linux/virt/kvm/arm/vgic.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 ARM Ltd.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/rculist.h>
  28#include <linux/uaccess.h>
  29
  30#include <asm/kvm_emulate.h>
  31#include <asm/kvm_arm.h>
  32#include <asm/kvm_mmu.h>
  33#include <trace/events/kvm.h>
  34#include <asm/kvm.h>
  35#include <kvm/iodev.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include "trace.h"
  39
  40/*
  41 * How the whole thing works (courtesy of Christoffer Dall):
  42 *
  43 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
  44 *   something is pending on the CPU interface.
  45 * - Interrupts that are pending on the distributor are stored on the
  46 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
  47 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
  48 *   arch. timers).
  49 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
  50 *   recalculated
  51 * - To calculate the oracle, we need info for each cpu from
  52 *   compute_pending_for_cpu, which considers:
  53 *   - PPI: dist->irq_pending & dist->irq_enable
  54 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
  55 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
  56 *     registers, stored on each vcpu. We only keep one bit of
  57 *     information per interrupt, making sure that only one vcpu can
  58 *     accept the interrupt.
  59 * - If any of the above state changes, we must recalculate the oracle.
  60 * - The same is true when injecting an interrupt, except that we only
  61 *   consider a single interrupt at a time. The irq_spi_cpu array
  62 *   contains the target CPU for each SPI.
  63 *
  64 * The handling of level interrupts adds some extra complexity. We
  65 * need to track when the interrupt has been EOIed, so we can sample
  66 * the 'line' again. This is achieved as such:
  67 *
  68 * - When a level interrupt is moved onto a vcpu, the corresponding
  69 *   bit in irq_queued is set. As long as this bit is set, the line
  70 *   will be ignored for further interrupts. The interrupt is injected
  71 *   into the vcpu with the GICH_LR_EOI bit set (generate a
  72 *   maintenance interrupt on EOI).
  73 * - When the interrupt is EOIed, the maintenance interrupt fires,
  74 *   and clears the corresponding bit in irq_queued. This allows the
  75 *   interrupt line to be sampled again.
  76 * - Note that level-triggered interrupts can also be set to pending from
  77 *   writes to GICD_ISPENDRn and lowering the external input line does not
  78 *   cause the interrupt to become inactive in such a situation.
  79 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
  80 *   inactive as long as the external input line is held high.
  81 *
  82 *
  83 * Initialization rules: there are multiple stages to the vgic
  84 * initialization, both for the distributor and the CPU interfaces.
  85 *
  86 * Distributor:
  87 *
  88 * - kvm_vgic_early_init(): initialization of static data that doesn't
  89 *   depend on any sizing information or emulation type. No allocation
  90 *   is allowed there.
  91 *
  92 * - vgic_init(): allocation and initialization of the generic data
  93 *   structures that depend on sizing information (number of CPUs,
  94 *   number of interrupts). Also initializes the vcpu specific data
  95 *   structures. Can be executed lazily for GICv2.
  96 *   [to be renamed to kvm_vgic_init??]
  97 *
  98 * CPU Interface:
  99 *
 100 * - kvm_vgic_cpu_early_init(): initialization of static data that
 101 *   doesn't depend on any sizing information or emulation type. No
 102 *   allocation is allowed there.
 103 */
 104
 105#include "vgic.h"
 106
 107static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
 108static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
 109static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
 110static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
 111static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
 112static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
 113                                                int virt_irq);
 114static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
 115
 116static const struct vgic_ops *vgic_ops;
 117static const struct vgic_params *vgic;
 118
 119static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
 120{
 121        vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
 122}
 123
 124static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
 125{
 126        return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
 127}
 128
 129int kvm_vgic_map_resources(struct kvm *kvm)
 130{
 131        return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
 132}
 133
 134/*
 135 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 136 * extracts u32s out of them.
 137 *
 138 * This does not work on 64-bit BE systems, because the bitmap access
 139 * will store two consecutive 32-bit words with the higher-addressed
 140 * register's bits at the lower index and the lower-addressed register's
 141 * bits at the higher index.
 142 *
 143 * Therefore, swizzle the register index when accessing the 32-bit word
 144 * registers to access the right register's value.
 145 */
 146#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
 147#define REG_OFFSET_SWIZZLE      1
 148#else
 149#define REG_OFFSET_SWIZZLE      0
 150#endif
 151
 152static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
 153{
 154        int nr_longs;
 155
 156        nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
 157
 158        b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
 159        if (!b->private)
 160                return -ENOMEM;
 161
 162        b->shared = b->private + nr_cpus;
 163
 164        return 0;
 165}
 166
 167static void vgic_free_bitmap(struct vgic_bitmap *b)
 168{
 169        kfree(b->private);
 170        b->private = NULL;
 171        b->shared = NULL;
 172}
 173
 174/*
 175 * Call this function to convert a u64 value to an unsigned long * bitmask
 176 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 177 *
 178 * Warning: Calling this function may modify *val.
 179 */
 180static unsigned long *u64_to_bitmask(u64 *val)
 181{
 182#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
 183        *val = (*val >> 32) | (*val << 32);
 184#endif
 185        return (unsigned long *)val;
 186}
 187
 188u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
 189{
 190        offset >>= 2;
 191        if (!offset)
 192                return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
 193        else
 194                return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
 195}
 196
 197static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
 198                                   int cpuid, int irq)
 199{
 200        if (irq < VGIC_NR_PRIVATE_IRQS)
 201                return test_bit(irq, x->private + cpuid);
 202
 203        return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
 204}
 205
 206void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
 207                             int irq, int val)
 208{
 209        unsigned long *reg;
 210
 211        if (irq < VGIC_NR_PRIVATE_IRQS) {
 212                reg = x->private + cpuid;
 213        } else {
 214                reg = x->shared;
 215                irq -= VGIC_NR_PRIVATE_IRQS;
 216        }
 217
 218        if (val)
 219                set_bit(irq, reg);
 220        else
 221                clear_bit(irq, reg);
 222}
 223
 224static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
 225{
 226        return x->private + cpuid;
 227}
 228
 229unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
 230{
 231        return x->shared;
 232}
 233
 234static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
 235{
 236        int size;
 237
 238        size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
 239        size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
 240
 241        x->private = kzalloc(size, GFP_KERNEL);
 242        if (!x->private)
 243                return -ENOMEM;
 244
 245        x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
 246        return 0;
 247}
 248
 249static void vgic_free_bytemap(struct vgic_bytemap *b)
 250{
 251        kfree(b->private);
 252        b->private = NULL;
 253        b->shared = NULL;
 254}
 255
 256u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
 257{
 258        u32 *reg;
 259
 260        if (offset < VGIC_NR_PRIVATE_IRQS) {
 261                reg = x->private;
 262                offset += cpuid * VGIC_NR_PRIVATE_IRQS;
 263        } else {
 264                reg = x->shared;
 265                offset -= VGIC_NR_PRIVATE_IRQS;
 266        }
 267
 268        return reg + (offset / sizeof(u32));
 269}
 270
 271#define VGIC_CFG_LEVEL  0
 272#define VGIC_CFG_EDGE   1
 273
 274static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
 275{
 276        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 277        int irq_val;
 278
 279        irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
 280        return irq_val == VGIC_CFG_EDGE;
 281}
 282
 283static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
 284{
 285        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 286
 287        return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
 288}
 289
 290static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
 291{
 292        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 293
 294        return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
 295}
 296
 297static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
 298{
 299        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 300
 301        return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
 302}
 303
 304static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
 305{
 306        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 307
 308        vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
 309}
 310
 311static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
 312{
 313        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 314
 315        vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
 316}
 317
 318static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
 319{
 320        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 321
 322        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
 323}
 324
 325static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
 326{
 327        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 328
 329        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
 330}
 331
 332static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
 333{
 334        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 335
 336        return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
 337}
 338
 339static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
 340{
 341        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 342
 343        vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
 344}
 345
 346static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
 347{
 348        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 349
 350        vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
 351}
 352
 353static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
 354{
 355        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 356
 357        return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
 358}
 359
 360static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
 361{
 362        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 363
 364        vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
 365        if (!vgic_dist_irq_get_level(vcpu, irq)) {
 366                vgic_dist_irq_clear_pending(vcpu, irq);
 367                if (!compute_pending_for_cpu(vcpu))
 368                        clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
 369        }
 370}
 371
 372static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
 373{
 374        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 375
 376        return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
 377}
 378
 379void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
 380{
 381        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 382
 383        vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
 384}
 385
 386void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
 387{
 388        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 389
 390        vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
 391}
 392
 393static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
 394{
 395        if (irq < VGIC_NR_PRIVATE_IRQS)
 396                set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 397        else
 398                set_bit(irq - VGIC_NR_PRIVATE_IRQS,
 399                        vcpu->arch.vgic_cpu.pending_shared);
 400}
 401
 402void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
 403{
 404        if (irq < VGIC_NR_PRIVATE_IRQS)
 405                clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 406        else
 407                clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
 408                          vcpu->arch.vgic_cpu.pending_shared);
 409}
 410
 411static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
 412{
 413        return !vgic_irq_is_queued(vcpu, irq);
 414}
 415
 416/**
 417 * vgic_reg_access - access vgic register
 418 * @mmio:   pointer to the data describing the mmio access
 419 * @reg:    pointer to the virtual backing of vgic distributor data
 420 * @offset: least significant 2 bits used for word offset
 421 * @mode:   ACCESS_ mode (see defines above)
 422 *
 423 * Helper to make vgic register access easier using one of the access
 424 * modes defined for vgic register access
 425 * (read,raz,write-ignored,setbit,clearbit,write)
 426 */
 427void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
 428                     phys_addr_t offset, int mode)
 429{
 430        int word_offset = (offset & 3) * 8;
 431        u32 mask = (1UL << (mmio->len * 8)) - 1;
 432        u32 regval;
 433
 434        /*
 435         * Any alignment fault should have been delivered to the guest
 436         * directly (ARM ARM B3.12.7 "Prioritization of aborts").
 437         */
 438
 439        if (reg) {
 440                regval = *reg;
 441        } else {
 442                BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
 443                regval = 0;
 444        }
 445
 446        if (mmio->is_write) {
 447                u32 data = mmio_data_read(mmio, mask) << word_offset;
 448                switch (ACCESS_WRITE_MASK(mode)) {
 449                case ACCESS_WRITE_IGNORED:
 450                        return;
 451
 452                case ACCESS_WRITE_SETBIT:
 453                        regval |= data;
 454                        break;
 455
 456                case ACCESS_WRITE_CLEARBIT:
 457                        regval &= ~data;
 458                        break;
 459
 460                case ACCESS_WRITE_VALUE:
 461                        regval = (regval & ~(mask << word_offset)) | data;
 462                        break;
 463                }
 464                *reg = regval;
 465        } else {
 466                switch (ACCESS_READ_MASK(mode)) {
 467                case ACCESS_READ_RAZ:
 468                        regval = 0;
 469                        /* fall through */
 470
 471                case ACCESS_READ_VALUE:
 472                        mmio_data_write(mmio, mask, regval >> word_offset);
 473                }
 474        }
 475}
 476
 477bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
 478                        phys_addr_t offset)
 479{
 480        vgic_reg_access(mmio, NULL, offset,
 481                        ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
 482        return false;
 483}
 484
 485bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
 486                            phys_addr_t offset, int vcpu_id, int access)
 487{
 488        u32 *reg;
 489        int mode = ACCESS_READ_VALUE | access;
 490        struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
 491
 492        reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
 493        vgic_reg_access(mmio, reg, offset, mode);
 494        if (mmio->is_write) {
 495                if (access & ACCESS_WRITE_CLEARBIT) {
 496                        if (offset < 4) /* Force SGI enabled */
 497                                *reg |= 0xffff;
 498                        vgic_retire_disabled_irqs(target_vcpu);
 499                }
 500                vgic_update_state(kvm);
 501                return true;
 502        }
 503
 504        return false;
 505}
 506
 507bool vgic_handle_set_pending_reg(struct kvm *kvm,
 508                                 struct kvm_exit_mmio *mmio,
 509                                 phys_addr_t offset, int vcpu_id)
 510{
 511        u32 *reg, orig;
 512        u32 level_mask;
 513        int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
 514        struct vgic_dist *dist = &kvm->arch.vgic;
 515
 516        reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
 517        level_mask = (~(*reg));
 518
 519        /* Mark both level and edge triggered irqs as pending */
 520        reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 521        orig = *reg;
 522        vgic_reg_access(mmio, reg, offset, mode);
 523
 524        if (mmio->is_write) {
 525                /* Set the soft-pending flag only for level-triggered irqs */
 526                reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
 527                                          vcpu_id, offset);
 528                vgic_reg_access(mmio, reg, offset, mode);
 529                *reg &= level_mask;
 530
 531                /* Ignore writes to SGIs */
 532                if (offset < 2) {
 533                        *reg &= ~0xffff;
 534                        *reg |= orig & 0xffff;
 535                }
 536
 537                vgic_update_state(kvm);
 538                return true;
 539        }
 540
 541        return false;
 542}
 543
 544bool vgic_handle_clear_pending_reg(struct kvm *kvm,
 545                                   struct kvm_exit_mmio *mmio,
 546                                   phys_addr_t offset, int vcpu_id)
 547{
 548        u32 *level_active;
 549        u32 *reg, orig;
 550        int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
 551        struct vgic_dist *dist = &kvm->arch.vgic;
 552
 553        reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 554        orig = *reg;
 555        vgic_reg_access(mmio, reg, offset, mode);
 556        if (mmio->is_write) {
 557                /* Re-set level triggered level-active interrupts */
 558                level_active = vgic_bitmap_get_reg(&dist->irq_level,
 559                                          vcpu_id, offset);
 560                reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 561                *reg |= *level_active;
 562
 563                /* Ignore writes to SGIs */
 564                if (offset < 2) {
 565                        *reg &= ~0xffff;
 566                        *reg |= orig & 0xffff;
 567                }
 568
 569                /* Clear soft-pending flags */
 570                reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
 571                                          vcpu_id, offset);
 572                vgic_reg_access(mmio, reg, offset, mode);
 573
 574                vgic_update_state(kvm);
 575                return true;
 576        }
 577        return false;
 578}
 579
 580bool vgic_handle_set_active_reg(struct kvm *kvm,
 581                                struct kvm_exit_mmio *mmio,
 582                                phys_addr_t offset, int vcpu_id)
 583{
 584        u32 *reg;
 585        struct vgic_dist *dist = &kvm->arch.vgic;
 586
 587        reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
 588        vgic_reg_access(mmio, reg, offset,
 589                        ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
 590
 591        if (mmio->is_write) {
 592                vgic_update_state(kvm);
 593                return true;
 594        }
 595
 596        return false;
 597}
 598
 599bool vgic_handle_clear_active_reg(struct kvm *kvm,
 600                                  struct kvm_exit_mmio *mmio,
 601                                  phys_addr_t offset, int vcpu_id)
 602{
 603        u32 *reg;
 604        struct vgic_dist *dist = &kvm->arch.vgic;
 605
 606        reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
 607        vgic_reg_access(mmio, reg, offset,
 608                        ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
 609
 610        if (mmio->is_write) {
 611                vgic_update_state(kvm);
 612                return true;
 613        }
 614
 615        return false;
 616}
 617
 618static u32 vgic_cfg_expand(u16 val)
 619{
 620        u32 res = 0;
 621        int i;
 622
 623        /*
 624         * Turn a 16bit value like abcd...mnop into a 32bit word
 625         * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
 626         */
 627        for (i = 0; i < 16; i++)
 628                res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
 629
 630        return res;
 631}
 632
 633static u16 vgic_cfg_compress(u32 val)
 634{
 635        u16 res = 0;
 636        int i;
 637
 638        /*
 639         * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
 640         * abcd...mnop which is what we really care about.
 641         */
 642        for (i = 0; i < 16; i++)
 643                res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
 644
 645        return res;
 646}
 647
 648/*
 649 * The distributor uses 2 bits per IRQ for the CFG register, but the
 650 * LSB is always 0. As such, we only keep the upper bit, and use the
 651 * two above functions to compress/expand the bits
 652 */
 653bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
 654                         phys_addr_t offset)
 655{
 656        u32 val;
 657
 658        if (offset & 4)
 659                val = *reg >> 16;
 660        else
 661                val = *reg & 0xffff;
 662
 663        val = vgic_cfg_expand(val);
 664        vgic_reg_access(mmio, &val, offset,
 665                        ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 666        if (mmio->is_write) {
 667                /* Ignore writes to read-only SGI and PPI bits */
 668                if (offset < 8)
 669                        return false;
 670
 671                val = vgic_cfg_compress(val);
 672                if (offset & 4) {
 673                        *reg &= 0xffff;
 674                        *reg |= val << 16;
 675                } else {
 676                        *reg &= 0xffff << 16;
 677                        *reg |= val;
 678                }
 679        }
 680
 681        return false;
 682}
 683
 684/**
 685 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
 686 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 687 *
 688 * Move any IRQs that have already been assigned to LRs back to the
 689 * emulated distributor state so that the complete emulated state can be read
 690 * from the main emulation structures without investigating the LRs.
 691 */
 692void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
 693{
 694        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 695        u64 elrsr = vgic_get_elrsr(vcpu);
 696        unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
 697        int i;
 698
 699        for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
 700                struct vgic_lr lr = vgic_get_lr(vcpu, i);
 701
 702                /*
 703                 * There are three options for the state bits:
 704                 *
 705                 * 01: pending
 706                 * 10: active
 707                 * 11: pending and active
 708                 */
 709                BUG_ON(!(lr.state & LR_STATE_MASK));
 710
 711                /* Reestablish SGI source for pending and active IRQs */
 712                if (lr.irq < VGIC_NR_SGIS)
 713                        add_sgi_source(vcpu, lr.irq, lr.source);
 714
 715                /*
 716                 * If the LR holds an active (10) or a pending and active (11)
 717                 * interrupt then move the active state to the
 718                 * distributor tracking bit.
 719                 */
 720                if (lr.state & LR_STATE_ACTIVE)
 721                        vgic_irq_set_active(vcpu, lr.irq);
 722
 723                /*
 724                 * Reestablish the pending state on the distributor and the
 725                 * CPU interface and mark the LR as free for other use.
 726                 */
 727                vgic_retire_lr(i, vcpu);
 728
 729                /* Finally update the VGIC state. */
 730                vgic_update_state(vcpu->kvm);
 731        }
 732}
 733
 734const
 735struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
 736                                      int len, gpa_t offset)
 737{
 738        while (ranges->len) {
 739                if (offset >= ranges->base &&
 740                    (offset + len) <= (ranges->base + ranges->len))
 741                        return ranges;
 742                ranges++;
 743        }
 744
 745        return NULL;
 746}
 747
 748static bool vgic_validate_access(const struct vgic_dist *dist,
 749                                 const struct vgic_io_range *range,
 750                                 unsigned long offset)
 751{
 752        int irq;
 753
 754        if (!range->bits_per_irq)
 755                return true;    /* Not an irq-based access */
 756
 757        irq = offset * 8 / range->bits_per_irq;
 758        if (irq >= dist->nr_irqs)
 759                return false;
 760
 761        return true;
 762}
 763
 764/*
 765 * Call the respective handler function for the given range.
 766 * We split up any 64 bit accesses into two consecutive 32 bit
 767 * handler calls and merge the result afterwards.
 768 * We do this in a little endian fashion regardless of the host's
 769 * or guest's endianness, because the GIC is always LE and the rest of
 770 * the code (vgic_reg_access) also puts it in a LE fashion already.
 771 * At this point we have already identified the handle function, so
 772 * range points to that one entry and offset is relative to this.
 773 */
 774static bool call_range_handler(struct kvm_vcpu *vcpu,
 775                               struct kvm_exit_mmio *mmio,
 776                               unsigned long offset,
 777                               const struct vgic_io_range *range)
 778{
 779        struct kvm_exit_mmio mmio32;
 780        bool ret;
 781
 782        if (likely(mmio->len <= 4))
 783                return range->handle_mmio(vcpu, mmio, offset);
 784
 785        /*
 786         * Any access bigger than 4 bytes (that we currently handle in KVM)
 787         * is actually 8 bytes long, caused by a 64-bit access
 788         */
 789
 790        mmio32.len = 4;
 791        mmio32.is_write = mmio->is_write;
 792        mmio32.private = mmio->private;
 793
 794        mmio32.phys_addr = mmio->phys_addr + 4;
 795        mmio32.data = &((u32 *)mmio->data)[1];
 796        ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
 797
 798        mmio32.phys_addr = mmio->phys_addr;
 799        mmio32.data = &((u32 *)mmio->data)[0];
 800        ret |= range->handle_mmio(vcpu, &mmio32, offset);
 801
 802        return ret;
 803}
 804
 805/**
 806 * vgic_handle_mmio_access - handle an in-kernel MMIO access
 807 * This is called by the read/write KVM IO device wrappers below.
 808 * @vcpu:       pointer to the vcpu performing the access
 809 * @this:       pointer to the KVM IO device in charge
 810 * @addr:       guest physical address of the access
 811 * @len:        size of the access
 812 * @val:        pointer to the data region
 813 * @is_write:   read or write access
 814 *
 815 * returns true if the MMIO access could be performed
 816 */
 817static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
 818                                   struct kvm_io_device *this, gpa_t addr,
 819                                   int len, void *val, bool is_write)
 820{
 821        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 822        struct vgic_io_device *iodev = container_of(this,
 823                                                    struct vgic_io_device, dev);
 824        struct kvm_run *run = vcpu->run;
 825        const struct vgic_io_range *range;
 826        struct kvm_exit_mmio mmio;
 827        bool updated_state;
 828        gpa_t offset;
 829
 830        offset = addr - iodev->addr;
 831        range = vgic_find_range(iodev->reg_ranges, len, offset);
 832        if (unlikely(!range || !range->handle_mmio)) {
 833                pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
 834                return -ENXIO;
 835        }
 836
 837        mmio.phys_addr = addr;
 838        mmio.len = len;
 839        mmio.is_write = is_write;
 840        mmio.data = val;
 841        mmio.private = iodev->redist_vcpu;
 842
 843        spin_lock(&dist->lock);
 844        offset -= range->base;
 845        if (vgic_validate_access(dist, range, offset)) {
 846                updated_state = call_range_handler(vcpu, &mmio, offset, range);
 847        } else {
 848                if (!is_write)
 849                        memset(val, 0, len);
 850                updated_state = false;
 851        }
 852        spin_unlock(&dist->lock);
 853        run->mmio.is_write      = is_write;
 854        run->mmio.len           = len;
 855        run->mmio.phys_addr     = addr;
 856        memcpy(run->mmio.data, val, len);
 857
 858        kvm_handle_mmio_return(vcpu, run);
 859
 860        if (updated_state)
 861                vgic_kick_vcpus(vcpu->kvm);
 862
 863        return 0;
 864}
 865
 866static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
 867                                 struct kvm_io_device *this,
 868                                 gpa_t addr, int len, void *val)
 869{
 870        return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
 871}
 872
 873static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
 874                                  struct kvm_io_device *this,
 875                                  gpa_t addr, int len, const void *val)
 876{
 877        return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
 878                                       true);
 879}
 880
 881static struct kvm_io_device_ops vgic_io_ops = {
 882        .read   = vgic_handle_mmio_read,
 883        .write  = vgic_handle_mmio_write,
 884};
 885
 886/**
 887 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
 888 * @kvm:            The VM structure pointer
 889 * @base:           The (guest) base address for the register frame
 890 * @len:            Length of the register frame window
 891 * @ranges:         Describing the handler functions for each register
 892 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
 893 * @iodev:          Points to memory to be passed on to the handler
 894 *
 895 * @iodev stores the parameters of this function to be usable by the handler
 896 * respectively the dispatcher function (since the KVM I/O bus framework lacks
 897 * an opaque parameter). Initialization is done in this function, but the
 898 * reference should be valid and unique for the whole VGIC lifetime.
 899 * If the register frame is not mapped for a specific VCPU, pass -1 to
 900 * @redist_vcpu_id.
 901 */
 902int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
 903                             const struct vgic_io_range *ranges,
 904                             int redist_vcpu_id,
 905                             struct vgic_io_device *iodev)
 906{
 907        struct kvm_vcpu *vcpu = NULL;
 908        int ret;
 909
 910        if (redist_vcpu_id >= 0)
 911                vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
 912
 913        iodev->addr             = base;
 914        iodev->len              = len;
 915        iodev->reg_ranges       = ranges;
 916        iodev->redist_vcpu      = vcpu;
 917
 918        kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
 919
 920        mutex_lock(&kvm->slots_lock);
 921
 922        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
 923                                      &iodev->dev);
 924        mutex_unlock(&kvm->slots_lock);
 925
 926        /* Mark the iodev as invalid if registration fails. */
 927        if (ret)
 928                iodev->dev.ops = NULL;
 929
 930        return ret;
 931}
 932
 933static int vgic_nr_shared_irqs(struct vgic_dist *dist)
 934{
 935        return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
 936}
 937
 938static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
 939{
 940        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 941        unsigned long *active, *enabled, *act_percpu, *act_shared;
 942        unsigned long active_private, active_shared;
 943        int nr_shared = vgic_nr_shared_irqs(dist);
 944        int vcpu_id;
 945
 946        vcpu_id = vcpu->vcpu_id;
 947        act_percpu = vcpu->arch.vgic_cpu.active_percpu;
 948        act_shared = vcpu->arch.vgic_cpu.active_shared;
 949
 950        active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
 951        enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
 952        bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
 953
 954        active = vgic_bitmap_get_shared_map(&dist->irq_active);
 955        enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
 956        bitmap_and(act_shared, active, enabled, nr_shared);
 957        bitmap_and(act_shared, act_shared,
 958                   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
 959                   nr_shared);
 960
 961        active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
 962        active_shared = find_first_bit(act_shared, nr_shared);
 963
 964        return (active_private < VGIC_NR_PRIVATE_IRQS ||
 965                active_shared < nr_shared);
 966}
 967
 968static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
 969{
 970        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 971        unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
 972        unsigned long pending_private, pending_shared;
 973        int nr_shared = vgic_nr_shared_irqs(dist);
 974        int vcpu_id;
 975
 976        vcpu_id = vcpu->vcpu_id;
 977        pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
 978        pend_shared = vcpu->arch.vgic_cpu.pending_shared;
 979
 980        if (!dist->enabled) {
 981                bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
 982                bitmap_zero(pend_shared, nr_shared);
 983                return 0;
 984        }
 985
 986        pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
 987        enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
 988        bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
 989
 990        pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
 991        enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
 992        bitmap_and(pend_shared, pending, enabled, nr_shared);
 993        bitmap_and(pend_shared, pend_shared,
 994                   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
 995                   nr_shared);
 996
 997        pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
 998        pending_shared = find_first_bit(pend_shared, nr_shared);
 999        return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1000                pending_shared < vgic_nr_shared_irqs(dist));
1001}
1002
1003/*
1004 * Update the interrupt state and determine which CPUs have pending
1005 * or active interrupts. Must be called with distributor lock held.
1006 */
1007void vgic_update_state(struct kvm *kvm)
1008{
1009        struct vgic_dist *dist = &kvm->arch.vgic;
1010        struct kvm_vcpu *vcpu;
1011        int c;
1012
1013        kvm_for_each_vcpu(c, vcpu, kvm) {
1014                if (compute_pending_for_cpu(vcpu))
1015                        set_bit(c, dist->irq_pending_on_cpu);
1016
1017                if (compute_active_for_cpu(vcpu))
1018                        set_bit(c, dist->irq_active_on_cpu);
1019                else
1020                        clear_bit(c, dist->irq_active_on_cpu);
1021        }
1022}
1023
1024static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1025{
1026        return vgic_ops->get_lr(vcpu, lr);
1027}
1028
1029static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1030                               struct vgic_lr vlr)
1031{
1032        vgic_ops->set_lr(vcpu, lr, vlr);
1033}
1034
1035static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1036{
1037        return vgic_ops->get_elrsr(vcpu);
1038}
1039
1040static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1041{
1042        return vgic_ops->get_eisr(vcpu);
1043}
1044
1045static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1046{
1047        vgic_ops->clear_eisr(vcpu);
1048}
1049
1050static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1051{
1052        return vgic_ops->get_interrupt_status(vcpu);
1053}
1054
1055static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1056{
1057        vgic_ops->enable_underflow(vcpu);
1058}
1059
1060static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1061{
1062        vgic_ops->disable_underflow(vcpu);
1063}
1064
1065void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1066{
1067        vgic_ops->get_vmcr(vcpu, vmcr);
1068}
1069
1070void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1071{
1072        vgic_ops->set_vmcr(vcpu, vmcr);
1073}
1074
1075static inline void vgic_enable(struct kvm_vcpu *vcpu)
1076{
1077        vgic_ops->enable(vcpu);
1078}
1079
1080static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
1081{
1082        struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1083
1084        vgic_irq_clear_queued(vcpu, vlr.irq);
1085
1086        /*
1087         * We must transfer the pending state back to the distributor before
1088         * retiring the LR, otherwise we may loose edge-triggered interrupts.
1089         */
1090        if (vlr.state & LR_STATE_PENDING) {
1091                vgic_dist_irq_set_pending(vcpu, vlr.irq);
1092                vlr.hwirq = 0;
1093        }
1094
1095        vlr.state = 0;
1096        vgic_set_lr(vcpu, lr_nr, vlr);
1097}
1098
1099static bool dist_active_irq(struct kvm_vcpu *vcpu)
1100{
1101        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1102
1103        return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1104}
1105
1106bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1107{
1108        int i;
1109
1110        for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) {
1111                struct vgic_lr vlr = vgic_get_lr(vcpu, i);
1112
1113                if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE)
1114                        return true;
1115        }
1116
1117        return vgic_irq_is_active(vcpu, map->virt_irq);
1118}
1119
1120/*
1121 * An interrupt may have been disabled after being made pending on the
1122 * CPU interface (the classic case is a timer running while we're
1123 * rebooting the guest - the interrupt would kick as soon as the CPU
1124 * interface gets enabled, with deadly consequences).
1125 *
1126 * The solution is to examine already active LRs, and check the
1127 * interrupt is still enabled. If not, just retire it.
1128 */
1129static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1130{
1131        u64 elrsr = vgic_get_elrsr(vcpu);
1132        unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1133        int lr;
1134
1135        for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1136                struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1137
1138                if (!vgic_irq_is_enabled(vcpu, vlr.irq))
1139                        vgic_retire_lr(lr, vcpu);
1140        }
1141}
1142
1143static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1144                                 int lr_nr, struct vgic_lr vlr)
1145{
1146        if (vgic_irq_is_active(vcpu, irq)) {
1147                vlr.state |= LR_STATE_ACTIVE;
1148                kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1149                vgic_irq_clear_active(vcpu, irq);
1150                vgic_update_state(vcpu->kvm);
1151        } else {
1152                WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1153                vlr.state |= LR_STATE_PENDING;
1154                kvm_debug("Set pending: 0x%x\n", vlr.state);
1155        }
1156
1157        if (!vgic_irq_is_edge(vcpu, irq))
1158                vlr.state |= LR_EOI_INT;
1159
1160        if (vlr.irq >= VGIC_NR_SGIS) {
1161                struct irq_phys_map *map;
1162                map = vgic_irq_map_search(vcpu, irq);
1163
1164                if (map) {
1165                        vlr.hwirq = map->phys_irq;
1166                        vlr.state |= LR_HW;
1167                        vlr.state &= ~LR_EOI_INT;
1168
1169                        /*
1170                         * Make sure we're not going to sample this
1171                         * again, as a HW-backed interrupt cannot be
1172                         * in the PENDING_ACTIVE stage.
1173                         */
1174                        vgic_irq_set_queued(vcpu, irq);
1175                }
1176        }
1177
1178        vgic_set_lr(vcpu, lr_nr, vlr);
1179}
1180
1181/*
1182 * Queue an interrupt to a CPU virtual interface. Return true on success,
1183 * or false if it wasn't possible to queue it.
1184 * sgi_source must be zero for any non-SGI interrupts.
1185 */
1186bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1187{
1188        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1189        u64 elrsr = vgic_get_elrsr(vcpu);
1190        unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1191        struct vgic_lr vlr;
1192        int lr;
1193
1194        /* Sanitize the input... */
1195        BUG_ON(sgi_source_id & ~7);
1196        BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1197        BUG_ON(irq >= dist->nr_irqs);
1198
1199        kvm_debug("Queue IRQ%d\n", irq);
1200
1201        /* Do we have an active interrupt for the same CPUID? */
1202        for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1203                vlr = vgic_get_lr(vcpu, lr);
1204                if (vlr.irq == irq && vlr.source == sgi_source_id) {
1205                        kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1206                        vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1207                        return true;
1208                }
1209        }
1210
1211        /* Try to use another LR for this interrupt */
1212        lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
1213        if (lr >= vgic->nr_lr)
1214                return false;
1215
1216        kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1217
1218        vlr.irq = irq;
1219        vlr.source = sgi_source_id;
1220        vlr.state = 0;
1221        vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1222
1223        return true;
1224}
1225
1226static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1227{
1228        if (!vgic_can_sample_irq(vcpu, irq))
1229                return true; /* level interrupt, already queued */
1230
1231        if (vgic_queue_irq(vcpu, 0, irq)) {
1232                if (vgic_irq_is_edge(vcpu, irq)) {
1233                        vgic_dist_irq_clear_pending(vcpu, irq);
1234                        vgic_cpu_irq_clear(vcpu, irq);
1235                } else {
1236                        vgic_irq_set_queued(vcpu, irq);
1237                }
1238
1239                return true;
1240        }
1241
1242        return false;
1243}
1244
1245/*
1246 * Fill the list registers with pending interrupts before running the
1247 * guest.
1248 */
1249static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1250{
1251        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1252        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1253        unsigned long *pa_percpu, *pa_shared;
1254        int i, vcpu_id;
1255        int overflow = 0;
1256        int nr_shared = vgic_nr_shared_irqs(dist);
1257
1258        vcpu_id = vcpu->vcpu_id;
1259
1260        pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1261        pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1262
1263        bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1264                  VGIC_NR_PRIVATE_IRQS);
1265        bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1266                  nr_shared);
1267        /*
1268         * We may not have any pending interrupt, or the interrupts
1269         * may have been serviced from another vcpu. In all cases,
1270         * move along.
1271         */
1272        if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
1273                goto epilog;
1274
1275        /* SGIs */
1276        for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1277                if (!queue_sgi(vcpu, i))
1278                        overflow = 1;
1279        }
1280
1281        /* PPIs */
1282        for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1283                if (!vgic_queue_hwirq(vcpu, i))
1284                        overflow = 1;
1285        }
1286
1287        /* SPIs */
1288        for_each_set_bit(i, pa_shared, nr_shared) {
1289                if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1290                        overflow = 1;
1291        }
1292
1293
1294
1295
1296epilog:
1297        if (overflow) {
1298                vgic_enable_underflow(vcpu);
1299        } else {
1300                vgic_disable_underflow(vcpu);
1301                /*
1302                 * We're about to run this VCPU, and we've consumed
1303                 * everything the distributor had in store for
1304                 * us. Claim we don't have anything pending. We'll
1305                 * adjust that if needed while exiting.
1306                 */
1307                clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1308        }
1309}
1310
1311static int process_queued_irq(struct kvm_vcpu *vcpu,
1312                                   int lr, struct vgic_lr vlr)
1313{
1314        int pending = 0;
1315
1316        /*
1317         * If the IRQ was EOIed (called from vgic_process_maintenance) or it
1318         * went from active to non-active (called from vgic_sync_hwirq) it was
1319         * also ACKed and we we therefore assume we can clear the soft pending
1320         * state (should it had been set) for this interrupt.
1321         *
1322         * Note: if the IRQ soft pending state was set after the IRQ was
1323         * acked, it actually shouldn't be cleared, but we have no way of
1324         * knowing that unless we start trapping ACKs when the soft-pending
1325         * state is set.
1326         */
1327        vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1328
1329        /*
1330         * Tell the gic to start sampling this interrupt again.
1331         */
1332        vgic_irq_clear_queued(vcpu, vlr.irq);
1333
1334        /* Any additional pending interrupt? */
1335        if (vgic_irq_is_edge(vcpu, vlr.irq)) {
1336                BUG_ON(!(vlr.state & LR_HW));
1337                pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
1338        } else {
1339                if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1340                        vgic_cpu_irq_set(vcpu, vlr.irq);
1341                        pending = 1;
1342                } else {
1343                        vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1344                        vgic_cpu_irq_clear(vcpu, vlr.irq);
1345                }
1346        }
1347
1348        /*
1349         * Despite being EOIed, the LR may not have
1350         * been marked as empty.
1351         */
1352        vlr.state = 0;
1353        vlr.hwirq = 0;
1354        vgic_set_lr(vcpu, lr, vlr);
1355
1356        return pending;
1357}
1358
1359static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1360{
1361        u32 status = vgic_get_interrupt_status(vcpu);
1362        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1363        struct kvm *kvm = vcpu->kvm;
1364        int level_pending = 0;
1365
1366        kvm_debug("STATUS = %08x\n", status);
1367
1368        if (status & INT_STATUS_EOI) {
1369                /*
1370                 * Some level interrupts have been EOIed. Clear their
1371                 * active bit.
1372                 */
1373                u64 eisr = vgic_get_eisr(vcpu);
1374                unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1375                int lr;
1376
1377                for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1378                        struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1379
1380                        WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1381                        WARN_ON(vlr.state & LR_STATE_MASK);
1382
1383
1384                        /*
1385                         * kvm_notify_acked_irq calls kvm_set_irq()
1386                         * to reset the IRQ level, which grabs the dist->lock
1387                         * so we call this before taking the dist->lock.
1388                         */
1389                        kvm_notify_acked_irq(kvm, 0,
1390                                             vlr.irq - VGIC_NR_PRIVATE_IRQS);
1391
1392                        spin_lock(&dist->lock);
1393                        level_pending |= process_queued_irq(vcpu, lr, vlr);
1394                        spin_unlock(&dist->lock);
1395                }
1396        }
1397
1398        if (status & INT_STATUS_UNDERFLOW)
1399                vgic_disable_underflow(vcpu);
1400
1401        /*
1402         * In the next iterations of the vcpu loop, if we sync the vgic state
1403         * after flushing it, but before entering the guest (this happens for
1404         * pending signals and vmid rollovers), then make sure we don't pick
1405         * up any old maintenance interrupts here.
1406         */
1407        vgic_clear_eisr(vcpu);
1408
1409        return level_pending;
1410}
1411
1412/*
1413 * Save the physical active state, and reset it to inactive.
1414 *
1415 * Return true if there's a pending forwarded interrupt to queue.
1416 */
1417static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
1418{
1419        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1420        bool level_pending;
1421
1422        if (!(vlr.state & LR_HW))
1423                return false;
1424
1425        if (vlr.state & LR_STATE_ACTIVE)
1426                return false;
1427
1428        spin_lock(&dist->lock);
1429        level_pending = process_queued_irq(vcpu, lr, vlr);
1430        spin_unlock(&dist->lock);
1431        return level_pending;
1432}
1433
1434/* Sync back the VGIC state after a guest run */
1435static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1436{
1437        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1438        u64 elrsr;
1439        unsigned long *elrsr_ptr;
1440        int lr, pending;
1441        bool level_pending;
1442
1443        level_pending = vgic_process_maintenance(vcpu);
1444
1445        /* Deal with HW interrupts, and clear mappings for empty LRs */
1446        for (lr = 0; lr < vgic->nr_lr; lr++) {
1447                struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1448
1449                level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
1450                BUG_ON(vlr.irq >= dist->nr_irqs);
1451        }
1452
1453        /* Check if we still have something up our sleeve... */
1454        elrsr = vgic_get_elrsr(vcpu);
1455        elrsr_ptr = u64_to_bitmask(&elrsr);
1456        pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1457        if (level_pending || pending < vgic->nr_lr)
1458                set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1459}
1460
1461void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1462{
1463        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1464
1465        if (!irqchip_in_kernel(vcpu->kvm))
1466                return;
1467
1468        spin_lock(&dist->lock);
1469        __kvm_vgic_flush_hwstate(vcpu);
1470        spin_unlock(&dist->lock);
1471}
1472
1473void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1474{
1475        if (!irqchip_in_kernel(vcpu->kvm))
1476                return;
1477
1478        __kvm_vgic_sync_hwstate(vcpu);
1479}
1480
1481int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1482{
1483        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1484
1485        if (!irqchip_in_kernel(vcpu->kvm))
1486                return 0;
1487
1488        return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1489}
1490
1491void vgic_kick_vcpus(struct kvm *kvm)
1492{
1493        struct kvm_vcpu *vcpu;
1494        int c;
1495
1496        /*
1497         * We've injected an interrupt, time to find out who deserves
1498         * a good kick...
1499         */
1500        kvm_for_each_vcpu(c, vcpu, kvm) {
1501                if (kvm_vgic_vcpu_pending_irq(vcpu))
1502                        kvm_vcpu_kick(vcpu);
1503        }
1504}
1505
1506static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1507{
1508        int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1509
1510        /*
1511         * Only inject an interrupt if:
1512         * - edge triggered and we have a rising edge
1513         * - level triggered and we change level
1514         */
1515        if (edge_triggered) {
1516                int state = vgic_dist_irq_is_pending(vcpu, irq);
1517                return level > state;
1518        } else {
1519                int state = vgic_dist_irq_get_level(vcpu, irq);
1520                return level != state;
1521        }
1522}
1523
1524static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1525                                   struct irq_phys_map *map,
1526                                   unsigned int irq_num, bool level)
1527{
1528        struct vgic_dist *dist = &kvm->arch.vgic;
1529        struct kvm_vcpu *vcpu;
1530        int edge_triggered, level_triggered;
1531        int enabled;
1532        bool ret = true, can_inject = true;
1533
1534        trace_vgic_update_irq_pending(cpuid, irq_num, level);
1535
1536        if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1537                return -EINVAL;
1538
1539        spin_lock(&dist->lock);
1540
1541        vcpu = kvm_get_vcpu(kvm, cpuid);
1542        edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1543        level_triggered = !edge_triggered;
1544
1545        if (!vgic_validate_injection(vcpu, irq_num, level)) {
1546                ret = false;
1547                goto out;
1548        }
1549
1550        if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1551                cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1552                if (cpuid == VCPU_NOT_ALLOCATED) {
1553                        /* Pretend we use CPU0, and prevent injection */
1554                        cpuid = 0;
1555                        can_inject = false;
1556                }
1557                vcpu = kvm_get_vcpu(kvm, cpuid);
1558        }
1559
1560        kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1561
1562        if (level) {
1563                if (level_triggered)
1564                        vgic_dist_irq_set_level(vcpu, irq_num);
1565                vgic_dist_irq_set_pending(vcpu, irq_num);
1566        } else {
1567                if (level_triggered) {
1568                        vgic_dist_irq_clear_level(vcpu, irq_num);
1569                        if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1570                                vgic_dist_irq_clear_pending(vcpu, irq_num);
1571                                vgic_cpu_irq_clear(vcpu, irq_num);
1572                                if (!compute_pending_for_cpu(vcpu))
1573                                        clear_bit(cpuid, dist->irq_pending_on_cpu);
1574                        }
1575                }
1576
1577                ret = false;
1578                goto out;
1579        }
1580
1581        enabled = vgic_irq_is_enabled(vcpu, irq_num);
1582
1583        if (!enabled || !can_inject) {
1584                ret = false;
1585                goto out;
1586        }
1587
1588        if (!vgic_can_sample_irq(vcpu, irq_num)) {
1589                /*
1590                 * Level interrupt in progress, will be picked up
1591                 * when EOId.
1592                 */
1593                ret = false;
1594                goto out;
1595        }
1596
1597        if (level) {
1598                vgic_cpu_irq_set(vcpu, irq_num);
1599                set_bit(cpuid, dist->irq_pending_on_cpu);
1600        }
1601
1602out:
1603        spin_unlock(&dist->lock);
1604
1605        if (ret) {
1606                /* kick the specified vcpu */
1607                kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1608        }
1609
1610        return 0;
1611}
1612
1613static int vgic_lazy_init(struct kvm *kvm)
1614{
1615        int ret = 0;
1616
1617        if (unlikely(!vgic_initialized(kvm))) {
1618                /*
1619                 * We only provide the automatic initialization of the VGIC
1620                 * for the legacy case of a GICv2. Any other type must
1621                 * be explicitly initialized once setup with the respective
1622                 * KVM device call.
1623                 */
1624                if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1625                        return -EBUSY;
1626
1627                mutex_lock(&kvm->lock);
1628                ret = vgic_init(kvm);
1629                mutex_unlock(&kvm->lock);
1630        }
1631
1632        return ret;
1633}
1634
1635/**
1636 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1637 * @kvm:     The VM structure pointer
1638 * @cpuid:   The CPU for PPIs
1639 * @irq_num: The IRQ number that is assigned to the device. This IRQ
1640 *           must not be mapped to a HW interrupt.
1641 * @level:   Edge-triggered:  true:  to trigger the interrupt
1642 *                            false: to ignore the call
1643 *           Level-sensitive  true:  raise the input signal
1644 *                            false: lower the input signal
1645 *
1646 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1647 * level-sensitive interrupts.  You can think of the level parameter as 1
1648 * being HIGH and 0 being LOW and all devices being active-HIGH.
1649 */
1650int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1651                        bool level)
1652{
1653        struct irq_phys_map *map;
1654        int ret;
1655
1656        ret = vgic_lazy_init(kvm);
1657        if (ret)
1658                return ret;
1659
1660        map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1661        if (map)
1662                return -EINVAL;
1663
1664        return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1665}
1666
1667/**
1668 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1669 * @kvm:     The VM structure pointer
1670 * @cpuid:   The CPU for PPIs
1671 * @map:     Pointer to a irq_phys_map structure describing the mapping
1672 * @level:   Edge-triggered:  true:  to trigger the interrupt
1673 *                            false: to ignore the call
1674 *           Level-sensitive  true:  raise the input signal
1675 *                            false: lower the input signal
1676 *
1677 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1678 * level-sensitive interrupts.  You can think of the level parameter as 1
1679 * being HIGH and 0 being LOW and all devices being active-HIGH.
1680 */
1681int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1682                               struct irq_phys_map *map, bool level)
1683{
1684        int ret;
1685
1686        ret = vgic_lazy_init(kvm);
1687        if (ret)
1688                return ret;
1689
1690        return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1691}
1692
1693static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1694{
1695        /*
1696         * We cannot rely on the vgic maintenance interrupt to be
1697         * delivered synchronously. This means we can only use it to
1698         * exit the VM, and we perform the handling of EOIed
1699         * interrupts on the exit path (see vgic_process_maintenance).
1700         */
1701        return IRQ_HANDLED;
1702}
1703
1704static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1705                                                    int virt_irq)
1706{
1707        if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1708                return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1709        else
1710                return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1711}
1712
1713/**
1714 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1715 * @vcpu: The VCPU pointer
1716 * @virt_irq: The virtual irq number
1717 * @irq: The Linux IRQ number
1718 *
1719 * Establish a mapping between a guest visible irq (@virt_irq) and a
1720 * Linux irq (@irq). On injection, @virt_irq will be associated with
1721 * the physical interrupt represented by @irq. This mapping can be
1722 * established multiple times as long as the parameters are the same.
1723 *
1724 * Returns a valid pointer on success, and an error pointer otherwise
1725 */
1726struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1727                                           int virt_irq, int irq)
1728{
1729        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1730        struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1731        struct irq_phys_map *map;
1732        struct irq_phys_map_entry *entry;
1733        struct irq_desc *desc;
1734        struct irq_data *data;
1735        int phys_irq;
1736
1737        desc = irq_to_desc(irq);
1738        if (!desc) {
1739                kvm_err("%s: no interrupt descriptor\n", __func__);
1740                return ERR_PTR(-EINVAL);
1741        }
1742
1743        data = irq_desc_get_irq_data(desc);
1744        while (data->parent_data)
1745                data = data->parent_data;
1746
1747        phys_irq = data->hwirq;
1748
1749        /* Create a new mapping */
1750        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1751        if (!entry)
1752                return ERR_PTR(-ENOMEM);
1753
1754        spin_lock(&dist->irq_phys_map_lock);
1755
1756        /* Try to match an existing mapping */
1757        map = vgic_irq_map_search(vcpu, virt_irq);
1758        if (map) {
1759                /* Make sure this mapping matches */
1760                if (map->phys_irq != phys_irq   ||
1761                    map->irq      != irq)
1762                        map = ERR_PTR(-EINVAL);
1763
1764                /* Found an existing, valid mapping */
1765                goto out;
1766        }
1767
1768        map           = &entry->map;
1769        map->virt_irq = virt_irq;
1770        map->phys_irq = phys_irq;
1771        map->irq      = irq;
1772
1773        list_add_tail_rcu(&entry->entry, root);
1774
1775out:
1776        spin_unlock(&dist->irq_phys_map_lock);
1777        /* If we've found a hit in the existing list, free the useless
1778         * entry */
1779        if (IS_ERR(map) || map != &entry->map)
1780                kfree(entry);
1781        return map;
1782}
1783
1784static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1785                                                int virt_irq)
1786{
1787        struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1788        struct irq_phys_map_entry *entry;
1789        struct irq_phys_map *map;
1790
1791        rcu_read_lock();
1792
1793        list_for_each_entry_rcu(entry, root, entry) {
1794                map = &entry->map;
1795                if (map->virt_irq == virt_irq) {
1796                        rcu_read_unlock();
1797                        return map;
1798                }
1799        }
1800
1801        rcu_read_unlock();
1802
1803        return NULL;
1804}
1805
1806static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1807{
1808        struct irq_phys_map_entry *entry;
1809
1810        entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1811        kfree(entry);
1812}
1813
1814/**
1815 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1816 * @vcpu: The VCPU pointer
1817 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1818 *
1819 * Remove an existing mapping between virtual and physical interrupts.
1820 */
1821int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1822{
1823        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1824        struct irq_phys_map_entry *entry;
1825        struct list_head *root;
1826
1827        if (!map)
1828                return -EINVAL;
1829
1830        root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1831
1832        spin_lock(&dist->irq_phys_map_lock);
1833
1834        list_for_each_entry(entry, root, entry) {
1835                if (&entry->map == map) {
1836                        list_del_rcu(&entry->entry);
1837                        call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1838                        break;
1839                }
1840        }
1841
1842        spin_unlock(&dist->irq_phys_map_lock);
1843
1844        return 0;
1845}
1846
1847static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1848{
1849        struct vgic_dist *dist = &kvm->arch.vgic;
1850        struct irq_phys_map_entry *entry;
1851
1852        spin_lock(&dist->irq_phys_map_lock);
1853
1854        list_for_each_entry(entry, root, entry) {
1855                list_del_rcu(&entry->entry);
1856                call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1857        }
1858
1859        spin_unlock(&dist->irq_phys_map_lock);
1860}
1861
1862void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1863{
1864        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1865
1866        kfree(vgic_cpu->pending_shared);
1867        kfree(vgic_cpu->active_shared);
1868        kfree(vgic_cpu->pend_act_shared);
1869        vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1870        vgic_cpu->pending_shared = NULL;
1871        vgic_cpu->active_shared = NULL;
1872        vgic_cpu->pend_act_shared = NULL;
1873}
1874
1875static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1876{
1877        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1878        int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
1879        int sz = nr_longs * sizeof(unsigned long);
1880        vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1881        vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1882        vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1883
1884        if (!vgic_cpu->pending_shared
1885                || !vgic_cpu->active_shared
1886                || !vgic_cpu->pend_act_shared) {
1887                kvm_vgic_vcpu_destroy(vcpu);
1888                return -ENOMEM;
1889        }
1890
1891        /*
1892         * Store the number of LRs per vcpu, so we don't have to go
1893         * all the way to the distributor structure to find out. Only
1894         * assembly code should use this one.
1895         */
1896        vgic_cpu->nr_lr = vgic->nr_lr;
1897
1898        return 0;
1899}
1900
1901/**
1902 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1903 *
1904 * No memory allocation should be performed here, only static init.
1905 */
1906void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1907{
1908        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1909        INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1910}
1911
1912/**
1913 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1914 *
1915 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1916 * can use.
1917 */
1918int kvm_vgic_get_max_vcpus(void)
1919{
1920        return vgic->max_gic_vcpus;
1921}
1922
1923void kvm_vgic_destroy(struct kvm *kvm)
1924{
1925        struct vgic_dist *dist = &kvm->arch.vgic;
1926        struct kvm_vcpu *vcpu;
1927        int i;
1928
1929        kvm_for_each_vcpu(i, vcpu, kvm)
1930                kvm_vgic_vcpu_destroy(vcpu);
1931
1932        vgic_free_bitmap(&dist->irq_enabled);
1933        vgic_free_bitmap(&dist->irq_level);
1934        vgic_free_bitmap(&dist->irq_pending);
1935        vgic_free_bitmap(&dist->irq_soft_pend);
1936        vgic_free_bitmap(&dist->irq_queued);
1937        vgic_free_bitmap(&dist->irq_cfg);
1938        vgic_free_bytemap(&dist->irq_priority);
1939        if (dist->irq_spi_target) {
1940                for (i = 0; i < dist->nr_cpus; i++)
1941                        vgic_free_bitmap(&dist->irq_spi_target[i]);
1942        }
1943        kfree(dist->irq_sgi_sources);
1944        kfree(dist->irq_spi_cpu);
1945        kfree(dist->irq_spi_mpidr);
1946        kfree(dist->irq_spi_target);
1947        kfree(dist->irq_pending_on_cpu);
1948        kfree(dist->irq_active_on_cpu);
1949        vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1950        dist->irq_sgi_sources = NULL;
1951        dist->irq_spi_cpu = NULL;
1952        dist->irq_spi_target = NULL;
1953        dist->irq_pending_on_cpu = NULL;
1954        dist->irq_active_on_cpu = NULL;
1955        dist->nr_cpus = 0;
1956}
1957
1958/*
1959 * Allocate and initialize the various data structures. Must be called
1960 * with kvm->lock held!
1961 */
1962int vgic_init(struct kvm *kvm)
1963{
1964        struct vgic_dist *dist = &kvm->arch.vgic;
1965        struct kvm_vcpu *vcpu;
1966        int nr_cpus, nr_irqs;
1967        int ret, i, vcpu_id;
1968
1969        if (vgic_initialized(kvm))
1970                return 0;
1971
1972        nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1973        if (!nr_cpus)           /* No vcpus? Can't be good... */
1974                return -ENODEV;
1975
1976        /*
1977         * If nobody configured the number of interrupts, use the
1978         * legacy one.
1979         */
1980        if (!dist->nr_irqs)
1981                dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1982
1983        nr_irqs = dist->nr_irqs;
1984
1985        ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1986        ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1987        ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1988        ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1989        ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1990        ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1991        ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1992        ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1993
1994        if (ret)
1995                goto out;
1996
1997        dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1998        dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1999        dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2000                                       GFP_KERNEL);
2001        dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2002                                           GFP_KERNEL);
2003        dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2004                                           GFP_KERNEL);
2005        if (!dist->irq_sgi_sources ||
2006            !dist->irq_spi_cpu ||
2007            !dist->irq_spi_target ||
2008            !dist->irq_pending_on_cpu ||
2009            !dist->irq_active_on_cpu) {
2010                ret = -ENOMEM;
2011                goto out;
2012        }
2013
2014        for (i = 0; i < nr_cpus; i++)
2015                ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2016                                        nr_cpus, nr_irqs);
2017
2018        if (ret)
2019                goto out;
2020
2021        ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2022        if (ret)
2023                goto out;
2024
2025        kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2026                ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2027                if (ret) {
2028                        kvm_err("VGIC: Failed to allocate vcpu memory\n");
2029                        break;
2030                }
2031
2032                /*
2033                 * Enable and configure all SGIs to be edge-triggere and
2034                 * configure all PPIs as level-triggered.
2035                 */
2036                for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
2037                        if (i < VGIC_NR_SGIS) {
2038                                /* SGIs */
2039                                vgic_bitmap_set_irq_val(&dist->irq_enabled,
2040                                                        vcpu->vcpu_id, i, 1);
2041                                vgic_bitmap_set_irq_val(&dist->irq_cfg,
2042                                                        vcpu->vcpu_id, i,
2043                                                        VGIC_CFG_EDGE);
2044                        } else if (i < VGIC_NR_PRIVATE_IRQS) {
2045                                /* PPIs */
2046                                vgic_bitmap_set_irq_val(&dist->irq_cfg,
2047                                                        vcpu->vcpu_id, i,
2048                                                        VGIC_CFG_LEVEL);
2049                        }
2050                }
2051
2052                vgic_enable(vcpu);
2053        }
2054
2055out:
2056        if (ret)
2057                kvm_vgic_destroy(kvm);
2058
2059        return ret;
2060}
2061
2062static int init_vgic_model(struct kvm *kvm, int type)
2063{
2064        switch (type) {
2065        case KVM_DEV_TYPE_ARM_VGIC_V2:
2066                vgic_v2_init_emulation(kvm);
2067                break;
2068#ifdef CONFIG_KVM_ARM_VGIC_V3
2069        case KVM_DEV_TYPE_ARM_VGIC_V3:
2070                vgic_v3_init_emulation(kvm);
2071                break;
2072#endif
2073        default:
2074                return -ENODEV;
2075        }
2076
2077        if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2078                return -E2BIG;
2079
2080        return 0;
2081}
2082
2083/**
2084 * kvm_vgic_early_init - Earliest possible vgic initialization stage
2085 *
2086 * No memory allocation should be performed here, only static init.
2087 */
2088void kvm_vgic_early_init(struct kvm *kvm)
2089{
2090        spin_lock_init(&kvm->arch.vgic.lock);
2091        spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2092        INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2093}
2094
2095int kvm_vgic_create(struct kvm *kvm, u32 type)
2096{
2097        int i, vcpu_lock_idx = -1, ret;
2098        struct kvm_vcpu *vcpu;
2099
2100        mutex_lock(&kvm->lock);
2101
2102        if (irqchip_in_kernel(kvm)) {
2103                ret = -EEXIST;
2104                goto out;
2105        }
2106
2107        /*
2108         * This function is also called by the KVM_CREATE_IRQCHIP handler,
2109         * which had no chance yet to check the availability of the GICv2
2110         * emulation. So check this here again. KVM_CREATE_DEVICE does
2111         * the proper checks already.
2112         */
2113        if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2114                ret = -ENODEV;
2115                goto out;
2116        }
2117
2118        /*
2119         * Any time a vcpu is run, vcpu_load is called which tries to grab the
2120         * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2121         * that no other VCPUs are run while we create the vgic.
2122         */
2123        ret = -EBUSY;
2124        kvm_for_each_vcpu(i, vcpu, kvm) {
2125                if (!mutex_trylock(&vcpu->mutex))
2126                        goto out_unlock;
2127                vcpu_lock_idx = i;
2128        }
2129
2130        kvm_for_each_vcpu(i, vcpu, kvm) {
2131                if (vcpu->arch.has_run_once)
2132                        goto out_unlock;
2133        }
2134        ret = 0;
2135
2136        ret = init_vgic_model(kvm, type);
2137        if (ret)
2138                goto out_unlock;
2139
2140        kvm->arch.vgic.in_kernel = true;
2141        kvm->arch.vgic.vgic_model = type;
2142        kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2143        kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2144        kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2145        kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2146
2147out_unlock:
2148        for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2149                vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2150                mutex_unlock(&vcpu->mutex);
2151        }
2152
2153out:
2154        mutex_unlock(&kvm->lock);
2155        return ret;
2156}
2157
2158static int vgic_ioaddr_overlap(struct kvm *kvm)
2159{
2160        phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2161        phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2162
2163        if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2164                return 0;
2165        if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2166            (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2167                return -EBUSY;
2168        return 0;
2169}
2170
2171static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2172                              phys_addr_t addr, phys_addr_t size)
2173{
2174        int ret;
2175
2176        if (addr & ~KVM_PHYS_MASK)
2177                return -E2BIG;
2178
2179        if (addr & (SZ_4K - 1))
2180                return -EINVAL;
2181
2182        if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2183                return -EEXIST;
2184        if (addr + size < addr)
2185                return -EINVAL;
2186
2187        *ioaddr = addr;
2188        ret = vgic_ioaddr_overlap(kvm);
2189        if (ret)
2190                *ioaddr = VGIC_ADDR_UNDEF;
2191
2192        return ret;
2193}
2194
2195/**
2196 * kvm_vgic_addr - set or get vgic VM base addresses
2197 * @kvm:   pointer to the vm struct
2198 * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2199 * @addr:  pointer to address value
2200 * @write: if true set the address in the VM address space, if false read the
2201 *          address
2202 *
2203 * Set or get the vgic base addresses for the distributor and the virtual CPU
2204 * interface in the VM physical address space.  These addresses are properties
2205 * of the emulated core/SoC and therefore user space initially knows this
2206 * information.
2207 */
2208int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2209{
2210        int r = 0;
2211        struct vgic_dist *vgic = &kvm->arch.vgic;
2212        int type_needed;
2213        phys_addr_t *addr_ptr, block_size;
2214        phys_addr_t alignment;
2215
2216        mutex_lock(&kvm->lock);
2217        switch (type) {
2218        case KVM_VGIC_V2_ADDR_TYPE_DIST:
2219                type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2220                addr_ptr = &vgic->vgic_dist_base;
2221                block_size = KVM_VGIC_V2_DIST_SIZE;
2222                alignment = SZ_4K;
2223                break;
2224        case KVM_VGIC_V2_ADDR_TYPE_CPU:
2225                type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2226                addr_ptr = &vgic->vgic_cpu_base;
2227                block_size = KVM_VGIC_V2_CPU_SIZE;
2228                alignment = SZ_4K;
2229                break;
2230#ifdef CONFIG_KVM_ARM_VGIC_V3
2231        case KVM_VGIC_V3_ADDR_TYPE_DIST:
2232                type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2233                addr_ptr = &vgic->vgic_dist_base;
2234                block_size = KVM_VGIC_V3_DIST_SIZE;
2235                alignment = SZ_64K;
2236                break;
2237        case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2238                type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2239                addr_ptr = &vgic->vgic_redist_base;
2240                block_size = KVM_VGIC_V3_REDIST_SIZE;
2241                alignment = SZ_64K;
2242                break;
2243#endif
2244        default:
2245                r = -ENODEV;
2246                goto out;
2247        }
2248
2249        if (vgic->vgic_model != type_needed) {
2250                r = -ENODEV;
2251                goto out;
2252        }
2253
2254        if (write) {
2255                if (!IS_ALIGNED(*addr, alignment))
2256                        r = -EINVAL;
2257                else
2258                        r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2259                                               block_size);
2260        } else {
2261                *addr = *addr_ptr;
2262        }
2263
2264out:
2265        mutex_unlock(&kvm->lock);
2266        return r;
2267}
2268
2269int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2270{
2271        int r;
2272
2273        switch (attr->group) {
2274        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2275                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2276                u64 addr;
2277                unsigned long type = (unsigned long)attr->attr;
2278
2279                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2280                        return -EFAULT;
2281
2282                r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2283                return (r == -ENODEV) ? -ENXIO : r;
2284        }
2285        case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2286                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2287                u32 val;
2288                int ret = 0;
2289
2290                if (get_user(val, uaddr))
2291                        return -EFAULT;
2292
2293                /*
2294                 * We require:
2295                 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2296                 * - at most 1024 interrupts
2297                 * - a multiple of 32 interrupts
2298                 */
2299                if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2300                    val > VGIC_MAX_IRQS ||
2301                    (val & 31))
2302                        return -EINVAL;
2303
2304                mutex_lock(&dev->kvm->lock);
2305
2306                if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2307                        ret = -EBUSY;
2308                else
2309                        dev->kvm->arch.vgic.nr_irqs = val;
2310
2311                mutex_unlock(&dev->kvm->lock);
2312
2313                return ret;
2314        }
2315        case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2316                switch (attr->attr) {
2317                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2318                        r = vgic_init(dev->kvm);
2319                        return r;
2320                }
2321                break;
2322        }
2323        }
2324
2325        return -ENXIO;
2326}
2327
2328int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2329{
2330        int r = -ENXIO;
2331
2332        switch (attr->group) {
2333        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2334                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2335                u64 addr;
2336                unsigned long type = (unsigned long)attr->attr;
2337
2338                r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2339                if (r)
2340                        return (r == -ENODEV) ? -ENXIO : r;
2341
2342                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2343                        return -EFAULT;
2344                break;
2345        }
2346        case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2347                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2348
2349                r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2350                break;
2351        }
2352
2353        }
2354
2355        return r;
2356}
2357
2358int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2359{
2360        if (vgic_find_range(ranges, 4, offset))
2361                return 0;
2362        else
2363                return -ENXIO;
2364}
2365
2366static void vgic_init_maintenance_interrupt(void *info)
2367{
2368        enable_percpu_irq(vgic->maint_irq, 0);
2369}
2370
2371static int vgic_cpu_notify(struct notifier_block *self,
2372                           unsigned long action, void *cpu)
2373{
2374        switch (action) {
2375        case CPU_STARTING:
2376        case CPU_STARTING_FROZEN:
2377                vgic_init_maintenance_interrupt(NULL);
2378                break;
2379        case CPU_DYING:
2380        case CPU_DYING_FROZEN:
2381                disable_percpu_irq(vgic->maint_irq);
2382                break;
2383        }
2384
2385        return NOTIFY_OK;
2386}
2387
2388static struct notifier_block vgic_cpu_nb = {
2389        .notifier_call = vgic_cpu_notify,
2390};
2391
2392static const struct of_device_id vgic_ids[] = {
2393        { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2394        { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2395        { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2396        { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2397        {},
2398};
2399
2400int kvm_vgic_hyp_init(void)
2401{
2402        const struct of_device_id *matched_id;
2403        const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2404                                const struct vgic_params **);
2405        struct device_node *vgic_node;
2406        int ret;
2407
2408        vgic_node = of_find_matching_node_and_match(NULL,
2409                                                    vgic_ids, &matched_id);
2410        if (!vgic_node) {
2411                kvm_err("error: no compatible GIC node found\n");
2412                return -ENODEV;
2413        }
2414
2415        vgic_probe = matched_id->data;
2416        ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2417        if (ret)
2418                return ret;
2419
2420        ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2421                                 "vgic", kvm_get_running_vcpus());
2422        if (ret) {
2423                kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2424                return ret;
2425        }
2426
2427        ret = __register_cpu_notifier(&vgic_cpu_nb);
2428        if (ret) {
2429                kvm_err("Cannot register vgic CPU notifier\n");
2430                goto out_free_irq;
2431        }
2432
2433        on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2434
2435        return 0;
2436
2437out_free_irq:
2438        free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2439        return ret;
2440}
2441
2442int kvm_irq_map_gsi(struct kvm *kvm,
2443                    struct kvm_kernel_irq_routing_entry *entries,
2444                    int gsi)
2445{
2446        return 0;
2447}
2448
2449int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2450{
2451        return pin;
2452}
2453
2454int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2455                u32 irq, int level, bool line_status)
2456{
2457        unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2458
2459        trace_kvm_set_irq(irq, level, irq_source_id);
2460
2461        BUG_ON(!vgic_initialized(kvm));
2462
2463        return kvm_vgic_inject_irq(kvm, 0, spi, level);
2464}
2465
2466/* MSI not implemented yet */
2467int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2468                struct kvm *kvm, int irq_source_id,
2469                int level, bool line_status)
2470{
2471        return 0;
2472}
2473