sys_enter_read",            process_enter_read },
1551                { "syscalls:sys_enter_pread64",         process_enter_read },
1552                { "syscalls:sys_enter_readv",           process_enter_read },
1553                { "syscalls:sys_enter_preadv",          process_enter_read },
1554                { "syscalls:sys_enter_write",           process_enter_write },
1555                { "syscalls:sys_enter_pwrite64",        process_enter_write },
1556                { "syscalls:sys_enter_writev",          process_enter_write },
1557                { "syscalls:sys_enter_pwritev",         process_enter_write },
1558                { "syscalls:sys_enter_sync",            process_enter_sync },
1559                { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560                { "syscalls:sys_enter_fsync",           process_enter_sync },
1561                { "syscalls:sys_enter_msync",           process_enter_sync },
1562                { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1563                { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1564                { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1565                { "syscalls:sys_enter_sendto",          process_enter_tx },
1566                { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1567                { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1568                { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1569                { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1570                { "syscalls:sys_enter_poll",            process_enter_poll },
1571                { "syscalls:sys_enter_ppoll",           process_enter_poll },
1572                { "syscalls:sys_enter_pselect6",        process_enter_poll },
1573                { "syscalls:sys_enter_select",          process_enter_poll },
1574
1575                { "syscalls:sys_exit_read",             process_exit_read },
1576                { "syscalls:sys_exit_pread64",          process_exit_read },
1577                { "syscalls:sys_exit_readv",            process_exit_read },
1578                { "syscalls:sys_exit_preadv",           process_exit_read },
1579                { "syscalls:sys_exit_write",            process_exit_write },
1580                { "syscalls:sys_exit_pwrite64",         process_exit_write },
1581                { "syscalls:sys_exit_writev",           process_exit_write },
1582                { "syscalls:sys_exit_pwritev",          process_exit_write },
1583                { "syscalls:sys_exit_sync",             process_exit_sync },
1584                { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1585                { "syscalls:sys_exit_fsync",            process_exit_sync },
1586                { "syscalls:sys_exit_msync",            process_exit_sync },
1587                { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1588                { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1589                { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1590                { "syscalls:sys_exit_sendto",           process_exit_tx },
1591                { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1592                { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1593                { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1594                { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1595                { "syscalls:sys_exit_poll",             process_exit_poll },
1596                { "syscalls:sys_exit_ppoll",            process_exit_poll },
1597                { "syscalls:sys_exit_pselect6",         process_exit_poll },
1598                { "syscalls:sys_exit_select",           process_exit_poll },
1599        };
1600        struct perf_data_file file = {
1601                .path = input_name,
1602                .mode = PERF_DATA_MODE_READ,
1603                .force = tchart->force,
1604        };
1605
1606        struct perf_session *session = perf_session__new(&file, false,
1607                                                         &tchart->tool);
1608        int ret = -EINVAL;
1609
1610        if (session == NULL)
1611                return -1;
1612
1613        symbol__init(&session->header.env);
1614
1615        (void)perf_header__process_sections(&session->header,
1616                                            perf_data_file__fd(session->file),
1617                                            tchart,
1618                                            process_header);
1619
1620        if (!perf_session__has_traces(session, "timechart record"))
1621                goto out_delete;
1622
1623        if (perf_session__set_tracepoints_handlers(session,
1624                                                   power_tracepoints)) {
1625                pr_err("Initializing session tracepoint handlers failed\n");
1626                goto out_delete;
1627        }
1628
1629        ret = perf_session__process_events(session);
1630        if (ret)
1631                goto out_delete;
1632
1633        end_sample_processing(tchart);
1634
1635        sort_pids(tchart);
1636
1637        write_svg_file(tchart, output_name);
1638
1639        pr_info("Written %2.1f seconds of trace to %s.\n",
1640                (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1641out_delete:
1642        perf_session__delete(session);
1643        return ret;
1644}
1645
1646static int timechart__io_record(int argc, const char **argv)
1647{
1648        unsigned int rec_argc, i;
1649        const char **rec_argv;
1650        const char **p;
1651        char *filter = NULL;
1652
1653        const char * const common_args[] = {
1654                "record", "-a", "-R", "-c", "1",
1655        };
1656        unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658        const char * const disk_events[] = {
1659                "syscalls:sys_enter_read",
1660                "syscalls:sys_enter_pread64",
1661                "syscalls:sys_enter_readv",
1662                "syscalls:sys_enter_preadv",
1663                "syscalls:sys_enter_write",
1664                "syscalls:sys_enter_pwrite64",
1665                "syscalls:sys_enter_writev",
1666                "syscalls:sys_enter_pwritev",
1667                "syscalls:sys_enter_sync",
1668                "syscalls:sys_enter_sync_file_range",
1669                "syscalls:sys_enter_fsync",
1670                "syscalls:sys_enter_msync",
1671
1672                "syscalls:sys_exit_read",
1673                "syscalls:sys_exit_pread64",
1674                "syscalls:sys_exit_readv",
1675                "syscalls:sys_exit_preadv",
1676                "syscalls:sys_exit_write",
1677                "syscalls:sys_exit_pwrite64",
1678                "syscalls:sys_exit_writev",
1679                "syscalls:sys_exit_pwritev",
1680                "syscalls:sys_exit_sync",
1681                "syscalls:sys_exit_sync_file_range",
1682                "syscalls:sys_exit_fsync",
1683                "syscalls:sys_exit_msync",
1684        };
1685        unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687        const char * const net_events[] = {
1688                "syscalls:sys_enter_recvfrom",
1689                "syscalls:sys_enter_recvmmsg",
1690                "syscalls:sys_enter_recvmsg",
1691                "syscalls:sys_enter_sendto",
1692                "syscalls:sys_enter_sendmsg",
1693                "syscalls:sys_enter_sendmmsg",
1694
1695                "syscalls:sys_exit_recvfrom",
1696                "syscalls:sys_exit_recvmmsg",
1697                "syscalls:sys_exit_recvmsg",
1698                "syscalls:sys_exit_sendto",
1699                "syscalls:sys_exit_sendmsg",
1700                "syscalls:sys_exit_sendmmsg",
1701        };
1702        unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704        const char * const poll_events[] = {
1705                "syscalls:sys_enter_epoll_pwait",
1706                "syscalls:sys_enter_epoll_wait",
1707                "syscalls:sys_enter_poll",
1708                "syscalls:sys_enter_ppoll",
1709                "syscalls:sys_enter_pselect6",
1710                "syscalls:sys_enter_select",
1711
1712                "syscalls:sys_exit_epoll_pwait",
1713                "syscalls:sys_exit_epoll_wait",
1714                "syscalls:sys_exit_poll",
1715                "syscalls:sys_exit_ppoll",
1716                "syscalls:sys_exit_pselect6",
1717                "syscalls:sys_exit_select",
1718        };
1719        unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721        rec_argc = common_args_nr +
1722                disk_events_nr * 4 +
1723                net_events_nr * 4 +
1724                poll_events_nr * 4 +
1725                argc;
1726        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728        if (rec_argv == NULL)
1729                return -ENOMEM;
1730
1731        if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1732                return -ENOMEM;
1733
1734        p = rec_argv;
1735        for (i = 0; i < common_args_nr; i++)
1736                *p++ = strdup(common_args[i]);
1737
1738        for (i = 0; i < disk_events_nr; i++) {
1739                if (!is_valid_tracepoint(disk_events[i])) {
1740                        rec_argc -= 4;
1741                        continue;
1742                }
1743
1744                *p++ = "-e";
1745                *p++ = strdup(disk_events[i]);
1746                *p++ = "--filter";
1747                *p++ = filter;
1748        }
1749        for (i = 0; i < net_events_nr; i++) {
1750                if (!is_valid_tracepoint(net_events[i])) {
1751                        rec_argc -= 4;
1752                        continue;
1753                }
1754
1755                *p++ = "-e";
1756                *p++ = strdup(net_events[i]);
1757                *p++ = "--filter";
1758                *p++ = filter;
1759        }
1760        for (i = 0; i < poll_events_nr; i++) {
1761                if (!is_valid_tracepoint(poll_events[i])) {
1762                        rec_argc -= 4;
1763                        continue;
1764                }
1765
1766                *p++ = "-e";
1767                *p++ = strdup(poll_events[i]);
1768                *p++ = "--filter";
1769                *p++ = filter;
1770        }
1771
1772        for (i = 0; i < (unsigned int)argc; i++)
1773                *p++ = argv[i];
1774
1775        return cmd_record(rec_argc, rec_argv, NULL);
1776}
1777
1778
1779static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1780{
1781        unsigned int rec_argc, i, j;
1782        const char **rec_argv;
1783        const char **p;
1784        unsigned int record_elems;
1785
1786        const char * const common_args[] = {
1787                "record", "-a", "-R", "-c", "1",
1788        };
1789        unsigned int common_args_nr = ARRAY_SIZE(common_args);
1790
1791        const char * const backtrace_args[] = {
1792                "-g",
1793        };
1794        unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1795
1796        const char * const power_args[] = {
1797                "-e", "power:cpu_frequency",
1798                "-e", "power:cpu_idle",
1799        };
1800        unsigned int power_args_nr = ARRAY_SIZE(power_args);
1801
1802        const char * const old_power_args[] = {
1803#ifdef SUPPORT_OLD_POWER_EVENTS
1804                "-e", "power:power_start",
1805                "-e", "power:power_end",
1806                "-e", "power:power_frequency",
1807#endif
1808        };
1809        unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1810
1811        const char * const tasks_args[] = {
1812                "-e", "sched:sched_wakeup",
1813                "-e", "sched:sched_switch",
1814        };
1815        unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1816
1817#ifdef SUPPORT_OLD_POWER_EVENTS
1818        if (!is_valid_tracepoint("power:cpu_idle") &&
1819            is_valid_tracepoint("power:power_start")) {
1820                use_old_power_events = 1;
1821                power_args_nr = 0;
1822        } else {
1823                old_power_args_nr = 0;
1824        }
1825#endif
1826
1827        if (tchart->power_only)
1828                tasks_args_nr = 0;
1829
1830        if (tchart->tasks_only) {
1831                power_args_nr = 0;
1832                old_power_args_nr = 0;
1833        }
1834
1835        if (!tchart->with_backtrace)
1836                backtrace_args_no = 0;
1837
1838        record_elems = common_args_nr + tasks_args_nr +
1839                power_args_nr + old_power_args_nr + backtrace_args_no;
1840
1841        rec_argc = record_elems + argc;
1842        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1843
1844        if (rec_argv == NULL)
1845                return -ENOMEM;
1846
1847        p = rec_argv;
1848        for (i = 0; i < common_args_nr; i++)
1849                *p++ = strdup(common_args[i]);
1850
1851        for (i = 0; i < backtrace_args_no; i++)
1852                *p++ = strdup(backtrace_args[i]);
1853
1854        for (i = 0; i < tasks_args_nr; i++)
1855                *p++ = strdup(tasks_args[i]);
1856
1857        for (i = 0; i < power_args_nr; i++)
1858                *p++ = strdup(power_args[i]);
1859
1860        for (i = 0; i < old_power_args_nr; i++)
1861                *p++ = strdup(old_power_args[i]);
1862
1863        for (j = 0; j < (unsigned int)argc; j++)
1864                *p++ = argv[j];
1865
1866        return cmd_record(rec_argc, rec_argv, NULL);
1867}
1868
1869static int
1870parse_process(const struct option *opt __maybe_unused, const char *arg,
1871              int __maybe_unused unset)
1872{
1873        if (arg)
1874                add_process_filter(arg);
1875        return 0;
1876}
1877
1878static int
1879parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1880                int __maybe_unused unset)
1881{
1882        unsigned long duration = strtoul(arg, NULL, 0);
1883
1884        if (svg_highlight || svg_highlight_name)
1885                return -1;
1886
1887        if (duration)
1888                svg_highlight = duration;
1889        else
1890                svg_highlight_name = strdup(arg);
1891
1892        return 0;
1893}
1894
1895static int
1896parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1897{
1898        char unit = 'n';
1899        u64 *value = opt->value;
1900
1901        if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1902                switch (unit) {
1903                case 'm':
1904                        *value *= 1000000;
1905                        break;
1906                case 'u':
1907                        *value *= 1000;
1908                        break;
1909                case 'n':
1910                        break;
1911                default:
1912                        return -1;
1913                }
1914        }
1915
1916        return 0;
1917}
1918
1919int cmd_timechart(int argc, const char **argv,
1920                  const char *prefix __maybe_unused)
1921{
1922        struct timechart tchart = {
1923                .tool = {
1924                        .comm            = process_comm_event,
1925                        .fork            = process_fork_event,
1926                        .exit            = process_exit_event,
1927                        .sample          = process_sample_event,
1928                        .ordered_events  = true,
1929                },
1930                .proc_num = 15,
1931                .min_time = 1000000,
1932                .merge_dist = 1000,
1933        };
1934        const char *output_name = "output.svg";
1935        const struct option timechart_options[] = {
1936        OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937        OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938        OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939        OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940                      "highlight tasks. Pass duration in ns or process name.",
1941                       parse_highlight),
1942        OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1943        OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1944                    "output processes data only"),
1945        OPT_CALLBACK('p', "process", NULL, "process",
1946                      "process selector. Pass a pid or process name.",
1947                       parse_process),
1948        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1949                    "Look for files with symbols relative to this directory"),
1950        OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1951                    "min. number of tasks to print"),
1952        OPT_BOOLEAN('t', "topology", &tchart.topology,
1953                    "sort CPUs according to topology"),
1954        OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1955                    "skip EAGAIN errors"),
1956        OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1957                     "all IO faster than min-time will visually appear longer",
1958                     parse_time),
1959        OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1960                     "merge events that are merge-dist us apart",
1961                     parse_time),
1962        OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1963        OPT_END()
1964        };
1965        const char * const timechart_subcommands[] = { "record", NULL };
1966        const char *timechart_usage[] = {
1967                "perf timechart [<options>] {record}",
1968                NULL
1969        };
1970
1971        const struct option timechart_record_options[] = {
1972        OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1973        OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1974                    "output processes data only"),
1975        OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976                    "record only IO data"),
1977        OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978        OPT_END()
1979        };
1980        const char * const timechart_record_usage[] = {
1981                "perf timechart record [<options>]",
1982                NULL
1983        };
1984        argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985                        timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987        if (tchart.power_only && tchart.tasks_only) {
1988                pr_err("-P and -T options cannot be used at the same time.\n");
1989                return -1;
1990        }
1991
1992        if (argc && !strncmp(argv[0], "rec", 3)) {
1993                argc = parse_options(argc, argv, timechart_record_options,
1994                                     timechart_record_usage,
1995                                     PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997                if (tchart.power_only && tchart.tasks_only) {
1998                        pr_err("-P and -T options cannot be used at the same time.\n");
1999                        return -1;
2000                }
2001
2002                if (tchart.io_only)
2003                        return timechart__io_record(argc, argv);
2004                else
2005                        return timechart__record(&tchart, argc, argv);
2006        } else if (argc)
2007                usage_with_options(timechart_usage, timechart_options);
2008
2009        setup_pager();
2010
2011        return __cmd_timechart(&tchart, output_name);
2012}
2013