linux/arch/x86/crypto/sha512-avx-asm.S
<<
>>
Prefs
   1########################################################################
   2# Implement fast SHA-512 with AVX instructions. (x86_64)
   3#
   4# Copyright (C) 2013 Intel Corporation.
   5#
   6# Authors:
   7#     James Guilford <james.guilford@intel.com>
   8#     Kirk Yap <kirk.s.yap@intel.com>
   9#     David Cote <david.m.cote@intel.com>
  10#     Tim Chen <tim.c.chen@linux.intel.com>
  11#
  12# This software is available to you under a choice of one of two
  13# licenses.  You may choose to be licensed under the terms of the GNU
  14# General Public License (GPL) Version 2, available from the file
  15# COPYING in the main directory of this source tree, or the
  16# OpenIB.org BSD license below:
  17#
  18#     Redistribution and use in source and binary forms, with or
  19#     without modification, are permitted provided that the following
  20#     conditions are met:
  21#
  22#      - Redistributions of source code must retain the above
  23#        copyright notice, this list of conditions and the following
  24#        disclaimer.
  25#
  26#      - Redistributions in binary form must reproduce the above
  27#        copyright notice, this list of conditions and the following
  28#        disclaimer in the documentation and/or other materials
  29#        provided with the distribution.
  30#
  31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38# SOFTWARE.
  39#
  40########################################################################
  41#
  42# This code is described in an Intel White-Paper:
  43# "Fast SHA-512 Implementations on Intel Architecture Processors"
  44#
  45# To find it, surf to http://www.intel.com/p/en_US/embedded
  46# and search for that title.
  47#
  48########################################################################
  49
  50#ifdef CONFIG_AS_AVX
  51#include <linux/linkage.h>
  52
  53.text
  54
  55# Virtual Registers
  56# ARG1
  57digest  = %rdi
  58# ARG2
  59msg     = %rsi
  60# ARG3
  61msglen  = %rdx
  62T1      = %rcx
  63T2      = %r8
  64a_64    = %r9
  65b_64    = %r10
  66c_64    = %r11
  67d_64    = %r12
  68e_64    = %r13
  69f_64    = %r14
  70g_64    = %r15
  71h_64    = %rbx
  72tmp0    = %rax
  73
  74# Local variables (stack frame)
  75
  76# Message Schedule
  77W_SIZE = 80*8
  78# W[t] + K[t] | W[t+1] + K[t+1]
  79WK_SIZE = 2*8
  80RSPSAVE_SIZE = 1*8
  81GPRSAVE_SIZE = 5*8
  82
  83frame_W = 0
  84frame_WK = frame_W + W_SIZE
  85frame_RSPSAVE = frame_WK + WK_SIZE
  86frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  87frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  88
  89# Useful QWORD "arrays" for simpler memory references
  90# MSG, DIGEST, K_t, W_t are arrays
  91# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  92
  93# Input message (arg1)
  94#define MSG(i)    8*i(msg)
  95
  96# Output Digest (arg2)
  97#define DIGEST(i) 8*i(digest)
  98
  99# SHA Constants (static mem)
 100#define K_t(i)    8*i+K512(%rip)
 101
 102# Message Schedule (stack frame)
 103#define W_t(i)    8*i+frame_W(%rsp)
 104
 105# W[t]+K[t] (stack frame)
 106#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
 107
 108.macro RotateState
 109        # Rotate symbols a..h right
 110        TMP   = h_64
 111        h_64  = g_64
 112        g_64  = f_64
 113        f_64  = e_64
 114        e_64  = d_64
 115        d_64  = c_64
 116        c_64  = b_64
 117        b_64  = a_64
 118        a_64  = TMP
 119.endm
 120
 121.macro RORQ p1 p2
 122        # shld is faster than ror on Sandybridge
 123        shld    $(64-\p2), \p1, \p1
 124.endm
 125
 126.macro SHA512_Round rnd
 127        # Compute Round %%t
 128        mov     f_64, T1          # T1 = f
 129        mov     e_64, tmp0        # tmp = e
 130        xor     g_64, T1          # T1 = f ^ g
 131        RORQ    tmp0, 23   # 41    # tmp = e ror 23
 132        and     e_64, T1          # T1 = (f ^ g) & e
 133        xor     e_64, tmp0        # tmp = (e ror 23) ^ e
 134        xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
 135        idx = \rnd
 136        add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
 137        RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
 138        xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
 139        mov     a_64, T2          # T2 = a
 140        add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
 141        RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
 142        add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
 143        mov     a_64, tmp0        # tmp = a
 144        xor     c_64, T2          # T2 = a ^ c
 145        and     c_64, tmp0        # tmp = a & c
 146        and     b_64, T2          # T2 = (a ^ c) & b
 147        xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
 148        mov     a_64, tmp0        # tmp = a
 149        RORQ    tmp0, 5  # 39     # tmp = a ror 5
 150        xor     a_64, tmp0        # tmp = (a ror 5) ^ a
 151        add     T1, d_64          # e(next_state) = d + T1
 152        RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
 153        xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
 154        lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
 155        RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
 156        add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
 157        RotateState
 158.endm
 159
 160.macro SHA512_2Sched_2Round_avx rnd
 161        # Compute rounds t-2 and t-1
 162        # Compute message schedule QWORDS t and t+1
 163
 164        #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
 165        # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
 166        # scheduler.
 167        #   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
 168        # They are then added to their respective SHA512 constants at
 169        # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
 170        #   For brievity, the comments following vectored instructions only refer to
 171        # the first of a pair of QWORDS.
 172        # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
 173        #   The computation of the message schedule and the rounds are tightly
 174        # stitched to take advantage of instruction-level parallelism.
 175
 176        idx = \rnd - 2
 177        vmovdqa W_t(idx), %xmm4         # XMM4 = W[t-2]
 178        idx = \rnd - 15
 179        vmovdqu W_t(idx), %xmm5         # XMM5 = W[t-15]
 180        mov     f_64, T1
 181        vpsrlq  $61, %xmm4, %xmm0       # XMM0 = W[t-2]>>61
 182        mov     e_64, tmp0
 183        vpsrlq  $1, %xmm5, %xmm6        # XMM6 = W[t-15]>>1
 184        xor     g_64, T1
 185        RORQ    tmp0, 23 # 41
 186        vpsrlq  $19, %xmm4, %xmm1       # XMM1 = W[t-2]>>19
 187        and     e_64, T1
 188        xor     e_64, tmp0
 189        vpxor   %xmm1, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
 190        xor     g_64, T1
 191        idx = \rnd
 192        add     WK_2(idx), T1#
 193        vpsrlq  $8, %xmm5, %xmm7        # XMM7 = W[t-15]>>8
 194        RORQ    tmp0, 4 # 18
 195        vpsrlq  $6, %xmm4, %xmm2        # XMM2 = W[t-2]>>6
 196        xor     e_64, tmp0
 197        mov     a_64, T2
 198        add     h_64, T1
 199        vpxor   %xmm7, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
 200        RORQ    tmp0, 14 # 14
 201        add     tmp0, T1
 202        vpsrlq  $7, %xmm5, %xmm8        # XMM8 = W[t-15]>>7
 203        mov     a_64, tmp0
 204        xor     c_64, T2
 205        vpsllq  $(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
 206        and     c_64, tmp0
 207        and     b_64, T2
 208        vpxor   %xmm3, %xmm2, %xmm2     # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
 209        xor     tmp0, T2
 210        mov     a_64, tmp0
 211        vpsllq  $(64-1), %xmm5, %xmm9   # XMM9 = W[t-15]<<63
 212        RORQ    tmp0, 5 # 39
 213        vpxor   %xmm9, %xmm8, %xmm8     # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
 214        xor     a_64, tmp0
 215        add     T1, d_64
 216        RORQ    tmp0, 6 # 34
 217        xor     a_64, tmp0
 218        vpxor   %xmm8, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
 219                                        #  W[t-15]>>7 ^ W[t-15]<<63
 220        lea     (T1, T2), h_64
 221        RORQ    tmp0, 28 # 28
 222        vpsllq  $(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
 223        add     tmp0, h_64
 224        RotateState
 225        vpxor   %xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
 226                                        #        W[t-2]<<25
 227        mov     f_64, T1
 228        vpxor   %xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
 229        mov     e_64, tmp0
 230        xor     g_64, T1
 231        idx = \rnd - 16
 232        vpaddq  W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
 233        idx = \rnd - 7
 234        vmovdqu W_t(idx), %xmm1         # XMM1 = W[t-7]
 235        RORQ    tmp0, 23 # 41
 236        and     e_64, T1
 237        xor     e_64, tmp0
 238        xor     g_64, T1
 239        vpsllq  $(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
 240        idx = \rnd + 1
 241        add     WK_2(idx), T1
 242        vpxor   %xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
 243        RORQ    tmp0, 4 # 18
 244        vpaddq  %xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
 245        xor     e_64, tmp0
 246        vpaddq  %xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
 247                                        #               s0(W[t-15]) + W[t-16]
 248        mov     a_64, T2
 249        add     h_64, T1
 250        RORQ    tmp0, 14 # 14
 251        add     tmp0, T1
 252        idx = \rnd
 253        vmovdqa %xmm0, W_t(idx)         # Store W[t]
 254        vpaddq  K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
 255        vmovdqa %xmm0, WK_2(idx)        # Store W[t]+K[t] for next rounds
 256        mov     a_64, tmp0
 257        xor     c_64, T2
 258        and     c_64, tmp0
 259        and     b_64, T2
 260        xor     tmp0, T2
 261        mov     a_64, tmp0
 262        RORQ    tmp0, 5 # 39
 263        xor     a_64, tmp0
 264        add     T1, d_64
 265        RORQ    tmp0, 6 # 34
 266        xor     a_64, tmp0
 267        lea     (T1, T2), h_64
 268        RORQ    tmp0, 28 # 28
 269        add     tmp0, h_64
 270        RotateState
 271.endm
 272
 273########################################################################
 274# void sha512_transform_avx(void* D, const void* M, u64 L)
 275# Purpose: Updates the SHA512 digest stored at D with the message stored in M.
 276# The size of the message pointed to by M must be an integer multiple of SHA512
 277# message blocks.
 278# L is the message length in SHA512 blocks
 279########################################################################
 280ENTRY(sha512_transform_avx)
 281        cmp $0, msglen
 282        je nowork
 283
 284        # Allocate Stack Space
 285        mov     %rsp, %rax
 286        sub     $frame_size, %rsp
 287        and     $~(0x20 - 1), %rsp
 288        mov     %rax, frame_RSPSAVE(%rsp)
 289
 290        # Save GPRs
 291        mov     %rbx, frame_GPRSAVE(%rsp)
 292        mov     %r12, frame_GPRSAVE +8*1(%rsp)
 293        mov     %r13, frame_GPRSAVE +8*2(%rsp)
 294        mov     %r14, frame_GPRSAVE +8*3(%rsp)
 295        mov     %r15, frame_GPRSAVE +8*4(%rsp)
 296
 297updateblock:
 298
 299        # Load state variables
 300        mov     DIGEST(0), a_64
 301        mov     DIGEST(1), b_64
 302        mov     DIGEST(2), c_64
 303        mov     DIGEST(3), d_64
 304        mov     DIGEST(4), e_64
 305        mov     DIGEST(5), f_64
 306        mov     DIGEST(6), g_64
 307        mov     DIGEST(7), h_64
 308
 309        t = 0
 310        .rept 80/2 + 1
 311        # (80 rounds) / (2 rounds/iteration) + (1 iteration)
 312        # +1 iteration because the scheduler leads hashing by 1 iteration
 313                .if t < 2
 314                        # BSWAP 2 QWORDS
 315                        vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
 316                        vmovdqu  MSG(t), %xmm0
 317                        vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
 318                        vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
 319                        vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
 320                        vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
 321                .elseif t < 16
 322                        # BSWAP 2 QWORDS# Compute 2 Rounds
 323                        vmovdqu  MSG(t), %xmm0
 324                        vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
 325                        SHA512_Round t-2    # Round t-2
 326                        vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
 327                        vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
 328                        SHA512_Round t-1    # Round t-1
 329                        vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
 330                .elseif t < 79
 331                        # Schedule 2 QWORDS# Compute 2 Rounds
 332                        SHA512_2Sched_2Round_avx t
 333                .else
 334                        # Compute 2 Rounds
 335                        SHA512_Round t-2
 336                        SHA512_Round t-1
 337                .endif
 338                t = t+2
 339        .endr
 340
 341        # Update digest
 342        add     a_64, DIGEST(0)
 343        add     b_64, DIGEST(1)
 344        add     c_64, DIGEST(2)
 345        add     d_64, DIGEST(3)
 346        add     e_64, DIGEST(4)
 347        add     f_64, DIGEST(5)
 348        add     g_64, DIGEST(6)
 349        add     h_64, DIGEST(7)
 350
 351        # Advance to next message block
 352        add     $16*8, msg
 353        dec     msglen
 354        jnz     updateblock
 355
 356        # Restore GPRs
 357        mov     frame_GPRSAVE(%rsp),      %rbx
 358        mov     frame_GPRSAVE +8*1(%rsp), %r12
 359        mov     frame_GPRSAVE +8*2(%rsp), %r13
 360        mov     frame_GPRSAVE +8*3(%rsp), %r14
 361        mov     frame_GPRSAVE +8*4(%rsp), %r15
 362
 363        # Restore Stack Pointer
 364        mov     frame_RSPSAVE(%rsp), %rsp
 365
 366nowork:
 367        ret
 368ENDPROC(sha512_transform_avx)
 369
 370########################################################################
 371### Binary Data
 372
 373.data
 374
 375.align 16
 376
 377# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
 378XMM_QWORD_BSWAP:
 379        .octa 0x08090a0b0c0d0e0f0001020304050607
 380
 381# K[t] used in SHA512 hashing
 382K512:
 383        .quad 0x428a2f98d728ae22,0x7137449123ef65cd
 384        .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
 385        .quad 0x3956c25bf348b538,0x59f111f1b605d019
 386        .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
 387        .quad 0xd807aa98a3030242,0x12835b0145706fbe
 388        .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
 389        .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
 390        .quad 0x9bdc06a725c71235,0xc19bf174cf692694
 391        .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
 392        .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
 393        .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
 394        .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
 395        .quad 0x983e5152ee66dfab,0xa831c66d2db43210
 396        .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
 397        .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
 398        .quad 0x06ca6351e003826f,0x142929670a0e6e70
 399        .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
 400        .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
 401        .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
 402        .quad 0x81c2c92e47edaee6,0x92722c851482353b
 403        .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
 404        .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
 405        .quad 0xd192e819d6ef5218,0xd69906245565a910
 406        .quad 0xf40e35855771202a,0x106aa07032bbd1b8
 407        .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
 408        .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
 409        .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
 410        .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
 411        .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
 412        .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
 413        .quad 0x90befffa23631e28,0xa4506cebde82bde9
 414        .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
 415        .quad 0xca273eceea26619c,0xd186b8c721c0c207
 416        .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
 417        .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
 418        .quad 0x113f9804bef90dae,0x1b710b35131c471b
 419        .quad 0x28db77f523047d84,0x32caab7b40c72493
 420        .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
 421        .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
 422        .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
 423#endif
 424