1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include <linux/errno.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/param.h>
26#include <linux/string.h>
27#include <linux/mm.h>
28#include <linux/delay.h>
29#include <linux/ioport.h>
30#include <linux/irq.h>
31#include <linux/interrupt.h>
32#include <linux/init.h>
33#include <linux/bcd.h>
34#include <linux/profile.h>
35#include <linux/irq_work.h>
36
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/hwrpb.h>
40
41#include <linux/mc146818rtc.h>
42#include <linux/time.h>
43#include <linux/timex.h>
44#include <linux/clocksource.h>
45#include <linux/clockchips.h>
46
47#include "proto.h"
48#include "irq_impl.h"
49
50DEFINE_SPINLOCK(rtc_lock);
51EXPORT_SYMBOL(rtc_lock);
52
53unsigned long est_cycle_freq;
54
55#ifdef CONFIG_IRQ_WORK
56
57DEFINE_PER_CPU(u8, irq_work_pending);
58
59#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
60#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
61#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
62
63void arch_irq_work_raise(void)
64{
65 set_irq_work_pending_flag();
66}
67
68#else
69
70#define test_irq_work_pending() 0
71#define clear_irq_work_pending()
72
73#endif
74
75
76static inline __u32 rpcc(void)
77{
78 return __builtin_alpha_rpcc();
79}
80
81
82
83
84
85
86
87static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
88
89irqreturn_t
90rtc_timer_interrupt(int irq, void *dev)
91{
92 int cpu = smp_processor_id();
93 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
94
95
96 if (likely(clockevent_state_periodic(ce)))
97 ce->event_handler(ce);
98
99 if (test_irq_work_pending()) {
100 clear_irq_work_pending();
101 irq_work_run();
102 }
103
104 return IRQ_HANDLED;
105}
106
107static int
108rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
109{
110
111 return -EINVAL;
112}
113
114static void __init
115init_rtc_clockevent(void)
116{
117 int cpu = smp_processor_id();
118 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
119
120 *ce = (struct clock_event_device){
121 .name = "rtc",
122 .features = CLOCK_EVT_FEAT_PERIODIC,
123 .rating = 100,
124 .cpumask = cpumask_of(cpu),
125 .set_next_event = rtc_ce_set_next_event,
126 };
127
128 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
129}
130
131
132
133
134
135
136static cycle_t
137qemu_cs_read(struct clocksource *cs)
138{
139 return qemu_get_vmtime();
140}
141
142static struct clocksource qemu_cs = {
143 .name = "qemu",
144 .rating = 400,
145 .read = qemu_cs_read,
146 .mask = CLOCKSOURCE_MASK(64),
147 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
148 .max_idle_ns = LONG_MAX
149};
150
151
152
153
154
155
156static int qemu_ce_shutdown(struct clock_event_device *ce)
157{
158
159
160 qemu_set_alarm_abs(0);
161 return 0;
162}
163
164static int
165qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
166{
167 qemu_set_alarm_rel(evt);
168 return 0;
169}
170
171static irqreturn_t
172qemu_timer_interrupt(int irq, void *dev)
173{
174 int cpu = smp_processor_id();
175 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
176
177 ce->event_handler(ce);
178 return IRQ_HANDLED;
179}
180
181static void __init
182init_qemu_clockevent(void)
183{
184 int cpu = smp_processor_id();
185 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
186
187 *ce = (struct clock_event_device){
188 .name = "qemu",
189 .features = CLOCK_EVT_FEAT_ONESHOT,
190 .rating = 400,
191 .cpumask = cpumask_of(cpu),
192 .set_state_shutdown = qemu_ce_shutdown,
193 .set_state_oneshot = qemu_ce_shutdown,
194 .tick_resume = qemu_ce_shutdown,
195 .set_next_event = qemu_ce_set_next_event,
196 };
197
198 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
199}
200
201
202void __init
203common_init_rtc(void)
204{
205 unsigned char x, sel = 0;
206
207
208#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
209 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210
211
212 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213 sel = RTC_REF_CLCK_32KHZ + 6;
214 }
215#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
216 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
217#else
218# error "Unknown HZ from arch/alpha/Kconfig"
219#endif
220 if (sel) {
221 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
222 CONFIG_HZ, sel);
223 CMOS_WRITE(sel, RTC_FREQ_SELECT);
224 }
225
226
227 x = CMOS_READ(RTC_CONTROL);
228 if (!(x & RTC_PIE)) {
229 printk("Turning on RTC interrupts.\n");
230 x |= RTC_PIE;
231 x &= ~(RTC_AIE | RTC_UIE);
232 CMOS_WRITE(x, RTC_CONTROL);
233 }
234 (void) CMOS_READ(RTC_INTR_FLAGS);
235
236 outb(0x36, 0x43);
237 outb(0x00, 0x40);
238 outb(0x00, 0x40);
239
240 outb(0xb6, 0x43);
241 outb(0x31, 0x42);
242 outb(0x13, 0x42);
243
244 init_rtc_irq();
245}
246
247
248#ifndef CONFIG_ALPHA_WTINT
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263static cycle_t read_rpcc(struct clocksource *cs)
264{
265 return rpcc();
266}
267
268static struct clocksource clocksource_rpcc = {
269 .name = "rpcc",
270 .rating = 300,
271 .read = read_rpcc,
272 .mask = CLOCKSOURCE_MASK(32),
273 .flags = CLOCK_SOURCE_IS_CONTINUOUS
274};
275#endif
276
277
278
279
280
281
282
283
284static unsigned long __init
285validate_cc_value(unsigned long cc)
286{
287 static struct bounds {
288 unsigned int min, max;
289 } cpu_hz[] __initdata = {
290 [EV3_CPU] = { 50000000, 200000000 },
291 [EV4_CPU] = { 100000000, 300000000 },
292 [LCA4_CPU] = { 100000000, 300000000 },
293 [EV45_CPU] = { 200000000, 300000000 },
294 [EV5_CPU] = { 250000000, 433000000 },
295 [EV56_CPU] = { 333000000, 667000000 },
296 [PCA56_CPU] = { 400000000, 600000000 },
297 [PCA57_CPU] = { 500000000, 600000000 },
298 [EV6_CPU] = { 466000000, 600000000 },
299 [EV67_CPU] = { 600000000, 750000000 },
300 [EV68AL_CPU] = { 750000000, 940000000 },
301 [EV68CB_CPU] = { 1000000000, 1333333333 },
302
303 [EV68CX_CPU] = { 1000000000, 1700000000 },
304 [EV69_CPU] = { 1000000000, 1700000000 },
305 [EV7_CPU] = { 800000000, 1400000000 },
306 [EV79_CPU] = { 1000000000, 2000000000 },
307 };
308
309
310 const unsigned int deviation = 10000000;
311
312 struct percpu_struct *cpu;
313 unsigned int index;
314
315 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
316 index = cpu->type & 0xffffffff;
317
318
319 if (index >= ARRAY_SIZE(cpu_hz))
320 return cc;
321
322
323 if (cpu_hz[index].max == 0)
324 return cc;
325
326 if (cc < cpu_hz[index].min - deviation
327 || cc > cpu_hz[index].max + deviation)
328 return 0;
329
330 return cc;
331}
332
333
334
335
336
337
338
339#define CALIBRATE_LATCH 0xffff
340#define TIMEOUT_COUNT 0x100000
341
342static unsigned long __init
343calibrate_cc_with_pit(void)
344{
345 int cc, count = 0;
346
347
348 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
349
350
351
352
353
354
355
356
357 outb(0xb0, 0x43);
358 outb(CALIBRATE_LATCH & 0xff, 0x42);
359 outb(CALIBRATE_LATCH >> 8, 0x42);
360
361 cc = rpcc();
362 do {
363 count++;
364 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
365 cc = rpcc() - cc;
366
367
368 if (count <= 1 || count == TIMEOUT_COUNT)
369 return 0;
370
371 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
372}
373
374
375
376
377
378
379static unsigned long __init
380rpcc_after_update_in_progress(void)
381{
382 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
383 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
384
385 return rpcc();
386}
387
388void __init
389time_init(void)
390{
391 unsigned int cc1, cc2;
392 unsigned long cycle_freq, tolerance;
393 long diff;
394
395 if (alpha_using_qemu) {
396 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
397 init_qemu_clockevent();
398
399 timer_irqaction.handler = qemu_timer_interrupt;
400 init_rtc_irq();
401 return;
402 }
403
404
405 if (!est_cycle_freq)
406 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
407
408 cc1 = rpcc();
409
410
411 if (!est_cycle_freq) {
412 cc1 = rpcc_after_update_in_progress();
413 cc2 = rpcc_after_update_in_progress();
414 est_cycle_freq = validate_cc_value(cc2 - cc1);
415 cc1 = cc2;
416 }
417
418 cycle_freq = hwrpb->cycle_freq;
419 if (est_cycle_freq) {
420
421
422 tolerance = cycle_freq / 4000;
423 diff = cycle_freq - est_cycle_freq;
424 if (diff < 0)
425 diff = -diff;
426 if ((unsigned long)diff > tolerance) {
427 cycle_freq = est_cycle_freq;
428 printk("HWRPB cycle frequency bogus. "
429 "Estimated %lu Hz\n", cycle_freq);
430 } else {
431 est_cycle_freq = 0;
432 }
433 } else if (! validate_cc_value (cycle_freq)) {
434 printk("HWRPB cycle frequency bogus, "
435 "and unable to estimate a proper value!\n");
436 }
437
438
439#ifndef CONFIG_ALPHA_WTINT
440 if (hwrpb->nr_processors == 1)
441 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
442#endif
443
444
445 alpha_mv.init_rtc();
446 init_rtc_clockevent();
447}
448
449
450#ifdef CONFIG_SMP
451void __init
452init_clockevent(void)
453{
454 if (alpha_using_qemu)
455 init_qemu_clockevent();
456 else
457 init_rtc_clockevent();
458}
459#endif
460