linux/arch/x86/kvm/mtrr.c
<<
>>
Prefs
   1/*
   2 * vMTRR implementation
   3 *
   4 * Copyright (C) 2006 Qumranet, Inc.
   5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   6 * Copyright(C) 2015 Intel Corporation.
   7 *
   8 * Authors:
   9 *   Yaniv Kamay  <yaniv@qumranet.com>
  10 *   Avi Kivity   <avi@qumranet.com>
  11 *   Marcelo Tosatti <mtosatti@redhat.com>
  12 *   Paolo Bonzini <pbonzini@redhat.com>
  13 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
  14 *
  15 * This work is licensed under the terms of the GNU GPL, version 2.  See
  16 * the COPYING file in the top-level directory.
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include <asm/mtrr.h>
  21
  22#include "cpuid.h"
  23#include "mmu.h"
  24
  25#define IA32_MTRR_DEF_TYPE_E            (1ULL << 11)
  26#define IA32_MTRR_DEF_TYPE_FE           (1ULL << 10)
  27#define IA32_MTRR_DEF_TYPE_TYPE_MASK    (0xff)
  28
  29static bool msr_mtrr_valid(unsigned msr)
  30{
  31        switch (msr) {
  32        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  33        case MSR_MTRRfix64K_00000:
  34        case MSR_MTRRfix16K_80000:
  35        case MSR_MTRRfix16K_A0000:
  36        case MSR_MTRRfix4K_C0000:
  37        case MSR_MTRRfix4K_C8000:
  38        case MSR_MTRRfix4K_D0000:
  39        case MSR_MTRRfix4K_D8000:
  40        case MSR_MTRRfix4K_E0000:
  41        case MSR_MTRRfix4K_E8000:
  42        case MSR_MTRRfix4K_F0000:
  43        case MSR_MTRRfix4K_F8000:
  44        case MSR_MTRRdefType:
  45        case MSR_IA32_CR_PAT:
  46                return true;
  47        }
  48        return false;
  49}
  50
  51static bool valid_pat_type(unsigned t)
  52{
  53        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  54}
  55
  56static bool valid_mtrr_type(unsigned t)
  57{
  58        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  59}
  60
  61bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  62{
  63        int i;
  64        u64 mask;
  65
  66        if (!msr_mtrr_valid(msr))
  67                return false;
  68
  69        if (msr == MSR_IA32_CR_PAT) {
  70                for (i = 0; i < 8; i++)
  71                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
  72                                return false;
  73                return true;
  74        } else if (msr == MSR_MTRRdefType) {
  75                if (data & ~0xcff)
  76                        return false;
  77                return valid_mtrr_type(data & 0xff);
  78        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  79                for (i = 0; i < 8 ; i++)
  80                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  81                                return false;
  82                return true;
  83        }
  84
  85        /* variable MTRRs */
  86        WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
  87
  88        mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
  89        if ((msr & 1) == 0) {
  90                /* MTRR base */
  91                if (!valid_mtrr_type(data & 0xff))
  92                        return false;
  93                mask |= 0xf00;
  94        } else
  95                /* MTRR mask */
  96                mask |= 0x7ff;
  97        if (data & mask) {
  98                kvm_inject_gp(vcpu, 0);
  99                return false;
 100        }
 101
 102        return true;
 103}
 104EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
 105
 106static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 107{
 108        return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
 109}
 110
 111static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 112{
 113        return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
 114}
 115
 116static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
 117{
 118        return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
 119}
 120
 121static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
 122{
 123        /*
 124         * Intel SDM 11.11.2.2: all MTRRs are disabled when
 125         * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
 126         * memory type is applied to all of physical memory.
 127         *
 128         * However, virtual machines can be run with CPUID such that
 129         * there are no MTRRs.  In that case, the firmware will never
 130         * enable MTRRs and it is obviously undesirable to run the
 131         * guest entirely with UC memory and we use WB.
 132         */
 133        if (guest_cpuid_has_mtrr(vcpu))
 134                return MTRR_TYPE_UNCACHABLE;
 135        else
 136                return MTRR_TYPE_WRBACK;
 137}
 138
 139/*
 140* Three terms are used in the following code:
 141* - segment, it indicates the address segments covered by fixed MTRRs.
 142* - unit, it corresponds to the MSR entry in the segment.
 143* - range, a range is covered in one memory cache type.
 144*/
 145struct fixed_mtrr_segment {
 146        u64 start;
 147        u64 end;
 148
 149        int range_shift;
 150
 151        /* the start position in kvm_mtrr.fixed_ranges[]. */
 152        int range_start;
 153};
 154
 155static struct fixed_mtrr_segment fixed_seg_table[] = {
 156        /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
 157        {
 158                .start = 0x0,
 159                .end = 0x80000,
 160                .range_shift = 16, /* 64K */
 161                .range_start = 0,
 162        },
 163
 164        /*
 165         * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
 166         * 16K fixed mtrr.
 167         */
 168        {
 169                .start = 0x80000,
 170                .end = 0xc0000,
 171                .range_shift = 14, /* 16K */
 172                .range_start = 8,
 173        },
 174
 175        /*
 176         * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
 177         * 4K fixed mtrr.
 178         */
 179        {
 180                .start = 0xc0000,
 181                .end = 0x100000,
 182                .range_shift = 12, /* 12K */
 183                .range_start = 24,
 184        }
 185};
 186
 187/*
 188 * The size of unit is covered in one MSR, one MSR entry contains
 189 * 8 ranges so that unit size is always 8 * 2^range_shift.
 190 */
 191static u64 fixed_mtrr_seg_unit_size(int seg)
 192{
 193        return 8 << fixed_seg_table[seg].range_shift;
 194}
 195
 196static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
 197{
 198        switch (msr) {
 199        case MSR_MTRRfix64K_00000:
 200                *seg = 0;
 201                *unit = 0;
 202                break;
 203        case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
 204                *seg = 1;
 205                *unit = msr - MSR_MTRRfix16K_80000;
 206                break;
 207        case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
 208                *seg = 2;
 209                *unit = msr - MSR_MTRRfix4K_C0000;
 210                break;
 211        default:
 212                return false;
 213        }
 214
 215        return true;
 216}
 217
 218static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
 219{
 220        struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 221        u64 unit_size = fixed_mtrr_seg_unit_size(seg);
 222
 223        *start = mtrr_seg->start + unit * unit_size;
 224        *end = *start + unit_size;
 225        WARN_ON(*end > mtrr_seg->end);
 226}
 227
 228static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
 229{
 230        struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 231
 232        WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
 233                > mtrr_seg->end);
 234
 235        /* each unit has 8 ranges. */
 236        return mtrr_seg->range_start + 8 * unit;
 237}
 238
 239static int fixed_mtrr_seg_end_range_index(int seg)
 240{
 241        struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 242        int n;
 243
 244        n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
 245        return mtrr_seg->range_start + n - 1;
 246}
 247
 248static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
 249{
 250        int seg, unit;
 251
 252        if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
 253                return false;
 254
 255        fixed_mtrr_seg_unit_range(seg, unit, start, end);
 256        return true;
 257}
 258
 259static int fixed_msr_to_range_index(u32 msr)
 260{
 261        int seg, unit;
 262
 263        if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
 264                return -1;
 265
 266        return fixed_mtrr_seg_unit_range_index(seg, unit);
 267}
 268
 269static int fixed_mtrr_addr_to_seg(u64 addr)
 270{
 271        struct fixed_mtrr_segment *mtrr_seg;
 272        int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
 273
 274        for (seg = 0; seg < seg_num; seg++) {
 275                mtrr_seg = &fixed_seg_table[seg];
 276                if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
 277                        return seg;
 278        }
 279
 280        return -1;
 281}
 282
 283static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
 284{
 285        struct fixed_mtrr_segment *mtrr_seg;
 286        int index;
 287
 288        mtrr_seg = &fixed_seg_table[seg];
 289        index = mtrr_seg->range_start;
 290        index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
 291        return index;
 292}
 293
 294static u64 fixed_mtrr_range_end_addr(int seg, int index)
 295{
 296        struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
 297        int pos = index - mtrr_seg->range_start;
 298
 299        return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
 300}
 301
 302static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
 303{
 304        u64 mask;
 305
 306        *start = range->base & PAGE_MASK;
 307
 308        mask = range->mask & PAGE_MASK;
 309
 310        /* This cannot overflow because writing to the reserved bits of
 311         * variable MTRRs causes a #GP.
 312         */
 313        *end = (*start | ~mask) + 1;
 314}
 315
 316static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
 317{
 318        struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 319        gfn_t start, end;
 320        int index;
 321
 322        if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
 323              !kvm_arch_has_noncoherent_dma(vcpu->kvm))
 324                return;
 325
 326        if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
 327                return;
 328
 329        /* fixed MTRRs. */
 330        if (fixed_msr_to_range(msr, &start, &end)) {
 331                if (!fixed_mtrr_is_enabled(mtrr_state))
 332                        return;
 333        } else if (msr == MSR_MTRRdefType) {
 334                start = 0x0;
 335                end = ~0ULL;
 336        } else {
 337                /* variable range MTRRs. */
 338                index = (msr - 0x200) / 2;
 339                var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
 340        }
 341
 342        kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
 343}
 344
 345static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
 346{
 347        return (range->mask & (1 << 11)) != 0;
 348}
 349
 350static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 351{
 352        struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 353        struct kvm_mtrr_range *tmp, *cur;
 354        int index, is_mtrr_mask;
 355
 356        index = (msr - 0x200) / 2;
 357        is_mtrr_mask = msr - 0x200 - 2 * index;
 358        cur = &mtrr_state->var_ranges[index];
 359
 360        /* remove the entry if it's in the list. */
 361        if (var_mtrr_range_is_valid(cur))
 362                list_del(&mtrr_state->var_ranges[index].node);
 363
 364        /* Extend the mask with all 1 bits to the left, since those
 365         * bits must implicitly be 0.  The bits are then cleared
 366         * when reading them.
 367         */
 368        if (!is_mtrr_mask)
 369                cur->base = data;
 370        else
 371                cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
 372
 373        /* add it to the list if it's enabled. */
 374        if (var_mtrr_range_is_valid(cur)) {
 375                list_for_each_entry(tmp, &mtrr_state->head, node)
 376                        if (cur->base >= tmp->base)
 377                                break;
 378                list_add_tail(&cur->node, &tmp->node);
 379        }
 380}
 381
 382int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 383{
 384        int index;
 385
 386        if (!kvm_mtrr_valid(vcpu, msr, data))
 387                return 1;
 388
 389        index = fixed_msr_to_range_index(msr);
 390        if (index >= 0)
 391                *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
 392        else if (msr == MSR_MTRRdefType)
 393                vcpu->arch.mtrr_state.deftype = data;
 394        else if (msr == MSR_IA32_CR_PAT)
 395                vcpu->arch.pat = data;
 396        else
 397                set_var_mtrr_msr(vcpu, msr, data);
 398
 399        update_mtrr(vcpu, msr);
 400        return 0;
 401}
 402
 403int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 404{
 405        int index;
 406
 407        /* MSR_MTRRcap is a readonly MSR. */
 408        if (msr == MSR_MTRRcap) {
 409                /*
 410                 * SMRR = 0
 411                 * WC = 1
 412                 * FIX = 1
 413                 * VCNT = KVM_NR_VAR_MTRR
 414                 */
 415                *pdata = 0x500 | KVM_NR_VAR_MTRR;
 416                return 0;
 417        }
 418
 419        if (!msr_mtrr_valid(msr))
 420                return 1;
 421
 422        index = fixed_msr_to_range_index(msr);
 423        if (index >= 0)
 424                *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
 425        else if (msr == MSR_MTRRdefType)
 426                *pdata = vcpu->arch.mtrr_state.deftype;
 427        else if (msr == MSR_IA32_CR_PAT)
 428                *pdata = vcpu->arch.pat;
 429        else {  /* Variable MTRRs */
 430                int is_mtrr_mask;
 431
 432                index = (msr - 0x200) / 2;
 433                is_mtrr_mask = msr - 0x200 - 2 * index;
 434                if (!is_mtrr_mask)
 435                        *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
 436                else
 437                        *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
 438
 439                *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
 440        }
 441
 442        return 0;
 443}
 444
 445void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
 446{
 447        INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
 448}
 449
 450struct mtrr_iter {
 451        /* input fields. */
 452        struct kvm_mtrr *mtrr_state;
 453        u64 start;
 454        u64 end;
 455
 456        /* output fields. */
 457        int mem_type;
 458        /* mtrr is completely disabled? */
 459        bool mtrr_disabled;
 460        /* [start, end) is not fully covered in MTRRs? */
 461        bool partial_map;
 462
 463        /* private fields. */
 464        union {
 465                /* used for fixed MTRRs. */
 466                struct {
 467                        int index;
 468                        int seg;
 469                };
 470
 471                /* used for var MTRRs. */
 472                struct {
 473                        struct kvm_mtrr_range *range;
 474                        /* max address has been covered in var MTRRs. */
 475                        u64 start_max;
 476                };
 477        };
 478
 479        bool fixed;
 480};
 481
 482static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
 483{
 484        int seg, index;
 485
 486        if (!fixed_mtrr_is_enabled(iter->mtrr_state))
 487                return false;
 488
 489        seg = fixed_mtrr_addr_to_seg(iter->start);
 490        if (seg < 0)
 491                return false;
 492
 493        iter->fixed = true;
 494        index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
 495        iter->index = index;
 496        iter->seg = seg;
 497        return true;
 498}
 499
 500static bool match_var_range(struct mtrr_iter *iter,
 501                            struct kvm_mtrr_range *range)
 502{
 503        u64 start, end;
 504
 505        var_mtrr_range(range, &start, &end);
 506        if (!(start >= iter->end || end <= iter->start)) {
 507                iter->range = range;
 508
 509                /*
 510                 * the function is called when we do kvm_mtrr.head walking.
 511                 * Range has the minimum base address which interleaves
 512                 * [looker->start_max, looker->end).
 513                 */
 514                iter->partial_map |= iter->start_max < start;
 515
 516                /* update the max address has been covered. */
 517                iter->start_max = max(iter->start_max, end);
 518                return true;
 519        }
 520
 521        return false;
 522}
 523
 524static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
 525{
 526        struct kvm_mtrr *mtrr_state = iter->mtrr_state;
 527
 528        list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
 529                if (match_var_range(iter, iter->range))
 530                        return;
 531
 532        iter->range = NULL;
 533        iter->partial_map |= iter->start_max < iter->end;
 534}
 535
 536static void mtrr_lookup_var_start(struct mtrr_iter *iter)
 537{
 538        struct kvm_mtrr *mtrr_state = iter->mtrr_state;
 539
 540        iter->fixed = false;
 541        iter->start_max = iter->start;
 542        iter->range = NULL;
 543        iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
 544
 545        __mtrr_lookup_var_next(iter);
 546}
 547
 548static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
 549{
 550        /* terminate the lookup. */
 551        if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
 552                iter->fixed = false;
 553                iter->range = NULL;
 554                return;
 555        }
 556
 557        iter->index++;
 558
 559        /* have looked up for all fixed MTRRs. */
 560        if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
 561                return mtrr_lookup_var_start(iter);
 562
 563        /* switch to next segment. */
 564        if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
 565                iter->seg++;
 566}
 567
 568static void mtrr_lookup_var_next(struct mtrr_iter *iter)
 569{
 570        __mtrr_lookup_var_next(iter);
 571}
 572
 573static void mtrr_lookup_start(struct mtrr_iter *iter)
 574{
 575        if (!mtrr_is_enabled(iter->mtrr_state)) {
 576                iter->mtrr_disabled = true;
 577                return;
 578        }
 579
 580        if (!mtrr_lookup_fixed_start(iter))
 581                mtrr_lookup_var_start(iter);
 582}
 583
 584static void mtrr_lookup_init(struct mtrr_iter *iter,
 585                             struct kvm_mtrr *mtrr_state, u64 start, u64 end)
 586{
 587        iter->mtrr_state = mtrr_state;
 588        iter->start = start;
 589        iter->end = end;
 590        iter->mtrr_disabled = false;
 591        iter->partial_map = false;
 592        iter->fixed = false;
 593        iter->range = NULL;
 594
 595        mtrr_lookup_start(iter);
 596}
 597
 598static bool mtrr_lookup_okay(struct mtrr_iter *iter)
 599{
 600        if (iter->fixed) {
 601                iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
 602                return true;
 603        }
 604
 605        if (iter->range) {
 606                iter->mem_type = iter->range->base & 0xff;
 607                return true;
 608        }
 609
 610        return false;
 611}
 612
 613static void mtrr_lookup_next(struct mtrr_iter *iter)
 614{
 615        if (iter->fixed)
 616                mtrr_lookup_fixed_next(iter);
 617        else
 618                mtrr_lookup_var_next(iter);
 619}
 620
 621#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
 622        for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
 623             mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
 624
 625u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
 626{
 627        struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 628        struct mtrr_iter iter;
 629        u64 start, end;
 630        int type = -1;
 631        const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
 632                               | (1 << MTRR_TYPE_WRTHROUGH);
 633
 634        start = gfn_to_gpa(gfn);
 635        end = start + PAGE_SIZE;
 636
 637        mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
 638                int curr_type = iter.mem_type;
 639
 640                /*
 641                 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
 642                 * Precedences.
 643                 */
 644
 645                if (type == -1) {
 646                        type = curr_type;
 647                        continue;
 648                }
 649
 650                /*
 651                 * If two or more variable memory ranges match and the
 652                 * memory types are identical, then that memory type is
 653                 * used.
 654                 */
 655                if (type == curr_type)
 656                        continue;
 657
 658                /*
 659                 * If two or more variable memory ranges match and one of
 660                 * the memory types is UC, the UC memory type used.
 661                 */
 662                if (curr_type == MTRR_TYPE_UNCACHABLE)
 663                        return MTRR_TYPE_UNCACHABLE;
 664
 665                /*
 666                 * If two or more variable memory ranges match and the
 667                 * memory types are WT and WB, the WT memory type is used.
 668                 */
 669                if (((1 << type) & wt_wb_mask) &&
 670                      ((1 << curr_type) & wt_wb_mask)) {
 671                        type = MTRR_TYPE_WRTHROUGH;
 672                        continue;
 673                }
 674
 675                /*
 676                 * For overlaps not defined by the above rules, processor
 677                 * behavior is undefined.
 678                 */
 679
 680                /* We use WB for this undefined behavior. :( */
 681                return MTRR_TYPE_WRBACK;
 682        }
 683
 684        if (iter.mtrr_disabled)
 685                return mtrr_disabled_type(vcpu);
 686
 687        /* not contained in any MTRRs. */
 688        if (type == -1)
 689                return mtrr_default_type(mtrr_state);
 690
 691        /*
 692         * We just check one page, partially covered by MTRRs is
 693         * impossible.
 694         */
 695        WARN_ON(iter.partial_map);
 696
 697        return type;
 698}
 699EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
 700
 701bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
 702                                          int page_num)
 703{
 704        struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
 705        struct mtrr_iter iter;
 706        u64 start, end;
 707        int type = -1;
 708
 709        start = gfn_to_gpa(gfn);
 710        end = gfn_to_gpa(gfn + page_num);
 711        mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
 712                if (type == -1) {
 713                        type = iter.mem_type;
 714                        continue;
 715                }
 716
 717                if (type != iter.mem_type)
 718                        return false;
 719        }
 720
 721        if (iter.mtrr_disabled)
 722                return true;
 723
 724        if (!iter.partial_map)
 725                return true;
 726
 727        if (type == -1)
 728                return true;
 729
 730        return type == mtrr_default_type(mtrr_state);
 731}
 732