linux/tools/perf/util/intel-pt.c
<<
>>
Prefs
   1/*
   2 * intel_pt.c: Intel Processor Trace support
   3 * Copyright (c) 2013-2015, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 */
  15
  16#include <stdio.h>
  17#include <stdbool.h>
  18#include <errno.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21
  22#include "../perf.h"
  23#include "session.h"
  24#include "machine.h"
  25#include "sort.h"
  26#include "tool.h"
  27#include "event.h"
  28#include "evlist.h"
  29#include "evsel.h"
  30#include "map.h"
  31#include "color.h"
  32#include "util.h"
  33#include "thread.h"
  34#include "thread-stack.h"
  35#include "symbol.h"
  36#include "callchain.h"
  37#include "dso.h"
  38#include "debug.h"
  39#include "auxtrace.h"
  40#include "tsc.h"
  41#include "intel-pt.h"
  42
  43#include "intel-pt-decoder/intel-pt-log.h"
  44#include "intel-pt-decoder/intel-pt-decoder.h"
  45#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  46#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  47
  48#define MAX_TIMESTAMP (~0ULL)
  49
  50struct intel_pt {
  51        struct auxtrace auxtrace;
  52        struct auxtrace_queues queues;
  53        struct auxtrace_heap heap;
  54        u32 auxtrace_type;
  55        struct perf_session *session;
  56        struct machine *machine;
  57        struct perf_evsel *switch_evsel;
  58        struct thread *unknown_thread;
  59        bool timeless_decoding;
  60        bool sampling_mode;
  61        bool snapshot_mode;
  62        bool per_cpu_mmaps;
  63        bool have_tsc;
  64        bool data_queued;
  65        bool est_tsc;
  66        bool sync_switch;
  67        bool mispred_all;
  68        int have_sched_switch;
  69        u32 pmu_type;
  70        u64 kernel_start;
  71        u64 switch_ip;
  72        u64 ptss_ip;
  73
  74        struct perf_tsc_conversion tc;
  75        bool cap_user_time_zero;
  76
  77        struct itrace_synth_opts synth_opts;
  78
  79        bool sample_instructions;
  80        u64 instructions_sample_type;
  81        u64 instructions_sample_period;
  82        u64 instructions_id;
  83
  84        bool sample_branches;
  85        u32 branches_filter;
  86        u64 branches_sample_type;
  87        u64 branches_id;
  88
  89        bool sample_transactions;
  90        u64 transactions_sample_type;
  91        u64 transactions_id;
  92
  93        bool synth_needs_swap;
  94
  95        u64 tsc_bit;
  96        u64 mtc_bit;
  97        u64 mtc_freq_bits;
  98        u32 tsc_ctc_ratio_n;
  99        u32 tsc_ctc_ratio_d;
 100        u64 cyc_bit;
 101        u64 noretcomp_bit;
 102        unsigned max_non_turbo_ratio;
 103};
 104
 105enum switch_state {
 106        INTEL_PT_SS_NOT_TRACING,
 107        INTEL_PT_SS_UNKNOWN,
 108        INTEL_PT_SS_TRACING,
 109        INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 110        INTEL_PT_SS_EXPECTING_SWITCH_IP,
 111};
 112
 113struct intel_pt_queue {
 114        struct intel_pt *pt;
 115        unsigned int queue_nr;
 116        struct auxtrace_buffer *buffer;
 117        void *decoder;
 118        const struct intel_pt_state *state;
 119        struct ip_callchain *chain;
 120        struct branch_stack *last_branch;
 121        struct branch_stack *last_branch_rb;
 122        size_t last_branch_pos;
 123        union perf_event *event_buf;
 124        bool on_heap;
 125        bool stop;
 126        bool step_through_buffers;
 127        bool use_buffer_pid_tid;
 128        pid_t pid, tid;
 129        int cpu;
 130        int switch_state;
 131        pid_t next_tid;
 132        struct thread *thread;
 133        bool exclude_kernel;
 134        bool have_sample;
 135        u64 time;
 136        u64 timestamp;
 137        u32 flags;
 138        u16 insn_len;
 139        u64 last_insn_cnt;
 140};
 141
 142static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 143                          unsigned char *buf, size_t len)
 144{
 145        struct intel_pt_pkt packet;
 146        size_t pos = 0;
 147        int ret, pkt_len, i;
 148        char desc[INTEL_PT_PKT_DESC_MAX];
 149        const char *color = PERF_COLOR_BLUE;
 150
 151        color_fprintf(stdout, color,
 152                      ". ... Intel Processor Trace data: size %zu bytes\n",
 153                      len);
 154
 155        while (len) {
 156                ret = intel_pt_get_packet(buf, len, &packet);
 157                if (ret > 0)
 158                        pkt_len = ret;
 159                else
 160                        pkt_len = 1;
 161                printf(".");
 162                color_fprintf(stdout, color, "  %08x: ", pos);
 163                for (i = 0; i < pkt_len; i++)
 164                        color_fprintf(stdout, color, " %02x", buf[i]);
 165                for (; i < 16; i++)
 166                        color_fprintf(stdout, color, "   ");
 167                if (ret > 0) {
 168                        ret = intel_pt_pkt_desc(&packet, desc,
 169                                                INTEL_PT_PKT_DESC_MAX);
 170                        if (ret > 0)
 171                                color_fprintf(stdout, color, " %s\n", desc);
 172                } else {
 173                        color_fprintf(stdout, color, " Bad packet!\n");
 174                }
 175                pos += pkt_len;
 176                buf += pkt_len;
 177                len -= pkt_len;
 178        }
 179}
 180
 181static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 182                                size_t len)
 183{
 184        printf(".\n");
 185        intel_pt_dump(pt, buf, len);
 186}
 187
 188static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 189                                   struct auxtrace_buffer *b)
 190{
 191        void *start;
 192
 193        start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 194                                      pt->have_tsc);
 195        if (!start)
 196                return -EINVAL;
 197        b->use_size = b->data + b->size - start;
 198        b->use_data = start;
 199        return 0;
 200}
 201
 202static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
 203                                        struct auxtrace_queue *queue,
 204                                        struct auxtrace_buffer *buffer)
 205{
 206        if (queue->cpu == -1 && buffer->cpu != -1)
 207                ptq->cpu = buffer->cpu;
 208
 209        ptq->pid = buffer->pid;
 210        ptq->tid = buffer->tid;
 211
 212        intel_pt_log("queue %u cpu %d pid %d tid %d\n",
 213                     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
 214
 215        thread__zput(ptq->thread);
 216
 217        if (ptq->tid != -1) {
 218                if (ptq->pid != -1)
 219                        ptq->thread = machine__findnew_thread(ptq->pt->machine,
 220                                                              ptq->pid,
 221                                                              ptq->tid);
 222                else
 223                        ptq->thread = machine__find_thread(ptq->pt->machine, -1,
 224                                                           ptq->tid);
 225        }
 226}
 227
 228/* This function assumes data is processed sequentially only */
 229static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 230{
 231        struct intel_pt_queue *ptq = data;
 232        struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
 233        struct auxtrace_queue *queue;
 234
 235        if (ptq->stop) {
 236                b->len = 0;
 237                return 0;
 238        }
 239
 240        queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 241
 242        buffer = auxtrace_buffer__next(queue, buffer);
 243        if (!buffer) {
 244                if (old_buffer)
 245                        auxtrace_buffer__drop_data(old_buffer);
 246                b->len = 0;
 247                return 0;
 248        }
 249
 250        ptq->buffer = buffer;
 251
 252        if (!buffer->data) {
 253                int fd = perf_data_file__fd(ptq->pt->session->file);
 254
 255                buffer->data = auxtrace_buffer__get_data(buffer, fd);
 256                if (!buffer->data)
 257                        return -ENOMEM;
 258        }
 259
 260        if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
 261            intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 262                return -ENOMEM;
 263
 264        if (old_buffer)
 265                auxtrace_buffer__drop_data(old_buffer);
 266
 267        if (buffer->use_data) {
 268                b->len = buffer->use_size;
 269                b->buf = buffer->use_data;
 270        } else {
 271                b->len = buffer->size;
 272                b->buf = buffer->data;
 273        }
 274        b->ref_timestamp = buffer->reference;
 275
 276        if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
 277                                                      !buffer->consecutive)) {
 278                b->consecutive = false;
 279                b->trace_nr = buffer->buffer_nr + 1;
 280        } else {
 281                b->consecutive = true;
 282        }
 283
 284        if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
 285                                        ptq->tid != buffer->tid))
 286                intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
 287
 288        if (ptq->step_through_buffers)
 289                ptq->stop = true;
 290
 291        if (!b->len)
 292                return intel_pt_get_trace(b, data);
 293
 294        return 0;
 295}
 296
 297struct intel_pt_cache_entry {
 298        struct auxtrace_cache_entry     entry;
 299        u64                             insn_cnt;
 300        u64                             byte_cnt;
 301        enum intel_pt_insn_op           op;
 302        enum intel_pt_insn_branch       branch;
 303        int                             length;
 304        int32_t                         rel;
 305};
 306
 307static int intel_pt_config_div(const char *var, const char *value, void *data)
 308{
 309        int *d = data;
 310        long val;
 311
 312        if (!strcmp(var, "intel-pt.cache-divisor")) {
 313                val = strtol(value, NULL, 0);
 314                if (val > 0 && val <= INT_MAX)
 315                        *d = val;
 316        }
 317
 318        return 0;
 319}
 320
 321static int intel_pt_cache_divisor(void)
 322{
 323        static int d;
 324
 325        if (d)
 326                return d;
 327
 328        perf_config(intel_pt_config_div, &d);
 329
 330        if (!d)
 331                d = 64;
 332
 333        return d;
 334}
 335
 336static unsigned int intel_pt_cache_size(struct dso *dso,
 337                                        struct machine *machine)
 338{
 339        off_t size;
 340
 341        size = dso__data_size(dso, machine);
 342        size /= intel_pt_cache_divisor();
 343        if (size < 1000)
 344                return 10;
 345        if (size > (1 << 21))
 346                return 21;
 347        return 32 - __builtin_clz(size);
 348}
 349
 350static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 351                                             struct machine *machine)
 352{
 353        struct auxtrace_cache *c;
 354        unsigned int bits;
 355
 356        if (dso->auxtrace_cache)
 357                return dso->auxtrace_cache;
 358
 359        bits = intel_pt_cache_size(dso, machine);
 360
 361        /* Ignoring cache creation failure */
 362        c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 363
 364        dso->auxtrace_cache = c;
 365
 366        return c;
 367}
 368
 369static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 370                              u64 offset, u64 insn_cnt, u64 byte_cnt,
 371                              struct intel_pt_insn *intel_pt_insn)
 372{
 373        struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 374        struct intel_pt_cache_entry *e;
 375        int err;
 376
 377        if (!c)
 378                return -ENOMEM;
 379
 380        e = auxtrace_cache__alloc_entry(c);
 381        if (!e)
 382                return -ENOMEM;
 383
 384        e->insn_cnt = insn_cnt;
 385        e->byte_cnt = byte_cnt;
 386        e->op = intel_pt_insn->op;
 387        e->branch = intel_pt_insn->branch;
 388        e->length = intel_pt_insn->length;
 389        e->rel = intel_pt_insn->rel;
 390
 391        err = auxtrace_cache__add(c, offset, &e->entry);
 392        if (err)
 393                auxtrace_cache__free_entry(c, e);
 394
 395        return err;
 396}
 397
 398static struct intel_pt_cache_entry *
 399intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 400{
 401        struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 402
 403        if (!c)
 404                return NULL;
 405
 406        return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 407}
 408
 409static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 410                                   uint64_t *insn_cnt_ptr, uint64_t *ip,
 411                                   uint64_t to_ip, uint64_t max_insn_cnt,
 412                                   void *data)
 413{
 414        struct intel_pt_queue *ptq = data;
 415        struct machine *machine = ptq->pt->machine;
 416        struct thread *thread;
 417        struct addr_location al;
 418        unsigned char buf[1024];
 419        size_t bufsz;
 420        ssize_t len;
 421        int x86_64;
 422        u8 cpumode;
 423        u64 offset, start_offset, start_ip;
 424        u64 insn_cnt = 0;
 425        bool one_map = true;
 426
 427        if (to_ip && *ip == to_ip)
 428                goto out_no_cache;
 429
 430        bufsz = intel_pt_insn_max_size();
 431
 432        if (*ip >= ptq->pt->kernel_start)
 433                cpumode = PERF_RECORD_MISC_KERNEL;
 434        else
 435                cpumode = PERF_RECORD_MISC_USER;
 436
 437        thread = ptq->thread;
 438        if (!thread) {
 439                if (cpumode != PERF_RECORD_MISC_KERNEL)
 440                        return -EINVAL;
 441                thread = ptq->pt->unknown_thread;
 442        }
 443
 444        while (1) {
 445                thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
 446                if (!al.map || !al.map->dso)
 447                        return -EINVAL;
 448
 449                if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 450                    dso__data_status_seen(al.map->dso,
 451                                          DSO_DATA_STATUS_SEEN_ITRACE))
 452                        return -ENOENT;
 453
 454                offset = al.map->map_ip(al.map, *ip);
 455
 456                if (!to_ip && one_map) {
 457                        struct intel_pt_cache_entry *e;
 458
 459                        e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 460                        if (e &&
 461                            (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 462                                *insn_cnt_ptr = e->insn_cnt;
 463                                *ip += e->byte_cnt;
 464                                intel_pt_insn->op = e->op;
 465                                intel_pt_insn->branch = e->branch;
 466                                intel_pt_insn->length = e->length;
 467                                intel_pt_insn->rel = e->rel;
 468                                intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 469                                return 0;
 470                        }
 471                }
 472
 473                start_offset = offset;
 474                start_ip = *ip;
 475
 476                /* Load maps to ensure dso->is_64_bit has been updated */
 477                map__load(al.map, machine->symbol_filter);
 478
 479                x86_64 = al.map->dso->is_64_bit;
 480
 481                while (1) {
 482                        len = dso__data_read_offset(al.map->dso, machine,
 483                                                    offset, buf, bufsz);
 484                        if (len <= 0)
 485                                return -EINVAL;
 486
 487                        if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 488                                return -EINVAL;
 489
 490                        intel_pt_log_insn(intel_pt_insn, *ip);
 491
 492                        insn_cnt += 1;
 493
 494                        if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 495                                goto out;
 496
 497                        if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 498                                goto out_no_cache;
 499
 500                        *ip += intel_pt_insn->length;
 501
 502                        if (to_ip && *ip == to_ip)
 503                                goto out_no_cache;
 504
 505                        if (*ip >= al.map->end)
 506                                break;
 507
 508                        offset += intel_pt_insn->length;
 509                }
 510                one_map = false;
 511        }
 512out:
 513        *insn_cnt_ptr = insn_cnt;
 514
 515        if (!one_map)
 516                goto out_no_cache;
 517
 518        /*
 519         * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 520         * entries.
 521         */
 522        if (to_ip) {
 523                struct intel_pt_cache_entry *e;
 524
 525                e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 526                if (e)
 527                        return 0;
 528        }
 529
 530        /* Ignore cache errors */
 531        intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 532                           *ip - start_ip, intel_pt_insn);
 533
 534        return 0;
 535
 536out_no_cache:
 537        *insn_cnt_ptr = insn_cnt;
 538        return 0;
 539}
 540
 541static bool intel_pt_get_config(struct intel_pt *pt,
 542                                struct perf_event_attr *attr, u64 *config)
 543{
 544        if (attr->type == pt->pmu_type) {
 545                if (config)
 546                        *config = attr->config;
 547                return true;
 548        }
 549
 550        return false;
 551}
 552
 553static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 554{
 555        struct perf_evsel *evsel;
 556
 557        evlist__for_each(pt->session->evlist, evsel) {
 558                if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
 559                    !evsel->attr.exclude_kernel)
 560                        return false;
 561        }
 562        return true;
 563}
 564
 565static bool intel_pt_return_compression(struct intel_pt *pt)
 566{
 567        struct perf_evsel *evsel;
 568        u64 config;
 569
 570        if (!pt->noretcomp_bit)
 571                return true;
 572
 573        evlist__for_each(pt->session->evlist, evsel) {
 574                if (intel_pt_get_config(pt, &evsel->attr, &config) &&
 575                    (config & pt->noretcomp_bit))
 576                        return false;
 577        }
 578        return true;
 579}
 580
 581static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 582{
 583        struct perf_evsel *evsel;
 584        unsigned int shift;
 585        u64 config;
 586
 587        if (!pt->mtc_freq_bits)
 588                return 0;
 589
 590        for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 591                config >>= 1;
 592
 593        evlist__for_each(pt->session->evlist, evsel) {
 594                if (intel_pt_get_config(pt, &evsel->attr, &config))
 595                        return (config & pt->mtc_freq_bits) >> shift;
 596        }
 597        return 0;
 598}
 599
 600static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 601{
 602        struct perf_evsel *evsel;
 603        bool timeless_decoding = true;
 604        u64 config;
 605
 606        if (!pt->tsc_bit || !pt->cap_user_time_zero)
 607                return true;
 608
 609        evlist__for_each(pt->session->evlist, evsel) {
 610                if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
 611                        return true;
 612                if (intel_pt_get_config(pt, &evsel->attr, &config)) {
 613                        if (config & pt->tsc_bit)
 614                                timeless_decoding = false;
 615                        else
 616                                return true;
 617                }
 618        }
 619        return timeless_decoding;
 620}
 621
 622static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 623{
 624        struct perf_evsel *evsel;
 625
 626        evlist__for_each(pt->session->evlist, evsel) {
 627                if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
 628                    !evsel->attr.exclude_kernel)
 629                        return true;
 630        }
 631        return false;
 632}
 633
 634static bool intel_pt_have_tsc(struct intel_pt *pt)
 635{
 636        struct perf_evsel *evsel;
 637        bool have_tsc = false;
 638        u64 config;
 639
 640        if (!pt->tsc_bit)
 641                return false;
 642
 643        evlist__for_each(pt->session->evlist, evsel) {
 644                if (intel_pt_get_config(pt, &evsel->attr, &config)) {
 645                        if (config & pt->tsc_bit)
 646                                have_tsc = true;
 647                        else
 648                                return false;
 649                }
 650        }
 651        return have_tsc;
 652}
 653
 654static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 655{
 656        u64 quot, rem;
 657
 658        quot = ns / pt->tc.time_mult;
 659        rem  = ns % pt->tc.time_mult;
 660        return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 661                pt->tc.time_mult;
 662}
 663
 664static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 665                                                   unsigned int queue_nr)
 666{
 667        struct intel_pt_params params = { .get_trace = 0, };
 668        struct intel_pt_queue *ptq;
 669
 670        ptq = zalloc(sizeof(struct intel_pt_queue));
 671        if (!ptq)
 672                return NULL;
 673
 674        if (pt->synth_opts.callchain) {
 675                size_t sz = sizeof(struct ip_callchain);
 676
 677                sz += pt->synth_opts.callchain_sz * sizeof(u64);
 678                ptq->chain = zalloc(sz);
 679                if (!ptq->chain)
 680                        goto out_free;
 681        }
 682
 683        if (pt->synth_opts.last_branch) {
 684                size_t sz = sizeof(struct branch_stack);
 685
 686                sz += pt->synth_opts.last_branch_sz *
 687                      sizeof(struct branch_entry);
 688                ptq->last_branch = zalloc(sz);
 689                if (!ptq->last_branch)
 690                        goto out_free;
 691                ptq->last_branch_rb = zalloc(sz);
 692                if (!ptq->last_branch_rb)
 693                        goto out_free;
 694        }
 695
 696        ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 697        if (!ptq->event_buf)
 698                goto out_free;
 699
 700        ptq->pt = pt;
 701        ptq->queue_nr = queue_nr;
 702        ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
 703        ptq->pid = -1;
 704        ptq->tid = -1;
 705        ptq->cpu = -1;
 706        ptq->next_tid = -1;
 707
 708        params.get_trace = intel_pt_get_trace;
 709        params.walk_insn = intel_pt_walk_next_insn;
 710        params.data = ptq;
 711        params.return_compression = intel_pt_return_compression(pt);
 712        params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
 713        params.mtc_period = intel_pt_mtc_period(pt);
 714        params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
 715        params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
 716
 717        if (pt->synth_opts.instructions) {
 718                if (pt->synth_opts.period) {
 719                        switch (pt->synth_opts.period_type) {
 720                        case PERF_ITRACE_PERIOD_INSTRUCTIONS:
 721                                params.period_type =
 722                                                INTEL_PT_PERIOD_INSTRUCTIONS;
 723                                params.period = pt->synth_opts.period;
 724                                break;
 725                        case PERF_ITRACE_PERIOD_TICKS:
 726                                params.period_type = INTEL_PT_PERIOD_TICKS;
 727                                params.period = pt->synth_opts.period;
 728                                break;
 729                        case PERF_ITRACE_PERIOD_NANOSECS:
 730                                params.period_type = INTEL_PT_PERIOD_TICKS;
 731                                params.period = intel_pt_ns_to_ticks(pt,
 732                                                        pt->synth_opts.period);
 733                                break;
 734                        default:
 735                                break;
 736                        }
 737                }
 738
 739                if (!params.period) {
 740                        params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
 741                        params.period = 1;
 742                }
 743        }
 744
 745        ptq->decoder = intel_pt_decoder_new(&params);
 746        if (!ptq->decoder)
 747                goto out_free;
 748
 749        return ptq;
 750
 751out_free:
 752        zfree(&ptq->event_buf);
 753        zfree(&ptq->last_branch);
 754        zfree(&ptq->last_branch_rb);
 755        zfree(&ptq->chain);
 756        free(ptq);
 757        return NULL;
 758}
 759
 760static void intel_pt_free_queue(void *priv)
 761{
 762        struct intel_pt_queue *ptq = priv;
 763
 764        if (!ptq)
 765                return;
 766        thread__zput(ptq->thread);
 767        intel_pt_decoder_free(ptq->decoder);
 768        zfree(&ptq->event_buf);
 769        zfree(&ptq->last_branch);
 770        zfree(&ptq->last_branch_rb);
 771        zfree(&ptq->chain);
 772        free(ptq);
 773}
 774
 775static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
 776                                     struct auxtrace_queue *queue)
 777{
 778        struct intel_pt_queue *ptq = queue->priv;
 779
 780        if (queue->tid == -1 || pt->have_sched_switch) {
 781                ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
 782                thread__zput(ptq->thread);
 783        }
 784
 785        if (!ptq->thread && ptq->tid != -1)
 786                ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
 787
 788        if (ptq->thread) {
 789                ptq->pid = ptq->thread->pid_;
 790                if (queue->cpu == -1)
 791                        ptq->cpu = ptq->thread->cpu;
 792        }
 793}
 794
 795static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
 796{
 797        if (ptq->state->flags & INTEL_PT_ABORT_TX) {
 798                ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
 799        } else if (ptq->state->flags & INTEL_PT_ASYNC) {
 800                if (ptq->state->to_ip)
 801                        ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
 802                                     PERF_IP_FLAG_ASYNC |
 803                                     PERF_IP_FLAG_INTERRUPT;
 804                else
 805                        ptq->flags = PERF_IP_FLAG_BRANCH |
 806                                     PERF_IP_FLAG_TRACE_END;
 807                ptq->insn_len = 0;
 808        } else {
 809                if (ptq->state->from_ip)
 810                        ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
 811                else
 812                        ptq->flags = PERF_IP_FLAG_BRANCH |
 813                                     PERF_IP_FLAG_TRACE_BEGIN;
 814                if (ptq->state->flags & INTEL_PT_IN_TX)
 815                        ptq->flags |= PERF_IP_FLAG_IN_TX;
 816                ptq->insn_len = ptq->state->insn_len;
 817        }
 818}
 819
 820static int intel_pt_setup_queue(struct intel_pt *pt,
 821                                struct auxtrace_queue *queue,
 822                                unsigned int queue_nr)
 823{
 824        struct intel_pt_queue *ptq = queue->priv;
 825
 826        if (list_empty(&queue->head))
 827                return 0;
 828
 829        if (!ptq) {
 830                ptq = intel_pt_alloc_queue(pt, queue_nr);
 831                if (!ptq)
 832                        return -ENOMEM;
 833                queue->priv = ptq;
 834
 835                if (queue->cpu != -1)
 836                        ptq->cpu = queue->cpu;
 837                ptq->tid = queue->tid;
 838
 839                if (pt->sampling_mode) {
 840                        if (pt->timeless_decoding)
 841                                ptq->step_through_buffers = true;
 842                        if (pt->timeless_decoding || !pt->have_sched_switch)
 843                                ptq->use_buffer_pid_tid = true;
 844                }
 845        }
 846
 847        if (!ptq->on_heap &&
 848            (!pt->sync_switch ||
 849             ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
 850                const struct intel_pt_state *state;
 851                int ret;
 852
 853                if (pt->timeless_decoding)
 854                        return 0;
 855
 856                intel_pt_log("queue %u getting timestamp\n", queue_nr);
 857                intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
 858                             queue_nr, ptq->cpu, ptq->pid, ptq->tid);
 859                while (1) {
 860                        state = intel_pt_decode(ptq->decoder);
 861                        if (state->err) {
 862                                if (state->err == INTEL_PT_ERR_NODATA) {
 863                                        intel_pt_log("queue %u has no timestamp\n",
 864                                                     queue_nr);
 865                                        return 0;
 866                                }
 867                                continue;
 868                        }
 869                        if (state->timestamp)
 870                                break;
 871                }
 872
 873                ptq->timestamp = state->timestamp;
 874                intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
 875                             queue_nr, ptq->timestamp);
 876                ptq->state = state;
 877                ptq->have_sample = true;
 878                intel_pt_sample_flags(ptq);
 879                ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
 880                if (ret)
 881                        return ret;
 882                ptq->on_heap = true;
 883        }
 884
 885        return 0;
 886}
 887
 888static int intel_pt_setup_queues(struct intel_pt *pt)
 889{
 890        unsigned int i;
 891        int ret;
 892
 893        for (i = 0; i < pt->queues.nr_queues; i++) {
 894                ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
 895                if (ret)
 896                        return ret;
 897        }
 898        return 0;
 899}
 900
 901static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
 902{
 903        struct branch_stack *bs_src = ptq->last_branch_rb;
 904        struct branch_stack *bs_dst = ptq->last_branch;
 905        size_t nr = 0;
 906
 907        bs_dst->nr = bs_src->nr;
 908
 909        if (!bs_src->nr)
 910                return;
 911
 912        nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
 913        memcpy(&bs_dst->entries[0],
 914               &bs_src->entries[ptq->last_branch_pos],
 915               sizeof(struct branch_entry) * nr);
 916
 917        if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
 918                memcpy(&bs_dst->entries[nr],
 919                       &bs_src->entries[0],
 920                       sizeof(struct branch_entry) * ptq->last_branch_pos);
 921        }
 922}
 923
 924static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
 925{
 926        ptq->last_branch_pos = 0;
 927        ptq->last_branch_rb->nr = 0;
 928}
 929
 930static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
 931{
 932        const struct intel_pt_state *state = ptq->state;
 933        struct branch_stack *bs = ptq->last_branch_rb;
 934        struct branch_entry *be;
 935
 936        if (!ptq->last_branch_pos)
 937                ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
 938
 939        ptq->last_branch_pos -= 1;
 940
 941        be              = &bs->entries[ptq->last_branch_pos];
 942        be->from        = state->from_ip;
 943        be->to          = state->to_ip;
 944        be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
 945        be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
 946        /* No support for mispredict */
 947        be->flags.mispred = ptq->pt->mispred_all;
 948
 949        if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
 950                bs->nr += 1;
 951}
 952
 953static int intel_pt_inject_event(union perf_event *event,
 954                                 struct perf_sample *sample, u64 type,
 955                                 bool swapped)
 956{
 957        event->header.size = perf_event__sample_event_size(sample, type, 0);
 958        return perf_event__synthesize_sample(event, type, 0, sample, swapped);
 959}
 960
 961static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
 962{
 963        int ret;
 964        struct intel_pt *pt = ptq->pt;
 965        union perf_event *event = ptq->event_buf;
 966        struct perf_sample sample = { .ip = 0, };
 967        struct dummy_branch_stack {
 968                u64                     nr;
 969                struct branch_entry     entries;
 970        } dummy_bs;
 971
 972        if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
 973                return 0;
 974
 975        event->sample.header.type = PERF_RECORD_SAMPLE;
 976        event->sample.header.misc = PERF_RECORD_MISC_USER;
 977        event->sample.header.size = sizeof(struct perf_event_header);
 978
 979        if (!pt->timeless_decoding)
 980                sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
 981
 982        sample.cpumode = PERF_RECORD_MISC_USER;
 983        sample.ip = ptq->state->from_ip;
 984        sample.pid = ptq->pid;
 985        sample.tid = ptq->tid;
 986        sample.addr = ptq->state->to_ip;
 987        sample.id = ptq->pt->branches_id;
 988        sample.stream_id = ptq->pt->branches_id;
 989        sample.period = 1;
 990        sample.cpu = ptq->cpu;
 991        sample.flags = ptq->flags;
 992        sample.insn_len = ptq->insn_len;
 993
 994        /*
 995         * perf report cannot handle events without a branch stack when using
 996         * SORT_MODE__BRANCH so make a dummy one.
 997         */
 998        if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
 999                dummy_bs = (struct dummy_branch_stack){
1000                        .nr = 1,
1001                        .entries = {
1002                                .from = sample.ip,
1003                                .to = sample.addr,
1004                        },
1005                };
1006                sample.branch_stack = (struct branch_stack *)&dummy_bs;
1007        }
1008
1009        if (pt->synth_opts.inject) {
1010                ret = intel_pt_inject_event(event, &sample,
1011                                            pt->branches_sample_type,
1012                                            pt->synth_needs_swap);
1013                if (ret)
1014                        return ret;
1015        }
1016
1017        ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1018        if (ret)
1019                pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
1020                       ret);
1021
1022        return ret;
1023}
1024
1025static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1026{
1027        int ret;
1028        struct intel_pt *pt = ptq->pt;
1029        union perf_event *event = ptq->event_buf;
1030        struct perf_sample sample = { .ip = 0, };
1031
1032        event->sample.header.type = PERF_RECORD_SAMPLE;
1033        event->sample.header.misc = PERF_RECORD_MISC_USER;
1034        event->sample.header.size = sizeof(struct perf_event_header);
1035
1036        if (!pt->timeless_decoding)
1037                sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1038
1039        sample.cpumode = PERF_RECORD_MISC_USER;
1040        sample.ip = ptq->state->from_ip;
1041        sample.pid = ptq->pid;
1042        sample.tid = ptq->tid;
1043        sample.addr = ptq->state->to_ip;
1044        sample.id = ptq->pt->instructions_id;
1045        sample.stream_id = ptq->pt->instructions_id;
1046        sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1047        sample.cpu = ptq->cpu;
1048        sample.flags = ptq->flags;
1049        sample.insn_len = ptq->insn_len;
1050
1051        ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1052
1053        if (pt->synth_opts.callchain) {
1054                thread_stack__sample(ptq->thread, ptq->chain,
1055                                     pt->synth_opts.callchain_sz, sample.ip);
1056                sample.callchain = ptq->chain;
1057        }
1058
1059        if (pt->synth_opts.last_branch) {
1060                intel_pt_copy_last_branch_rb(ptq);
1061                sample.branch_stack = ptq->last_branch;
1062        }
1063
1064        if (pt->synth_opts.inject) {
1065                ret = intel_pt_inject_event(event, &sample,
1066                                            pt->instructions_sample_type,
1067                                            pt->synth_needs_swap);
1068                if (ret)
1069                        return ret;
1070        }
1071
1072        ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1073        if (ret)
1074                pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
1075                       ret);
1076
1077        if (pt->synth_opts.last_branch)
1078                intel_pt_reset_last_branch_rb(ptq);
1079
1080        return ret;
1081}
1082
1083static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1084{
1085        int ret;
1086        struct intel_pt *pt = ptq->pt;
1087        union perf_event *event = ptq->event_buf;
1088        struct perf_sample sample = { .ip = 0, };
1089
1090        event->sample.header.type = PERF_RECORD_SAMPLE;
1091        event->sample.header.misc = PERF_RECORD_MISC_USER;
1092        event->sample.header.size = sizeof(struct perf_event_header);
1093
1094        if (!pt->timeless_decoding)
1095                sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1096
1097        sample.cpumode = PERF_RECORD_MISC_USER;
1098        sample.ip = ptq->state->from_ip;
1099        sample.pid = ptq->pid;
1100        sample.tid = ptq->tid;
1101        sample.addr = ptq->state->to_ip;
1102        sample.id = ptq->pt->transactions_id;
1103        sample.stream_id = ptq->pt->transactions_id;
1104        sample.period = 1;
1105        sample.cpu = ptq->cpu;
1106        sample.flags = ptq->flags;
1107        sample.insn_len = ptq->insn_len;
1108
1109        if (pt->synth_opts.callchain) {
1110                thread_stack__sample(ptq->thread, ptq->chain,
1111                                     pt->synth_opts.callchain_sz, sample.ip);
1112                sample.callchain = ptq->chain;
1113        }
1114
1115        if (pt->synth_opts.last_branch) {
1116                intel_pt_copy_last_branch_rb(ptq);
1117                sample.branch_stack = ptq->last_branch;
1118        }
1119
1120        if (pt->synth_opts.inject) {
1121                ret = intel_pt_inject_event(event, &sample,
1122                                            pt->transactions_sample_type,
1123                                            pt->synth_needs_swap);
1124                if (ret)
1125                        return ret;
1126        }
1127
1128        ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1129        if (ret)
1130                pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
1131                       ret);
1132
1133        if (pt->synth_opts.last_branch)
1134                intel_pt_reset_last_branch_rb(ptq);
1135
1136        return ret;
1137}
1138
1139static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1140                                pid_t pid, pid_t tid, u64 ip)
1141{
1142        union perf_event event;
1143        char msg[MAX_AUXTRACE_ERROR_MSG];
1144        int err;
1145
1146        intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1147
1148        auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1149                             code, cpu, pid, tid, ip, msg);
1150
1151        err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1152        if (err)
1153                pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1154                       err);
1155
1156        return err;
1157}
1158
1159static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1160{
1161        struct auxtrace_queue *queue;
1162        pid_t tid = ptq->next_tid;
1163        int err;
1164
1165        if (tid == -1)
1166                return 0;
1167
1168        intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1169
1170        err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1171
1172        queue = &pt->queues.queue_array[ptq->queue_nr];
1173        intel_pt_set_pid_tid_cpu(pt, queue);
1174
1175        ptq->next_tid = -1;
1176
1177        return err;
1178}
1179
1180static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1181{
1182        struct intel_pt *pt = ptq->pt;
1183
1184        return ip == pt->switch_ip &&
1185               (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1186               !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1187                               PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1188}
1189
1190static int intel_pt_sample(struct intel_pt_queue *ptq)
1191{
1192        const struct intel_pt_state *state = ptq->state;
1193        struct intel_pt *pt = ptq->pt;
1194        int err;
1195
1196        if (!ptq->have_sample)
1197                return 0;
1198
1199        ptq->have_sample = false;
1200
1201        if (pt->sample_instructions &&
1202            (state->type & INTEL_PT_INSTRUCTION)) {
1203                err = intel_pt_synth_instruction_sample(ptq);
1204                if (err)
1205                        return err;
1206        }
1207
1208        if (pt->sample_transactions &&
1209            (state->type & INTEL_PT_TRANSACTION)) {
1210                err = intel_pt_synth_transaction_sample(ptq);
1211                if (err)
1212                        return err;
1213        }
1214
1215        if (!(state->type & INTEL_PT_BRANCH))
1216                return 0;
1217
1218        if (pt->synth_opts.callchain)
1219                thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1220                                    state->to_ip, ptq->insn_len,
1221                                    state->trace_nr);
1222        else
1223                thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1224
1225        if (pt->sample_branches) {
1226                err = intel_pt_synth_branch_sample(ptq);
1227                if (err)
1228                        return err;
1229        }
1230
1231        if (pt->synth_opts.last_branch)
1232                intel_pt_update_last_branch_rb(ptq);
1233
1234        if (!pt->sync_switch)
1235                return 0;
1236
1237        if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1238                switch (ptq->switch_state) {
1239                case INTEL_PT_SS_UNKNOWN:
1240                case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1241                        err = intel_pt_next_tid(pt, ptq);
1242                        if (err)
1243                                return err;
1244                        ptq->switch_state = INTEL_PT_SS_TRACING;
1245                        break;
1246                default:
1247                        ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1248                        return 1;
1249                }
1250        } else if (!state->to_ip) {
1251                ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1252        } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1253                ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1254        } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1255                   state->to_ip == pt->ptss_ip &&
1256                   (ptq->flags & PERF_IP_FLAG_CALL)) {
1257                ptq->switch_state = INTEL_PT_SS_TRACING;
1258        }
1259
1260        return 0;
1261}
1262
1263static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1264{
1265        struct machine *machine = pt->machine;
1266        struct map *map;
1267        struct symbol *sym, *start;
1268        u64 ip, switch_ip = 0;
1269        const char *ptss;
1270
1271        if (ptss_ip)
1272                *ptss_ip = 0;
1273
1274        map = machine__kernel_map(machine);
1275        if (!map)
1276                return 0;
1277
1278        if (map__load(map, machine->symbol_filter))
1279                return 0;
1280
1281        start = dso__first_symbol(map->dso, MAP__FUNCTION);
1282
1283        for (sym = start; sym; sym = dso__next_symbol(sym)) {
1284                if (sym->binding == STB_GLOBAL &&
1285                    !strcmp(sym->name, "__switch_to")) {
1286                        ip = map->unmap_ip(map, sym->start);
1287                        if (ip >= map->start && ip < map->end) {
1288                                switch_ip = ip;
1289                                break;
1290                        }
1291                }
1292        }
1293
1294        if (!switch_ip || !ptss_ip)
1295                return 0;
1296
1297        if (pt->have_sched_switch == 1)
1298                ptss = "perf_trace_sched_switch";
1299        else
1300                ptss = "__perf_event_task_sched_out";
1301
1302        for (sym = start; sym; sym = dso__next_symbol(sym)) {
1303                if (!strcmp(sym->name, ptss)) {
1304                        ip = map->unmap_ip(map, sym->start);
1305                        if (ip >= map->start && ip < map->end) {
1306                                *ptss_ip = ip;
1307                                break;
1308                        }
1309                }
1310        }
1311
1312        return switch_ip;
1313}
1314
1315static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1316{
1317        const struct intel_pt_state *state = ptq->state;
1318        struct intel_pt *pt = ptq->pt;
1319        int err;
1320
1321        if (!pt->kernel_start) {
1322                pt->kernel_start = machine__kernel_start(pt->machine);
1323                if (pt->per_cpu_mmaps &&
1324                    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1325                    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1326                    !pt->sampling_mode) {
1327                        pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1328                        if (pt->switch_ip) {
1329                                intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1330                                             pt->switch_ip, pt->ptss_ip);
1331                                pt->sync_switch = true;
1332                        }
1333                }
1334        }
1335
1336        intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1337                     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1338        while (1) {
1339                err = intel_pt_sample(ptq);
1340                if (err)
1341                        return err;
1342
1343                state = intel_pt_decode(ptq->decoder);
1344                if (state->err) {
1345                        if (state->err == INTEL_PT_ERR_NODATA)
1346                                return 1;
1347                        if (pt->sync_switch &&
1348                            state->from_ip >= pt->kernel_start) {
1349                                pt->sync_switch = false;
1350                                intel_pt_next_tid(pt, ptq);
1351                        }
1352                        if (pt->synth_opts.errors) {
1353                                err = intel_pt_synth_error(pt, state->err,
1354                                                           ptq->cpu, ptq->pid,
1355                                                           ptq->tid,
1356                                                           state->from_ip);
1357                                if (err)
1358                                        return err;
1359                        }
1360                        continue;
1361                }
1362
1363                ptq->state = state;
1364                ptq->have_sample = true;
1365                intel_pt_sample_flags(ptq);
1366
1367                /* Use estimated TSC upon return to user space */
1368                if (pt->est_tsc &&
1369                    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1370                    state->to_ip && state->to_ip < pt->kernel_start) {
1371                        intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1372                                     state->timestamp, state->est_timestamp);
1373                        ptq->timestamp = state->est_timestamp;
1374                /* Use estimated TSC in unknown switch state */
1375                } else if (pt->sync_switch &&
1376                           ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1377                           intel_pt_is_switch_ip(ptq, state->to_ip) &&
1378                           ptq->next_tid == -1) {
1379                        intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1380                                     state->timestamp, state->est_timestamp);
1381                        ptq->timestamp = state->est_timestamp;
1382                } else if (state->timestamp > ptq->timestamp) {
1383                        ptq->timestamp = state->timestamp;
1384                }
1385
1386                if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1387                        *timestamp = ptq->timestamp;
1388                        return 0;
1389                }
1390        }
1391        return 0;
1392}
1393
1394static inline int intel_pt_update_queues(struct intel_pt *pt)
1395{
1396        if (pt->queues.new_data) {
1397                pt->queues.new_data = false;
1398                return intel_pt_setup_queues(pt);
1399        }
1400        return 0;
1401}
1402
1403static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1404{
1405        unsigned int queue_nr;
1406        u64 ts;
1407        int ret;
1408
1409        while (1) {
1410                struct auxtrace_queue *queue;
1411                struct intel_pt_queue *ptq;
1412
1413                if (!pt->heap.heap_cnt)
1414                        return 0;
1415
1416                if (pt->heap.heap_array[0].ordinal >= timestamp)
1417                        return 0;
1418
1419                queue_nr = pt->heap.heap_array[0].queue_nr;
1420                queue = &pt->queues.queue_array[queue_nr];
1421                ptq = queue->priv;
1422
1423                intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1424                             queue_nr, pt->heap.heap_array[0].ordinal,
1425                             timestamp);
1426
1427                auxtrace_heap__pop(&pt->heap);
1428
1429                if (pt->heap.heap_cnt) {
1430                        ts = pt->heap.heap_array[0].ordinal + 1;
1431                        if (ts > timestamp)
1432                                ts = timestamp;
1433                } else {
1434                        ts = timestamp;
1435                }
1436
1437                intel_pt_set_pid_tid_cpu(pt, queue);
1438
1439                ret = intel_pt_run_decoder(ptq, &ts);
1440
1441                if (ret < 0) {
1442                        auxtrace_heap__add(&pt->heap, queue_nr, ts);
1443                        return ret;
1444                }
1445
1446                if (!ret) {
1447                        ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1448                        if (ret < 0)
1449                                return ret;
1450                } else {
1451                        ptq->on_heap = false;
1452                }
1453        }
1454
1455        return 0;
1456}
1457
1458static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1459                                            u64 time_)
1460{
1461        struct auxtrace_queues *queues = &pt->queues;
1462        unsigned int i;
1463        u64 ts = 0;
1464
1465        for (i = 0; i < queues->nr_queues; i++) {
1466                struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1467                struct intel_pt_queue *ptq = queue->priv;
1468
1469                if (ptq && (tid == -1 || ptq->tid == tid)) {
1470                        ptq->time = time_;
1471                        intel_pt_set_pid_tid_cpu(pt, queue);
1472                        intel_pt_run_decoder(ptq, &ts);
1473                }
1474        }
1475        return 0;
1476}
1477
1478static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1479{
1480        return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1481                                    sample->pid, sample->tid, 0);
1482}
1483
1484static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1485{
1486        unsigned i, j;
1487
1488        if (cpu < 0 || !pt->queues.nr_queues)
1489                return NULL;
1490
1491        if ((unsigned)cpu >= pt->queues.nr_queues)
1492                i = pt->queues.nr_queues - 1;
1493        else
1494                i = cpu;
1495
1496        if (pt->queues.queue_array[i].cpu == cpu)
1497                return pt->queues.queue_array[i].priv;
1498
1499        for (j = 0; i > 0; j++) {
1500                if (pt->queues.queue_array[--i].cpu == cpu)
1501                        return pt->queues.queue_array[i].priv;
1502        }
1503
1504        for (; j < pt->queues.nr_queues; j++) {
1505                if (pt->queues.queue_array[j].cpu == cpu)
1506                        return pt->queues.queue_array[j].priv;
1507        }
1508
1509        return NULL;
1510}
1511
1512static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1513                                u64 timestamp)
1514{
1515        struct intel_pt_queue *ptq;
1516        int err;
1517
1518        if (!pt->sync_switch)
1519                return 1;
1520
1521        ptq = intel_pt_cpu_to_ptq(pt, cpu);
1522        if (!ptq)
1523                return 1;
1524
1525        switch (ptq->switch_state) {
1526        case INTEL_PT_SS_NOT_TRACING:
1527                ptq->next_tid = -1;
1528                break;
1529        case INTEL_PT_SS_UNKNOWN:
1530        case INTEL_PT_SS_TRACING:
1531                ptq->next_tid = tid;
1532                ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1533                return 0;
1534        case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1535                if (!ptq->on_heap) {
1536                        ptq->timestamp = perf_time_to_tsc(timestamp,
1537                                                          &pt->tc);
1538                        err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1539                                                 ptq->timestamp);
1540                        if (err)
1541                                return err;
1542                        ptq->on_heap = true;
1543                }
1544                ptq->switch_state = INTEL_PT_SS_TRACING;
1545                break;
1546        case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1547                ptq->next_tid = tid;
1548                intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1549                break;
1550        default:
1551                break;
1552        }
1553
1554        return 1;
1555}
1556
1557static int intel_pt_process_switch(struct intel_pt *pt,
1558                                   struct perf_sample *sample)
1559{
1560        struct perf_evsel *evsel;
1561        pid_t tid;
1562        int cpu, ret;
1563
1564        evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1565        if (evsel != pt->switch_evsel)
1566                return 0;
1567
1568        tid = perf_evsel__intval(evsel, sample, "next_pid");
1569        cpu = sample->cpu;
1570
1571        intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1572                     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1573                     &pt->tc));
1574
1575        ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1576        if (ret <= 0)
1577                return ret;
1578
1579        return machine__set_current_tid(pt->machine, cpu, -1, tid);
1580}
1581
1582static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1583                                   struct perf_sample *sample)
1584{
1585        bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1586        pid_t pid, tid;
1587        int cpu, ret;
1588
1589        cpu = sample->cpu;
1590
1591        if (pt->have_sched_switch == 3) {
1592                if (!out)
1593                        return 0;
1594                if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1595                        pr_err("Expecting CPU-wide context switch event\n");
1596                        return -EINVAL;
1597                }
1598                pid = event->context_switch.next_prev_pid;
1599                tid = event->context_switch.next_prev_tid;
1600        } else {
1601                if (out)
1602                        return 0;
1603                pid = sample->pid;
1604                tid = sample->tid;
1605        }
1606
1607        if (tid == -1) {
1608                pr_err("context_switch event has no tid\n");
1609                return -EINVAL;
1610        }
1611
1612        intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1613                     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1614                     &pt->tc));
1615
1616        ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1617        if (ret <= 0)
1618                return ret;
1619
1620        return machine__set_current_tid(pt->machine, cpu, pid, tid);
1621}
1622
1623static int intel_pt_process_itrace_start(struct intel_pt *pt,
1624                                         union perf_event *event,
1625                                         struct perf_sample *sample)
1626{
1627        if (!pt->per_cpu_mmaps)
1628                return 0;
1629
1630        intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1631                     sample->cpu, event->itrace_start.pid,
1632                     event->itrace_start.tid, sample->time,
1633                     perf_time_to_tsc(sample->time, &pt->tc));
1634
1635        return machine__set_current_tid(pt->machine, sample->cpu,
1636                                        event->itrace_start.pid,
1637                                        event->itrace_start.tid);
1638}
1639
1640static int intel_pt_process_event(struct perf_session *session,
1641                                  union perf_event *event,
1642                                  struct perf_sample *sample,
1643                                  struct perf_tool *tool)
1644{
1645        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1646                                           auxtrace);
1647        u64 timestamp;
1648        int err = 0;
1649
1650        if (dump_trace)
1651                return 0;
1652
1653        if (!tool->ordered_events) {
1654                pr_err("Intel Processor Trace requires ordered events\n");
1655                return -EINVAL;
1656        }
1657
1658        if (sample->time && sample->time != (u64)-1)
1659                timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1660        else
1661                timestamp = 0;
1662
1663        if (timestamp || pt->timeless_decoding) {
1664                err = intel_pt_update_queues(pt);
1665                if (err)
1666                        return err;
1667        }
1668
1669        if (pt->timeless_decoding) {
1670                if (event->header.type == PERF_RECORD_EXIT) {
1671                        err = intel_pt_process_timeless_queues(pt,
1672                                                               event->fork.tid,
1673                                                               sample->time);
1674                }
1675        } else if (timestamp) {
1676                err = intel_pt_process_queues(pt, timestamp);
1677        }
1678        if (err)
1679                return err;
1680
1681        if (event->header.type == PERF_RECORD_AUX &&
1682            (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1683            pt->synth_opts.errors) {
1684                err = intel_pt_lost(pt, sample);
1685                if (err)
1686                        return err;
1687        }
1688
1689        if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1690                err = intel_pt_process_switch(pt, sample);
1691        else if (event->header.type == PERF_RECORD_ITRACE_START)
1692                err = intel_pt_process_itrace_start(pt, event, sample);
1693        else if (event->header.type == PERF_RECORD_SWITCH ||
1694                 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1695                err = intel_pt_context_switch(pt, event, sample);
1696
1697        intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
1698                     perf_event__name(event->header.type), event->header.type,
1699                     sample->cpu, sample->time, timestamp);
1700
1701        return err;
1702}
1703
1704static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
1705{
1706        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1707                                           auxtrace);
1708        int ret;
1709
1710        if (dump_trace)
1711                return 0;
1712
1713        if (!tool->ordered_events)
1714                return -EINVAL;
1715
1716        ret = intel_pt_update_queues(pt);
1717        if (ret < 0)
1718                return ret;
1719
1720        if (pt->timeless_decoding)
1721                return intel_pt_process_timeless_queues(pt, -1,
1722                                                        MAX_TIMESTAMP - 1);
1723
1724        return intel_pt_process_queues(pt, MAX_TIMESTAMP);
1725}
1726
1727static void intel_pt_free_events(struct perf_session *session)
1728{
1729        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1730                                           auxtrace);
1731        struct auxtrace_queues *queues = &pt->queues;
1732        unsigned int i;
1733
1734        for (i = 0; i < queues->nr_queues; i++) {
1735                intel_pt_free_queue(queues->queue_array[i].priv);
1736                queues->queue_array[i].priv = NULL;
1737        }
1738        intel_pt_log_disable();
1739        auxtrace_queues__free(queues);
1740}
1741
1742static void intel_pt_free(struct perf_session *session)
1743{
1744        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1745                                           auxtrace);
1746
1747        auxtrace_heap__free(&pt->heap);
1748        intel_pt_free_events(session);
1749        session->auxtrace = NULL;
1750        thread__put(pt->unknown_thread);
1751        free(pt);
1752}
1753
1754static int intel_pt_process_auxtrace_event(struct perf_session *session,
1755                                           union perf_event *event,
1756                                           struct perf_tool *tool __maybe_unused)
1757{
1758        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1759                                           auxtrace);
1760
1761        if (pt->sampling_mode)
1762                return 0;
1763
1764        if (!pt->data_queued) {
1765                struct auxtrace_buffer *buffer;
1766                off_t data_offset;
1767                int fd = perf_data_file__fd(session->file);
1768                int err;
1769
1770                if (perf_data_file__is_pipe(session->file)) {
1771                        data_offset = 0;
1772                } else {
1773                        data_offset = lseek(fd, 0, SEEK_CUR);
1774                        if (data_offset == -1)
1775                                return -errno;
1776                }
1777
1778                err = auxtrace_queues__add_event(&pt->queues, session, event,
1779                                                 data_offset, &buffer);
1780                if (err)
1781                        return err;
1782
1783                /* Dump here now we have copied a piped trace out of the pipe */
1784                if (dump_trace) {
1785                        if (auxtrace_buffer__get_data(buffer, fd)) {
1786                                intel_pt_dump_event(pt, buffer->data,
1787                                                    buffer->size);
1788                                auxtrace_buffer__put_data(buffer);
1789                        }
1790                }
1791        }
1792
1793        return 0;
1794}
1795
1796struct intel_pt_synth {
1797        struct perf_tool dummy_tool;
1798        struct perf_session *session;
1799};
1800
1801static int intel_pt_event_synth(struct perf_tool *tool,
1802                                union perf_event *event,
1803                                struct perf_sample *sample __maybe_unused,
1804                                struct machine *machine __maybe_unused)
1805{
1806        struct intel_pt_synth *intel_pt_synth =
1807                        container_of(tool, struct intel_pt_synth, dummy_tool);
1808
1809        return perf_session__deliver_synth_event(intel_pt_synth->session, event,
1810                                                 NULL);
1811}
1812
1813static int intel_pt_synth_event(struct perf_session *session,
1814                                struct perf_event_attr *attr, u64 id)
1815{
1816        struct intel_pt_synth intel_pt_synth;
1817
1818        memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
1819        intel_pt_synth.session = session;
1820
1821        return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
1822                                           &id, intel_pt_event_synth);
1823}
1824
1825static int intel_pt_synth_events(struct intel_pt *pt,
1826                                 struct perf_session *session)
1827{
1828        struct perf_evlist *evlist = session->evlist;
1829        struct perf_evsel *evsel;
1830        struct perf_event_attr attr;
1831        bool found = false;
1832        u64 id;
1833        int err;
1834
1835        evlist__for_each(evlist, evsel) {
1836                if (evsel->attr.type == pt->pmu_type && evsel->ids) {
1837                        found = true;
1838                        break;
1839                }
1840        }
1841
1842        if (!found) {
1843                pr_debug("There are no selected events with Intel Processor Trace data\n");
1844                return 0;
1845        }
1846
1847        memset(&attr, 0, sizeof(struct perf_event_attr));
1848        attr.size = sizeof(struct perf_event_attr);
1849        attr.type = PERF_TYPE_HARDWARE;
1850        attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1851        attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1852                            PERF_SAMPLE_PERIOD;
1853        if (pt->timeless_decoding)
1854                attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1855        else
1856                attr.sample_type |= PERF_SAMPLE_TIME;
1857        if (!pt->per_cpu_mmaps)
1858                attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
1859        attr.exclude_user = evsel->attr.exclude_user;
1860        attr.exclude_kernel = evsel->attr.exclude_kernel;
1861        attr.exclude_hv = evsel->attr.exclude_hv;
1862        attr.exclude_host = evsel->attr.exclude_host;
1863        attr.exclude_guest = evsel->attr.exclude_guest;
1864        attr.sample_id_all = evsel->attr.sample_id_all;
1865        attr.read_format = evsel->attr.read_format;
1866
1867        id = evsel->id[0] + 1000000000;
1868        if (!id)
1869                id = 1;
1870
1871        if (pt->synth_opts.instructions) {
1872                attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1873                if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
1874                        attr.sample_period =
1875                                intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
1876                else
1877                        attr.sample_period = pt->synth_opts.period;
1878                pt->instructions_sample_period = attr.sample_period;
1879                if (pt->synth_opts.callchain)
1880                        attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1881                if (pt->synth_opts.last_branch)
1882                        attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1883                pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1884                         id, (u64)attr.sample_type);
1885                err = intel_pt_synth_event(session, &attr, id);
1886                if (err) {
1887                        pr_err("%s: failed to synthesize 'instructions' event type\n",
1888                               __func__);
1889                        return err;
1890                }
1891                pt->sample_instructions = true;
1892                pt->instructions_sample_type = attr.sample_type;
1893                pt->instructions_id = id;
1894                id += 1;
1895        }
1896
1897        if (pt->synth_opts.transactions) {
1898                attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1899                attr.sample_period = 1;
1900                if (pt->synth_opts.callchain)
1901                        attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1902                if (pt->synth_opts.last_branch)
1903                        attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1904                pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1905                         id, (u64)attr.sample_type);
1906                err = intel_pt_synth_event(session, &attr, id);
1907                if (err) {
1908                        pr_err("%s: failed to synthesize 'transactions' event type\n",
1909                               __func__);
1910                        return err;
1911                }
1912                pt->sample_transactions = true;
1913                pt->transactions_id = id;
1914                id += 1;
1915                evlist__for_each(evlist, evsel) {
1916                        if (evsel->id && evsel->id[0] == pt->transactions_id) {
1917                                if (evsel->name)
1918                                        zfree(&evsel->name);
1919                                evsel->name = strdup("transactions");
1920                                break;
1921                        }
1922                }
1923        }
1924
1925        if (pt->synth_opts.branches) {
1926                attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1927                attr.sample_period = 1;
1928                attr.sample_type |= PERF_SAMPLE_ADDR;
1929                attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
1930                attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK;
1931                pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1932                         id, (u64)attr.sample_type);
1933                err = intel_pt_synth_event(session, &attr, id);
1934                if (err) {
1935                        pr_err("%s: failed to synthesize 'branches' event type\n",
1936                               __func__);
1937                        return err;
1938                }
1939                pt->sample_branches = true;
1940                pt->branches_sample_type = attr.sample_type;
1941                pt->branches_id = id;
1942        }
1943
1944        pt->synth_needs_swap = evsel->needs_swap;
1945
1946        return 0;
1947}
1948
1949static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
1950{
1951        struct perf_evsel *evsel;
1952
1953        evlist__for_each_reverse(evlist, evsel) {
1954                const char *name = perf_evsel__name(evsel);
1955
1956                if (!strcmp(name, "sched:sched_switch"))
1957                        return evsel;
1958        }
1959
1960        return NULL;
1961}
1962
1963static bool intel_pt_find_switch(struct perf_evlist *evlist)
1964{
1965        struct perf_evsel *evsel;
1966
1967        evlist__for_each(evlist, evsel) {
1968                if (evsel->attr.context_switch)
1969                        return true;
1970        }
1971
1972        return false;
1973}
1974
1975static int intel_pt_perf_config(const char *var, const char *value, void *data)
1976{
1977        struct intel_pt *pt = data;
1978
1979        if (!strcmp(var, "intel-pt.mispred-all"))
1980                pt->mispred_all = perf_config_bool(var, value);
1981
1982        return 0;
1983}
1984
1985static const char * const intel_pt_info_fmts[] = {
1986        [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
1987        [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
1988        [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
1989        [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
1990        [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
1991        [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
1992        [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
1993        [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
1994        [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
1995        [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
1996        [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
1997        [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
1998        [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
1999        [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
2000};
2001
2002static void intel_pt_print_info(u64 *arr, int start, int finish)
2003{
2004        int i;
2005
2006        if (!dump_trace)
2007                return;
2008
2009        for (i = start; i <= finish; i++)
2010                fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2011}
2012
2013int intel_pt_process_auxtrace_info(union perf_event *event,
2014                                   struct perf_session *session)
2015{
2016        struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2017        size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2018        struct intel_pt *pt;
2019        int err;
2020
2021        if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2022                                        min_sz)
2023                return -EINVAL;
2024
2025        pt = zalloc(sizeof(struct intel_pt));
2026        if (!pt)
2027                return -ENOMEM;
2028
2029        perf_config(intel_pt_perf_config, pt);
2030
2031        err = auxtrace_queues__init(&pt->queues);
2032        if (err)
2033                goto err_free;
2034
2035        intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2036
2037        pt->session = session;
2038        pt->machine = &session->machines.host; /* No kvm support */
2039        pt->auxtrace_type = auxtrace_info->type;
2040        pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2041        pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2042        pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2043        pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2044        pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2045        pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2046        pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2047        pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2048        pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2049        pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2050        intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2051                            INTEL_PT_PER_CPU_MMAPS);
2052
2053        if (auxtrace_info->header.size >= sizeof(struct auxtrace_info_event) +
2054                                        (sizeof(u64) * INTEL_PT_CYC_BIT)) {
2055                pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2056                pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2057                pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2058                pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2059                pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2060                intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2061                                    INTEL_PT_CYC_BIT);
2062        }
2063
2064        pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2065        pt->have_tsc = intel_pt_have_tsc(pt);
2066        pt->sampling_mode = false;
2067        pt->est_tsc = !pt->timeless_decoding;
2068
2069        pt->unknown_thread = thread__new(999999999, 999999999);
2070        if (!pt->unknown_thread) {
2071                err = -ENOMEM;
2072                goto err_free_queues;
2073        }
2074
2075        /*
2076         * Since this thread will not be kept in any rbtree not in a
2077         * list, initialize its list node so that at thread__put() the
2078         * current thread lifetime assuption is kept and we don't segfault
2079         * at list_del_init().
2080         */
2081        INIT_LIST_HEAD(&pt->unknown_thread->node);
2082
2083        err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2084        if (err)
2085                goto err_delete_thread;
2086        if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2087                err = -ENOMEM;
2088                goto err_delete_thread;
2089        }
2090
2091        pt->auxtrace.process_event = intel_pt_process_event;
2092        pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2093        pt->auxtrace.flush_events = intel_pt_flush;
2094        pt->auxtrace.free_events = intel_pt_free_events;
2095        pt->auxtrace.free = intel_pt_free;
2096        session->auxtrace = &pt->auxtrace;
2097
2098        if (dump_trace)
2099                return 0;
2100
2101        if (pt->have_sched_switch == 1) {
2102                pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2103                if (!pt->switch_evsel) {
2104                        pr_err("%s: missing sched_switch event\n", __func__);
2105                        goto err_delete_thread;
2106                }
2107        } else if (pt->have_sched_switch == 2 &&
2108                   !intel_pt_find_switch(session->evlist)) {
2109                pr_err("%s: missing context_switch attribute flag\n", __func__);
2110                goto err_delete_thread;
2111        }
2112
2113        if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2114                pt->synth_opts = *session->itrace_synth_opts;
2115        } else {
2116                itrace_synth_opts__set_default(&pt->synth_opts);
2117                if (use_browser != -1) {
2118                        pt->synth_opts.branches = false;
2119                        pt->synth_opts.callchain = true;
2120                }
2121        }
2122
2123        if (pt->synth_opts.log)
2124                intel_pt_log_enable();
2125
2126        /* Maximum non-turbo ratio is TSC freq / 100 MHz */
2127        if (pt->tc.time_mult) {
2128                u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2129
2130                pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000;
2131                intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2132                intel_pt_log("Maximum non-turbo ratio %u\n",
2133                             pt->max_non_turbo_ratio);
2134        }
2135
2136        if (pt->synth_opts.calls)
2137                pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2138                                       PERF_IP_FLAG_TRACE_END;
2139        if (pt->synth_opts.returns)
2140                pt->branches_filter |= PERF_IP_FLAG_RETURN |
2141                                       PERF_IP_FLAG_TRACE_BEGIN;
2142
2143        if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2144                symbol_conf.use_callchain = true;
2145                if (callchain_register_param(&callchain_param) < 0) {
2146                        symbol_conf.use_callchain = false;
2147                        pt->synth_opts.callchain = false;
2148                }
2149        }
2150
2151        err = intel_pt_synth_events(pt, session);
2152        if (err)
2153                goto err_delete_thread;
2154
2155        err = auxtrace_queues__process_index(&pt->queues, session);
2156        if (err)
2157                goto err_delete_thread;
2158
2159        if (pt->queues.populated)
2160                pt->data_queued = true;
2161
2162        if (pt->timeless_decoding)
2163                pr_debug2("Intel PT decoding without timestamps\n");
2164
2165        return 0;
2166
2167err_delete_thread:
2168        thread__zput(pt->unknown_thread);
2169err_free_queues:
2170        intel_pt_log_disable();
2171        auxtrace_queues__free(&pt->queues);
2172        session->auxtrace = NULL;
2173err_free:
2174        free(pt);
2175        return err;
2176}
2177