linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/export.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
  25#include <asm/apic.h>
  26#include <asm/intel-family.h>
  27
  28unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  29EXPORT_SYMBOL(cpu_khz);
  30
  31unsigned int __read_mostly tsc_khz;
  32EXPORT_SYMBOL(tsc_khz);
  33
  34/*
  35 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  36 */
  37static int __read_mostly tsc_unstable;
  38
  39/* native_sched_clock() is called before tsc_init(), so
  40   we must start with the TSC soft disabled to prevent
  41   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  42static int __read_mostly tsc_disabled = -1;
  43
  44static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  45
  46int tsc_clocksource_reliable;
  47
  48static u32 art_to_tsc_numerator;
  49static u32 art_to_tsc_denominator;
  50static u64 art_to_tsc_offset;
  51struct clocksource *art_related_clocksource;
  52
  53/*
  54 * Use a ring-buffer like data structure, where a writer advances the head by
  55 * writing a new data entry and a reader advances the tail when it observes a
  56 * new entry.
  57 *
  58 * Writers are made to wait on readers until there's space to write a new
  59 * entry.
  60 *
  61 * This means that we can always use an {offset, mul} pair to compute a ns
  62 * value that is 'roughly' in the right direction, even if we're writing a new
  63 * {offset, mul} pair during the clock read.
  64 *
  65 * The down-side is that we can no longer guarantee strict monotonicity anymore
  66 * (assuming the TSC was that to begin with), because while we compute the
  67 * intersection point of the two clock slopes and make sure the time is
  68 * continuous at the point of switching; we can no longer guarantee a reader is
  69 * strictly before or after the switch point.
  70 *
  71 * It does mean a reader no longer needs to disable IRQs in order to avoid
  72 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  73 * no longer run the risk of hitting half-written state.
  74 */
  75
  76struct cyc2ns {
  77        struct cyc2ns_data data[2];     /*  0 + 2*24 = 48 */
  78        struct cyc2ns_data *head;       /* 48 + 8    = 56 */
  79        struct cyc2ns_data *tail;       /* 56 + 8    = 64 */
  80}; /* exactly fits one cacheline */
  81
  82static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  83
  84struct cyc2ns_data *cyc2ns_read_begin(void)
  85{
  86        struct cyc2ns_data *head;
  87
  88        preempt_disable();
  89
  90        head = this_cpu_read(cyc2ns.head);
  91        /*
  92         * Ensure we observe the entry when we observe the pointer to it.
  93         * matches the wmb from cyc2ns_write_end().
  94         */
  95        smp_read_barrier_depends();
  96        head->__count++;
  97        barrier();
  98
  99        return head;
 100}
 101
 102void cyc2ns_read_end(struct cyc2ns_data *head)
 103{
 104        barrier();
 105        /*
 106         * If we're the outer most nested read; update the tail pointer
 107         * when we're done. This notifies possible pending writers
 108         * that we've observed the head pointer and that the other
 109         * entry is now free.
 110         */
 111        if (!--head->__count) {
 112                /*
 113                 * x86-TSO does not reorder writes with older reads;
 114                 * therefore once this write becomes visible to another
 115                 * cpu, we must be finished reading the cyc2ns_data.
 116                 *
 117                 * matches with cyc2ns_write_begin().
 118                 */
 119                this_cpu_write(cyc2ns.tail, head);
 120        }
 121        preempt_enable();
 122}
 123
 124/*
 125 * Begin writing a new @data entry for @cpu.
 126 *
 127 * Assumes some sort of write side lock; currently 'provided' by the assumption
 128 * that cpufreq will call its notifiers sequentially.
 129 */
 130static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 131{
 132        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 133        struct cyc2ns_data *data = c2n->data;
 134
 135        if (data == c2n->head)
 136                data++;
 137
 138        /* XXX send an IPI to @cpu in order to guarantee a read? */
 139
 140        /*
 141         * When we observe the tail write from cyc2ns_read_end(),
 142         * the cpu must be done with that entry and its safe
 143         * to start writing to it.
 144         */
 145        while (c2n->tail == data)
 146                cpu_relax();
 147
 148        return data;
 149}
 150
 151static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 152{
 153        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 154
 155        /*
 156         * Ensure the @data writes are visible before we publish the
 157         * entry. Matches the data-depencency in cyc2ns_read_begin().
 158         */
 159        smp_wmb();
 160
 161        ACCESS_ONCE(c2n->head) = data;
 162}
 163
 164/*
 165 * Accelerators for sched_clock()
 166 * convert from cycles(64bits) => nanoseconds (64bits)
 167 *  basic equation:
 168 *              ns = cycles / (freq / ns_per_sec)
 169 *              ns = cycles * (ns_per_sec / freq)
 170 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 171 *              ns = cycles * (10^6 / cpu_khz)
 172 *
 173 *      Then we use scaling math (suggested by george@mvista.com) to get:
 174 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 175 *              ns = cycles * cyc2ns_scale / SC
 176 *
 177 *      And since SC is a constant power of two, we can convert the div
 178 *  into a shift. The larger SC is, the more accurate the conversion, but
 179 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 180 *  (64-bit result) can be used.
 181 *
 182 *  We can use khz divisor instead of mhz to keep a better precision.
 183 *  (mathieu.desnoyers@polymtl.ca)
 184 *
 185 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 186 */
 187
 188static void cyc2ns_data_init(struct cyc2ns_data *data)
 189{
 190        data->cyc2ns_mul = 0;
 191        data->cyc2ns_shift = 0;
 192        data->cyc2ns_offset = 0;
 193        data->__count = 0;
 194}
 195
 196static void cyc2ns_init(int cpu)
 197{
 198        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 199
 200        cyc2ns_data_init(&c2n->data[0]);
 201        cyc2ns_data_init(&c2n->data[1]);
 202
 203        c2n->head = c2n->data;
 204        c2n->tail = c2n->data;
 205}
 206
 207static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 208{
 209        struct cyc2ns_data *data, *tail;
 210        unsigned long long ns;
 211
 212        /*
 213         * See cyc2ns_read_*() for details; replicated in order to avoid
 214         * an extra few instructions that came with the abstraction.
 215         * Notable, it allows us to only do the __count and tail update
 216         * dance when its actually needed.
 217         */
 218
 219        preempt_disable_notrace();
 220        data = this_cpu_read(cyc2ns.head);
 221        tail = this_cpu_read(cyc2ns.tail);
 222
 223        if (likely(data == tail)) {
 224                ns = data->cyc2ns_offset;
 225                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 226        } else {
 227                data->__count++;
 228
 229                barrier();
 230
 231                ns = data->cyc2ns_offset;
 232                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 233
 234                barrier();
 235
 236                if (!--data->__count)
 237                        this_cpu_write(cyc2ns.tail, data);
 238        }
 239        preempt_enable_notrace();
 240
 241        return ns;
 242}
 243
 244static void set_cyc2ns_scale(unsigned long khz, int cpu)
 245{
 246        unsigned long long tsc_now, ns_now;
 247        struct cyc2ns_data *data;
 248        unsigned long flags;
 249
 250        local_irq_save(flags);
 251        sched_clock_idle_sleep_event();
 252
 253        if (!khz)
 254                goto done;
 255
 256        data = cyc2ns_write_begin(cpu);
 257
 258        tsc_now = rdtsc();
 259        ns_now = cycles_2_ns(tsc_now);
 260
 261        /*
 262         * Compute a new multiplier as per the above comment and ensure our
 263         * time function is continuous; see the comment near struct
 264         * cyc2ns_data.
 265         */
 266        clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
 267                               NSEC_PER_MSEC, 0);
 268
 269        /*
 270         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 271         * not expected to be greater than 31 due to the original published
 272         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 273         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 274         */
 275        if (data->cyc2ns_shift == 32) {
 276                data->cyc2ns_shift = 31;
 277                data->cyc2ns_mul >>= 1;
 278        }
 279
 280        data->cyc2ns_offset = ns_now -
 281                mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 282
 283        cyc2ns_write_end(cpu, data);
 284
 285done:
 286        sched_clock_idle_wakeup_event(0);
 287        local_irq_restore(flags);
 288}
 289/*
 290 * Scheduler clock - returns current time in nanosec units.
 291 */
 292u64 native_sched_clock(void)
 293{
 294        if (static_branch_likely(&__use_tsc)) {
 295                u64 tsc_now = rdtsc();
 296
 297                /* return the value in ns */
 298                return cycles_2_ns(tsc_now);
 299        }
 300
 301        /*
 302         * Fall back to jiffies if there's no TSC available:
 303         * ( But note that we still use it if the TSC is marked
 304         *   unstable. We do this because unlike Time Of Day,
 305         *   the scheduler clock tolerates small errors and it's
 306         *   very important for it to be as fast as the platform
 307         *   can achieve it. )
 308         */
 309
 310        /* No locking but a rare wrong value is not a big deal: */
 311        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 312}
 313
 314/*
 315 * Generate a sched_clock if you already have a TSC value.
 316 */
 317u64 native_sched_clock_from_tsc(u64 tsc)
 318{
 319        return cycles_2_ns(tsc);
 320}
 321
 322/* We need to define a real function for sched_clock, to override the
 323   weak default version */
 324#ifdef CONFIG_PARAVIRT
 325unsigned long long sched_clock(void)
 326{
 327        return paravirt_sched_clock();
 328}
 329#else
 330unsigned long long
 331sched_clock(void) __attribute__((alias("native_sched_clock")));
 332#endif
 333
 334int check_tsc_unstable(void)
 335{
 336        return tsc_unstable;
 337}
 338EXPORT_SYMBOL_GPL(check_tsc_unstable);
 339
 340#ifdef CONFIG_X86_TSC
 341int __init notsc_setup(char *str)
 342{
 343        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 344        tsc_disabled = 1;
 345        return 1;
 346}
 347#else
 348/*
 349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 350 * in cpu/common.c
 351 */
 352int __init notsc_setup(char *str)
 353{
 354        setup_clear_cpu_cap(X86_FEATURE_TSC);
 355        return 1;
 356}
 357#endif
 358
 359__setup("notsc", notsc_setup);
 360
 361static int no_sched_irq_time;
 362
 363static int __init tsc_setup(char *str)
 364{
 365        if (!strcmp(str, "reliable"))
 366                tsc_clocksource_reliable = 1;
 367        if (!strncmp(str, "noirqtime", 9))
 368                no_sched_irq_time = 1;
 369        return 1;
 370}
 371
 372__setup("tsc=", tsc_setup);
 373
 374#define MAX_RETRIES     5
 375#define SMI_TRESHOLD    50000
 376
 377/*
 378 * Read TSC and the reference counters. Take care of SMI disturbance
 379 */
 380static u64 tsc_read_refs(u64 *p, int hpet)
 381{
 382        u64 t1, t2;
 383        int i;
 384
 385        for (i = 0; i < MAX_RETRIES; i++) {
 386                t1 = get_cycles();
 387                if (hpet)
 388                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 389                else
 390                        *p = acpi_pm_read_early();
 391                t2 = get_cycles();
 392                if ((t2 - t1) < SMI_TRESHOLD)
 393                        return t2;
 394        }
 395        return ULLONG_MAX;
 396}
 397
 398/*
 399 * Calculate the TSC frequency from HPET reference
 400 */
 401static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 402{
 403        u64 tmp;
 404
 405        if (hpet2 < hpet1)
 406                hpet2 += 0x100000000ULL;
 407        hpet2 -= hpet1;
 408        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 409        do_div(tmp, 1000000);
 410        do_div(deltatsc, tmp);
 411
 412        return (unsigned long) deltatsc;
 413}
 414
 415/*
 416 * Calculate the TSC frequency from PMTimer reference
 417 */
 418static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 419{
 420        u64 tmp;
 421
 422        if (!pm1 && !pm2)
 423                return ULONG_MAX;
 424
 425        if (pm2 < pm1)
 426                pm2 += (u64)ACPI_PM_OVRRUN;
 427        pm2 -= pm1;
 428        tmp = pm2 * 1000000000LL;
 429        do_div(tmp, PMTMR_TICKS_PER_SEC);
 430        do_div(deltatsc, tmp);
 431
 432        return (unsigned long) deltatsc;
 433}
 434
 435#define CAL_MS          10
 436#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 437#define CAL_PIT_LOOPS   1000
 438
 439#define CAL2_MS         50
 440#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 441#define CAL2_PIT_LOOPS  5000
 442
 443
 444/*
 445 * Try to calibrate the TSC against the Programmable
 446 * Interrupt Timer and return the frequency of the TSC
 447 * in kHz.
 448 *
 449 * Return ULONG_MAX on failure to calibrate.
 450 */
 451static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 452{
 453        u64 tsc, t1, t2, delta;
 454        unsigned long tscmin, tscmax;
 455        int pitcnt;
 456
 457        /* Set the Gate high, disable speaker */
 458        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 459
 460        /*
 461         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 462         * count mode), binary count. Set the latch register to 50ms
 463         * (LSB then MSB) to begin countdown.
 464         */
 465        outb(0xb0, 0x43);
 466        outb(latch & 0xff, 0x42);
 467        outb(latch >> 8, 0x42);
 468
 469        tsc = t1 = t2 = get_cycles();
 470
 471        pitcnt = 0;
 472        tscmax = 0;
 473        tscmin = ULONG_MAX;
 474        while ((inb(0x61) & 0x20) == 0) {
 475                t2 = get_cycles();
 476                delta = t2 - tsc;
 477                tsc = t2;
 478                if ((unsigned long) delta < tscmin)
 479                        tscmin = (unsigned int) delta;
 480                if ((unsigned long) delta > tscmax)
 481                        tscmax = (unsigned int) delta;
 482                pitcnt++;
 483        }
 484
 485        /*
 486         * Sanity checks:
 487         *
 488         * If we were not able to read the PIT more than loopmin
 489         * times, then we have been hit by a massive SMI
 490         *
 491         * If the maximum is 10 times larger than the minimum,
 492         * then we got hit by an SMI as well.
 493         */
 494        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 495                return ULONG_MAX;
 496
 497        /* Calculate the PIT value */
 498        delta = t2 - t1;
 499        do_div(delta, ms);
 500        return delta;
 501}
 502
 503/*
 504 * This reads the current MSB of the PIT counter, and
 505 * checks if we are running on sufficiently fast and
 506 * non-virtualized hardware.
 507 *
 508 * Our expectations are:
 509 *
 510 *  - the PIT is running at roughly 1.19MHz
 511 *
 512 *  - each IO is going to take about 1us on real hardware,
 513 *    but we allow it to be much faster (by a factor of 10) or
 514 *    _slightly_ slower (ie we allow up to a 2us read+counter
 515 *    update - anything else implies a unacceptably slow CPU
 516 *    or PIT for the fast calibration to work.
 517 *
 518 *  - with 256 PIT ticks to read the value, we have 214us to
 519 *    see the same MSB (and overhead like doing a single TSC
 520 *    read per MSB value etc).
 521 *
 522 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 523 *    them each to take about a microsecond on real hardware.
 524 *    So we expect a count value of around 100. But we'll be
 525 *    generous, and accept anything over 50.
 526 *
 527 *  - if the PIT is stuck, and we see *many* more reads, we
 528 *    return early (and the next caller of pit_expect_msb()
 529 *    then consider it a failure when they don't see the
 530 *    next expected value).
 531 *
 532 * These expectations mean that we know that we have seen the
 533 * transition from one expected value to another with a fairly
 534 * high accuracy, and we didn't miss any events. We can thus
 535 * use the TSC value at the transitions to calculate a pretty
 536 * good value for the TSC frequencty.
 537 */
 538static inline int pit_verify_msb(unsigned char val)
 539{
 540        /* Ignore LSB */
 541        inb(0x42);
 542        return inb(0x42) == val;
 543}
 544
 545static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 546{
 547        int count;
 548        u64 tsc = 0, prev_tsc = 0;
 549
 550        for (count = 0; count < 50000; count++) {
 551                if (!pit_verify_msb(val))
 552                        break;
 553                prev_tsc = tsc;
 554                tsc = get_cycles();
 555        }
 556        *deltap = get_cycles() - prev_tsc;
 557        *tscp = tsc;
 558
 559        /*
 560         * We require _some_ success, but the quality control
 561         * will be based on the error terms on the TSC values.
 562         */
 563        return count > 5;
 564}
 565
 566/*
 567 * How many MSB values do we want to see? We aim for
 568 * a maximum error rate of 500ppm (in practice the
 569 * real error is much smaller), but refuse to spend
 570 * more than 50ms on it.
 571 */
 572#define MAX_QUICK_PIT_MS 50
 573#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 574
 575static unsigned long quick_pit_calibrate(void)
 576{
 577        int i;
 578        u64 tsc, delta;
 579        unsigned long d1, d2;
 580
 581        /* Set the Gate high, disable speaker */
 582        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 583
 584        /*
 585         * Counter 2, mode 0 (one-shot), binary count
 586         *
 587         * NOTE! Mode 2 decrements by two (and then the
 588         * output is flipped each time, giving the same
 589         * final output frequency as a decrement-by-one),
 590         * so mode 0 is much better when looking at the
 591         * individual counts.
 592         */
 593        outb(0xb0, 0x43);
 594
 595        /* Start at 0xffff */
 596        outb(0xff, 0x42);
 597        outb(0xff, 0x42);
 598
 599        /*
 600         * The PIT starts counting at the next edge, so we
 601         * need to delay for a microsecond. The easiest way
 602         * to do that is to just read back the 16-bit counter
 603         * once from the PIT.
 604         */
 605        pit_verify_msb(0);
 606
 607        if (pit_expect_msb(0xff, &tsc, &d1)) {
 608                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 609                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 610                                break;
 611
 612                        delta -= tsc;
 613
 614                        /*
 615                         * Extrapolate the error and fail fast if the error will
 616                         * never be below 500 ppm.
 617                         */
 618                        if (i == 1 &&
 619                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 620                                return 0;
 621
 622                        /*
 623                         * Iterate until the error is less than 500 ppm
 624                         */
 625                        if (d1+d2 >= delta >> 11)
 626                                continue;
 627
 628                        /*
 629                         * Check the PIT one more time to verify that
 630                         * all TSC reads were stable wrt the PIT.
 631                         *
 632                         * This also guarantees serialization of the
 633                         * last cycle read ('d2') in pit_expect_msb.
 634                         */
 635                        if (!pit_verify_msb(0xfe - i))
 636                                break;
 637                        goto success;
 638                }
 639        }
 640        pr_info("Fast TSC calibration failed\n");
 641        return 0;
 642
 643success:
 644        /*
 645         * Ok, if we get here, then we've seen the
 646         * MSB of the PIT decrement 'i' times, and the
 647         * error has shrunk to less than 500 ppm.
 648         *
 649         * As a result, we can depend on there not being
 650         * any odd delays anywhere, and the TSC reads are
 651         * reliable (within the error).
 652         *
 653         * kHz = ticks / time-in-seconds / 1000;
 654         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 655         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 656         */
 657        delta *= PIT_TICK_RATE;
 658        do_div(delta, i*256*1000);
 659        pr_info("Fast TSC calibration using PIT\n");
 660        return delta;
 661}
 662
 663/**
 664 * native_calibrate_tsc
 665 * Determine TSC frequency via CPUID, else return 0.
 666 */
 667unsigned long native_calibrate_tsc(void)
 668{
 669        unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 670        unsigned int crystal_khz;
 671
 672        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 673                return 0;
 674
 675        if (boot_cpu_data.cpuid_level < 0x15)
 676                return 0;
 677
 678        eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 679
 680        /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 681        cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 682
 683        if (ebx_numerator == 0 || eax_denominator == 0)
 684                return 0;
 685
 686        crystal_khz = ecx_hz / 1000;
 687
 688        if (crystal_khz == 0) {
 689                switch (boot_cpu_data.x86_model) {
 690                case INTEL_FAM6_SKYLAKE_MOBILE:
 691                case INTEL_FAM6_SKYLAKE_DESKTOP:
 692                case INTEL_FAM6_KABYLAKE_MOBILE:
 693                case INTEL_FAM6_KABYLAKE_DESKTOP:
 694                        crystal_khz = 24000;    /* 24.0 MHz */
 695                        break;
 696                case INTEL_FAM6_SKYLAKE_X:
 697                        crystal_khz = 25000;    /* 25.0 MHz */
 698                        break;
 699                case INTEL_FAM6_ATOM_GOLDMONT:
 700                        crystal_khz = 19200;    /* 19.2 MHz */
 701                        break;
 702                }
 703        }
 704
 705        return crystal_khz * ebx_numerator / eax_denominator;
 706}
 707
 708static unsigned long cpu_khz_from_cpuid(void)
 709{
 710        unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 711
 712        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 713                return 0;
 714
 715        if (boot_cpu_data.cpuid_level < 0x16)
 716                return 0;
 717
 718        eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 719
 720        cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 721
 722        return eax_base_mhz * 1000;
 723}
 724
 725/**
 726 * native_calibrate_cpu - calibrate the cpu on boot
 727 */
 728unsigned long native_calibrate_cpu(void)
 729{
 730        u64 tsc1, tsc2, delta, ref1, ref2;
 731        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 732        unsigned long flags, latch, ms, fast_calibrate;
 733        int hpet = is_hpet_enabled(), i, loopmin;
 734
 735        fast_calibrate = cpu_khz_from_cpuid();
 736        if (fast_calibrate)
 737                return fast_calibrate;
 738
 739        fast_calibrate = cpu_khz_from_msr();
 740        if (fast_calibrate)
 741                return fast_calibrate;
 742
 743        local_irq_save(flags);
 744        fast_calibrate = quick_pit_calibrate();
 745        local_irq_restore(flags);
 746        if (fast_calibrate)
 747                return fast_calibrate;
 748
 749        /*
 750         * Run 5 calibration loops to get the lowest frequency value
 751         * (the best estimate). We use two different calibration modes
 752         * here:
 753         *
 754         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 755         * load a timeout of 50ms. We read the time right after we
 756         * started the timer and wait until the PIT count down reaches
 757         * zero. In each wait loop iteration we read the TSC and check
 758         * the delta to the previous read. We keep track of the min
 759         * and max values of that delta. The delta is mostly defined
 760         * by the IO time of the PIT access, so we can detect when a
 761         * SMI/SMM disturbance happened between the two reads. If the
 762         * maximum time is significantly larger than the minimum time,
 763         * then we discard the result and have another try.
 764         *
 765         * 2) Reference counter. If available we use the HPET or the
 766         * PMTIMER as a reference to check the sanity of that value.
 767         * We use separate TSC readouts and check inside of the
 768         * reference read for a SMI/SMM disturbance. We dicard
 769         * disturbed values here as well. We do that around the PIT
 770         * calibration delay loop as we have to wait for a certain
 771         * amount of time anyway.
 772         */
 773
 774        /* Preset PIT loop values */
 775        latch = CAL_LATCH;
 776        ms = CAL_MS;
 777        loopmin = CAL_PIT_LOOPS;
 778
 779        for (i = 0; i < 3; i++) {
 780                unsigned long tsc_pit_khz;
 781
 782                /*
 783                 * Read the start value and the reference count of
 784                 * hpet/pmtimer when available. Then do the PIT
 785                 * calibration, which will take at least 50ms, and
 786                 * read the end value.
 787                 */
 788                local_irq_save(flags);
 789                tsc1 = tsc_read_refs(&ref1, hpet);
 790                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 791                tsc2 = tsc_read_refs(&ref2, hpet);
 792                local_irq_restore(flags);
 793
 794                /* Pick the lowest PIT TSC calibration so far */
 795                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 796
 797                /* hpet or pmtimer available ? */
 798                if (ref1 == ref2)
 799                        continue;
 800
 801                /* Check, whether the sampling was disturbed by an SMI */
 802                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 803                        continue;
 804
 805                tsc2 = (tsc2 - tsc1) * 1000000LL;
 806                if (hpet)
 807                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 808                else
 809                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 810
 811                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 812
 813                /* Check the reference deviation */
 814                delta = ((u64) tsc_pit_min) * 100;
 815                do_div(delta, tsc_ref_min);
 816
 817                /*
 818                 * If both calibration results are inside a 10% window
 819                 * then we can be sure, that the calibration
 820                 * succeeded. We break out of the loop right away. We
 821                 * use the reference value, as it is more precise.
 822                 */
 823                if (delta >= 90 && delta <= 110) {
 824                        pr_info("PIT calibration matches %s. %d loops\n",
 825                                hpet ? "HPET" : "PMTIMER", i + 1);
 826                        return tsc_ref_min;
 827                }
 828
 829                /*
 830                 * Check whether PIT failed more than once. This
 831                 * happens in virtualized environments. We need to
 832                 * give the virtual PC a slightly longer timeframe for
 833                 * the HPET/PMTIMER to make the result precise.
 834                 */
 835                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 836                        latch = CAL2_LATCH;
 837                        ms = CAL2_MS;
 838                        loopmin = CAL2_PIT_LOOPS;
 839                }
 840        }
 841
 842        /*
 843         * Now check the results.
 844         */
 845        if (tsc_pit_min == ULONG_MAX) {
 846                /* PIT gave no useful value */
 847                pr_warn("Unable to calibrate against PIT\n");
 848
 849                /* We don't have an alternative source, disable TSC */
 850                if (!hpet && !ref1 && !ref2) {
 851                        pr_notice("No reference (HPET/PMTIMER) available\n");
 852                        return 0;
 853                }
 854
 855                /* The alternative source failed as well, disable TSC */
 856                if (tsc_ref_min == ULONG_MAX) {
 857                        pr_warn("HPET/PMTIMER calibration failed\n");
 858                        return 0;
 859                }
 860
 861                /* Use the alternative source */
 862                pr_info("using %s reference calibration\n",
 863                        hpet ? "HPET" : "PMTIMER");
 864
 865                return tsc_ref_min;
 866        }
 867
 868        /* We don't have an alternative source, use the PIT calibration value */
 869        if (!hpet && !ref1 && !ref2) {
 870                pr_info("Using PIT calibration value\n");
 871                return tsc_pit_min;
 872        }
 873
 874        /* The alternative source failed, use the PIT calibration value */
 875        if (tsc_ref_min == ULONG_MAX) {
 876                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 877                return tsc_pit_min;
 878        }
 879
 880        /*
 881         * The calibration values differ too much. In doubt, we use
 882         * the PIT value as we know that there are PMTIMERs around
 883         * running at double speed. At least we let the user know:
 884         */
 885        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 886                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 887        pr_info("Using PIT calibration value\n");
 888        return tsc_pit_min;
 889}
 890
 891int recalibrate_cpu_khz(void)
 892{
 893#ifndef CONFIG_SMP
 894        unsigned long cpu_khz_old = cpu_khz;
 895
 896        if (!boot_cpu_has(X86_FEATURE_TSC))
 897                return -ENODEV;
 898
 899        cpu_khz = x86_platform.calibrate_cpu();
 900        tsc_khz = x86_platform.calibrate_tsc();
 901        if (tsc_khz == 0)
 902                tsc_khz = cpu_khz;
 903        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 904                cpu_khz = tsc_khz;
 905        cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 906                                                    cpu_khz_old, cpu_khz);
 907
 908        return 0;
 909#else
 910        return -ENODEV;
 911#endif
 912}
 913
 914EXPORT_SYMBOL(recalibrate_cpu_khz);
 915
 916
 917static unsigned long long cyc2ns_suspend;
 918
 919void tsc_save_sched_clock_state(void)
 920{
 921        if (!sched_clock_stable())
 922                return;
 923
 924        cyc2ns_suspend = sched_clock();
 925}
 926
 927/*
 928 * Even on processors with invariant TSC, TSC gets reset in some the
 929 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 930 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 931 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 932 * that sched_clock() continues from the point where it was left off during
 933 * suspend.
 934 */
 935void tsc_restore_sched_clock_state(void)
 936{
 937        unsigned long long offset;
 938        unsigned long flags;
 939        int cpu;
 940
 941        if (!sched_clock_stable())
 942                return;
 943
 944        local_irq_save(flags);
 945
 946        /*
 947         * We're coming out of suspend, there's no concurrency yet; don't
 948         * bother being nice about the RCU stuff, just write to both
 949         * data fields.
 950         */
 951
 952        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 953        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 954
 955        offset = cyc2ns_suspend - sched_clock();
 956
 957        for_each_possible_cpu(cpu) {
 958                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 959                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 960        }
 961
 962        local_irq_restore(flags);
 963}
 964
 965#ifdef CONFIG_CPU_FREQ
 966
 967/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 968 * changes.
 969 *
 970 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 971 * not that important because current Opteron setups do not support
 972 * scaling on SMP anyroads.
 973 *
 974 * Should fix up last_tsc too. Currently gettimeofday in the
 975 * first tick after the change will be slightly wrong.
 976 */
 977
 978static unsigned int  ref_freq;
 979static unsigned long loops_per_jiffy_ref;
 980static unsigned long tsc_khz_ref;
 981
 982static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 983                                void *data)
 984{
 985        struct cpufreq_freqs *freq = data;
 986        unsigned long *lpj;
 987
 988        lpj = &boot_cpu_data.loops_per_jiffy;
 989#ifdef CONFIG_SMP
 990        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 991                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 992#endif
 993
 994        if (!ref_freq) {
 995                ref_freq = freq->old;
 996                loops_per_jiffy_ref = *lpj;
 997                tsc_khz_ref = tsc_khz;
 998        }
 999        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1002
1003                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1004                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1005                        mark_tsc_unstable("cpufreq changes");
1006
1007                set_cyc2ns_scale(tsc_khz, freq->cpu);
1008        }
1009
1010        return 0;
1011}
1012
1013static struct notifier_block time_cpufreq_notifier_block = {
1014        .notifier_call  = time_cpufreq_notifier
1015};
1016
1017static int __init cpufreq_register_tsc_scaling(void)
1018{
1019        if (!boot_cpu_has(X86_FEATURE_TSC))
1020                return 0;
1021        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1022                return 0;
1023        cpufreq_register_notifier(&time_cpufreq_notifier_block,
1024                                CPUFREQ_TRANSITION_NOTIFIER);
1025        return 0;
1026}
1027
1028core_initcall(cpufreq_register_tsc_scaling);
1029
1030#endif /* CONFIG_CPU_FREQ */
1031
1032#define ART_CPUID_LEAF (0x15)
1033#define ART_MIN_DENOMINATOR (1)
1034
1035
1036/*
1037 * If ART is present detect the numerator:denominator to convert to TSC
1038 */
1039static void detect_art(void)
1040{
1041        unsigned int unused[2];
1042
1043        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1044                return;
1045
1046        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1047              &art_to_tsc_numerator, unused, unused+1);
1048
1049        /* Don't enable ART in a VM, non-stop TSC required */
1050        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1051            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1052            art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053                return;
1054
1055        if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1056                return;
1057
1058        /* Make this sticky over multiple CPU init calls */
1059        setup_force_cpu_cap(X86_FEATURE_ART);
1060}
1061
1062
1063/* clocksource code */
1064
1065static struct clocksource clocksource_tsc;
1066
1067/*
1068 * We used to compare the TSC to the cycle_last value in the clocksource
1069 * structure to avoid a nasty time-warp. This can be observed in a
1070 * very small window right after one CPU updated cycle_last under
1071 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1072 * is smaller than the cycle_last reference value due to a TSC which
1073 * is slighty behind. This delta is nowhere else observable, but in
1074 * that case it results in a forward time jump in the range of hours
1075 * due to the unsigned delta calculation of the time keeping core
1076 * code, which is necessary to support wrapping clocksources like pm
1077 * timer.
1078 *
1079 * This sanity check is now done in the core timekeeping code.
1080 * checking the result of read_tsc() - cycle_last for being negative.
1081 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1082 */
1083static cycle_t read_tsc(struct clocksource *cs)
1084{
1085        return (cycle_t)rdtsc_ordered();
1086}
1087
1088/*
1089 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1090 */
1091static struct clocksource clocksource_tsc = {
1092        .name                   = "tsc",
1093        .rating                 = 300,
1094        .read                   = read_tsc,
1095        .mask                   = CLOCKSOURCE_MASK(64),
1096        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1097                                  CLOCK_SOURCE_MUST_VERIFY,
1098        .archdata               = { .vclock_mode = VCLOCK_TSC },
1099};
1100
1101void mark_tsc_unstable(char *reason)
1102{
1103        if (!tsc_unstable) {
1104                tsc_unstable = 1;
1105                clear_sched_clock_stable();
1106                disable_sched_clock_irqtime();
1107                pr_info("Marking TSC unstable due to %s\n", reason);
1108                /* Change only the rating, when not registered */
1109                if (clocksource_tsc.mult)
1110                        clocksource_mark_unstable(&clocksource_tsc);
1111                else {
1112                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1113                        clocksource_tsc.rating = 0;
1114                }
1115        }
1116}
1117
1118EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1119
1120static void __init check_system_tsc_reliable(void)
1121{
1122#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1123        if (is_geode_lx()) {
1124                /* RTSC counts during suspend */
1125#define RTSC_SUSP 0x100
1126                unsigned long res_low, res_high;
1127
1128                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1129                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1130                if (res_low & RTSC_SUSP)
1131                        tsc_clocksource_reliable = 1;
1132        }
1133#endif
1134        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1135                tsc_clocksource_reliable = 1;
1136}
1137
1138/*
1139 * Make an educated guess if the TSC is trustworthy and synchronized
1140 * over all CPUs.
1141 */
1142int unsynchronized_tsc(void)
1143{
1144        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1145                return 1;
1146
1147#ifdef CONFIG_SMP
1148        if (apic_is_clustered_box())
1149                return 1;
1150#endif
1151
1152        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1153                return 0;
1154
1155        if (tsc_clocksource_reliable)
1156                return 0;
1157        /*
1158         * Intel systems are normally all synchronized.
1159         * Exceptions must mark TSC as unstable:
1160         */
1161        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1162                /* assume multi socket systems are not synchronized: */
1163                if (num_possible_cpus() > 1)
1164                        return 1;
1165        }
1166
1167        return 0;
1168}
1169
1170/*
1171 * Convert ART to TSC given numerator/denominator found in detect_art()
1172 */
1173struct system_counterval_t convert_art_to_tsc(cycle_t art)
1174{
1175        u64 tmp, res, rem;
1176
1177        rem = do_div(art, art_to_tsc_denominator);
1178
1179        res = art * art_to_tsc_numerator;
1180        tmp = rem * art_to_tsc_numerator;
1181
1182        do_div(tmp, art_to_tsc_denominator);
1183        res += tmp + art_to_tsc_offset;
1184
1185        return (struct system_counterval_t) {.cs = art_related_clocksource,
1186                        .cycles = res};
1187}
1188EXPORT_SYMBOL(convert_art_to_tsc);
1189
1190static void tsc_refine_calibration_work(struct work_struct *work);
1191static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1192/**
1193 * tsc_refine_calibration_work - Further refine tsc freq calibration
1194 * @work - ignored.
1195 *
1196 * This functions uses delayed work over a period of a
1197 * second to further refine the TSC freq value. Since this is
1198 * timer based, instead of loop based, we don't block the boot
1199 * process while this longer calibration is done.
1200 *
1201 * If there are any calibration anomalies (too many SMIs, etc),
1202 * or the refined calibration is off by 1% of the fast early
1203 * calibration, we throw out the new calibration and use the
1204 * early calibration.
1205 */
1206static void tsc_refine_calibration_work(struct work_struct *work)
1207{
1208        static u64 tsc_start = -1, ref_start;
1209        static int hpet;
1210        u64 tsc_stop, ref_stop, delta;
1211        unsigned long freq;
1212
1213        /* Don't bother refining TSC on unstable systems */
1214        if (check_tsc_unstable())
1215                goto out;
1216
1217        /*
1218         * Since the work is started early in boot, we may be
1219         * delayed the first time we expire. So set the workqueue
1220         * again once we know timers are working.
1221         */
1222        if (tsc_start == -1) {
1223                /*
1224                 * Only set hpet once, to avoid mixing hardware
1225                 * if the hpet becomes enabled later.
1226                 */
1227                hpet = is_hpet_enabled();
1228                schedule_delayed_work(&tsc_irqwork, HZ);
1229                tsc_start = tsc_read_refs(&ref_start, hpet);
1230                return;
1231        }
1232
1233        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1234
1235        /* hpet or pmtimer available ? */
1236        if (ref_start == ref_stop)
1237                goto out;
1238
1239        /* Check, whether the sampling was disturbed by an SMI */
1240        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1241                goto out;
1242
1243        delta = tsc_stop - tsc_start;
1244        delta *= 1000000LL;
1245        if (hpet)
1246                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1247        else
1248                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1249
1250        /* Make sure we're within 1% */
1251        if (abs(tsc_khz - freq) > tsc_khz/100)
1252                goto out;
1253
1254        tsc_khz = freq;
1255        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1256                (unsigned long)tsc_khz / 1000,
1257                (unsigned long)tsc_khz % 1000);
1258
1259        /* Inform the TSC deadline clockevent devices about the recalibration */
1260        lapic_update_tsc_freq();
1261
1262out:
1263        if (boot_cpu_has(X86_FEATURE_ART))
1264                art_related_clocksource = &clocksource_tsc;
1265        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1266}
1267
1268
1269static int __init init_tsc_clocksource(void)
1270{
1271        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1272                return 0;
1273
1274        if (tsc_clocksource_reliable)
1275                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1276        /* lower the rating if we already know its unstable: */
1277        if (check_tsc_unstable()) {
1278                clocksource_tsc.rating = 0;
1279                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1280        }
1281
1282        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1283                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1284
1285        /*
1286         * Trust the results of the earlier calibration on systems
1287         * exporting a reliable TSC.
1288         */
1289        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1290                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1291                return 0;
1292        }
1293
1294        schedule_delayed_work(&tsc_irqwork, 0);
1295        return 0;
1296}
1297/*
1298 * We use device_initcall here, to ensure we run after the hpet
1299 * is fully initialized, which may occur at fs_initcall time.
1300 */
1301device_initcall(init_tsc_clocksource);
1302
1303void __init tsc_init(void)
1304{
1305        u64 lpj;
1306        int cpu;
1307
1308        if (!boot_cpu_has(X86_FEATURE_TSC)) {
1309                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1310                return;
1311        }
1312
1313        cpu_khz = x86_platform.calibrate_cpu();
1314        tsc_khz = x86_platform.calibrate_tsc();
1315
1316        /*
1317         * Trust non-zero tsc_khz as authorative,
1318         * and use it to sanity check cpu_khz,
1319         * which will be off if system timer is off.
1320         */
1321        if (tsc_khz == 0)
1322                tsc_khz = cpu_khz;
1323        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1324                cpu_khz = tsc_khz;
1325
1326        if (!tsc_khz) {
1327                mark_tsc_unstable("could not calculate TSC khz");
1328                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1329                return;
1330        }
1331
1332        pr_info("Detected %lu.%03lu MHz processor\n",
1333                (unsigned long)cpu_khz / 1000,
1334                (unsigned long)cpu_khz % 1000);
1335
1336        /*
1337         * Secondary CPUs do not run through tsc_init(), so set up
1338         * all the scale factors for all CPUs, assuming the same
1339         * speed as the bootup CPU. (cpufreq notifiers will fix this
1340         * up if their speed diverges)
1341         */
1342        for_each_possible_cpu(cpu) {
1343                cyc2ns_init(cpu);
1344                set_cyc2ns_scale(tsc_khz, cpu);
1345        }
1346
1347        if (tsc_disabled > 0)
1348                return;
1349
1350        /* now allow native_sched_clock() to use rdtsc */
1351
1352        tsc_disabled = 0;
1353        static_branch_enable(&__use_tsc);
1354
1355        if (!no_sched_irq_time)
1356                enable_sched_clock_irqtime();
1357
1358        lpj = ((u64)tsc_khz * 1000);
1359        do_div(lpj, HZ);
1360        lpj_fine = lpj;
1361
1362        use_tsc_delay();
1363
1364        if (unsynchronized_tsc())
1365                mark_tsc_unstable("TSCs unsynchronized");
1366
1367        check_system_tsc_reliable();
1368
1369        detect_art();
1370}
1371
1372#ifdef CONFIG_SMP
1373/*
1374 * If we have a constant TSC and are using the TSC for the delay loop,
1375 * we can skip clock calibration if another cpu in the same socket has already
1376 * been calibrated. This assumes that CONSTANT_TSC applies to all
1377 * cpus in the socket - this should be a safe assumption.
1378 */
1379unsigned long calibrate_delay_is_known(void)
1380{
1381        int sibling, cpu = smp_processor_id();
1382        struct cpumask *mask = topology_core_cpumask(cpu);
1383
1384        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1385                return 0;
1386
1387        if (!mask)
1388                return 0;
1389
1390        sibling = cpumask_any_but(mask, cpu);
1391        if (sibling < nr_cpu_ids)
1392                return cpu_data(sibling).loops_per_jiffy;
1393        return 0;
1394}
1395#endif
1396