linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/ioctl.h>
  56#include <asm/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66MODULE_AUTHOR("Qumranet");
  67MODULE_LICENSE("GPL");
  68
  69/* Architectures should define their poll value according to the halt latency */
  70static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  71module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  72
  73/* Default doubles per-vcpu halt_poll_ns. */
  74static unsigned int halt_poll_ns_grow = 2;
  75module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
  76
  77/* Default resets per-vcpu halt_poll_ns . */
  78static unsigned int halt_poll_ns_shrink;
  79module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
  80
  81/*
  82 * Ordering of locks:
  83 *
  84 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  85 */
  86
  87DEFINE_SPINLOCK(kvm_lock);
  88static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  89LIST_HEAD(vm_list);
  90
  91static cpumask_var_t cpus_hardware_enabled;
  92static int kvm_usage_count;
  93static atomic_t hardware_enable_failed;
  94
  95struct kmem_cache *kvm_vcpu_cache;
  96EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  97
  98static __read_mostly struct preempt_ops kvm_preempt_ops;
  99
 100struct dentry *kvm_debugfs_dir;
 101EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 102
 103static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 104                           unsigned long arg);
 105#ifdef CONFIG_KVM_COMPAT
 106static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 107                                  unsigned long arg);
 108#endif
 109static int hardware_enable_all(void);
 110static void hardware_disable_all(void);
 111
 112static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 113
 114static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 115static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 116
 117__visible bool kvm_rebooting;
 118EXPORT_SYMBOL_GPL(kvm_rebooting);
 119
 120static bool largepages_enabled = true;
 121
 122bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 123{
 124        if (pfn_valid(pfn))
 125                return PageReserved(pfn_to_page(pfn));
 126
 127        return true;
 128}
 129
 130/*
 131 * Switches to specified vcpu, until a matching vcpu_put()
 132 */
 133int vcpu_load(struct kvm_vcpu *vcpu)
 134{
 135        int cpu;
 136
 137        if (mutex_lock_killable(&vcpu->mutex))
 138                return -EINTR;
 139        cpu = get_cpu();
 140        preempt_notifier_register(&vcpu->preempt_notifier);
 141        kvm_arch_vcpu_load(vcpu, cpu);
 142        put_cpu();
 143        return 0;
 144}
 145
 146void vcpu_put(struct kvm_vcpu *vcpu)
 147{
 148        preempt_disable();
 149        kvm_arch_vcpu_put(vcpu);
 150        preempt_notifier_unregister(&vcpu->preempt_notifier);
 151        preempt_enable();
 152        mutex_unlock(&vcpu->mutex);
 153}
 154
 155static void ack_flush(void *_completed)
 156{
 157}
 158
 159bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 160{
 161        int i, cpu, me;
 162        cpumask_var_t cpus;
 163        bool called = true;
 164        struct kvm_vcpu *vcpu;
 165
 166        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 167
 168        me = get_cpu();
 169        kvm_for_each_vcpu(i, vcpu, kvm) {
 170                kvm_make_request(req, vcpu);
 171                cpu = vcpu->cpu;
 172
 173                /* Set ->requests bit before we read ->mode. */
 174                smp_mb__after_atomic();
 175
 176                if (cpus != NULL && cpu != -1 && cpu != me &&
 177                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 178                        cpumask_set_cpu(cpu, cpus);
 179        }
 180        if (unlikely(cpus == NULL))
 181                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 182        else if (!cpumask_empty(cpus))
 183                smp_call_function_many(cpus, ack_flush, NULL, 1);
 184        else
 185                called = false;
 186        put_cpu();
 187        free_cpumask_var(cpus);
 188        return called;
 189}
 190
 191#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 192void kvm_flush_remote_tlbs(struct kvm *kvm)
 193{
 194        /*
 195         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 196         * kvm_make_all_cpus_request.
 197         */
 198        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 199
 200        /*
 201         * We want to publish modifications to the page tables before reading
 202         * mode. Pairs with a memory barrier in arch-specific code.
 203         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 204         * and smp_mb in walk_shadow_page_lockless_begin/end.
 205         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 206         *
 207         * There is already an smp_mb__after_atomic() before
 208         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 209         * barrier here.
 210         */
 211        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 212                ++kvm->stat.remote_tlb_flush;
 213        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 214}
 215EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 216#endif
 217
 218void kvm_reload_remote_mmus(struct kvm *kvm)
 219{
 220        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 221}
 222
 223int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 224{
 225        struct page *page;
 226        int r;
 227
 228        mutex_init(&vcpu->mutex);
 229        vcpu->cpu = -1;
 230        vcpu->kvm = kvm;
 231        vcpu->vcpu_id = id;
 232        vcpu->pid = NULL;
 233        init_swait_queue_head(&vcpu->wq);
 234        kvm_async_pf_vcpu_init(vcpu);
 235
 236        vcpu->pre_pcpu = -1;
 237        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 238
 239        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 240        if (!page) {
 241                r = -ENOMEM;
 242                goto fail;
 243        }
 244        vcpu->run = page_address(page);
 245
 246        kvm_vcpu_set_in_spin_loop(vcpu, false);
 247        kvm_vcpu_set_dy_eligible(vcpu, false);
 248        vcpu->preempted = false;
 249
 250        r = kvm_arch_vcpu_init(vcpu);
 251        if (r < 0)
 252                goto fail_free_run;
 253        return 0;
 254
 255fail_free_run:
 256        free_page((unsigned long)vcpu->run);
 257fail:
 258        return r;
 259}
 260EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 261
 262void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 263{
 264        put_pid(vcpu->pid);
 265        kvm_arch_vcpu_uninit(vcpu);
 266        free_page((unsigned long)vcpu->run);
 267}
 268EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 269
 270#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 271static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 272{
 273        return container_of(mn, struct kvm, mmu_notifier);
 274}
 275
 276static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 277                                             struct mm_struct *mm,
 278                                             unsigned long address)
 279{
 280        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 281        int need_tlb_flush, idx;
 282
 283        /*
 284         * When ->invalidate_page runs, the linux pte has been zapped
 285         * already but the page is still allocated until
 286         * ->invalidate_page returns. So if we increase the sequence
 287         * here the kvm page fault will notice if the spte can't be
 288         * established because the page is going to be freed. If
 289         * instead the kvm page fault establishes the spte before
 290         * ->invalidate_page runs, kvm_unmap_hva will release it
 291         * before returning.
 292         *
 293         * The sequence increase only need to be seen at spin_unlock
 294         * time, and not at spin_lock time.
 295         *
 296         * Increasing the sequence after the spin_unlock would be
 297         * unsafe because the kvm page fault could then establish the
 298         * pte after kvm_unmap_hva returned, without noticing the page
 299         * is going to be freed.
 300         */
 301        idx = srcu_read_lock(&kvm->srcu);
 302        spin_lock(&kvm->mmu_lock);
 303
 304        kvm->mmu_notifier_seq++;
 305        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 306        /* we've to flush the tlb before the pages can be freed */
 307        if (need_tlb_flush)
 308                kvm_flush_remote_tlbs(kvm);
 309
 310        spin_unlock(&kvm->mmu_lock);
 311
 312        kvm_arch_mmu_notifier_invalidate_page(kvm, address);
 313
 314        srcu_read_unlock(&kvm->srcu, idx);
 315}
 316
 317static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 318                                        struct mm_struct *mm,
 319                                        unsigned long address,
 320                                        pte_t pte)
 321{
 322        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 323        int idx;
 324
 325        idx = srcu_read_lock(&kvm->srcu);
 326        spin_lock(&kvm->mmu_lock);
 327        kvm->mmu_notifier_seq++;
 328        kvm_set_spte_hva(kvm, address, pte);
 329        spin_unlock(&kvm->mmu_lock);
 330        srcu_read_unlock(&kvm->srcu, idx);
 331}
 332
 333static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 334                                                    struct mm_struct *mm,
 335                                                    unsigned long start,
 336                                                    unsigned long end)
 337{
 338        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 339        int need_tlb_flush = 0, idx;
 340
 341        idx = srcu_read_lock(&kvm->srcu);
 342        spin_lock(&kvm->mmu_lock);
 343        /*
 344         * The count increase must become visible at unlock time as no
 345         * spte can be established without taking the mmu_lock and
 346         * count is also read inside the mmu_lock critical section.
 347         */
 348        kvm->mmu_notifier_count++;
 349        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 350        need_tlb_flush |= kvm->tlbs_dirty;
 351        /* we've to flush the tlb before the pages can be freed */
 352        if (need_tlb_flush)
 353                kvm_flush_remote_tlbs(kvm);
 354
 355        spin_unlock(&kvm->mmu_lock);
 356        srcu_read_unlock(&kvm->srcu, idx);
 357}
 358
 359static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 360                                                  struct mm_struct *mm,
 361                                                  unsigned long start,
 362                                                  unsigned long end)
 363{
 364        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 365
 366        spin_lock(&kvm->mmu_lock);
 367        /*
 368         * This sequence increase will notify the kvm page fault that
 369         * the page that is going to be mapped in the spte could have
 370         * been freed.
 371         */
 372        kvm->mmu_notifier_seq++;
 373        smp_wmb();
 374        /*
 375         * The above sequence increase must be visible before the
 376         * below count decrease, which is ensured by the smp_wmb above
 377         * in conjunction with the smp_rmb in mmu_notifier_retry().
 378         */
 379        kvm->mmu_notifier_count--;
 380        spin_unlock(&kvm->mmu_lock);
 381
 382        BUG_ON(kvm->mmu_notifier_count < 0);
 383}
 384
 385static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 386                                              struct mm_struct *mm,
 387                                              unsigned long start,
 388                                              unsigned long end)
 389{
 390        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 391        int young, idx;
 392
 393        idx = srcu_read_lock(&kvm->srcu);
 394        spin_lock(&kvm->mmu_lock);
 395
 396        young = kvm_age_hva(kvm, start, end);
 397        if (young)
 398                kvm_flush_remote_tlbs(kvm);
 399
 400        spin_unlock(&kvm->mmu_lock);
 401        srcu_read_unlock(&kvm->srcu, idx);
 402
 403        return young;
 404}
 405
 406static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 407                                        struct mm_struct *mm,
 408                                        unsigned long start,
 409                                        unsigned long end)
 410{
 411        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412        int young, idx;
 413
 414        idx = srcu_read_lock(&kvm->srcu);
 415        spin_lock(&kvm->mmu_lock);
 416        /*
 417         * Even though we do not flush TLB, this will still adversely
 418         * affect performance on pre-Haswell Intel EPT, where there is
 419         * no EPT Access Bit to clear so that we have to tear down EPT
 420         * tables instead. If we find this unacceptable, we can always
 421         * add a parameter to kvm_age_hva so that it effectively doesn't
 422         * do anything on clear_young.
 423         *
 424         * Also note that currently we never issue secondary TLB flushes
 425         * from clear_young, leaving this job up to the regular system
 426         * cadence. If we find this inaccurate, we might come up with a
 427         * more sophisticated heuristic later.
 428         */
 429        young = kvm_age_hva(kvm, start, end);
 430        spin_unlock(&kvm->mmu_lock);
 431        srcu_read_unlock(&kvm->srcu, idx);
 432
 433        return young;
 434}
 435
 436static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 437                                       struct mm_struct *mm,
 438                                       unsigned long address)
 439{
 440        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 441        int young, idx;
 442
 443        idx = srcu_read_lock(&kvm->srcu);
 444        spin_lock(&kvm->mmu_lock);
 445        young = kvm_test_age_hva(kvm, address);
 446        spin_unlock(&kvm->mmu_lock);
 447        srcu_read_unlock(&kvm->srcu, idx);
 448
 449        return young;
 450}
 451
 452static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 453                                     struct mm_struct *mm)
 454{
 455        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 456        int idx;
 457
 458        idx = srcu_read_lock(&kvm->srcu);
 459        kvm_arch_flush_shadow_all(kvm);
 460        srcu_read_unlock(&kvm->srcu, idx);
 461}
 462
 463static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 464        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 465        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 466        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 467        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 468        .clear_young            = kvm_mmu_notifier_clear_young,
 469        .test_young             = kvm_mmu_notifier_test_young,
 470        .change_pte             = kvm_mmu_notifier_change_pte,
 471        .release                = kvm_mmu_notifier_release,
 472};
 473
 474static int kvm_init_mmu_notifier(struct kvm *kvm)
 475{
 476        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 477        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 478}
 479
 480#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 481
 482static int kvm_init_mmu_notifier(struct kvm *kvm)
 483{
 484        return 0;
 485}
 486
 487#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 488
 489static struct kvm_memslots *kvm_alloc_memslots(void)
 490{
 491        int i;
 492        struct kvm_memslots *slots;
 493
 494        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 495        if (!slots)
 496                return NULL;
 497
 498        /*
 499         * Init kvm generation close to the maximum to easily test the
 500         * code of handling generation number wrap-around.
 501         */
 502        slots->generation = -150;
 503        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 504                slots->id_to_index[i] = slots->memslots[i].id = i;
 505
 506        return slots;
 507}
 508
 509static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 510{
 511        if (!memslot->dirty_bitmap)
 512                return;
 513
 514        kvfree(memslot->dirty_bitmap);
 515        memslot->dirty_bitmap = NULL;
 516}
 517
 518/*
 519 * Free any memory in @free but not in @dont.
 520 */
 521static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 522                              struct kvm_memory_slot *dont)
 523{
 524        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 525                kvm_destroy_dirty_bitmap(free);
 526
 527        kvm_arch_free_memslot(kvm, free, dont);
 528
 529        free->npages = 0;
 530}
 531
 532static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 533{
 534        struct kvm_memory_slot *memslot;
 535
 536        if (!slots)
 537                return;
 538
 539        kvm_for_each_memslot(memslot, slots)
 540                kvm_free_memslot(kvm, memslot, NULL);
 541
 542        kvfree(slots);
 543}
 544
 545static struct kvm *kvm_create_vm(unsigned long type)
 546{
 547        int r, i;
 548        struct kvm *kvm = kvm_arch_alloc_vm();
 549
 550        if (!kvm)
 551                return ERR_PTR(-ENOMEM);
 552
 553        spin_lock_init(&kvm->mmu_lock);
 554        atomic_inc(&current->mm->mm_count);
 555        kvm->mm = current->mm;
 556        kvm_eventfd_init(kvm);
 557        mutex_init(&kvm->lock);
 558        mutex_init(&kvm->irq_lock);
 559        mutex_init(&kvm->slots_lock);
 560        atomic_set(&kvm->users_count, 1);
 561        INIT_LIST_HEAD(&kvm->devices);
 562
 563        r = kvm_arch_init_vm(kvm, type);
 564        if (r)
 565                goto out_err_no_disable;
 566
 567        r = hardware_enable_all();
 568        if (r)
 569                goto out_err_no_disable;
 570
 571#ifdef CONFIG_HAVE_KVM_IRQFD
 572        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 573#endif
 574
 575        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 576
 577        r = -ENOMEM;
 578        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 579                kvm->memslots[i] = kvm_alloc_memslots();
 580                if (!kvm->memslots[i])
 581                        goto out_err_no_srcu;
 582        }
 583
 584        if (init_srcu_struct(&kvm->srcu))
 585                goto out_err_no_srcu;
 586        if (init_srcu_struct(&kvm->irq_srcu))
 587                goto out_err_no_irq_srcu;
 588        for (i = 0; i < KVM_NR_BUSES; i++) {
 589                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 590                                        GFP_KERNEL);
 591                if (!kvm->buses[i])
 592                        goto out_err;
 593        }
 594
 595        r = kvm_init_mmu_notifier(kvm);
 596        if (r)
 597                goto out_err;
 598
 599        spin_lock(&kvm_lock);
 600        list_add(&kvm->vm_list, &vm_list);
 601        spin_unlock(&kvm_lock);
 602
 603        preempt_notifier_inc();
 604
 605        return kvm;
 606
 607out_err:
 608        cleanup_srcu_struct(&kvm->irq_srcu);
 609out_err_no_irq_srcu:
 610        cleanup_srcu_struct(&kvm->srcu);
 611out_err_no_srcu:
 612        hardware_disable_all();
 613out_err_no_disable:
 614        for (i = 0; i < KVM_NR_BUSES; i++)
 615                kfree(kvm->buses[i]);
 616        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 617                kvm_free_memslots(kvm, kvm->memslots[i]);
 618        kvm_arch_free_vm(kvm);
 619        mmdrop(current->mm);
 620        return ERR_PTR(r);
 621}
 622
 623/*
 624 * Avoid using vmalloc for a small buffer.
 625 * Should not be used when the size is statically known.
 626 */
 627void *kvm_kvzalloc(unsigned long size)
 628{
 629        if (size > PAGE_SIZE)
 630                return vzalloc(size);
 631        else
 632                return kzalloc(size, GFP_KERNEL);
 633}
 634
 635static void kvm_destroy_devices(struct kvm *kvm)
 636{
 637        struct kvm_device *dev, *tmp;
 638
 639        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 640                list_del(&dev->vm_node);
 641                dev->ops->destroy(dev);
 642        }
 643}
 644
 645static void kvm_destroy_vm(struct kvm *kvm)
 646{
 647        int i;
 648        struct mm_struct *mm = kvm->mm;
 649
 650        kvm_arch_sync_events(kvm);
 651        spin_lock(&kvm_lock);
 652        list_del(&kvm->vm_list);
 653        spin_unlock(&kvm_lock);
 654        kvm_free_irq_routing(kvm);
 655        for (i = 0; i < KVM_NR_BUSES; i++)
 656                kvm_io_bus_destroy(kvm->buses[i]);
 657        kvm_coalesced_mmio_free(kvm);
 658#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 659        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 660#else
 661        kvm_arch_flush_shadow_all(kvm);
 662#endif
 663        kvm_arch_destroy_vm(kvm);
 664        kvm_destroy_devices(kvm);
 665        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 666                kvm_free_memslots(kvm, kvm->memslots[i]);
 667        cleanup_srcu_struct(&kvm->irq_srcu);
 668        cleanup_srcu_struct(&kvm->srcu);
 669        kvm_arch_free_vm(kvm);
 670        preempt_notifier_dec();
 671        hardware_disable_all();
 672        mmdrop(mm);
 673}
 674
 675void kvm_get_kvm(struct kvm *kvm)
 676{
 677        atomic_inc(&kvm->users_count);
 678}
 679EXPORT_SYMBOL_GPL(kvm_get_kvm);
 680
 681void kvm_put_kvm(struct kvm *kvm)
 682{
 683        if (atomic_dec_and_test(&kvm->users_count))
 684                kvm_destroy_vm(kvm);
 685}
 686EXPORT_SYMBOL_GPL(kvm_put_kvm);
 687
 688
 689static int kvm_vm_release(struct inode *inode, struct file *filp)
 690{
 691        struct kvm *kvm = filp->private_data;
 692
 693        kvm_irqfd_release(kvm);
 694
 695        kvm_put_kvm(kvm);
 696        return 0;
 697}
 698
 699/*
 700 * Allocation size is twice as large as the actual dirty bitmap size.
 701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 702 */
 703static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 704{
 705        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 706
 707        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 708        if (!memslot->dirty_bitmap)
 709                return -ENOMEM;
 710
 711        return 0;
 712}
 713
 714/*
 715 * Insert memslot and re-sort memslots based on their GFN,
 716 * so binary search could be used to lookup GFN.
 717 * Sorting algorithm takes advantage of having initially
 718 * sorted array and known changed memslot position.
 719 */
 720static void update_memslots(struct kvm_memslots *slots,
 721                            struct kvm_memory_slot *new)
 722{
 723        int id = new->id;
 724        int i = slots->id_to_index[id];
 725        struct kvm_memory_slot *mslots = slots->memslots;
 726
 727        WARN_ON(mslots[i].id != id);
 728        if (!new->npages) {
 729                WARN_ON(!mslots[i].npages);
 730                if (mslots[i].npages)
 731                        slots->used_slots--;
 732        } else {
 733                if (!mslots[i].npages)
 734                        slots->used_slots++;
 735        }
 736
 737        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 738               new->base_gfn <= mslots[i + 1].base_gfn) {
 739                if (!mslots[i + 1].npages)
 740                        break;
 741                mslots[i] = mslots[i + 1];
 742                slots->id_to_index[mslots[i].id] = i;
 743                i++;
 744        }
 745
 746        /*
 747         * The ">=" is needed when creating a slot with base_gfn == 0,
 748         * so that it moves before all those with base_gfn == npages == 0.
 749         *
 750         * On the other hand, if new->npages is zero, the above loop has
 751         * already left i pointing to the beginning of the empty part of
 752         * mslots, and the ">=" would move the hole backwards in this
 753         * case---which is wrong.  So skip the loop when deleting a slot.
 754         */
 755        if (new->npages) {
 756                while (i > 0 &&
 757                       new->base_gfn >= mslots[i - 1].base_gfn) {
 758                        mslots[i] = mslots[i - 1];
 759                        slots->id_to_index[mslots[i].id] = i;
 760                        i--;
 761                }
 762        } else
 763                WARN_ON_ONCE(i != slots->used_slots);
 764
 765        mslots[i] = *new;
 766        slots->id_to_index[mslots[i].id] = i;
 767}
 768
 769static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 770{
 771        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 772
 773#ifdef __KVM_HAVE_READONLY_MEM
 774        valid_flags |= KVM_MEM_READONLY;
 775#endif
 776
 777        if (mem->flags & ~valid_flags)
 778                return -EINVAL;
 779
 780        return 0;
 781}
 782
 783static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 784                int as_id, struct kvm_memslots *slots)
 785{
 786        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 787
 788        /*
 789         * Set the low bit in the generation, which disables SPTE caching
 790         * until the end of synchronize_srcu_expedited.
 791         */
 792        WARN_ON(old_memslots->generation & 1);
 793        slots->generation = old_memslots->generation + 1;
 794
 795        rcu_assign_pointer(kvm->memslots[as_id], slots);
 796        synchronize_srcu_expedited(&kvm->srcu);
 797
 798        /*
 799         * Increment the new memslot generation a second time. This prevents
 800         * vm exits that race with memslot updates from caching a memslot
 801         * generation that will (potentially) be valid forever.
 802         */
 803        slots->generation++;
 804
 805        kvm_arch_memslots_updated(kvm, slots);
 806
 807        return old_memslots;
 808}
 809
 810/*
 811 * Allocate some memory and give it an address in the guest physical address
 812 * space.
 813 *
 814 * Discontiguous memory is allowed, mostly for framebuffers.
 815 *
 816 * Must be called holding kvm->slots_lock for write.
 817 */
 818int __kvm_set_memory_region(struct kvm *kvm,
 819                            const struct kvm_userspace_memory_region *mem)
 820{
 821        int r;
 822        gfn_t base_gfn;
 823        unsigned long npages;
 824        struct kvm_memory_slot *slot;
 825        struct kvm_memory_slot old, new;
 826        struct kvm_memslots *slots = NULL, *old_memslots;
 827        int as_id, id;
 828        enum kvm_mr_change change;
 829
 830        r = check_memory_region_flags(mem);
 831        if (r)
 832                goto out;
 833
 834        r = -EINVAL;
 835        as_id = mem->slot >> 16;
 836        id = (u16)mem->slot;
 837
 838        /* General sanity checks */
 839        if (mem->memory_size & (PAGE_SIZE - 1))
 840                goto out;
 841        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 842                goto out;
 843        /* We can read the guest memory with __xxx_user() later on. */
 844        if ((id < KVM_USER_MEM_SLOTS) &&
 845            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 846             !access_ok(VERIFY_WRITE,
 847                        (void __user *)(unsigned long)mem->userspace_addr,
 848                        mem->memory_size)))
 849                goto out;
 850        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 851                goto out;
 852        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 853                goto out;
 854
 855        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 856        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 857        npages = mem->memory_size >> PAGE_SHIFT;
 858
 859        if (npages > KVM_MEM_MAX_NR_PAGES)
 860                goto out;
 861
 862        new = old = *slot;
 863
 864        new.id = id;
 865        new.base_gfn = base_gfn;
 866        new.npages = npages;
 867        new.flags = mem->flags;
 868
 869        if (npages) {
 870                if (!old.npages)
 871                        change = KVM_MR_CREATE;
 872                else { /* Modify an existing slot. */
 873                        if ((mem->userspace_addr != old.userspace_addr) ||
 874                            (npages != old.npages) ||
 875                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 876                                goto out;
 877
 878                        if (base_gfn != old.base_gfn)
 879                                change = KVM_MR_MOVE;
 880                        else if (new.flags != old.flags)
 881                                change = KVM_MR_FLAGS_ONLY;
 882                        else { /* Nothing to change. */
 883                                r = 0;
 884                                goto out;
 885                        }
 886                }
 887        } else {
 888                if (!old.npages)
 889                        goto out;
 890
 891                change = KVM_MR_DELETE;
 892                new.base_gfn = 0;
 893                new.flags = 0;
 894        }
 895
 896        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 897                /* Check for overlaps */
 898                r = -EEXIST;
 899                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 900                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 901                            (slot->id == id))
 902                                continue;
 903                        if (!((base_gfn + npages <= slot->base_gfn) ||
 904                              (base_gfn >= slot->base_gfn + slot->npages)))
 905                                goto out;
 906                }
 907        }
 908
 909        /* Free page dirty bitmap if unneeded */
 910        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 911                new.dirty_bitmap = NULL;
 912
 913        r = -ENOMEM;
 914        if (change == KVM_MR_CREATE) {
 915                new.userspace_addr = mem->userspace_addr;
 916
 917                if (kvm_arch_create_memslot(kvm, &new, npages))
 918                        goto out_free;
 919        }
 920
 921        /* Allocate page dirty bitmap if needed */
 922        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 923                if (kvm_create_dirty_bitmap(&new) < 0)
 924                        goto out_free;
 925        }
 926
 927        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 928        if (!slots)
 929                goto out_free;
 930        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
 931
 932        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 933                slot = id_to_memslot(slots, id);
 934                slot->flags |= KVM_MEMSLOT_INVALID;
 935
 936                old_memslots = install_new_memslots(kvm, as_id, slots);
 937
 938                /* slot was deleted or moved, clear iommu mapping */
 939                kvm_iommu_unmap_pages(kvm, &old);
 940                /* From this point no new shadow pages pointing to a deleted,
 941                 * or moved, memslot will be created.
 942                 *
 943                 * validation of sp->gfn happens in:
 944                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 945                 *      - kvm_is_visible_gfn (mmu_check_roots)
 946                 */
 947                kvm_arch_flush_shadow_memslot(kvm, slot);
 948
 949                /*
 950                 * We can re-use the old_memslots from above, the only difference
 951                 * from the currently installed memslots is the invalid flag.  This
 952                 * will get overwritten by update_memslots anyway.
 953                 */
 954                slots = old_memslots;
 955        }
 956
 957        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
 958        if (r)
 959                goto out_slots;
 960
 961        /* actual memory is freed via old in kvm_free_memslot below */
 962        if (change == KVM_MR_DELETE) {
 963                new.dirty_bitmap = NULL;
 964                memset(&new.arch, 0, sizeof(new.arch));
 965        }
 966
 967        update_memslots(slots, &new);
 968        old_memslots = install_new_memslots(kvm, as_id, slots);
 969
 970        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
 971
 972        kvm_free_memslot(kvm, &old, &new);
 973        kvfree(old_memslots);
 974
 975        /*
 976         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
 977         * un-mapped and re-mapped if their base changes.  Since base change
 978         * unmapping is handled above with slot deletion, mapping alone is
 979         * needed here.  Anything else the iommu might care about for existing
 980         * slots (size changes, userspace addr changes and read-only flag
 981         * changes) is disallowed above, so any other attribute changes getting
 982         * here can be skipped.
 983         */
 984        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 985                r = kvm_iommu_map_pages(kvm, &new);
 986                return r;
 987        }
 988
 989        return 0;
 990
 991out_slots:
 992        kvfree(slots);
 993out_free:
 994        kvm_free_memslot(kvm, &new, &old);
 995out:
 996        return r;
 997}
 998EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 999
1000int kvm_set_memory_region(struct kvm *kvm,
1001                          const struct kvm_userspace_memory_region *mem)
1002{
1003        int r;
1004
1005        mutex_lock(&kvm->slots_lock);
1006        r = __kvm_set_memory_region(kvm, mem);
1007        mutex_unlock(&kvm->slots_lock);
1008        return r;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013                                          struct kvm_userspace_memory_region *mem)
1014{
1015        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016                return -EINVAL;
1017
1018        return kvm_set_memory_region(kvm, mem);
1019}
1020
1021int kvm_get_dirty_log(struct kvm *kvm,
1022                        struct kvm_dirty_log *log, int *is_dirty)
1023{
1024        struct kvm_memslots *slots;
1025        struct kvm_memory_slot *memslot;
1026        int r, i, as_id, id;
1027        unsigned long n;
1028        unsigned long any = 0;
1029
1030        r = -EINVAL;
1031        as_id = log->slot >> 16;
1032        id = (u16)log->slot;
1033        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034                goto out;
1035
1036        slots = __kvm_memslots(kvm, as_id);
1037        memslot = id_to_memslot(slots, id);
1038        r = -ENOENT;
1039        if (!memslot->dirty_bitmap)
1040                goto out;
1041
1042        n = kvm_dirty_bitmap_bytes(memslot);
1043
1044        for (i = 0; !any && i < n/sizeof(long); ++i)
1045                any = memslot->dirty_bitmap[i];
1046
1047        r = -EFAULT;
1048        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049                goto out;
1050
1051        if (any)
1052                *is_dirty = 1;
1053
1054        r = 0;
1055out:
1056        return r;
1057}
1058EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061/**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 *      are dirty write protect them for next write.
1064 * @kvm:        pointer to kvm instance
1065 * @log:        slot id and address to which we copy the log
1066 * @is_dirty:   flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 *    1. Take a snapshot of the bit and clear it if needed.
1073 *    2. Write protect the corresponding page.
1074 *    3. Copy the snapshot to the userspace.
1075 *    4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry.  This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083int kvm_get_dirty_log_protect(struct kvm *kvm,
1084                        struct kvm_dirty_log *log, bool *is_dirty)
1085{
1086        struct kvm_memslots *slots;
1087        struct kvm_memory_slot *memslot;
1088        int r, i, as_id, id;
1089        unsigned long n;
1090        unsigned long *dirty_bitmap;
1091        unsigned long *dirty_bitmap_buffer;
1092
1093        r = -EINVAL;
1094        as_id = log->slot >> 16;
1095        id = (u16)log->slot;
1096        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097                goto out;
1098
1099        slots = __kvm_memslots(kvm, as_id);
1100        memslot = id_to_memslot(slots, id);
1101
1102        dirty_bitmap = memslot->dirty_bitmap;
1103        r = -ENOENT;
1104        if (!dirty_bitmap)
1105                goto out;
1106
1107        n = kvm_dirty_bitmap_bytes(memslot);
1108
1109        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110        memset(dirty_bitmap_buffer, 0, n);
1111
1112        spin_lock(&kvm->mmu_lock);
1113        *is_dirty = false;
1114        for (i = 0; i < n / sizeof(long); i++) {
1115                unsigned long mask;
1116                gfn_t offset;
1117
1118                if (!dirty_bitmap[i])
1119                        continue;
1120
1121                *is_dirty = true;
1122
1123                mask = xchg(&dirty_bitmap[i], 0);
1124                dirty_bitmap_buffer[i] = mask;
1125
1126                if (mask) {
1127                        offset = i * BITS_PER_LONG;
1128                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129                                                                offset, mask);
1130                }
1131        }
1132
1133        spin_unlock(&kvm->mmu_lock);
1134
1135        r = -EFAULT;
1136        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137                goto out;
1138
1139        r = 0;
1140out:
1141        return r;
1142}
1143EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144#endif
1145
1146bool kvm_largepages_enabled(void)
1147{
1148        return largepages_enabled;
1149}
1150
1151void kvm_disable_largepages(void)
1152{
1153        largepages_enabled = false;
1154}
1155EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158{
1159        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164{
1165        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166}
1167
1168bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169{
1170        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173              memslot->flags & KVM_MEMSLOT_INVALID)
1174                return false;
1175
1176        return true;
1177}
1178EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181{
1182        struct vm_area_struct *vma;
1183        unsigned long addr, size;
1184
1185        size = PAGE_SIZE;
1186
1187        addr = gfn_to_hva(kvm, gfn);
1188        if (kvm_is_error_hva(addr))
1189                return PAGE_SIZE;
1190
1191        down_read(&current->mm->mmap_sem);
1192        vma = find_vma(current->mm, addr);
1193        if (!vma)
1194                goto out;
1195
1196        size = vma_kernel_pagesize(vma);
1197
1198out:
1199        up_read(&current->mm->mmap_sem);
1200
1201        return size;
1202}
1203
1204static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205{
1206        return slot->flags & KVM_MEM_READONLY;
1207}
1208
1209static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210                                       gfn_t *nr_pages, bool write)
1211{
1212        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213                return KVM_HVA_ERR_BAD;
1214
1215        if (memslot_is_readonly(slot) && write)
1216                return KVM_HVA_ERR_RO_BAD;
1217
1218        if (nr_pages)
1219                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221        return __gfn_to_hva_memslot(slot, gfn);
1222}
1223
1224static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225                                     gfn_t *nr_pages)
1226{
1227        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228}
1229
1230unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231                                        gfn_t gfn)
1232{
1233        return gfn_to_hva_many(slot, gfn, NULL);
1234}
1235EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238{
1239        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240}
1241EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244{
1245        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246}
1247EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249/*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1252 */
1253unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254                                      gfn_t gfn, bool *writable)
1255{
1256        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258        if (!kvm_is_error_hva(hva) && writable)
1259                *writable = !memslot_is_readonly(slot);
1260
1261        return hva;
1262}
1263
1264unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265{
1266        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269}
1270
1271unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272{
1273        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276}
1277
1278static int get_user_page_nowait(unsigned long start, int write,
1279                struct page **page)
1280{
1281        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283        if (write)
1284                flags |= FOLL_WRITE;
1285
1286        return __get_user_pages(current, current->mm, start, 1, flags, page,
1287                        NULL, NULL);
1288}
1289
1290static inline int check_user_page_hwpoison(unsigned long addr)
1291{
1292        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1293
1294        rc = __get_user_pages(current, current->mm, addr, 1,
1295                              flags, NULL, NULL, NULL);
1296        return rc == -EHWPOISON;
1297}
1298
1299/*
1300 * The atomic path to get the writable pfn which will be stored in @pfn,
1301 * true indicates success, otherwise false is returned.
1302 */
1303static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1304                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1305{
1306        struct page *page[1];
1307        int npages;
1308
1309        if (!(async || atomic))
1310                return false;
1311
1312        /*
1313         * Fast pin a writable pfn only if it is a write fault request
1314         * or the caller allows to map a writable pfn for a read fault
1315         * request.
1316         */
1317        if (!(write_fault || writable))
1318                return false;
1319
1320        npages = __get_user_pages_fast(addr, 1, 1, page);
1321        if (npages == 1) {
1322                *pfn = page_to_pfn(page[0]);
1323
1324                if (writable)
1325                        *writable = true;
1326                return true;
1327        }
1328
1329        return false;
1330}
1331
1332/*
1333 * The slow path to get the pfn of the specified host virtual address,
1334 * 1 indicates success, -errno is returned if error is detected.
1335 */
1336static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1337                           bool *writable, kvm_pfn_t *pfn)
1338{
1339        struct page *page[1];
1340        int npages = 0;
1341
1342        might_sleep();
1343
1344        if (writable)
1345                *writable = write_fault;
1346
1347        if (async) {
1348                down_read(&current->mm->mmap_sem);
1349                npages = get_user_page_nowait(addr, write_fault, page);
1350                up_read(&current->mm->mmap_sem);
1351        } else
1352                npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353                                                   write_fault, 0, page,
1354                                                   FOLL_TOUCH|FOLL_HWPOISON);
1355        if (npages != 1)
1356                return npages;
1357
1358        /* map read fault as writable if possible */
1359        if (unlikely(!write_fault) && writable) {
1360                struct page *wpage[1];
1361
1362                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363                if (npages == 1) {
1364                        *writable = true;
1365                        put_page(page[0]);
1366                        page[0] = wpage[0];
1367                }
1368
1369                npages = 1;
1370        }
1371        *pfn = page_to_pfn(page[0]);
1372        return npages;
1373}
1374
1375static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376{
1377        if (unlikely(!(vma->vm_flags & VM_READ)))
1378                return false;
1379
1380        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381                return false;
1382
1383        return true;
1384}
1385
1386/*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 *         host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 *     whether the mapping is writable.
1399 */
1400static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401                        bool write_fault, bool *writable)
1402{
1403        struct vm_area_struct *vma;
1404        kvm_pfn_t pfn = 0;
1405        int npages;
1406
1407        /* we can do it either atomically or asynchronously, not both */
1408        BUG_ON(atomic && async);
1409
1410        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411                return pfn;
1412
1413        if (atomic)
1414                return KVM_PFN_ERR_FAULT;
1415
1416        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417        if (npages == 1)
1418                return pfn;
1419
1420        down_read(&current->mm->mmap_sem);
1421        if (npages == -EHWPOISON ||
1422              (!async && check_user_page_hwpoison(addr))) {
1423                pfn = KVM_PFN_ERR_HWPOISON;
1424                goto exit;
1425        }
1426
1427        vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429        if (vma == NULL)
1430                pfn = KVM_PFN_ERR_FAULT;
1431        else if ((vma->vm_flags & VM_PFNMAP)) {
1432                pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433                        vma->vm_pgoff;
1434                BUG_ON(!kvm_is_reserved_pfn(pfn));
1435        } else {
1436                if (async && vma_is_valid(vma, write_fault))
1437                        *async = true;
1438                pfn = KVM_PFN_ERR_FAULT;
1439        }
1440exit:
1441        up_read(&current->mm->mmap_sem);
1442        return pfn;
1443}
1444
1445kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1446                               bool atomic, bool *async, bool write_fault,
1447                               bool *writable)
1448{
1449        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1450
1451        if (addr == KVM_HVA_ERR_RO_BAD) {
1452                if (writable)
1453                        *writable = false;
1454                return KVM_PFN_ERR_RO_FAULT;
1455        }
1456
1457        if (kvm_is_error_hva(addr)) {
1458                if (writable)
1459                        *writable = false;
1460                return KVM_PFN_NOSLOT;
1461        }
1462
1463        /* Do not map writable pfn in the readonly memslot. */
1464        if (writable && memslot_is_readonly(slot)) {
1465                *writable = false;
1466                writable = NULL;
1467        }
1468
1469        return hva_to_pfn(addr, atomic, async, write_fault,
1470                          writable);
1471}
1472EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1473
1474kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1475                      bool *writable)
1476{
1477        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1478                                    write_fault, writable);
1479}
1480EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1481
1482kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1483{
1484        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1485}
1486EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1487
1488kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1489{
1490        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1491}
1492EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1493
1494kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1495{
1496        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1497}
1498EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1499
1500kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1501{
1502        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1503}
1504EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1505
1506kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1507{
1508        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1509}
1510EXPORT_SYMBOL_GPL(gfn_to_pfn);
1511
1512kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1513{
1514        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1515}
1516EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1517
1518int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1519                            struct page **pages, int nr_pages)
1520{
1521        unsigned long addr;
1522        gfn_t entry;
1523
1524        addr = gfn_to_hva_many(slot, gfn, &entry);
1525        if (kvm_is_error_hva(addr))
1526                return -1;
1527
1528        if (entry < nr_pages)
1529                return 0;
1530
1531        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1532}
1533EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1534
1535static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1536{
1537        if (is_error_noslot_pfn(pfn))
1538                return KVM_ERR_PTR_BAD_PAGE;
1539
1540        if (kvm_is_reserved_pfn(pfn)) {
1541                WARN_ON(1);
1542                return KVM_ERR_PTR_BAD_PAGE;
1543        }
1544
1545        return pfn_to_page(pfn);
1546}
1547
1548struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1549{
1550        kvm_pfn_t pfn;
1551
1552        pfn = gfn_to_pfn(kvm, gfn);
1553
1554        return kvm_pfn_to_page(pfn);
1555}
1556EXPORT_SYMBOL_GPL(gfn_to_page);
1557
1558struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1559{
1560        kvm_pfn_t pfn;
1561
1562        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1563
1564        return kvm_pfn_to_page(pfn);
1565}
1566EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1567
1568void kvm_release_page_clean(struct page *page)
1569{
1570        WARN_ON(is_error_page(page));
1571
1572        kvm_release_pfn_clean(page_to_pfn(page));
1573}
1574EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1575
1576void kvm_release_pfn_clean(kvm_pfn_t pfn)
1577{
1578        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1579                put_page(pfn_to_page(pfn));
1580}
1581EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1582
1583void kvm_release_page_dirty(struct page *page)
1584{
1585        WARN_ON(is_error_page(page));
1586
1587        kvm_release_pfn_dirty(page_to_pfn(page));
1588}
1589EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1590
1591static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1592{
1593        kvm_set_pfn_dirty(pfn);
1594        kvm_release_pfn_clean(pfn);
1595}
1596
1597void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1598{
1599        if (!kvm_is_reserved_pfn(pfn)) {
1600                struct page *page = pfn_to_page(pfn);
1601
1602                if (!PageReserved(page))
1603                        SetPageDirty(page);
1604        }
1605}
1606EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1607
1608void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1609{
1610        if (!kvm_is_reserved_pfn(pfn))
1611                mark_page_accessed(pfn_to_page(pfn));
1612}
1613EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1614
1615void kvm_get_pfn(kvm_pfn_t pfn)
1616{
1617        if (!kvm_is_reserved_pfn(pfn))
1618                get_page(pfn_to_page(pfn));
1619}
1620EXPORT_SYMBOL_GPL(kvm_get_pfn);
1621
1622static int next_segment(unsigned long len, int offset)
1623{
1624        if (len > PAGE_SIZE - offset)
1625                return PAGE_SIZE - offset;
1626        else
1627                return len;
1628}
1629
1630static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1631                                 void *data, int offset, int len)
1632{
1633        int r;
1634        unsigned long addr;
1635
1636        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1637        if (kvm_is_error_hva(addr))
1638                return -EFAULT;
1639        r = __copy_from_user(data, (void __user *)addr + offset, len);
1640        if (r)
1641                return -EFAULT;
1642        return 0;
1643}
1644
1645int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1646                        int len)
1647{
1648        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1649
1650        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1651}
1652EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1653
1654int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1655                             int offset, int len)
1656{
1657        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1658
1659        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1660}
1661EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1662
1663int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1664{
1665        gfn_t gfn = gpa >> PAGE_SHIFT;
1666        int seg;
1667        int offset = offset_in_page(gpa);
1668        int ret;
1669
1670        while ((seg = next_segment(len, offset)) != 0) {
1671                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1672                if (ret < 0)
1673                        return ret;
1674                offset = 0;
1675                len -= seg;
1676                data += seg;
1677                ++gfn;
1678        }
1679        return 0;
1680}
1681EXPORT_SYMBOL_GPL(kvm_read_guest);
1682
1683int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1684{
1685        gfn_t gfn = gpa >> PAGE_SHIFT;
1686        int seg;
1687        int offset = offset_in_page(gpa);
1688        int ret;
1689
1690        while ((seg = next_segment(len, offset)) != 0) {
1691                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1692                if (ret < 0)
1693                        return ret;
1694                offset = 0;
1695                len -= seg;
1696                data += seg;
1697                ++gfn;
1698        }
1699        return 0;
1700}
1701EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1702
1703static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1704                                   void *data, int offset, unsigned long len)
1705{
1706        int r;
1707        unsigned long addr;
1708
1709        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1710        if (kvm_is_error_hva(addr))
1711                return -EFAULT;
1712        pagefault_disable();
1713        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1714        pagefault_enable();
1715        if (r)
1716                return -EFAULT;
1717        return 0;
1718}
1719
1720int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1721                          unsigned long len)
1722{
1723        gfn_t gfn = gpa >> PAGE_SHIFT;
1724        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1725        int offset = offset_in_page(gpa);
1726
1727        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1728}
1729EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1730
1731int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1732                               void *data, unsigned long len)
1733{
1734        gfn_t gfn = gpa >> PAGE_SHIFT;
1735        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736        int offset = offset_in_page(gpa);
1737
1738        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1739}
1740EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1741
1742static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1743                                  const void *data, int offset, int len)
1744{
1745        int r;
1746        unsigned long addr;
1747
1748        addr = gfn_to_hva_memslot(memslot, gfn);
1749        if (kvm_is_error_hva(addr))
1750                return -EFAULT;
1751        r = __copy_to_user((void __user *)addr + offset, data, len);
1752        if (r)
1753                return -EFAULT;
1754        mark_page_dirty_in_slot(memslot, gfn);
1755        return 0;
1756}
1757
1758int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1759                         const void *data, int offset, int len)
1760{
1761        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1762
1763        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1764}
1765EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1766
1767int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1768                              const void *data, int offset, int len)
1769{
1770        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1771
1772        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1773}
1774EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1775
1776int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1777                    unsigned long len)
1778{
1779        gfn_t gfn = gpa >> PAGE_SHIFT;
1780        int seg;
1781        int offset = offset_in_page(gpa);
1782        int ret;
1783
1784        while ((seg = next_segment(len, offset)) != 0) {
1785                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1786                if (ret < 0)
1787                        return ret;
1788                offset = 0;
1789                len -= seg;
1790                data += seg;
1791                ++gfn;
1792        }
1793        return 0;
1794}
1795EXPORT_SYMBOL_GPL(kvm_write_guest);
1796
1797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1798                         unsigned long len)
1799{
1800        gfn_t gfn = gpa >> PAGE_SHIFT;
1801        int seg;
1802        int offset = offset_in_page(gpa);
1803        int ret;
1804
1805        while ((seg = next_segment(len, offset)) != 0) {
1806                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1807                if (ret < 0)
1808                        return ret;
1809                offset = 0;
1810                len -= seg;
1811                data += seg;
1812                ++gfn;
1813        }
1814        return 0;
1815}
1816EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1817
1818int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1819                              gpa_t gpa, unsigned long len)
1820{
1821        struct kvm_memslots *slots = kvm_memslots(kvm);
1822        int offset = offset_in_page(gpa);
1823        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1824        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1825        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1826        gfn_t nr_pages_avail;
1827
1828        ghc->gpa = gpa;
1829        ghc->generation = slots->generation;
1830        ghc->len = len;
1831        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1832        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1833        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1834                ghc->hva += offset;
1835        } else {
1836                /*
1837                 * If the requested region crosses two memslots, we still
1838                 * verify that the entire region is valid here.
1839                 */
1840                while (start_gfn <= end_gfn) {
1841                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1842                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1843                                                   &nr_pages_avail);
1844                        if (kvm_is_error_hva(ghc->hva))
1845                                return -EFAULT;
1846                        start_gfn += nr_pages_avail;
1847                }
1848                /* Use the slow path for cross page reads and writes. */
1849                ghc->memslot = NULL;
1850        }
1851        return 0;
1852}
1853EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1854
1855int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1856                           void *data, unsigned long len)
1857{
1858        struct kvm_memslots *slots = kvm_memslots(kvm);
1859        int r;
1860
1861        BUG_ON(len > ghc->len);
1862
1863        if (slots->generation != ghc->generation)
1864                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1865
1866        if (unlikely(!ghc->memslot))
1867                return kvm_write_guest(kvm, ghc->gpa, data, len);
1868
1869        if (kvm_is_error_hva(ghc->hva))
1870                return -EFAULT;
1871
1872        r = __copy_to_user((void __user *)ghc->hva, data, len);
1873        if (r)
1874                return -EFAULT;
1875        mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1876
1877        return 0;
1878}
1879EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1880
1881int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1882                           void *data, unsigned long len)
1883{
1884        struct kvm_memslots *slots = kvm_memslots(kvm);
1885        int r;
1886
1887        BUG_ON(len > ghc->len);
1888
1889        if (slots->generation != ghc->generation)
1890                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1891
1892        if (unlikely(!ghc->memslot))
1893                return kvm_read_guest(kvm, ghc->gpa, data, len);
1894
1895        if (kvm_is_error_hva(ghc->hva))
1896                return -EFAULT;
1897
1898        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1899        if (r)
1900                return -EFAULT;
1901
1902        return 0;
1903}
1904EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1905
1906int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1907{
1908        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1909
1910        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1911}
1912EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1913
1914int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1915{
1916        gfn_t gfn = gpa >> PAGE_SHIFT;
1917        int seg;
1918        int offset = offset_in_page(gpa);
1919        int ret;
1920
1921        while ((seg = next_segment(len, offset)) != 0) {
1922                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1923                if (ret < 0)
1924                        return ret;
1925                offset = 0;
1926                len -= seg;
1927                ++gfn;
1928        }
1929        return 0;
1930}
1931EXPORT_SYMBOL_GPL(kvm_clear_guest);
1932
1933static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1934                                    gfn_t gfn)
1935{
1936        if (memslot && memslot->dirty_bitmap) {
1937                unsigned long rel_gfn = gfn - memslot->base_gfn;
1938
1939                set_bit_le(rel_gfn, memslot->dirty_bitmap);
1940        }
1941}
1942
1943void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1944{
1945        struct kvm_memory_slot *memslot;
1946
1947        memslot = gfn_to_memslot(kvm, gfn);
1948        mark_page_dirty_in_slot(memslot, gfn);
1949}
1950EXPORT_SYMBOL_GPL(mark_page_dirty);
1951
1952void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1953{
1954        struct kvm_memory_slot *memslot;
1955
1956        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1957        mark_page_dirty_in_slot(memslot, gfn);
1958}
1959EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1960
1961static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1962{
1963        unsigned int old, val, grow;
1964
1965        old = val = vcpu->halt_poll_ns;
1966        grow = READ_ONCE(halt_poll_ns_grow);
1967        /* 10us base */
1968        if (val == 0 && grow)
1969                val = 10000;
1970        else
1971                val *= grow;
1972
1973        if (val > halt_poll_ns)
1974                val = halt_poll_ns;
1975
1976        vcpu->halt_poll_ns = val;
1977        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978}
1979
1980static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981{
1982        unsigned int old, val, shrink;
1983
1984        old = val = vcpu->halt_poll_ns;
1985        shrink = READ_ONCE(halt_poll_ns_shrink);
1986        if (shrink == 0)
1987                val = 0;
1988        else
1989                val /= shrink;
1990
1991        vcpu->halt_poll_ns = val;
1992        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1993}
1994
1995static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1996{
1997        if (kvm_arch_vcpu_runnable(vcpu)) {
1998                kvm_make_request(KVM_REQ_UNHALT, vcpu);
1999                return -EINTR;
2000        }
2001        if (kvm_cpu_has_pending_timer(vcpu))
2002                return -EINTR;
2003        if (signal_pending(current))
2004                return -EINTR;
2005
2006        return 0;
2007}
2008
2009/*
2010 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2011 */
2012void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2013{
2014        ktime_t start, cur;
2015        DECLARE_SWAITQUEUE(wait);
2016        bool waited = false;
2017        u64 block_ns;
2018
2019        start = cur = ktime_get();
2020        if (vcpu->halt_poll_ns) {
2021                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2022
2023                ++vcpu->stat.halt_attempted_poll;
2024                do {
2025                        /*
2026                         * This sets KVM_REQ_UNHALT if an interrupt
2027                         * arrives.
2028                         */
2029                        if (kvm_vcpu_check_block(vcpu) < 0) {
2030                                ++vcpu->stat.halt_successful_poll;
2031                                goto out;
2032                        }
2033                        cur = ktime_get();
2034                } while (single_task_running() && ktime_before(cur, stop));
2035        }
2036
2037        kvm_arch_vcpu_blocking(vcpu);
2038
2039        for (;;) {
2040                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2041
2042                if (kvm_vcpu_check_block(vcpu) < 0)
2043                        break;
2044
2045                waited = true;
2046                schedule();
2047        }
2048
2049        finish_swait(&vcpu->wq, &wait);
2050        cur = ktime_get();
2051
2052        kvm_arch_vcpu_unblocking(vcpu);
2053out:
2054        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2055
2056        if (halt_poll_ns) {
2057                if (block_ns <= vcpu->halt_poll_ns)
2058                        ;
2059                /* we had a long block, shrink polling */
2060                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2061                        shrink_halt_poll_ns(vcpu);
2062                /* we had a short halt and our poll time is too small */
2063                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2064                        block_ns < halt_poll_ns)
2065                        grow_halt_poll_ns(vcpu);
2066        } else
2067                vcpu->halt_poll_ns = 0;
2068
2069        trace_kvm_vcpu_wakeup(block_ns, waited);
2070}
2071EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2072
2073#ifndef CONFIG_S390
2074/*
2075 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2076 */
2077void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2078{
2079        int me;
2080        int cpu = vcpu->cpu;
2081        struct swait_queue_head *wqp;
2082
2083        wqp = kvm_arch_vcpu_wq(vcpu);
2084        if (swait_active(wqp)) {
2085                swake_up(wqp);
2086                ++vcpu->stat.halt_wakeup;
2087        }
2088
2089        me = get_cpu();
2090        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2091                if (kvm_arch_vcpu_should_kick(vcpu))
2092                        smp_send_reschedule(cpu);
2093        put_cpu();
2094}
2095EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2096#endif /* !CONFIG_S390 */
2097
2098int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2099{
2100        struct pid *pid;
2101        struct task_struct *task = NULL;
2102        int ret = 0;
2103
2104        rcu_read_lock();
2105        pid = rcu_dereference(target->pid);
2106        if (pid)
2107                task = get_pid_task(pid, PIDTYPE_PID);
2108        rcu_read_unlock();
2109        if (!task)
2110                return ret;
2111        ret = yield_to(task, 1);
2112        put_task_struct(task);
2113
2114        return ret;
2115}
2116EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2117
2118/*
2119 * Helper that checks whether a VCPU is eligible for directed yield.
2120 * Most eligible candidate to yield is decided by following heuristics:
2121 *
2122 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2123 *  (preempted lock holder), indicated by @in_spin_loop.
2124 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2125 *
2126 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2127 *  chance last time (mostly it has become eligible now since we have probably
2128 *  yielded to lockholder in last iteration. This is done by toggling
2129 *  @dy_eligible each time a VCPU checked for eligibility.)
2130 *
2131 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2132 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2133 *  burning. Giving priority for a potential lock-holder increases lock
2134 *  progress.
2135 *
2136 *  Since algorithm is based on heuristics, accessing another VCPU data without
2137 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2138 *  and continue with next VCPU and so on.
2139 */
2140static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2141{
2142#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2143        bool eligible;
2144
2145        eligible = !vcpu->spin_loop.in_spin_loop ||
2146                    vcpu->spin_loop.dy_eligible;
2147
2148        if (vcpu->spin_loop.in_spin_loop)
2149                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2150
2151        return eligible;
2152#else
2153        return true;
2154#endif
2155}
2156
2157void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2158{
2159        struct kvm *kvm = me->kvm;
2160        struct kvm_vcpu *vcpu;
2161        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2162        int yielded = 0;
2163        int try = 3;
2164        int pass;
2165        int i;
2166
2167        kvm_vcpu_set_in_spin_loop(me, true);
2168        /*
2169         * We boost the priority of a VCPU that is runnable but not
2170         * currently running, because it got preempted by something
2171         * else and called schedule in __vcpu_run.  Hopefully that
2172         * VCPU is holding the lock that we need and will release it.
2173         * We approximate round-robin by starting at the last boosted VCPU.
2174         */
2175        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2176                kvm_for_each_vcpu(i, vcpu, kvm) {
2177                        if (!pass && i <= last_boosted_vcpu) {
2178                                i = last_boosted_vcpu;
2179                                continue;
2180                        } else if (pass && i > last_boosted_vcpu)
2181                                break;
2182                        if (!ACCESS_ONCE(vcpu->preempted))
2183                                continue;
2184                        if (vcpu == me)
2185                                continue;
2186                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2187                                continue;
2188                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2189                                continue;
2190
2191                        yielded = kvm_vcpu_yield_to(vcpu);
2192                        if (yielded > 0) {
2193                                kvm->last_boosted_vcpu = i;
2194                                break;
2195                        } else if (yielded < 0) {
2196                                try--;
2197                                if (!try)
2198                                        break;
2199                        }
2200                }
2201        }
2202        kvm_vcpu_set_in_spin_loop(me, false);
2203
2204        /* Ensure vcpu is not eligible during next spinloop */
2205        kvm_vcpu_set_dy_eligible(me, false);
2206}
2207EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2208
2209static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2210{
2211        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2212        struct page *page;
2213
2214        if (vmf->pgoff == 0)
2215                page = virt_to_page(vcpu->run);
2216#ifdef CONFIG_X86
2217        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2218                page = virt_to_page(vcpu->arch.pio_data);
2219#endif
2220#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2221        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2222                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2223#endif
2224        else
2225                return kvm_arch_vcpu_fault(vcpu, vmf);
2226        get_page(page);
2227        vmf->page = page;
2228        return 0;
2229}
2230
2231static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2232        .fault = kvm_vcpu_fault,
2233};
2234
2235static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2236{
2237        vma->vm_ops = &kvm_vcpu_vm_ops;
2238        return 0;
2239}
2240
2241static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2242{
2243        struct kvm_vcpu *vcpu = filp->private_data;
2244
2245        kvm_put_kvm(vcpu->kvm);
2246        return 0;
2247}
2248
2249static struct file_operations kvm_vcpu_fops = {
2250        .release        = kvm_vcpu_release,
2251        .unlocked_ioctl = kvm_vcpu_ioctl,
2252#ifdef CONFIG_KVM_COMPAT
2253        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2254#endif
2255        .mmap           = kvm_vcpu_mmap,
2256        .llseek         = noop_llseek,
2257};
2258
2259/*
2260 * Allocates an inode for the vcpu.
2261 */
2262static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2263{
2264        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2265}
2266
2267/*
2268 * Creates some virtual cpus.  Good luck creating more than one.
2269 */
2270static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2271{
2272        int r;
2273        struct kvm_vcpu *vcpu;
2274
2275        if (id >= KVM_MAX_VCPUS)
2276                return -EINVAL;
2277
2278        vcpu = kvm_arch_vcpu_create(kvm, id);
2279        if (IS_ERR(vcpu))
2280                return PTR_ERR(vcpu);
2281
2282        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2283
2284        r = kvm_arch_vcpu_setup(vcpu);
2285        if (r)
2286                goto vcpu_destroy;
2287
2288        mutex_lock(&kvm->lock);
2289        if (!kvm_vcpu_compatible(vcpu)) {
2290                r = -EINVAL;
2291                goto unlock_vcpu_destroy;
2292        }
2293        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2294                r = -EINVAL;
2295                goto unlock_vcpu_destroy;
2296        }
2297        if (kvm_get_vcpu_by_id(kvm, id)) {
2298                r = -EEXIST;
2299                goto unlock_vcpu_destroy;
2300        }
2301
2302        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2303
2304        /* Now it's all set up, let userspace reach it */
2305        kvm_get_kvm(kvm);
2306        r = create_vcpu_fd(vcpu);
2307        if (r < 0) {
2308                kvm_put_kvm(kvm);
2309                goto unlock_vcpu_destroy;
2310        }
2311
2312        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2313
2314        /*
2315         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2316         * before kvm->online_vcpu's incremented value.
2317         */
2318        smp_wmb();
2319        atomic_inc(&kvm->online_vcpus);
2320
2321        mutex_unlock(&kvm->lock);
2322        kvm_arch_vcpu_postcreate(vcpu);
2323        return r;
2324
2325unlock_vcpu_destroy:
2326        mutex_unlock(&kvm->lock);
2327vcpu_destroy:
2328        kvm_arch_vcpu_destroy(vcpu);
2329        return r;
2330}
2331
2332static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2333{
2334        if (sigset) {
2335                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2336                vcpu->sigset_active = 1;
2337                vcpu->sigset = *sigset;
2338        } else
2339                vcpu->sigset_active = 0;
2340        return 0;
2341}
2342
2343static long kvm_vcpu_ioctl(struct file *filp,
2344                           unsigned int ioctl, unsigned long arg)
2345{
2346        struct kvm_vcpu *vcpu = filp->private_data;
2347        void __user *argp = (void __user *)arg;
2348        int r;
2349        struct kvm_fpu *fpu = NULL;
2350        struct kvm_sregs *kvm_sregs = NULL;
2351
2352        if (vcpu->kvm->mm != current->mm)
2353                return -EIO;
2354
2355        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2356                return -EINVAL;
2357
2358#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2359        /*
2360         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2361         * so vcpu_load() would break it.
2362         */
2363        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2364                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2365#endif
2366
2367
2368        r = vcpu_load(vcpu);
2369        if (r)
2370                return r;
2371        switch (ioctl) {
2372        case KVM_RUN:
2373                r = -EINVAL;
2374                if (arg)
2375                        goto out;
2376                if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2377                        /* The thread running this VCPU changed. */
2378                        struct pid *oldpid = vcpu->pid;
2379                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2380
2381                        rcu_assign_pointer(vcpu->pid, newpid);
2382                        if (oldpid)
2383                                synchronize_rcu();
2384                        put_pid(oldpid);
2385                }
2386                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2387                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2388                break;
2389        case KVM_GET_REGS: {
2390                struct kvm_regs *kvm_regs;
2391
2392                r = -ENOMEM;
2393                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2394                if (!kvm_regs)
2395                        goto out;
2396                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2397                if (r)
2398                        goto out_free1;
2399                r = -EFAULT;
2400                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2401                        goto out_free1;
2402                r = 0;
2403out_free1:
2404                kfree(kvm_regs);
2405                break;
2406        }
2407        case KVM_SET_REGS: {
2408                struct kvm_regs *kvm_regs;
2409
2410                r = -ENOMEM;
2411                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2412                if (IS_ERR(kvm_regs)) {
2413                        r = PTR_ERR(kvm_regs);
2414                        goto out;
2415                }
2416                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2417                kfree(kvm_regs);
2418                break;
2419        }
2420        case KVM_GET_SREGS: {
2421                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2422                r = -ENOMEM;
2423                if (!kvm_sregs)
2424                        goto out;
2425                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2426                if (r)
2427                        goto out;
2428                r = -EFAULT;
2429                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2430                        goto out;
2431                r = 0;
2432                break;
2433        }
2434        case KVM_SET_SREGS: {
2435                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2436                if (IS_ERR(kvm_sregs)) {
2437                        r = PTR_ERR(kvm_sregs);
2438                        kvm_sregs = NULL;
2439                        goto out;
2440                }
2441                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2442                break;
2443        }
2444        case KVM_GET_MP_STATE: {
2445                struct kvm_mp_state mp_state;
2446
2447                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2448                if (r)
2449                        goto out;
2450                r = -EFAULT;
2451                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2452                        goto out;
2453                r = 0;
2454                break;
2455        }
2456        case KVM_SET_MP_STATE: {
2457                struct kvm_mp_state mp_state;
2458
2459                r = -EFAULT;
2460                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2461                        goto out;
2462                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2463                break;
2464        }
2465        case KVM_TRANSLATE: {
2466                struct kvm_translation tr;
2467
2468                r = -EFAULT;
2469                if (copy_from_user(&tr, argp, sizeof(tr)))
2470                        goto out;
2471                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2472                if (r)
2473                        goto out;
2474                r = -EFAULT;
2475                if (copy_to_user(argp, &tr, sizeof(tr)))
2476                        goto out;
2477                r = 0;
2478                break;
2479        }
2480        case KVM_SET_GUEST_DEBUG: {
2481                struct kvm_guest_debug dbg;
2482
2483                r = -EFAULT;
2484                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2485                        goto out;
2486                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2487                break;
2488        }
2489        case KVM_SET_SIGNAL_MASK: {
2490                struct kvm_signal_mask __user *sigmask_arg = argp;
2491                struct kvm_signal_mask kvm_sigmask;
2492                sigset_t sigset, *p;
2493
2494                p = NULL;
2495                if (argp) {
2496                        r = -EFAULT;
2497                        if (copy_from_user(&kvm_sigmask, argp,
2498                                           sizeof(kvm_sigmask)))
2499                                goto out;
2500                        r = -EINVAL;
2501                        if (kvm_sigmask.len != sizeof(sigset))
2502                                goto out;
2503                        r = -EFAULT;
2504                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2505                                           sizeof(sigset)))
2506                                goto out;
2507                        p = &sigset;
2508                }
2509                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2510                break;
2511        }
2512        case KVM_GET_FPU: {
2513                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2514                r = -ENOMEM;
2515                if (!fpu)
2516                        goto out;
2517                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2518                if (r)
2519                        goto out;
2520                r = -EFAULT;
2521                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2522                        goto out;
2523                r = 0;
2524                break;
2525        }
2526        case KVM_SET_FPU: {
2527                fpu = memdup_user(argp, sizeof(*fpu));
2528                if (IS_ERR(fpu)) {
2529                        r = PTR_ERR(fpu);
2530                        fpu = NULL;
2531                        goto out;
2532                }
2533                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2534                break;
2535        }
2536        default:
2537                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2538        }
2539out:
2540        vcpu_put(vcpu);
2541        kfree(fpu);
2542        kfree(kvm_sregs);
2543        return r;
2544}
2545
2546#ifdef CONFIG_KVM_COMPAT
2547static long kvm_vcpu_compat_ioctl(struct file *filp,
2548                                  unsigned int ioctl, unsigned long arg)
2549{
2550        struct kvm_vcpu *vcpu = filp->private_data;
2551        void __user *argp = compat_ptr(arg);
2552        int r;
2553
2554        if (vcpu->kvm->mm != current->mm)
2555                return -EIO;
2556
2557        switch (ioctl) {
2558        case KVM_SET_SIGNAL_MASK: {
2559                struct kvm_signal_mask __user *sigmask_arg = argp;
2560                struct kvm_signal_mask kvm_sigmask;
2561                compat_sigset_t csigset;
2562                sigset_t sigset;
2563
2564                if (argp) {
2565                        r = -EFAULT;
2566                        if (copy_from_user(&kvm_sigmask, argp,
2567                                           sizeof(kvm_sigmask)))
2568                                goto out;
2569                        r = -EINVAL;
2570                        if (kvm_sigmask.len != sizeof(csigset))
2571                                goto out;
2572                        r = -EFAULT;
2573                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2574                                           sizeof(csigset)))
2575                                goto out;
2576                        sigset_from_compat(&sigset, &csigset);
2577                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2578                } else
2579                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2580                break;
2581        }
2582        default:
2583                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2584        }
2585
2586out:
2587        return r;
2588}
2589#endif
2590
2591static int kvm_device_ioctl_attr(struct kvm_device *dev,
2592                                 int (*accessor)(struct kvm_device *dev,
2593                                                 struct kvm_device_attr *attr),
2594                                 unsigned long arg)
2595{
2596        struct kvm_device_attr attr;
2597
2598        if (!accessor)
2599                return -EPERM;
2600
2601        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2602                return -EFAULT;
2603
2604        return accessor(dev, &attr);
2605}
2606
2607static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2608                             unsigned long arg)
2609{
2610        struct kvm_device *dev = filp->private_data;
2611
2612        switch (ioctl) {
2613        case KVM_SET_DEVICE_ATTR:
2614                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2615        case KVM_GET_DEVICE_ATTR:
2616                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2617        case KVM_HAS_DEVICE_ATTR:
2618                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2619        default:
2620                if (dev->ops->ioctl)
2621                        return dev->ops->ioctl(dev, ioctl, arg);
2622
2623                return -ENOTTY;
2624        }
2625}
2626
2627static int kvm_device_release(struct inode *inode, struct file *filp)
2628{
2629        struct kvm_device *dev = filp->private_data;
2630        struct kvm *kvm = dev->kvm;
2631
2632        kvm_put_kvm(kvm);
2633        return 0;
2634}
2635
2636static const struct file_operations kvm_device_fops = {
2637        .unlocked_ioctl = kvm_device_ioctl,
2638#ifdef CONFIG_KVM_COMPAT
2639        .compat_ioctl = kvm_device_ioctl,
2640#endif
2641        .release = kvm_device_release,
2642};
2643
2644struct kvm_device *kvm_device_from_filp(struct file *filp)
2645{
2646        if (filp->f_op != &kvm_device_fops)
2647                return NULL;
2648
2649        return filp->private_data;
2650}
2651
2652static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2653#ifdef CONFIG_KVM_MPIC
2654        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2655        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2656#endif
2657
2658#ifdef CONFIG_KVM_XICS
2659        [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2660#endif
2661};
2662
2663int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2664{
2665        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2666                return -ENOSPC;
2667
2668        if (kvm_device_ops_table[type] != NULL)
2669                return -EEXIST;
2670
2671        kvm_device_ops_table[type] = ops;
2672        return 0;
2673}
2674
2675void kvm_unregister_device_ops(u32 type)
2676{
2677        if (kvm_device_ops_table[type] != NULL)
2678                kvm_device_ops_table[type] = NULL;
2679}
2680
2681static int kvm_ioctl_create_device(struct kvm *kvm,
2682                                   struct kvm_create_device *cd)
2683{
2684        struct kvm_device_ops *ops = NULL;
2685        struct kvm_device *dev;
2686        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2687        int ret;
2688
2689        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2690                return -ENODEV;
2691
2692        ops = kvm_device_ops_table[cd->type];
2693        if (ops == NULL)
2694                return -ENODEV;
2695
2696        if (test)
2697                return 0;
2698
2699        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2700        if (!dev)
2701                return -ENOMEM;
2702
2703        dev->ops = ops;
2704        dev->kvm = kvm;
2705
2706        ret = ops->create(dev, cd->type);
2707        if (ret < 0) {
2708                kfree(dev);
2709                return ret;
2710        }
2711
2712        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2713        if (ret < 0) {
2714                ops->destroy(dev);
2715                return ret;
2716        }
2717
2718        list_add(&dev->vm_node, &kvm->devices);
2719        kvm_get_kvm(kvm);
2720        cd->fd = ret;
2721        return 0;
2722}
2723
2724static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2725{
2726        switch (arg) {
2727        case KVM_CAP_USER_MEMORY:
2728        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2729        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2730        case KVM_CAP_INTERNAL_ERROR_DATA:
2731#ifdef CONFIG_HAVE_KVM_MSI
2732        case KVM_CAP_SIGNAL_MSI:
2733#endif
2734#ifdef CONFIG_HAVE_KVM_IRQFD
2735        case KVM_CAP_IRQFD:
2736        case KVM_CAP_IRQFD_RESAMPLE:
2737#endif
2738        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2739        case KVM_CAP_CHECK_EXTENSION_VM:
2740                return 1;
2741#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2742        case KVM_CAP_IRQ_ROUTING:
2743                return KVM_MAX_IRQ_ROUTES;
2744#endif
2745#if KVM_ADDRESS_SPACE_NUM > 1
2746        case KVM_CAP_MULTI_ADDRESS_SPACE:
2747                return KVM_ADDRESS_SPACE_NUM;
2748#endif
2749        default:
2750                break;
2751        }
2752        return kvm_vm_ioctl_check_extension(kvm, arg);
2753}
2754
2755static long kvm_vm_ioctl(struct file *filp,
2756                           unsigned int ioctl, unsigned long arg)
2757{
2758        struct kvm *kvm = filp->private_data;
2759        void __user *argp = (void __user *)arg;
2760        int r;
2761
2762        if (kvm->mm != current->mm)
2763                return -EIO;
2764        switch (ioctl) {
2765        case KVM_CREATE_VCPU:
2766                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2767                break;
2768        case KVM_SET_USER_MEMORY_REGION: {
2769                struct kvm_userspace_memory_region kvm_userspace_mem;
2770
2771                r = -EFAULT;
2772                if (copy_from_user(&kvm_userspace_mem, argp,
2773                                                sizeof(kvm_userspace_mem)))
2774                        goto out;
2775
2776                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2777                break;
2778        }
2779        case KVM_GET_DIRTY_LOG: {
2780                struct kvm_dirty_log log;
2781
2782                r = -EFAULT;
2783                if (copy_from_user(&log, argp, sizeof(log)))
2784                        goto out;
2785                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2786                break;
2787        }
2788#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2789        case KVM_REGISTER_COALESCED_MMIO: {
2790                struct kvm_coalesced_mmio_zone zone;
2791
2792                r = -EFAULT;
2793                if (copy_from_user(&zone, argp, sizeof(zone)))
2794                        goto out;
2795                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2796                break;
2797        }
2798        case KVM_UNREGISTER_COALESCED_MMIO: {
2799                struct kvm_coalesced_mmio_zone zone;
2800
2801                r = -EFAULT;
2802                if (copy_from_user(&zone, argp, sizeof(zone)))
2803                        goto out;
2804                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2805                break;
2806        }
2807#endif
2808        case KVM_IRQFD: {
2809                struct kvm_irqfd data;
2810
2811                r = -EFAULT;
2812                if (copy_from_user(&data, argp, sizeof(data)))
2813                        goto out;
2814                r = kvm_irqfd(kvm, &data);
2815                break;
2816        }
2817        case KVM_IOEVENTFD: {
2818                struct kvm_ioeventfd data;
2819
2820                r = -EFAULT;
2821                if (copy_from_user(&data, argp, sizeof(data)))
2822                        goto out;
2823                r = kvm_ioeventfd(kvm, &data);
2824                break;
2825        }
2826#ifdef CONFIG_HAVE_KVM_MSI
2827        case KVM_SIGNAL_MSI: {
2828                struct kvm_msi msi;
2829
2830                r = -EFAULT;
2831                if (copy_from_user(&msi, argp, sizeof(msi)))
2832                        goto out;
2833                r = kvm_send_userspace_msi(kvm, &msi);
2834                break;
2835        }
2836#endif
2837#ifdef __KVM_HAVE_IRQ_LINE
2838        case KVM_IRQ_LINE_STATUS:
2839        case KVM_IRQ_LINE: {
2840                struct kvm_irq_level irq_event;
2841
2842                r = -EFAULT;
2843                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2844                        goto out;
2845
2846                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2847                                        ioctl == KVM_IRQ_LINE_STATUS);
2848                if (r)
2849                        goto out;
2850
2851                r = -EFAULT;
2852                if (ioctl == KVM_IRQ_LINE_STATUS) {
2853                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2854                                goto out;
2855                }
2856
2857                r = 0;
2858                break;
2859        }
2860#endif
2861#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2862        case KVM_SET_GSI_ROUTING: {
2863                struct kvm_irq_routing routing;
2864                struct kvm_irq_routing __user *urouting;
2865                struct kvm_irq_routing_entry *entries;
2866
2867                r = -EFAULT;
2868                if (copy_from_user(&routing, argp, sizeof(routing)))
2869                        goto out;
2870                r = -EINVAL;
2871                if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2872                        goto out;
2873                if (routing.flags)
2874                        goto out;
2875                r = -ENOMEM;
2876                entries = vmalloc(routing.nr * sizeof(*entries));
2877                if (!entries)
2878                        goto out;
2879                r = -EFAULT;
2880                urouting = argp;
2881                if (copy_from_user(entries, urouting->entries,
2882                                   routing.nr * sizeof(*entries)))
2883                        goto out_free_irq_routing;
2884                r = kvm_set_irq_routing(kvm, entries, routing.nr,
2885                                        routing.flags);
2886out_free_irq_routing:
2887                vfree(entries);
2888                break;
2889        }
2890#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2891        case KVM_CREATE_DEVICE: {
2892                struct kvm_create_device cd;
2893
2894                r = -EFAULT;
2895                if (copy_from_user(&cd, argp, sizeof(cd)))
2896                        goto out;
2897
2898                r = kvm_ioctl_create_device(kvm, &cd);
2899                if (r)
2900                        goto out;
2901
2902                r = -EFAULT;
2903                if (copy_to_user(argp, &cd, sizeof(cd)))
2904                        goto out;
2905
2906                r = 0;
2907                break;
2908        }
2909        case KVM_CHECK_EXTENSION:
2910                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2911                break;
2912        default:
2913                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2914        }
2915out:
2916        return r;
2917}
2918
2919#ifdef CONFIG_KVM_COMPAT
2920struct compat_kvm_dirty_log {
2921        __u32 slot;
2922        __u32 padding1;
2923        union {
2924                compat_uptr_t dirty_bitmap; /* one bit per page */
2925                __u64 padding2;
2926        };
2927};
2928
2929static long kvm_vm_compat_ioctl(struct file *filp,
2930                           unsigned int ioctl, unsigned long arg)
2931{
2932        struct kvm *kvm = filp->private_data;
2933        int r;
2934
2935        if (kvm->mm != current->mm)
2936                return -EIO;
2937        switch (ioctl) {
2938        case KVM_GET_DIRTY_LOG: {
2939                struct compat_kvm_dirty_log compat_log;
2940                struct kvm_dirty_log log;
2941
2942                r = -EFAULT;
2943                if (copy_from_user(&compat_log, (void __user *)arg,
2944                                   sizeof(compat_log)))
2945                        goto out;
2946                log.slot         = compat_log.slot;
2947                log.padding1     = compat_log.padding1;
2948                log.padding2     = compat_log.padding2;
2949                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2950
2951                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2952                break;
2953        }
2954        default:
2955                r = kvm_vm_ioctl(filp, ioctl, arg);
2956        }
2957
2958out:
2959        return r;
2960}
2961#endif
2962
2963static struct file_operations kvm_vm_fops = {
2964        .release        = kvm_vm_release,
2965        .unlocked_ioctl = kvm_vm_ioctl,
2966#ifdef CONFIG_KVM_COMPAT
2967        .compat_ioctl   = kvm_vm_compat_ioctl,
2968#endif
2969        .llseek         = noop_llseek,
2970};
2971
2972static int kvm_dev_ioctl_create_vm(unsigned long type)
2973{
2974        int r;
2975        struct kvm *kvm;
2976
2977        kvm = kvm_create_vm(type);
2978        if (IS_ERR(kvm))
2979                return PTR_ERR(kvm);
2980#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981        r = kvm_coalesced_mmio_init(kvm);
2982        if (r < 0) {
2983                kvm_put_kvm(kvm);
2984                return r;
2985        }
2986#endif
2987        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2988        if (r < 0)
2989                kvm_put_kvm(kvm);
2990
2991        return r;
2992}
2993
2994static long kvm_dev_ioctl(struct file *filp,
2995                          unsigned int ioctl, unsigned long arg)
2996{
2997        long r = -EINVAL;
2998
2999        switch (ioctl) {
3000        case KVM_GET_API_VERSION:
3001                if (arg)
3002                        goto out;
3003                r = KVM_API_VERSION;
3004                break;
3005        case KVM_CREATE_VM:
3006                r = kvm_dev_ioctl_create_vm(arg);
3007                break;
3008        case KVM_CHECK_EXTENSION:
3009                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3010                break;
3011        case KVM_GET_VCPU_MMAP_SIZE:
3012                if (arg)
3013                        goto out;
3014                r = PAGE_SIZE;     /* struct kvm_run */
3015#ifdef CONFIG_X86
3016                r += PAGE_SIZE;    /* pio data page */
3017#endif
3018#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3019                r += PAGE_SIZE;    /* coalesced mmio ring page */
3020#endif
3021                break;
3022        case KVM_TRACE_ENABLE:
3023        case KVM_TRACE_PAUSE:
3024        case KVM_TRACE_DISABLE:
3025                r = -EOPNOTSUPP;
3026                break;
3027        default:
3028                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3029        }
3030out:
3031        return r;
3032}
3033
3034static struct file_operations kvm_chardev_ops = {
3035        .unlocked_ioctl = kvm_dev_ioctl,
3036        .compat_ioctl   = kvm_dev_ioctl,
3037        .llseek         = noop_llseek,
3038};
3039
3040static struct miscdevice kvm_dev = {
3041        KVM_MINOR,
3042        "kvm",
3043        &kvm_chardev_ops,
3044};
3045
3046static void hardware_enable_nolock(void *junk)
3047{
3048        int cpu = raw_smp_processor_id();
3049        int r;
3050
3051        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3052                return;
3053
3054        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3055
3056        r = kvm_arch_hardware_enable();
3057
3058        if (r) {
3059                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3060                atomic_inc(&hardware_enable_failed);
3061                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3062        }
3063}
3064
3065static void hardware_enable(void)
3066{
3067        raw_spin_lock(&kvm_count_lock);
3068        if (kvm_usage_count)
3069                hardware_enable_nolock(NULL);
3070        raw_spin_unlock(&kvm_count_lock);
3071}
3072
3073static void hardware_disable_nolock(void *junk)
3074{
3075        int cpu = raw_smp_processor_id();
3076
3077        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3078                return;
3079        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3080        kvm_arch_hardware_disable();
3081}
3082
3083static void hardware_disable(void)
3084{
3085        raw_spin_lock(&kvm_count_lock);
3086        if (kvm_usage_count)
3087                hardware_disable_nolock(NULL);
3088        raw_spin_unlock(&kvm_count_lock);
3089}
3090
3091static void hardware_disable_all_nolock(void)
3092{
3093        BUG_ON(!kvm_usage_count);
3094
3095        kvm_usage_count--;
3096        if (!kvm_usage_count)
3097                on_each_cpu(hardware_disable_nolock, NULL, 1);
3098}
3099
3100static void hardware_disable_all(void)
3101{
3102        raw_spin_lock(&kvm_count_lock);
3103        hardware_disable_all_nolock();
3104        raw_spin_unlock(&kvm_count_lock);
3105}
3106
3107static int hardware_enable_all(void)
3108{
3109        int r = 0;
3110
3111        raw_spin_lock(&kvm_count_lock);
3112
3113        kvm_usage_count++;
3114        if (kvm_usage_count == 1) {
3115                atomic_set(&hardware_enable_failed, 0);
3116                on_each_cpu(hardware_enable_nolock, NULL, 1);
3117
3118                if (atomic_read(&hardware_enable_failed)) {
3119                        hardware_disable_all_nolock();
3120                        r = -EBUSY;
3121                }
3122        }
3123
3124        raw_spin_unlock(&kvm_count_lock);
3125
3126        return r;
3127}
3128
3129static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3130                           void *v)
3131{
3132        val &= ~CPU_TASKS_FROZEN;
3133        switch (val) {
3134        case CPU_DYING:
3135                hardware_disable();
3136                break;
3137        case CPU_STARTING:
3138                hardware_enable();
3139                break;
3140        }
3141        return NOTIFY_OK;
3142}
3143
3144static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3145                      void *v)
3146{
3147        /*
3148         * Some (well, at least mine) BIOSes hang on reboot if
3149         * in vmx root mode.
3150         *
3151         * And Intel TXT required VMX off for all cpu when system shutdown.
3152         */
3153        pr_info("kvm: exiting hardware virtualization\n");
3154        kvm_rebooting = true;
3155        on_each_cpu(hardware_disable_nolock, NULL, 1);
3156        return NOTIFY_OK;
3157}
3158
3159static struct notifier_block kvm_reboot_notifier = {
3160        .notifier_call = kvm_reboot,
3161        .priority = 0,
3162};
3163
3164static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3165{
3166        int i;
3167
3168        for (i = 0; i < bus->dev_count; i++) {
3169                struct kvm_io_device *pos = bus->range[i].dev;
3170
3171                kvm_iodevice_destructor(pos);
3172        }
3173        kfree(bus);
3174}
3175
3176static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3177                                 const struct kvm_io_range *r2)
3178{
3179        gpa_t addr1 = r1->addr;
3180        gpa_t addr2 = r2->addr;
3181
3182        if (addr1 < addr2)
3183                return -1;
3184
3185        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3186         * accept any overlapping write.  Any order is acceptable for
3187         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3188         * we process all of them.
3189         */
3190        if (r2->len) {
3191                addr1 += r1->len;
3192                addr2 += r2->len;
3193        }
3194
3195        if (addr1 > addr2)
3196                return 1;
3197
3198        return 0;
3199}
3200
3201static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3202{
3203        return kvm_io_bus_cmp(p1, p2);
3204}
3205
3206static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3207                          gpa_t addr, int len)
3208{
3209        bus->range[bus->dev_count++] = (struct kvm_io_range) {
3210                .addr = addr,
3211                .len = len,
3212                .dev = dev,
3213        };
3214
3215        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3216                kvm_io_bus_sort_cmp, NULL);
3217
3218        return 0;
3219}
3220
3221static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3222                             gpa_t addr, int len)
3223{
3224        struct kvm_io_range *range, key;
3225        int off;
3226
3227        key = (struct kvm_io_range) {
3228                .addr = addr,
3229                .len = len,
3230        };
3231
3232        range = bsearch(&key, bus->range, bus->dev_count,
3233                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3234        if (range == NULL)
3235                return -ENOENT;
3236
3237        off = range - bus->range;
3238
3239        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3240                off--;
3241
3242        return off;
3243}
3244
3245static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3246                              struct kvm_io_range *range, const void *val)
3247{
3248        int idx;
3249
3250        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3251        if (idx < 0)
3252                return -EOPNOTSUPP;
3253
3254        while (idx < bus->dev_count &&
3255                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3256                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3257                                        range->len, val))
3258                        return idx;
3259                idx++;
3260        }
3261
3262        return -EOPNOTSUPP;
3263}
3264
3265/* kvm_io_bus_write - called under kvm->slots_lock */
3266int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3267                     int len, const void *val)
3268{
3269        struct kvm_io_bus *bus;
3270        struct kvm_io_range range;
3271        int r;
3272
3273        range = (struct kvm_io_range) {
3274                .addr = addr,
3275                .len = len,
3276        };
3277
3278        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3279        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3280        return r < 0 ? r : 0;
3281}
3282
3283/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3284int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3285                            gpa_t addr, int len, const void *val, long cookie)
3286{
3287        struct kvm_io_bus *bus;
3288        struct kvm_io_range range;
3289
3290        range = (struct kvm_io_range) {
3291                .addr = addr,
3292                .len = len,
3293        };
3294
3295        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3296
3297        /* First try the device referenced by cookie. */
3298        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3299            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3300                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3301                                        val))
3302                        return cookie;
3303
3304        /*
3305         * cookie contained garbage; fall back to search and return the
3306         * correct cookie value.
3307         */
3308        return __kvm_io_bus_write(vcpu, bus, &range, val);
3309}
3310
3311static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3312                             struct kvm_io_range *range, void *val)
3313{
3314        int idx;
3315
3316        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3317        if (idx < 0)
3318                return -EOPNOTSUPP;
3319
3320        while (idx < bus->dev_count &&
3321                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3322                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3323                                       range->len, val))
3324                        return idx;
3325                idx++;
3326        }
3327
3328        return -EOPNOTSUPP;
3329}
3330EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3331
3332/* kvm_io_bus_read - called under kvm->slots_lock */
3333int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3334                    int len, void *val)
3335{
3336        struct kvm_io_bus *bus;
3337        struct kvm_io_range range;
3338        int r;
3339
3340        range = (struct kvm_io_range) {
3341                .addr = addr,
3342                .len = len,
3343        };
3344
3345        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3346        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3347        return r < 0 ? r : 0;
3348}
3349
3350
3351/* Caller must hold slots_lock. */
3352int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3353                            int len, struct kvm_io_device *dev)
3354{
3355        struct kvm_io_bus *new_bus, *bus;
3356
3357        bus = kvm->buses[bus_idx];
3358        /* exclude ioeventfd which is limited by maximum fd */
3359        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3360                return -ENOSPC;
3361
3362        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3363                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3364        if (!new_bus)
3365                return -ENOMEM;
3366        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3367               sizeof(struct kvm_io_range)));
3368        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3369        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3370        synchronize_srcu_expedited(&kvm->srcu);
3371        kfree(bus);
3372
3373        return 0;
3374}
3375
3376/* Caller must hold slots_lock. */
3377int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3378                              struct kvm_io_device *dev)
3379{
3380        int i, r;
3381        struct kvm_io_bus *new_bus, *bus;
3382
3383        bus = kvm->buses[bus_idx];
3384        r = -ENOENT;
3385        for (i = 0; i < bus->dev_count; i++)
3386                if (bus->range[i].dev == dev) {
3387                        r = 0;
3388                        break;
3389                }
3390
3391        if (r)
3392                return r;
3393
3394        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3395                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3396        if (!new_bus)
3397                return -ENOMEM;
3398
3399        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3400        new_bus->dev_count--;
3401        memcpy(new_bus->range + i, bus->range + i + 1,
3402               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3403
3404        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3405        synchronize_srcu_expedited(&kvm->srcu);
3406        kfree(bus);
3407        return r;
3408}
3409
3410static struct notifier_block kvm_cpu_notifier = {
3411        .notifier_call = kvm_cpu_hotplug,
3412};
3413
3414static int vm_stat_get(void *_offset, u64 *val)
3415{
3416        unsigned offset = (long)_offset;
3417        struct kvm *kvm;
3418
3419        *val = 0;
3420        spin_lock(&kvm_lock);
3421        list_for_each_entry(kvm, &vm_list, vm_list)
3422                *val += *(u32 *)((void *)kvm + offset);
3423        spin_unlock(&kvm_lock);
3424        return 0;
3425}
3426
3427DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3428
3429static int vcpu_stat_get(void *_offset, u64 *val)
3430{
3431        unsigned offset = (long)_offset;
3432        struct kvm *kvm;
3433        struct kvm_vcpu *vcpu;
3434        int i;
3435
3436        *val = 0;
3437        spin_lock(&kvm_lock);
3438        list_for_each_entry(kvm, &vm_list, vm_list)
3439                kvm_for_each_vcpu(i, vcpu, kvm)
3440                        *val += *(u32 *)((void *)vcpu + offset);
3441
3442        spin_unlock(&kvm_lock);
3443        return 0;
3444}
3445
3446DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3447
3448static const struct file_operations *stat_fops[] = {
3449        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3450        [KVM_STAT_VM]   = &vm_stat_fops,
3451};
3452
3453static int kvm_init_debug(void)
3454{
3455        int r = -EEXIST;
3456        struct kvm_stats_debugfs_item *p;
3457
3458        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3459        if (kvm_debugfs_dir == NULL)
3460                goto out;
3461
3462        for (p = debugfs_entries; p->name; ++p) {
3463                if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3464                                         (void *)(long)p->offset,
3465                                         stat_fops[p->kind]))
3466                        goto out_dir;
3467        }
3468
3469        return 0;
3470
3471out_dir:
3472        debugfs_remove_recursive(kvm_debugfs_dir);
3473out:
3474        return r;
3475}
3476
3477static int kvm_suspend(void)
3478{
3479        if (kvm_usage_count)
3480                hardware_disable_nolock(NULL);
3481        return 0;
3482}
3483
3484static void kvm_resume(void)
3485{
3486        if (kvm_usage_count) {
3487                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3488                hardware_enable_nolock(NULL);
3489        }
3490}
3491
3492static struct syscore_ops kvm_syscore_ops = {
3493        .suspend = kvm_suspend,
3494        .resume = kvm_resume,
3495};
3496
3497static inline
3498struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3499{
3500        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3501}
3502
3503static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3504{
3505        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3506
3507        if (vcpu->preempted)
3508                vcpu->preempted = false;
3509
3510        kvm_arch_sched_in(vcpu, cpu);
3511
3512        kvm_arch_vcpu_load(vcpu, cpu);
3513}
3514
3515static void kvm_sched_out(struct preempt_notifier *pn,
3516                          struct task_struct *next)
3517{
3518        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3519
3520        if (current->state == TASK_RUNNING)
3521                vcpu->preempted = true;
3522        kvm_arch_vcpu_put(vcpu);
3523}
3524
3525int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3526                  struct module *module)
3527{
3528        int r;
3529        int cpu;
3530
3531        r = kvm_arch_init(opaque);
3532        if (r)
3533                goto out_fail;
3534
3535        /*
3536         * kvm_arch_init makes sure there's at most one caller
3537         * for architectures that support multiple implementations,
3538         * like intel and amd on x86.
3539         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3540         * conflicts in case kvm is already setup for another implementation.
3541         */
3542        r = kvm_irqfd_init();
3543        if (r)
3544                goto out_irqfd;
3545
3546        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3547                r = -ENOMEM;
3548                goto out_free_0;
3549        }
3550
3551        r = kvm_arch_hardware_setup();
3552        if (r < 0)
3553                goto out_free_0a;
3554
3555        for_each_online_cpu(cpu) {
3556                smp_call_function_single(cpu,
3557                                kvm_arch_check_processor_compat,
3558                                &r, 1);
3559                if (r < 0)
3560                        goto out_free_1;
3561        }
3562
3563        r = register_cpu_notifier(&kvm_cpu_notifier);
3564        if (r)
3565                goto out_free_2;
3566        register_reboot_notifier(&kvm_reboot_notifier);
3567
3568        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3569        if (!vcpu_align)
3570                vcpu_align = __alignof__(struct kvm_vcpu);
3571        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3572                                           0, NULL);
3573        if (!kvm_vcpu_cache) {
3574                r = -ENOMEM;
3575                goto out_free_3;
3576        }
3577
3578        r = kvm_async_pf_init();
3579        if (r)
3580                goto out_free;
3581
3582        kvm_chardev_ops.owner = module;
3583        kvm_vm_fops.owner = module;
3584        kvm_vcpu_fops.owner = module;
3585
3586        r = misc_register(&kvm_dev);
3587        if (r) {
3588                pr_err("kvm: misc device register failed\n");
3589                goto out_unreg;
3590        }
3591
3592        register_syscore_ops(&kvm_syscore_ops);
3593
3594        kvm_preempt_ops.sched_in = kvm_sched_in;
3595        kvm_preempt_ops.sched_out = kvm_sched_out;
3596
3597        r = kvm_init_debug();
3598        if (r) {
3599                pr_err("kvm: create debugfs files failed\n");
3600                goto out_undebugfs;
3601        }
3602
3603        r = kvm_vfio_ops_init();
3604        WARN_ON(r);
3605
3606        return 0;
3607
3608out_undebugfs:
3609        unregister_syscore_ops(&kvm_syscore_ops);
3610        misc_deregister(&kvm_dev);
3611out_unreg:
3612        kvm_async_pf_deinit();
3613out_free:
3614        kmem_cache_destroy(kvm_vcpu_cache);
3615out_free_3:
3616        unregister_reboot_notifier(&kvm_reboot_notifier);
3617        unregister_cpu_notifier(&kvm_cpu_notifier);
3618out_free_2:
3619out_free_1:
3620        kvm_arch_hardware_unsetup();
3621out_free_0a:
3622        free_cpumask_var(cpus_hardware_enabled);
3623out_free_0:
3624        kvm_irqfd_exit();
3625out_irqfd:
3626        kvm_arch_exit();
3627out_fail:
3628        return r;
3629}
3630EXPORT_SYMBOL_GPL(kvm_init);
3631
3632void kvm_exit(void)
3633{
3634        debugfs_remove_recursive(kvm_debugfs_dir);
3635        misc_deregister(&kvm_dev);
3636        kmem_cache_destroy(kvm_vcpu_cache);
3637        kvm_async_pf_deinit();
3638        unregister_syscore_ops(&kvm_syscore_ops);
3639        unregister_reboot_notifier(&kvm_reboot_notifier);
3640        unregister_cpu_notifier(&kvm_cpu_notifier);
3641        on_each_cpu(hardware_disable_nolock, NULL, 1);
3642        kvm_arch_hardware_unsetup();
3643        kvm_arch_exit();
3644        kvm_irqfd_exit();
3645        free_cpumask_var(cpus_hardware_enabled);
3646        kvm_vfio_ops_exit();
3647}
3648EXPORT_SYMBOL_GPL(kvm_exit);
3649