linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64        [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
  66cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  67        [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  68
  69EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  70EXPORT_SYMBOL(cpu_core_map);
  71EXPORT_SYMBOL(cpu_core_sib_map);
  72EXPORT_SYMBOL(cpu_core_sib_cache_map);
  73
  74static cpumask_t smp_commenced_mask;
  75
  76void smp_info(struct seq_file *m)
  77{
  78        int i;
  79        
  80        seq_printf(m, "State:\n");
  81        for_each_online_cpu(i)
  82                seq_printf(m, "CPU%d:\t\tonline\n", i);
  83}
  84
  85void smp_bogo(struct seq_file *m)
  86{
  87        int i;
  88        
  89        for_each_online_cpu(i)
  90                seq_printf(m,
  91                           "Cpu%dClkTck\t: %016lx\n",
  92                           i, cpu_data(i).clock_tick);
  93}
  94
  95extern void setup_sparc64_timer(void);
  96
  97static volatile unsigned long callin_flag = 0;
  98
  99void smp_callin(void)
 100{
 101        int cpuid = hard_smp_processor_id();
 102
 103        __local_per_cpu_offset = __per_cpu_offset(cpuid);
 104
 105        if (tlb_type == hypervisor)
 106                sun4v_ktsb_register();
 107
 108        __flush_tlb_all();
 109
 110        setup_sparc64_timer();
 111
 112        if (cheetah_pcache_forced_on)
 113                cheetah_enable_pcache();
 114
 115        callin_flag = 1;
 116        __asm__ __volatile__("membar #Sync\n\t"
 117                             "flush  %%g6" : : : "memory");
 118
 119        /* Clear this or we will die instantly when we
 120         * schedule back to this idler...
 121         */
 122        current_thread_info()->new_child = 0;
 123
 124        /* Attach to the address space of init_task. */
 125        atomic_inc(&init_mm.mm_count);
 126        current->active_mm = &init_mm;
 127
 128        /* inform the notifiers about the new cpu */
 129        notify_cpu_starting(cpuid);
 130
 131        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 132                rmb();
 133
 134        set_cpu_online(cpuid, true);
 135
 136        /* idle thread is expected to have preempt disabled */
 137        preempt_disable();
 138
 139        local_irq_enable();
 140
 141        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 142}
 143
 144void cpu_panic(void)
 145{
 146        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 147        panic("SMP bolixed\n");
 148}
 149
 150/* This tick register synchronization scheme is taken entirely from
 151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 152 *
 153 * The only change I've made is to rework it so that the master
 154 * initiates the synchonization instead of the slave. -DaveM
 155 */
 156
 157#define MASTER  0
 158#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 159
 160#define NUM_ROUNDS      64      /* magic value */
 161#define NUM_ITERS       5       /* likewise */
 162
 163static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 164static unsigned long go[SLAVE + 1];
 165
 166#define DEBUG_TICK_SYNC 0
 167
 168static inline long get_delta (long *rt, long *master)
 169{
 170        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 171        unsigned long tcenter, t0, t1, tm;
 172        unsigned long i;
 173
 174        for (i = 0; i < NUM_ITERS; i++) {
 175                t0 = tick_ops->get_tick();
 176                go[MASTER] = 1;
 177                membar_safe("#StoreLoad");
 178                while (!(tm = go[SLAVE]))
 179                        rmb();
 180                go[SLAVE] = 0;
 181                wmb();
 182                t1 = tick_ops->get_tick();
 183
 184                if (t1 - t0 < best_t1 - best_t0)
 185                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 186        }
 187
 188        *rt = best_t1 - best_t0;
 189        *master = best_tm - best_t0;
 190
 191        /* average best_t0 and best_t1 without overflow: */
 192        tcenter = (best_t0/2 + best_t1/2);
 193        if (best_t0 % 2 + best_t1 % 2 == 2)
 194                tcenter++;
 195        return tcenter - best_tm;
 196}
 197
 198void smp_synchronize_tick_client(void)
 199{
 200        long i, delta, adj, adjust_latency = 0, done = 0;
 201        unsigned long flags, rt, master_time_stamp;
 202#if DEBUG_TICK_SYNC
 203        struct {
 204                long rt;        /* roundtrip time */
 205                long master;    /* master's timestamp */
 206                long diff;      /* difference between midpoint and master's timestamp */
 207                long lat;       /* estimate of itc adjustment latency */
 208        } t[NUM_ROUNDS];
 209#endif
 210
 211        go[MASTER] = 1;
 212
 213        while (go[MASTER])
 214                rmb();
 215
 216        local_irq_save(flags);
 217        {
 218                for (i = 0; i < NUM_ROUNDS; i++) {
 219                        delta = get_delta(&rt, &master_time_stamp);
 220                        if (delta == 0)
 221                                done = 1;       /* let's lock on to this... */
 222
 223                        if (!done) {
 224                                if (i > 0) {
 225                                        adjust_latency += -delta;
 226                                        adj = -delta + adjust_latency/4;
 227                                } else
 228                                        adj = -delta;
 229
 230                                tick_ops->add_tick(adj);
 231                        }
 232#if DEBUG_TICK_SYNC
 233                        t[i].rt = rt;
 234                        t[i].master = master_time_stamp;
 235                        t[i].diff = delta;
 236                        t[i].lat = adjust_latency/4;
 237#endif
 238                }
 239        }
 240        local_irq_restore(flags);
 241
 242#if DEBUG_TICK_SYNC
 243        for (i = 0; i < NUM_ROUNDS; i++)
 244                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 245                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 246#endif
 247
 248        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 249               "(last diff %ld cycles, maxerr %lu cycles)\n",
 250               smp_processor_id(), delta, rt);
 251}
 252
 253static void smp_start_sync_tick_client(int cpu);
 254
 255static void smp_synchronize_one_tick(int cpu)
 256{
 257        unsigned long flags, i;
 258
 259        go[MASTER] = 0;
 260
 261        smp_start_sync_tick_client(cpu);
 262
 263        /* wait for client to be ready */
 264        while (!go[MASTER])
 265                rmb();
 266
 267        /* now let the client proceed into his loop */
 268        go[MASTER] = 0;
 269        membar_safe("#StoreLoad");
 270
 271        raw_spin_lock_irqsave(&itc_sync_lock, flags);
 272        {
 273                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 274                        while (!go[MASTER])
 275                                rmb();
 276                        go[MASTER] = 0;
 277                        wmb();
 278                        go[SLAVE] = tick_ops->get_tick();
 279                        membar_safe("#StoreLoad");
 280                }
 281        }
 282        raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 283}
 284
 285#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 286static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 287                                void **descrp)
 288{
 289        extern unsigned long sparc64_ttable_tl0;
 290        extern unsigned long kern_locked_tte_data;
 291        struct hvtramp_descr *hdesc;
 292        unsigned long trampoline_ra;
 293        struct trap_per_cpu *tb;
 294        u64 tte_vaddr, tte_data;
 295        unsigned long hv_err;
 296        int i;
 297
 298        hdesc = kzalloc(sizeof(*hdesc) +
 299                        (sizeof(struct hvtramp_mapping) *
 300                         num_kernel_image_mappings - 1),
 301                        GFP_KERNEL);
 302        if (!hdesc) {
 303                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304                       "hvtramp_descr.\n");
 305                return;
 306        }
 307        *descrp = hdesc;
 308
 309        hdesc->cpu = cpu;
 310        hdesc->num_mappings = num_kernel_image_mappings;
 311
 312        tb = &trap_block[cpu];
 313
 314        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317        hdesc->thread_reg = thread_reg;
 318
 319        tte_vaddr = (unsigned long) KERNBASE;
 320        tte_data = kern_locked_tte_data;
 321
 322        for (i = 0; i < hdesc->num_mappings; i++) {
 323                hdesc->maps[i].vaddr = tte_vaddr;
 324                hdesc->maps[i].tte   = tte_data;
 325                tte_vaddr += 0x400000;
 326                tte_data  += 0x400000;
 327        }
 328
 329        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333                                 __pa(hdesc));
 334        if (hv_err)
 335                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336                       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 349{
 350        unsigned long entry =
 351                (unsigned long)(&sparc64_cpu_startup);
 352        unsigned long cookie =
 353                (unsigned long)(&cpu_new_thread);
 354        void *descr = NULL;
 355        int timeout, ret;
 356
 357        callin_flag = 0;
 358        cpu_new_thread = task_thread_info(idle);
 359
 360        if (tlb_type == hypervisor) {
 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 362                if (ldom_domaining_enabled)
 363                        ldom_startcpu_cpuid(cpu,
 364                                            (unsigned long) cpu_new_thread,
 365                                            &descr);
 366                else
 367#endif
 368                        prom_startcpu_cpuid(cpu, entry, cookie);
 369        } else {
 370                struct device_node *dp = of_find_node_by_cpuid(cpu);
 371
 372                prom_startcpu(dp->phandle, entry, cookie);
 373        }
 374
 375        for (timeout = 0; timeout < 50000; timeout++) {
 376                if (callin_flag)
 377                        break;
 378                udelay(100);
 379        }
 380
 381        if (callin_flag) {
 382                ret = 0;
 383        } else {
 384                printk("Processor %d is stuck.\n", cpu);
 385                ret = -ENODEV;
 386        }
 387        cpu_new_thread = NULL;
 388
 389        kfree(descr);
 390
 391        return ret;
 392}
 393
 394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 395{
 396        u64 result, target;
 397        int stuck, tmp;
 398
 399        if (this_is_starfire) {
 400                /* map to real upaid */
 401                cpu = (((cpu & 0x3c) << 1) |
 402                        ((cpu & 0x40) >> 4) |
 403                        (cpu & 0x3));
 404        }
 405
 406        target = (cpu << 14) | 0x70;
 407again:
 408        /* Ok, this is the real Spitfire Errata #54.
 409         * One must read back from a UDB internal register
 410         * after writes to the UDB interrupt dispatch, but
 411         * before the membar Sync for that write.
 412         * So we use the high UDB control register (ASI 0x7f,
 413         * ADDR 0x20) for the dummy read. -DaveM
 414         */
 415        tmp = 0x40;
 416        __asm__ __volatile__(
 417        "wrpr   %1, %2, %%pstate\n\t"
 418        "stxa   %4, [%0] %3\n\t"
 419        "stxa   %5, [%0+%8] %3\n\t"
 420        "add    %0, %8, %0\n\t"
 421        "stxa   %6, [%0+%8] %3\n\t"
 422        "membar #Sync\n\t"
 423        "stxa   %%g0, [%7] %3\n\t"
 424        "membar #Sync\n\t"
 425        "mov    0x20, %%g1\n\t"
 426        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 427        "membar #Sync"
 428        : "=r" (tmp)
 429        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 430          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 431          "r" (0x10), "0" (tmp)
 432        : "g1");
 433
 434        /* NOTE: PSTATE_IE is still clear. */
 435        stuck = 100000;
 436        do {
 437                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 438                        : "=r" (result)
 439                        : "i" (ASI_INTR_DISPATCH_STAT));
 440                if (result == 0) {
 441                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442                                             : : "r" (pstate));
 443                        return;
 444                }
 445                stuck -= 1;
 446                if (stuck == 0)
 447                        break;
 448        } while (result & 0x1);
 449        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 450                             : : "r" (pstate));
 451        if (stuck == 0) {
 452                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 453                       smp_processor_id(), result);
 454        } else {
 455                udelay(2);
 456                goto again;
 457        }
 458}
 459
 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 461{
 462        u64 *mondo, data0, data1, data2;
 463        u16 *cpu_list;
 464        u64 pstate;
 465        int i;
 466
 467        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 468        cpu_list = __va(tb->cpu_list_pa);
 469        mondo = __va(tb->cpu_mondo_block_pa);
 470        data0 = mondo[0];
 471        data1 = mondo[1];
 472        data2 = mondo[2];
 473        for (i = 0; i < cnt; i++)
 474                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 475}
 476
 477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 478 * packet, but we have no use for that.  However we do take advantage of
 479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 480 */
 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 482{
 483        int nack_busy_id, is_jbus, need_more;
 484        u64 *mondo, pstate, ver, busy_mask;
 485        u16 *cpu_list;
 486
 487        cpu_list = __va(tb->cpu_list_pa);
 488        mondo = __va(tb->cpu_mondo_block_pa);
 489
 490        /* Unfortunately, someone at Sun had the brilliant idea to make the
 491         * busy/nack fields hard-coded by ITID number for this Ultra-III
 492         * derivative processor.
 493         */
 494        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 495        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 496                   (ver >> 32) == __SERRANO_ID);
 497
 498        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 499
 500retry:
 501        need_more = 0;
 502        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 503                             : : "r" (pstate), "i" (PSTATE_IE));
 504
 505        /* Setup the dispatch data registers. */
 506        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 507                             "stxa      %1, [%4] %6\n\t"
 508                             "stxa      %2, [%5] %6\n\t"
 509                             "membar    #Sync\n\t"
 510                             : /* no outputs */
 511                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 512                               "r" (0x40), "r" (0x50), "r" (0x60),
 513                               "i" (ASI_INTR_W));
 514
 515        nack_busy_id = 0;
 516        busy_mask = 0;
 517        {
 518                int i;
 519
 520                for (i = 0; i < cnt; i++) {
 521                        u64 target, nr;
 522
 523                        nr = cpu_list[i];
 524                        if (nr == 0xffff)
 525                                continue;
 526
 527                        target = (nr << 14) | 0x70;
 528                        if (is_jbus) {
 529                                busy_mask |= (0x1UL << (nr * 2));
 530                        } else {
 531                                target |= (nack_busy_id << 24);
 532                                busy_mask |= (0x1UL <<
 533                                              (nack_busy_id * 2));
 534                        }
 535                        __asm__ __volatile__(
 536                                "stxa   %%g0, [%0] %1\n\t"
 537                                "membar #Sync\n\t"
 538                                : /* no outputs */
 539                                : "r" (target), "i" (ASI_INTR_W));
 540                        nack_busy_id++;
 541                        if (nack_busy_id == 32) {
 542                                need_more = 1;
 543                                break;
 544                        }
 545                }
 546        }
 547
 548        /* Now, poll for completion. */
 549        {
 550                u64 dispatch_stat, nack_mask;
 551                long stuck;
 552
 553                stuck = 100000 * nack_busy_id;
 554                nack_mask = busy_mask << 1;
 555                do {
 556                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 557                                             : "=r" (dispatch_stat)
 558                                             : "i" (ASI_INTR_DISPATCH_STAT));
 559                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 560                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 561                                                     : : "r" (pstate));
 562                                if (unlikely(need_more)) {
 563                                        int i, this_cnt = 0;
 564                                        for (i = 0; i < cnt; i++) {
 565                                                if (cpu_list[i] == 0xffff)
 566                                                        continue;
 567                                                cpu_list[i] = 0xffff;
 568                                                this_cnt++;
 569                                                if (this_cnt == 32)
 570                                                        break;
 571                                        }
 572                                        goto retry;
 573                                }
 574                                return;
 575                        }
 576                        if (!--stuck)
 577                                break;
 578                } while (dispatch_stat & busy_mask);
 579
 580                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 581                                     : : "r" (pstate));
 582
 583                if (dispatch_stat & busy_mask) {
 584                        /* Busy bits will not clear, continue instead
 585                         * of freezing up on this cpu.
 586                         */
 587                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 588                               smp_processor_id(), dispatch_stat);
 589                } else {
 590                        int i, this_busy_nack = 0;
 591
 592                        /* Delay some random time with interrupts enabled
 593                         * to prevent deadlock.
 594                         */
 595                        udelay(2 * nack_busy_id);
 596
 597                        /* Clear out the mask bits for cpus which did not
 598                         * NACK us.
 599                         */
 600                        for (i = 0; i < cnt; i++) {
 601                                u64 check_mask, nr;
 602
 603                                nr = cpu_list[i];
 604                                if (nr == 0xffff)
 605                                        continue;
 606
 607                                if (is_jbus)
 608                                        check_mask = (0x2UL << (2*nr));
 609                                else
 610                                        check_mask = (0x2UL <<
 611                                                      this_busy_nack);
 612                                if ((dispatch_stat & check_mask) == 0)
 613                                        cpu_list[i] = 0xffff;
 614                                this_busy_nack += 2;
 615                                if (this_busy_nack == 64)
 616                                        break;
 617                        }
 618
 619                        goto retry;
 620                }
 621        }
 622}
 623
 624/* Multi-cpu list version.  */
 625static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 626{
 627        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 628        unsigned long status;
 629        u16 *cpu_list;
 630
 631        this_cpu = smp_processor_id();
 632
 633        cpu_list = __va(tb->cpu_list_pa);
 634
 635        saw_cpu_error = 0;
 636        retries = 0;
 637        prev_sent = 0;
 638        do {
 639                int forward_progress, n_sent;
 640
 641                status = sun4v_cpu_mondo_send(cnt,
 642                                              tb->cpu_list_pa,
 643                                              tb->cpu_mondo_block_pa);
 644
 645                /* HV_EOK means all cpus received the xcall, we're done.  */
 646                if (likely(status == HV_EOK))
 647                        break;
 648
 649                /* First, see if we made any forward progress.
 650                 *
 651                 * The hypervisor indicates successful sends by setting
 652                 * cpu list entries to the value 0xffff.
 653                 */
 654                n_sent = 0;
 655                for (i = 0; i < cnt; i++) {
 656                        if (likely(cpu_list[i] == 0xffff))
 657                                n_sent++;
 658                }
 659
 660                forward_progress = 0;
 661                if (n_sent > prev_sent)
 662                        forward_progress = 1;
 663
 664                prev_sent = n_sent;
 665
 666                /* If we get a HV_ECPUERROR, then one or more of the cpus
 667                 * in the list are in error state.  Use the cpu_state()
 668                 * hypervisor call to find out which cpus are in error state.
 669                 */
 670                if (unlikely(status == HV_ECPUERROR)) {
 671                        for (i = 0; i < cnt; i++) {
 672                                long err;
 673                                u16 cpu;
 674
 675                                cpu = cpu_list[i];
 676                                if (cpu == 0xffff)
 677                                        continue;
 678
 679                                err = sun4v_cpu_state(cpu);
 680                                if (err == HV_CPU_STATE_ERROR) {
 681                                        saw_cpu_error = (cpu + 1);
 682                                        cpu_list[i] = 0xffff;
 683                                }
 684                        }
 685                } else if (unlikely(status != HV_EWOULDBLOCK))
 686                        goto fatal_mondo_error;
 687
 688                /* Don't bother rewriting the CPU list, just leave the
 689                 * 0xffff and non-0xffff entries in there and the
 690                 * hypervisor will do the right thing.
 691                 *
 692                 * Only advance timeout state if we didn't make any
 693                 * forward progress.
 694                 */
 695                if (unlikely(!forward_progress)) {
 696                        if (unlikely(++retries > 10000))
 697                                goto fatal_mondo_timeout;
 698
 699                        /* Delay a little bit to let other cpus catch up
 700                         * on their cpu mondo queue work.
 701                         */
 702                        udelay(2 * cnt);
 703                }
 704        } while (1);
 705
 706        if (unlikely(saw_cpu_error))
 707                goto fatal_mondo_cpu_error;
 708
 709        return;
 710
 711fatal_mondo_cpu_error:
 712        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 713               "(including %d) were in error state\n",
 714               this_cpu, saw_cpu_error - 1);
 715        return;
 716
 717fatal_mondo_timeout:
 718        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 719               " progress after %d retries.\n",
 720               this_cpu, retries);
 721        goto dump_cpu_list_and_out;
 722
 723fatal_mondo_error:
 724        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 725               this_cpu, status);
 726        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 727               "mondo_block_pa(%lx)\n",
 728               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 729
 730dump_cpu_list_and_out:
 731        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 732        for (i = 0; i < cnt; i++)
 733                printk("%u ", cpu_list[i]);
 734        printk("]\n");
 735}
 736
 737static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 738
 739static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 740{
 741        struct trap_per_cpu *tb;
 742        int this_cpu, i, cnt;
 743        unsigned long flags;
 744        u16 *cpu_list;
 745        u64 *mondo;
 746
 747        /* We have to do this whole thing with interrupts fully disabled.
 748         * Otherwise if we send an xcall from interrupt context it will
 749         * corrupt both our mondo block and cpu list state.
 750         *
 751         * One consequence of this is that we cannot use timeout mechanisms
 752         * that depend upon interrupts being delivered locally.  So, for
 753         * example, we cannot sample jiffies and expect it to advance.
 754         *
 755         * Fortunately, udelay() uses %stick/%tick so we can use that.
 756         */
 757        local_irq_save(flags);
 758
 759        this_cpu = smp_processor_id();
 760        tb = &trap_block[this_cpu];
 761
 762        mondo = __va(tb->cpu_mondo_block_pa);
 763        mondo[0] = data0;
 764        mondo[1] = data1;
 765        mondo[2] = data2;
 766        wmb();
 767
 768        cpu_list = __va(tb->cpu_list_pa);
 769
 770        /* Setup the initial cpu list.  */
 771        cnt = 0;
 772        for_each_cpu(i, mask) {
 773                if (i == this_cpu || !cpu_online(i))
 774                        continue;
 775                cpu_list[cnt++] = i;
 776        }
 777
 778        if (cnt)
 779                xcall_deliver_impl(tb, cnt);
 780
 781        local_irq_restore(flags);
 782}
 783
 784/* Send cross call to all processors mentioned in MASK_P
 785 * except self.  Really, there are only two cases currently,
 786 * "cpu_online_mask" and "mm_cpumask(mm)".
 787 */
 788static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 789{
 790        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 791
 792        xcall_deliver(data0, data1, data2, mask);
 793}
 794
 795/* Send cross call to all processors except self. */
 796static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 797{
 798        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 799}
 800
 801extern unsigned long xcall_sync_tick;
 802
 803static void smp_start_sync_tick_client(int cpu)
 804{
 805        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 806                      cpumask_of(cpu));
 807}
 808
 809extern unsigned long xcall_call_function;
 810
 811void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 812{
 813        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 814}
 815
 816extern unsigned long xcall_call_function_single;
 817
 818void arch_send_call_function_single_ipi(int cpu)
 819{
 820        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 821                      cpumask_of(cpu));
 822}
 823
 824void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 825{
 826        clear_softint(1 << irq);
 827        irq_enter();
 828        generic_smp_call_function_interrupt();
 829        irq_exit();
 830}
 831
 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 833{
 834        clear_softint(1 << irq);
 835        irq_enter();
 836        generic_smp_call_function_single_interrupt();
 837        irq_exit();
 838}
 839
 840static void tsb_sync(void *info)
 841{
 842        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 843        struct mm_struct *mm = info;
 844
 845        /* It is not valid to test "current->active_mm == mm" here.
 846         *
 847         * The value of "current" is not changed atomically with
 848         * switch_mm().  But that's OK, we just need to check the
 849         * current cpu's trap block PGD physical address.
 850         */
 851        if (tp->pgd_paddr == __pa(mm->pgd))
 852                tsb_context_switch(mm);
 853}
 854
 855void smp_tsb_sync(struct mm_struct *mm)
 856{
 857        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 858}
 859
 860extern unsigned long xcall_flush_tlb_mm;
 861extern unsigned long xcall_flush_tlb_page;
 862extern unsigned long xcall_flush_tlb_kernel_range;
 863extern unsigned long xcall_fetch_glob_regs;
 864extern unsigned long xcall_fetch_glob_pmu;
 865extern unsigned long xcall_fetch_glob_pmu_n4;
 866extern unsigned long xcall_receive_signal;
 867extern unsigned long xcall_new_mmu_context_version;
 868#ifdef CONFIG_KGDB
 869extern unsigned long xcall_kgdb_capture;
 870#endif
 871
 872#ifdef DCACHE_ALIASING_POSSIBLE
 873extern unsigned long xcall_flush_dcache_page_cheetah;
 874#endif
 875extern unsigned long xcall_flush_dcache_page_spitfire;
 876
 877static inline void __local_flush_dcache_page(struct page *page)
 878{
 879#ifdef DCACHE_ALIASING_POSSIBLE
 880        __flush_dcache_page(page_address(page),
 881                            ((tlb_type == spitfire) &&
 882                             page_mapping(page) != NULL));
 883#else
 884        if (page_mapping(page) != NULL &&
 885            tlb_type == spitfire)
 886                __flush_icache_page(__pa(page_address(page)));
 887#endif
 888}
 889
 890void smp_flush_dcache_page_impl(struct page *page, int cpu)
 891{
 892        int this_cpu;
 893
 894        if (tlb_type == hypervisor)
 895                return;
 896
 897#ifdef CONFIG_DEBUG_DCFLUSH
 898        atomic_inc(&dcpage_flushes);
 899#endif
 900
 901        this_cpu = get_cpu();
 902
 903        if (cpu == this_cpu) {
 904                __local_flush_dcache_page(page);
 905        } else if (cpu_online(cpu)) {
 906                void *pg_addr = page_address(page);
 907                u64 data0 = 0;
 908
 909                if (tlb_type == spitfire) {
 910                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 911                        if (page_mapping(page) != NULL)
 912                                data0 |= ((u64)1 << 32);
 913                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 914#ifdef DCACHE_ALIASING_POSSIBLE
 915                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 916#endif
 917                }
 918                if (data0) {
 919                        xcall_deliver(data0, __pa(pg_addr),
 920                                      (u64) pg_addr, cpumask_of(cpu));
 921#ifdef CONFIG_DEBUG_DCFLUSH
 922                        atomic_inc(&dcpage_flushes_xcall);
 923#endif
 924                }
 925        }
 926
 927        put_cpu();
 928}
 929
 930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 931{
 932        void *pg_addr;
 933        u64 data0;
 934
 935        if (tlb_type == hypervisor)
 936                return;
 937
 938        preempt_disable();
 939
 940#ifdef CONFIG_DEBUG_DCFLUSH
 941        atomic_inc(&dcpage_flushes);
 942#endif
 943        data0 = 0;
 944        pg_addr = page_address(page);
 945        if (tlb_type == spitfire) {
 946                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 947                if (page_mapping(page) != NULL)
 948                        data0 |= ((u64)1 << 32);
 949        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 950#ifdef DCACHE_ALIASING_POSSIBLE
 951                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 952#endif
 953        }
 954        if (data0) {
 955                xcall_deliver(data0, __pa(pg_addr),
 956                              (u64) pg_addr, cpu_online_mask);
 957#ifdef CONFIG_DEBUG_DCFLUSH
 958                atomic_inc(&dcpage_flushes_xcall);
 959#endif
 960        }
 961        __local_flush_dcache_page(page);
 962
 963        preempt_enable();
 964}
 965
 966void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 967{
 968        struct mm_struct *mm;
 969        unsigned long flags;
 970
 971        clear_softint(1 << irq);
 972
 973        /* See if we need to allocate a new TLB context because
 974         * the version of the one we are using is now out of date.
 975         */
 976        mm = current->active_mm;
 977        if (unlikely(!mm || (mm == &init_mm)))
 978                return;
 979
 980        spin_lock_irqsave(&mm->context.lock, flags);
 981
 982        if (unlikely(!CTX_VALID(mm->context)))
 983                get_new_mmu_context(mm);
 984
 985        spin_unlock_irqrestore(&mm->context.lock, flags);
 986
 987        load_secondary_context(mm);
 988        __flush_tlb_mm(CTX_HWBITS(mm->context),
 989                       SECONDARY_CONTEXT);
 990}
 991
 992void smp_new_mmu_context_version(void)
 993{
 994        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 995}
 996
 997#ifdef CONFIG_KGDB
 998void kgdb_roundup_cpus(unsigned long flags)
 999{
1000        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
1004void smp_fetch_global_regs(void)
1005{
1006        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007}
1008
1009void smp_fetch_global_pmu(void)
1010{
1011        if (tlb_type == hypervisor &&
1012            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014        else
1015                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016}
1017
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 *    space has (potentially) executed on, this is the heuristic
1027 *    we use to avoid doing cross calls.
1028 *
1029 *    Also, for flushing from kswapd and also for clones, we
1030 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 *    in the system, this allows us to play several games to avoid
1034 *    cross calls.
1035 *
1036 *    One invariant is that when a cpu switches to a process, and
1037 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038 *    current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041 *    cross calls when we want to flush the currently running process's
1042 *    tlb state.  This is done by clearing all cpu bits except the current
1043 *    processor's in current->mm->cpu_vm_mask and performing the
1044 *    flush locally only.  This will force any subsequent cpus which run
1045 *    this task to flush the context from the local tlb if the process
1046 *    migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 *    bullet for most cases and perform the cross call (but only to
1050 *    the cpus listed in cpu_vm_mask).
1051 *
1052 *    The performance gain from "optimizing" away the cross call for threads is
1053 *    questionable (in theory the big win for threads is the massive sharing of
1054 *    address space state across processors).
1055 */
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
1063        u32 ctx = CTX_HWBITS(mm->context);
1064        int cpu = get_cpu();
1065
1066        if (atomic_read(&mm->mm_users) == 1) {
1067                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068                goto local_flush_and_out;
1069        }
1070
1071        smp_cross_call_masked(&xcall_flush_tlb_mm,
1072                              ctx, 0, 0,
1073                              mm_cpumask(mm));
1074
1075local_flush_and_out:
1076        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078        put_cpu();
1079}
1080
1081struct tlb_pending_info {
1082        unsigned long ctx;
1083        unsigned long nr;
1084        unsigned long *vaddrs;
1085};
1086
1087static void tlb_pending_func(void *info)
1088{
1089        struct tlb_pending_info *t = info;
1090
1091        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092}
1093
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096        u32 ctx = CTX_HWBITS(mm->context);
1097        struct tlb_pending_info info;
1098        int cpu = get_cpu();
1099
1100        info.ctx = ctx;
1101        info.nr = nr;
1102        info.vaddrs = vaddrs;
1103
1104        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106        else
1107                smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108                                       &info, 1);
1109
1110        __flush_tlb_pending(ctx, nr, vaddrs);
1111
1112        put_cpu();
1113}
1114
1115void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116{
1117        unsigned long context = CTX_HWBITS(mm->context);
1118        int cpu = get_cpu();
1119
1120        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122        else
1123                smp_cross_call_masked(&xcall_flush_tlb_page,
1124                                      context, vaddr, 0,
1125                                      mm_cpumask(mm));
1126        __flush_tlb_page(context, vaddr);
1127
1128        put_cpu();
1129}
1130
1131void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132{
1133        start &= PAGE_MASK;
1134        end    = PAGE_ALIGN(end);
1135        if (start != end) {
1136                smp_cross_call(&xcall_flush_tlb_kernel_range,
1137                               0, start, end);
1138
1139                __flush_tlb_kernel_range(start, end);
1140        }
1141}
1142
1143/* CPU capture. */
1144/* #define CAPTURE_DEBUG */
1145extern unsigned long xcall_capture;
1146
1147static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149static unsigned long penguins_are_doing_time;
1150
1151void smp_capture(void)
1152{
1153        int result = atomic_add_return(1, &smp_capture_depth);
1154
1155        if (result == 1) {
1156                int ncpus = num_online_cpus();
1157
1158#ifdef CAPTURE_DEBUG
1159                printk("CPU[%d]: Sending penguins to jail...",
1160                       smp_processor_id());
1161#endif
1162                penguins_are_doing_time = 1;
1163                atomic_inc(&smp_capture_registry);
1164                smp_cross_call(&xcall_capture, 0, 0, 0);
1165                while (atomic_read(&smp_capture_registry) != ncpus)
1166                        rmb();
1167#ifdef CAPTURE_DEBUG
1168                printk("done\n");
1169#endif
1170        }
1171}
1172
1173void smp_release(void)
1174{
1175        if (atomic_dec_and_test(&smp_capture_depth)) {
1176#ifdef CAPTURE_DEBUG
1177                printk("CPU[%d]: Giving pardon to "
1178                       "imprisoned penguins\n",
1179                       smp_processor_id());
1180#endif
1181                penguins_are_doing_time = 0;
1182                membar_safe("#StoreLoad");
1183                atomic_dec(&smp_capture_registry);
1184        }
1185}
1186
1187/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1189 */
1190extern void prom_world(int);
1191
1192void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193{
1194        clear_softint(1 << irq);
1195
1196        preempt_disable();
1197
1198        __asm__ __volatile__("flushw");
1199        prom_world(1);
1200        atomic_inc(&smp_capture_registry);
1201        membar_safe("#StoreLoad");
1202        while (penguins_are_doing_time)
1203                rmb();
1204        atomic_dec(&smp_capture_registry);
1205        prom_world(0);
1206
1207        preempt_enable();
1208}
1209
1210/* /proc/profile writes can call this, don't __init it please. */
1211int setup_profiling_timer(unsigned int multiplier)
1212{
1213        return -EINVAL;
1214}
1215
1216void __init smp_prepare_cpus(unsigned int max_cpus)
1217{
1218}
1219
1220void smp_prepare_boot_cpu(void)
1221{
1222}
1223
1224void __init smp_setup_processor_id(void)
1225{
1226        if (tlb_type == spitfire)
1227                xcall_deliver_impl = spitfire_xcall_deliver;
1228        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229                xcall_deliver_impl = cheetah_xcall_deliver;
1230        else
1231                xcall_deliver_impl = hypervisor_xcall_deliver;
1232}
1233
1234void __init smp_fill_in_cpu_possible_map(void)
1235{
1236        int possible_cpus = num_possible_cpus();
1237        int i;
1238
1239        if (possible_cpus > nr_cpu_ids)
1240                possible_cpus = nr_cpu_ids;
1241
1242        for (i = 0; i < possible_cpus; i++)
1243                set_cpu_possible(i, true);
1244        for (; i < NR_CPUS; i++)
1245                set_cpu_possible(i, false);
1246}
1247
1248void smp_fill_in_sib_core_maps(void)
1249{
1250        unsigned int i;
1251
1252        for_each_present_cpu(i) {
1253                unsigned int j;
1254
1255                cpumask_clear(&cpu_core_map[i]);
1256                if (cpu_data(i).core_id == 0) {
1257                        cpumask_set_cpu(i, &cpu_core_map[i]);
1258                        continue;
1259                }
1260
1261                for_each_present_cpu(j) {
1262                        if (cpu_data(i).core_id ==
1263                            cpu_data(j).core_id)
1264                                cpumask_set_cpu(j, &cpu_core_map[i]);
1265                }
1266        }
1267
1268        for_each_present_cpu(i)  {
1269                unsigned int j;
1270
1271                for_each_present_cpu(j)  {
1272                        if (cpu_data(i).max_cache_id ==
1273                            cpu_data(j).max_cache_id)
1274                                cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275
1276                        if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277                                cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278                }
1279        }
1280
1281        for_each_present_cpu(i) {
1282                unsigned int j;
1283
1284                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285                if (cpu_data(i).proc_id == -1) {
1286                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1287                        continue;
1288                }
1289
1290                for_each_present_cpu(j) {
1291                        if (cpu_data(i).proc_id ==
1292                            cpu_data(j).proc_id)
1293                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1294                }
1295        }
1296}
1297
1298int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1299{
1300        int ret = smp_boot_one_cpu(cpu, tidle);
1301
1302        if (!ret) {
1303                cpumask_set_cpu(cpu, &smp_commenced_mask);
1304                while (!cpu_online(cpu))
1305                        mb();
1306                if (!cpu_online(cpu)) {
1307                        ret = -ENODEV;
1308                } else {
1309                        /* On SUN4V, writes to %tick and %stick are
1310                         * not allowed.
1311                         */
1312                        if (tlb_type != hypervisor)
1313                                smp_synchronize_one_tick(cpu);
1314                }
1315        }
1316        return ret;
1317}
1318
1319#ifdef CONFIG_HOTPLUG_CPU
1320void cpu_play_dead(void)
1321{
1322        int cpu = smp_processor_id();
1323        unsigned long pstate;
1324
1325        idle_task_exit();
1326
1327        if (tlb_type == hypervisor) {
1328                struct trap_per_cpu *tb = &trap_block[cpu];
1329
1330                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331                                tb->cpu_mondo_pa, 0);
1332                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333                                tb->dev_mondo_pa, 0);
1334                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335                                tb->resum_mondo_pa, 0);
1336                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337                                tb->nonresum_mondo_pa, 0);
1338        }
1339
1340        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341        membar_safe("#Sync");
1342
1343        local_irq_disable();
1344
1345        __asm__ __volatile__(
1346                "rdpr   %%pstate, %0\n\t"
1347                "wrpr   %0, %1, %%pstate"
1348                : "=r" (pstate)
1349                : "i" (PSTATE_IE));
1350
1351        while (1)
1352                barrier();
1353}
1354
1355int __cpu_disable(void)
1356{
1357        int cpu = smp_processor_id();
1358        cpuinfo_sparc *c;
1359        int i;
1360
1361        for_each_cpu(i, &cpu_core_map[cpu])
1362                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363        cpumask_clear(&cpu_core_map[cpu]);
1364
1365        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1368
1369        c = &cpu_data(cpu);
1370
1371        c->core_id = 0;
1372        c->proc_id = -1;
1373
1374        smp_wmb();
1375
1376        /* Make sure no interrupts point to this cpu.  */
1377        fixup_irqs();
1378
1379        local_irq_enable();
1380        mdelay(1);
1381        local_irq_disable();
1382
1383        set_cpu_online(cpu, false);
1384
1385        cpu_map_rebuild();
1386
1387        return 0;
1388}
1389
1390void __cpu_die(unsigned int cpu)
1391{
1392        int i;
1393
1394        for (i = 0; i < 100; i++) {
1395                smp_rmb();
1396                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1397                        break;
1398                msleep(100);
1399        }
1400        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402        } else {
1403#if defined(CONFIG_SUN_LDOMS)
1404                unsigned long hv_err;
1405                int limit = 100;
1406
1407                do {
1408                        hv_err = sun4v_cpu_stop(cpu);
1409                        if (hv_err == HV_EOK) {
1410                                set_cpu_present(cpu, false);
1411                                break;
1412                        }
1413                } while (--limit > 0);
1414                if (limit <= 0) {
1415                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416                               hv_err);
1417                }
1418#endif
1419        }
1420}
1421#endif
1422
1423void __init smp_cpus_done(unsigned int max_cpus)
1424{
1425}
1426
1427void smp_send_reschedule(int cpu)
1428{
1429        if (cpu == smp_processor_id()) {
1430                WARN_ON_ONCE(preemptible());
1431                set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432        } else {
1433                xcall_deliver((u64) &xcall_receive_signal,
1434                              0, 0, cpumask_of(cpu));
1435        }
1436}
1437
1438void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1439{
1440        clear_softint(1 << irq);
1441        scheduler_ipi();
1442}
1443
1444static void stop_this_cpu(void *dummy)
1445{
1446        prom_stopself();
1447}
1448
1449void smp_send_stop(void)
1450{
1451        int cpu;
1452
1453        if (tlb_type == hypervisor) {
1454                for_each_online_cpu(cpu) {
1455                        if (cpu == smp_processor_id())
1456                                continue;
1457#ifdef CONFIG_SUN_LDOMS
1458                        if (ldom_domaining_enabled) {
1459                                unsigned long hv_err;
1460                                hv_err = sun4v_cpu_stop(cpu);
1461                                if (hv_err)
1462                                        printk(KERN_ERR "sun4v_cpu_stop() "
1463                                               "failed err=%lu\n", hv_err);
1464                        } else
1465#endif
1466                                prom_stopcpu_cpuid(cpu);
1467                }
1468        } else
1469                smp_call_function(stop_this_cpu, NULL, 0);
1470}
1471
1472/**
1473 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474 * @cpu: cpu to allocate for
1475 * @size: size allocation in bytes
1476 * @align: alignment
1477 *
1478 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1479 * does the right thing for NUMA regardless of the current
1480 * configuration.
1481 *
1482 * RETURNS:
1483 * Pointer to the allocated area on success, NULL on failure.
1484 */
1485static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486                                        size_t align)
1487{
1488        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489#ifdef CONFIG_NEED_MULTIPLE_NODES
1490        int node = cpu_to_node(cpu);
1491        void *ptr;
1492
1493        if (!node_online(node) || !NODE_DATA(node)) {
1494                ptr = __alloc_bootmem(size, align, goal);
1495                pr_info("cpu %d has no node %d or node-local memory\n",
1496                        cpu, node);
1497                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498                         cpu, size, __pa(ptr));
1499        } else {
1500                ptr = __alloc_bootmem_node(NODE_DATA(node),
1501                                           size, align, goal);
1502                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503                         "%016lx\n", cpu, size, node, __pa(ptr));
1504        }
1505        return ptr;
1506#else
1507        return __alloc_bootmem(size, align, goal);
1508#endif
1509}
1510
1511static void __init pcpu_free_bootmem(void *ptr, size_t size)
1512{
1513        free_bootmem(__pa(ptr), size);
1514}
1515
1516static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1517{
1518        if (cpu_to_node(from) == cpu_to_node(to))
1519                return LOCAL_DISTANCE;
1520        else
1521                return REMOTE_DISTANCE;
1522}
1523
1524static void __init pcpu_populate_pte(unsigned long addr)
1525{
1526        pgd_t *pgd = pgd_offset_k(addr);
1527        pud_t *pud;
1528        pmd_t *pmd;
1529
1530        if (pgd_none(*pgd)) {
1531                pud_t *new;
1532
1533                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534                pgd_populate(&init_mm, pgd, new);
1535        }
1536
1537        pud = pud_offset(pgd, addr);
1538        if (pud_none(*pud)) {
1539                pmd_t *new;
1540
1541                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542                pud_populate(&init_mm, pud, new);
1543        }
1544
1545        pmd = pmd_offset(pud, addr);
1546        if (!pmd_present(*pmd)) {
1547                pte_t *new;
1548
1549                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550                pmd_populate_kernel(&init_mm, pmd, new);
1551        }
1552}
1553
1554void __init setup_per_cpu_areas(void)
1555{
1556        unsigned long delta;
1557        unsigned int cpu;
1558        int rc = -EINVAL;
1559
1560        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563                                            pcpu_cpu_distance,
1564                                            pcpu_alloc_bootmem,
1565                                            pcpu_free_bootmem);
1566                if (rc)
1567                        pr_warning("PERCPU: %s allocator failed (%d), "
1568                                   "falling back to page size\n",
1569                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1570        }
1571        if (rc < 0)
1572                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573                                           pcpu_alloc_bootmem,
1574                                           pcpu_free_bootmem,
1575                                           pcpu_populate_pte);
1576        if (rc < 0)
1577                panic("cannot initialize percpu area (err=%d)", rc);
1578
1579        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1580        for_each_possible_cpu(cpu)
1581                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1582
1583        /* Setup %g5 for the boot cpu.  */
1584        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1585
1586        of_fill_in_cpu_data();
1587        if (tlb_type == hypervisor)
1588                mdesc_fill_in_cpu_data(cpu_all_mask);
1589}
1590