linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39
  40#include <asm/apic.h>
  41#include <asm/perf_event.h>
  42#include <asm/tlbflush.h>
  43#include <asm/desc.h>
  44#include <asm/debugreg.h>
  45#include <asm/kvm_para.h>
  46#include <asm/irq_remapping.h>
  47
  48#include <asm/virtext.h>
  49#include "trace.h"
  50
  51#define __ex(x) __kvm_handle_fault_on_reboot(x)
  52
  53MODULE_AUTHOR("Qumranet");
  54MODULE_LICENSE("GPL");
  55
  56static const struct x86_cpu_id svm_cpu_id[] = {
  57        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  58        {}
  59};
  60MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  61
  62#define IOPM_ALLOC_ORDER 2
  63#define MSRPM_ALLOC_ORDER 1
  64
  65#define SEG_TYPE_LDT 2
  66#define SEG_TYPE_BUSY_TSS16 3
  67
  68#define SVM_FEATURE_NPT            (1 <<  0)
  69#define SVM_FEATURE_LBRV           (1 <<  1)
  70#define SVM_FEATURE_SVML           (1 <<  2)
  71#define SVM_FEATURE_NRIP           (1 <<  3)
  72#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  73#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  74#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  75#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  76#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  77
  78#define SVM_AVIC_DOORBELL       0xc001011b
  79
  80#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  81#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  82#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  83
  84#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  85
  86#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  87#define TSC_RATIO_MIN           0x0000000000000001ULL
  88#define TSC_RATIO_MAX           0x000000ffffffffffULL
  89
  90#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  91
  92/*
  93 * 0xff is broadcast, so the max index allowed for physical APIC ID
  94 * table is 0xfe.  APIC IDs above 0xff are reserved.
  95 */
  96#define AVIC_MAX_PHYSICAL_ID_COUNT      255
  97
  98#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
  99#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 100#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 101
 102/* AVIC GATAG is encoded using VM and VCPU IDs */
 103#define AVIC_VCPU_ID_BITS               8
 104#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 105
 106#define AVIC_VM_ID_BITS                 24
 107#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 108#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 109
 110#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 111                                                (y & AVIC_VCPU_ID_MASK))
 112#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 113#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 114
 115static bool erratum_383_found __read_mostly;
 116
 117static const u32 host_save_user_msrs[] = {
 118#ifdef CONFIG_X86_64
 119        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 120        MSR_FS_BASE,
 121#endif
 122        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 123        MSR_TSC_AUX,
 124};
 125
 126#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 127
 128struct kvm_vcpu;
 129
 130struct nested_state {
 131        struct vmcb *hsave;
 132        u64 hsave_msr;
 133        u64 vm_cr_msr;
 134        u64 vmcb;
 135
 136        /* These are the merged vectors */
 137        u32 *msrpm;
 138
 139        /* gpa pointers to the real vectors */
 140        u64 vmcb_msrpm;
 141        u64 vmcb_iopm;
 142
 143        /* A VMEXIT is required but not yet emulated */
 144        bool exit_required;
 145
 146        /* cache for intercepts of the guest */
 147        u32 intercept_cr;
 148        u32 intercept_dr;
 149        u32 intercept_exceptions;
 150        u64 intercept;
 151
 152        /* Nested Paging related state */
 153        u64 nested_cr3;
 154};
 155
 156#define MSRPM_OFFSETS   16
 157static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 158
 159/*
 160 * Set osvw_len to higher value when updated Revision Guides
 161 * are published and we know what the new status bits are
 162 */
 163static uint64_t osvw_len = 4, osvw_status;
 164
 165struct vcpu_svm {
 166        struct kvm_vcpu vcpu;
 167        struct vmcb *vmcb;
 168        unsigned long vmcb_pa;
 169        struct svm_cpu_data *svm_data;
 170        uint64_t asid_generation;
 171        uint64_t sysenter_esp;
 172        uint64_t sysenter_eip;
 173        uint64_t tsc_aux;
 174
 175        u64 next_rip;
 176
 177        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 178        struct {
 179                u16 fs;
 180                u16 gs;
 181                u16 ldt;
 182                u64 gs_base;
 183        } host;
 184
 185        u32 *msrpm;
 186
 187        ulong nmi_iret_rip;
 188
 189        struct nested_state nested;
 190
 191        bool nmi_singlestep;
 192
 193        unsigned int3_injected;
 194        unsigned long int3_rip;
 195        u32 apf_reason;
 196
 197        /* cached guest cpuid flags for faster access */
 198        bool nrips_enabled      : 1;
 199
 200        u32 ldr_reg;
 201        struct page *avic_backing_page;
 202        u64 *avic_physical_id_cache;
 203        bool avic_is_running;
 204
 205        /*
 206         * Per-vcpu list of struct amd_svm_iommu_ir:
 207         * This is used mainly to store interrupt remapping information used
 208         * when update the vcpu affinity. This avoids the need to scan for
 209         * IRTE and try to match ga_tag in the IOMMU driver.
 210         */
 211        struct list_head ir_list;
 212        spinlock_t ir_list_lock;
 213};
 214
 215/*
 216 * This is a wrapper of struct amd_iommu_ir_data.
 217 */
 218struct amd_svm_iommu_ir {
 219        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 220        void *data;             /* Storing pointer to struct amd_ir_data */
 221};
 222
 223#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 224#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 225
 226#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 227#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 228#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 229#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 230
 231static DEFINE_PER_CPU(u64, current_tsc_ratio);
 232#define TSC_RATIO_DEFAULT       0x0100000000ULL
 233
 234#define MSR_INVALID                     0xffffffffU
 235
 236static const struct svm_direct_access_msrs {
 237        u32 index;   /* Index of the MSR */
 238        bool always; /* True if intercept is always on */
 239} direct_access_msrs[] = {
 240        { .index = MSR_STAR,                            .always = true  },
 241        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 242#ifdef CONFIG_X86_64
 243        { .index = MSR_GS_BASE,                         .always = true  },
 244        { .index = MSR_FS_BASE,                         .always = true  },
 245        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 246        { .index = MSR_LSTAR,                           .always = true  },
 247        { .index = MSR_CSTAR,                           .always = true  },
 248        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 249#endif
 250        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 251        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 252        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 253        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 254        { .index = MSR_INVALID,                         .always = false },
 255};
 256
 257/* enable NPT for AMD64 and X86 with PAE */
 258#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 259static bool npt_enabled = true;
 260#else
 261static bool npt_enabled;
 262#endif
 263
 264/* allow nested paging (virtualized MMU) for all guests */
 265static int npt = true;
 266module_param(npt, int, S_IRUGO);
 267
 268/* allow nested virtualization in KVM/SVM */
 269static int nested = true;
 270module_param(nested, int, S_IRUGO);
 271
 272/* enable / disable AVIC */
 273static int avic;
 274#ifdef CONFIG_X86_LOCAL_APIC
 275module_param(avic, int, S_IRUGO);
 276#endif
 277
 278/* AVIC VM ID bit masks and lock */
 279static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
 280static DEFINE_SPINLOCK(avic_vm_id_lock);
 281
 282static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 283static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 284static void svm_complete_interrupts(struct vcpu_svm *svm);
 285
 286static int nested_svm_exit_handled(struct vcpu_svm *svm);
 287static int nested_svm_intercept(struct vcpu_svm *svm);
 288static int nested_svm_vmexit(struct vcpu_svm *svm);
 289static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 290                                      bool has_error_code, u32 error_code);
 291
 292enum {
 293        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 294                            pause filter count */
 295        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 296        VMCB_ASID,       /* ASID */
 297        VMCB_INTR,       /* int_ctl, int_vector */
 298        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 299        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 300        VMCB_DR,         /* DR6, DR7 */
 301        VMCB_DT,         /* GDT, IDT */
 302        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 303        VMCB_CR2,        /* CR2 only */
 304        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 305        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 306                          * AVIC PHYSICAL_TABLE pointer,
 307                          * AVIC LOGICAL_TABLE pointer
 308                          */
 309        VMCB_DIRTY_MAX,
 310};
 311
 312/* TPR and CR2 are always written before VMRUN */
 313#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 314
 315#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 316
 317static inline void mark_all_dirty(struct vmcb *vmcb)
 318{
 319        vmcb->control.clean = 0;
 320}
 321
 322static inline void mark_all_clean(struct vmcb *vmcb)
 323{
 324        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 325                               & ~VMCB_ALWAYS_DIRTY_MASK;
 326}
 327
 328static inline void mark_dirty(struct vmcb *vmcb, int bit)
 329{
 330        vmcb->control.clean &= ~(1 << bit);
 331}
 332
 333static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 334{
 335        return container_of(vcpu, struct vcpu_svm, vcpu);
 336}
 337
 338static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 339{
 340        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 341        mark_dirty(svm->vmcb, VMCB_AVIC);
 342}
 343
 344static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 345{
 346        struct vcpu_svm *svm = to_svm(vcpu);
 347        u64 *entry = svm->avic_physical_id_cache;
 348
 349        if (!entry)
 350                return false;
 351
 352        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 353}
 354
 355static void recalc_intercepts(struct vcpu_svm *svm)
 356{
 357        struct vmcb_control_area *c, *h;
 358        struct nested_state *g;
 359
 360        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 361
 362        if (!is_guest_mode(&svm->vcpu))
 363                return;
 364
 365        c = &svm->vmcb->control;
 366        h = &svm->nested.hsave->control;
 367        g = &svm->nested;
 368
 369        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 370        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 371        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 372        c->intercept = h->intercept | g->intercept;
 373}
 374
 375static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 376{
 377        if (is_guest_mode(&svm->vcpu))
 378                return svm->nested.hsave;
 379        else
 380                return svm->vmcb;
 381}
 382
 383static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 384{
 385        struct vmcb *vmcb = get_host_vmcb(svm);
 386
 387        vmcb->control.intercept_cr |= (1U << bit);
 388
 389        recalc_intercepts(svm);
 390}
 391
 392static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 393{
 394        struct vmcb *vmcb = get_host_vmcb(svm);
 395
 396        vmcb->control.intercept_cr &= ~(1U << bit);
 397
 398        recalc_intercepts(svm);
 399}
 400
 401static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 402{
 403        struct vmcb *vmcb = get_host_vmcb(svm);
 404
 405        return vmcb->control.intercept_cr & (1U << bit);
 406}
 407
 408static inline void set_dr_intercepts(struct vcpu_svm *svm)
 409{
 410        struct vmcb *vmcb = get_host_vmcb(svm);
 411
 412        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 413                | (1 << INTERCEPT_DR1_READ)
 414                | (1 << INTERCEPT_DR2_READ)
 415                | (1 << INTERCEPT_DR3_READ)
 416                | (1 << INTERCEPT_DR4_READ)
 417                | (1 << INTERCEPT_DR5_READ)
 418                | (1 << INTERCEPT_DR6_READ)
 419                | (1 << INTERCEPT_DR7_READ)
 420                | (1 << INTERCEPT_DR0_WRITE)
 421                | (1 << INTERCEPT_DR1_WRITE)
 422                | (1 << INTERCEPT_DR2_WRITE)
 423                | (1 << INTERCEPT_DR3_WRITE)
 424                | (1 << INTERCEPT_DR4_WRITE)
 425                | (1 << INTERCEPT_DR5_WRITE)
 426                | (1 << INTERCEPT_DR6_WRITE)
 427                | (1 << INTERCEPT_DR7_WRITE);
 428
 429        recalc_intercepts(svm);
 430}
 431
 432static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 433{
 434        struct vmcb *vmcb = get_host_vmcb(svm);
 435
 436        vmcb->control.intercept_dr = 0;
 437
 438        recalc_intercepts(svm);
 439}
 440
 441static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 442{
 443        struct vmcb *vmcb = get_host_vmcb(svm);
 444
 445        vmcb->control.intercept_exceptions |= (1U << bit);
 446
 447        recalc_intercepts(svm);
 448}
 449
 450static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 451{
 452        struct vmcb *vmcb = get_host_vmcb(svm);
 453
 454        vmcb->control.intercept_exceptions &= ~(1U << bit);
 455
 456        recalc_intercepts(svm);
 457}
 458
 459static inline void set_intercept(struct vcpu_svm *svm, int bit)
 460{
 461        struct vmcb *vmcb = get_host_vmcb(svm);
 462
 463        vmcb->control.intercept |= (1ULL << bit);
 464
 465        recalc_intercepts(svm);
 466}
 467
 468static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 469{
 470        struct vmcb *vmcb = get_host_vmcb(svm);
 471
 472        vmcb->control.intercept &= ~(1ULL << bit);
 473
 474        recalc_intercepts(svm);
 475}
 476
 477static inline void enable_gif(struct vcpu_svm *svm)
 478{
 479        svm->vcpu.arch.hflags |= HF_GIF_MASK;
 480}
 481
 482static inline void disable_gif(struct vcpu_svm *svm)
 483{
 484        svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 485}
 486
 487static inline bool gif_set(struct vcpu_svm *svm)
 488{
 489        return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 490}
 491
 492static unsigned long iopm_base;
 493
 494struct kvm_ldttss_desc {
 495        u16 limit0;
 496        u16 base0;
 497        unsigned base1:8, type:5, dpl:2, p:1;
 498        unsigned limit1:4, zero0:3, g:1, base2:8;
 499        u32 base3;
 500        u32 zero1;
 501} __attribute__((packed));
 502
 503struct svm_cpu_data {
 504        int cpu;
 505
 506        u64 asid_generation;
 507        u32 max_asid;
 508        u32 next_asid;
 509        struct kvm_ldttss_desc *tss_desc;
 510
 511        struct page *save_area;
 512};
 513
 514static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 515
 516struct svm_init_data {
 517        int cpu;
 518        int r;
 519};
 520
 521static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 522
 523#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 524#define MSRS_RANGE_SIZE 2048
 525#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 526
 527static u32 svm_msrpm_offset(u32 msr)
 528{
 529        u32 offset;
 530        int i;
 531
 532        for (i = 0; i < NUM_MSR_MAPS; i++) {
 533                if (msr < msrpm_ranges[i] ||
 534                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 535                        continue;
 536
 537                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 538                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 539
 540                /* Now we have the u8 offset - but need the u32 offset */
 541                return offset / 4;
 542        }
 543
 544        /* MSR not in any range */
 545        return MSR_INVALID;
 546}
 547
 548#define MAX_INST_SIZE 15
 549
 550static inline void clgi(void)
 551{
 552        asm volatile (__ex(SVM_CLGI));
 553}
 554
 555static inline void stgi(void)
 556{
 557        asm volatile (__ex(SVM_STGI));
 558}
 559
 560static inline void invlpga(unsigned long addr, u32 asid)
 561{
 562        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 563}
 564
 565static int get_npt_level(void)
 566{
 567#ifdef CONFIG_X86_64
 568        return PT64_ROOT_LEVEL;
 569#else
 570        return PT32E_ROOT_LEVEL;
 571#endif
 572}
 573
 574static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 575{
 576        vcpu->arch.efer = efer;
 577        if (!npt_enabled && !(efer & EFER_LMA))
 578                efer &= ~EFER_LME;
 579
 580        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 581        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 582}
 583
 584static int is_external_interrupt(u32 info)
 585{
 586        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 587        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 588}
 589
 590static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 591{
 592        struct vcpu_svm *svm = to_svm(vcpu);
 593        u32 ret = 0;
 594
 595        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 596                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 597        return ret;
 598}
 599
 600static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 601{
 602        struct vcpu_svm *svm = to_svm(vcpu);
 603
 604        if (mask == 0)
 605                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 606        else
 607                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 608
 609}
 610
 611static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 612{
 613        struct vcpu_svm *svm = to_svm(vcpu);
 614
 615        if (svm->vmcb->control.next_rip != 0) {
 616                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 617                svm->next_rip = svm->vmcb->control.next_rip;
 618        }
 619
 620        if (!svm->next_rip) {
 621                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 622                                EMULATE_DONE)
 623                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 624                return;
 625        }
 626        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 627                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 628                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 629
 630        kvm_rip_write(vcpu, svm->next_rip);
 631        svm_set_interrupt_shadow(vcpu, 0);
 632}
 633
 634static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 635                                bool has_error_code, u32 error_code,
 636                                bool reinject)
 637{
 638        struct vcpu_svm *svm = to_svm(vcpu);
 639
 640        /*
 641         * If we are within a nested VM we'd better #VMEXIT and let the guest
 642         * handle the exception
 643         */
 644        if (!reinject &&
 645            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 646                return;
 647
 648        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 649                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 650
 651                /*
 652                 * For guest debugging where we have to reinject #BP if some
 653                 * INT3 is guest-owned:
 654                 * Emulate nRIP by moving RIP forward. Will fail if injection
 655                 * raises a fault that is not intercepted. Still better than
 656                 * failing in all cases.
 657                 */
 658                skip_emulated_instruction(&svm->vcpu);
 659                rip = kvm_rip_read(&svm->vcpu);
 660                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 661                svm->int3_injected = rip - old_rip;
 662        }
 663
 664        svm->vmcb->control.event_inj = nr
 665                | SVM_EVTINJ_VALID
 666                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 667                | SVM_EVTINJ_TYPE_EXEPT;
 668        svm->vmcb->control.event_inj_err = error_code;
 669}
 670
 671static void svm_init_erratum_383(void)
 672{
 673        u32 low, high;
 674        int err;
 675        u64 val;
 676
 677        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 678                return;
 679
 680        /* Use _safe variants to not break nested virtualization */
 681        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 682        if (err)
 683                return;
 684
 685        val |= (1ULL << 47);
 686
 687        low  = lower_32_bits(val);
 688        high = upper_32_bits(val);
 689
 690        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 691
 692        erratum_383_found = true;
 693}
 694
 695static void svm_init_osvw(struct kvm_vcpu *vcpu)
 696{
 697        /*
 698         * Guests should see errata 400 and 415 as fixed (assuming that
 699         * HLT and IO instructions are intercepted).
 700         */
 701        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 702        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 703
 704        /*
 705         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 706         * all osvw.status bits inside that length, including bit 0 (which is
 707         * reserved for erratum 298), are valid. However, if host processor's
 708         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 709         * be conservative here and therefore we tell the guest that erratum 298
 710         * is present (because we really don't know).
 711         */
 712        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 713                vcpu->arch.osvw.status |= 1;
 714}
 715
 716static int has_svm(void)
 717{
 718        const char *msg;
 719
 720        if (!cpu_has_svm(&msg)) {
 721                printk(KERN_INFO "has_svm: %s\n", msg);
 722                return 0;
 723        }
 724
 725        return 1;
 726}
 727
 728static void svm_hardware_disable(void)
 729{
 730        /* Make sure we clean up behind us */
 731        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 732                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 733
 734        cpu_svm_disable();
 735
 736        amd_pmu_disable_virt();
 737}
 738
 739static int svm_hardware_enable(void)
 740{
 741
 742        struct svm_cpu_data *sd;
 743        uint64_t efer;
 744        struct desc_ptr gdt_descr;
 745        struct desc_struct *gdt;
 746        int me = raw_smp_processor_id();
 747
 748        rdmsrl(MSR_EFER, efer);
 749        if (efer & EFER_SVME)
 750                return -EBUSY;
 751
 752        if (!has_svm()) {
 753                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 754                return -EINVAL;
 755        }
 756        sd = per_cpu(svm_data, me);
 757        if (!sd) {
 758                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 759                return -EINVAL;
 760        }
 761
 762        sd->asid_generation = 1;
 763        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 764        sd->next_asid = sd->max_asid + 1;
 765
 766        native_store_gdt(&gdt_descr);
 767        gdt = (struct desc_struct *)gdt_descr.address;
 768        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 769
 770        wrmsrl(MSR_EFER, efer | EFER_SVME);
 771
 772        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 773
 774        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 775                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 776                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 777        }
 778
 779
 780        /*
 781         * Get OSVW bits.
 782         *
 783         * Note that it is possible to have a system with mixed processor
 784         * revisions and therefore different OSVW bits. If bits are not the same
 785         * on different processors then choose the worst case (i.e. if erratum
 786         * is present on one processor and not on another then assume that the
 787         * erratum is present everywhere).
 788         */
 789        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 790                uint64_t len, status = 0;
 791                int err;
 792
 793                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 794                if (!err)
 795                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 796                                                      &err);
 797
 798                if (err)
 799                        osvw_status = osvw_len = 0;
 800                else {
 801                        if (len < osvw_len)
 802                                osvw_len = len;
 803                        osvw_status |= status;
 804                        osvw_status &= (1ULL << osvw_len) - 1;
 805                }
 806        } else
 807                osvw_status = osvw_len = 0;
 808
 809        svm_init_erratum_383();
 810
 811        amd_pmu_enable_virt();
 812
 813        return 0;
 814}
 815
 816static void svm_cpu_uninit(int cpu)
 817{
 818        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 819
 820        if (!sd)
 821                return;
 822
 823        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 824        __free_page(sd->save_area);
 825        kfree(sd);
 826}
 827
 828static int svm_cpu_init(int cpu)
 829{
 830        struct svm_cpu_data *sd;
 831        int r;
 832
 833        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 834        if (!sd)
 835                return -ENOMEM;
 836        sd->cpu = cpu;
 837        sd->save_area = alloc_page(GFP_KERNEL);
 838        r = -ENOMEM;
 839        if (!sd->save_area)
 840                goto err_1;
 841
 842        per_cpu(svm_data, cpu) = sd;
 843
 844        return 0;
 845
 846err_1:
 847        kfree(sd);
 848        return r;
 849
 850}
 851
 852static bool valid_msr_intercept(u32 index)
 853{
 854        int i;
 855
 856        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 857                if (direct_access_msrs[i].index == index)
 858                        return true;
 859
 860        return false;
 861}
 862
 863static void set_msr_interception(u32 *msrpm, unsigned msr,
 864                                 int read, int write)
 865{
 866        u8 bit_read, bit_write;
 867        unsigned long tmp;
 868        u32 offset;
 869
 870        /*
 871         * If this warning triggers extend the direct_access_msrs list at the
 872         * beginning of the file
 873         */
 874        WARN_ON(!valid_msr_intercept(msr));
 875
 876        offset    = svm_msrpm_offset(msr);
 877        bit_read  = 2 * (msr & 0x0f);
 878        bit_write = 2 * (msr & 0x0f) + 1;
 879        tmp       = msrpm[offset];
 880
 881        BUG_ON(offset == MSR_INVALID);
 882
 883        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 884        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 885
 886        msrpm[offset] = tmp;
 887}
 888
 889static void svm_vcpu_init_msrpm(u32 *msrpm)
 890{
 891        int i;
 892
 893        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 894
 895        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 896                if (!direct_access_msrs[i].always)
 897                        continue;
 898
 899                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 900        }
 901}
 902
 903static void add_msr_offset(u32 offset)
 904{
 905        int i;
 906
 907        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 908
 909                /* Offset already in list? */
 910                if (msrpm_offsets[i] == offset)
 911                        return;
 912
 913                /* Slot used by another offset? */
 914                if (msrpm_offsets[i] != MSR_INVALID)
 915                        continue;
 916
 917                /* Add offset to list */
 918                msrpm_offsets[i] = offset;
 919
 920                return;
 921        }
 922
 923        /*
 924         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 925         * increase MSRPM_OFFSETS in this case.
 926         */
 927        BUG();
 928}
 929
 930static void init_msrpm_offsets(void)
 931{
 932        int i;
 933
 934        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 935
 936        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 937                u32 offset;
 938
 939                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 940                BUG_ON(offset == MSR_INVALID);
 941
 942                add_msr_offset(offset);
 943        }
 944}
 945
 946static void svm_enable_lbrv(struct vcpu_svm *svm)
 947{
 948        u32 *msrpm = svm->msrpm;
 949
 950        svm->vmcb->control.lbr_ctl = 1;
 951        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 952        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 953        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 954        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 955}
 956
 957static void svm_disable_lbrv(struct vcpu_svm *svm)
 958{
 959        u32 *msrpm = svm->msrpm;
 960
 961        svm->vmcb->control.lbr_ctl = 0;
 962        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 963        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 964        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 965        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 966}
 967
 968/* Note:
 969 * This hash table is used to map VM_ID to a struct kvm_arch,
 970 * when handling AMD IOMMU GALOG notification to schedule in
 971 * a particular vCPU.
 972 */
 973#define SVM_VM_DATA_HASH_BITS   8
 974DECLARE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
 975static spinlock_t svm_vm_data_hash_lock;
 976
 977/* Note:
 978 * This function is called from IOMMU driver to notify
 979 * SVM to schedule in a particular vCPU of a particular VM.
 980 */
 981static int avic_ga_log_notifier(u32 ga_tag)
 982{
 983        unsigned long flags;
 984        struct kvm_arch *ka = NULL;
 985        struct kvm_vcpu *vcpu = NULL;
 986        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
 987        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
 988
 989        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
 990
 991        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 992        hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
 993                struct kvm *kvm = container_of(ka, struct kvm, arch);
 994                struct kvm_arch *vm_data = &kvm->arch;
 995
 996                if (vm_data->avic_vm_id != vm_id)
 997                        continue;
 998                vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
 999                break;
1000        }
1001        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003        if (!vcpu)
1004                return 0;
1005
1006        /* Note:
1007         * At this point, the IOMMU should have already set the pending
1008         * bit in the vAPIC backing page. So, we just need to schedule
1009         * in the vcpu.
1010         */
1011        if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012                kvm_vcpu_wake_up(vcpu);
1013
1014        return 0;
1015}
1016
1017static __init int svm_hardware_setup(void)
1018{
1019        int cpu;
1020        struct page *iopm_pages;
1021        void *iopm_va;
1022        int r;
1023
1024        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026        if (!iopm_pages)
1027                return -ENOMEM;
1028
1029        iopm_va = page_address(iopm_pages);
1030        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033        init_msrpm_offsets();
1034
1035        if (boot_cpu_has(X86_FEATURE_NX))
1036                kvm_enable_efer_bits(EFER_NX);
1037
1038        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039                kvm_enable_efer_bits(EFER_FFXSR);
1040
1041        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042                kvm_has_tsc_control = true;
1043                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044                kvm_tsc_scaling_ratio_frac_bits = 32;
1045        }
1046
1047        if (nested) {
1048                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050        }
1051
1052        for_each_possible_cpu(cpu) {
1053                r = svm_cpu_init(cpu);
1054                if (r)
1055                        goto err;
1056        }
1057
1058        if (!boot_cpu_has(X86_FEATURE_NPT))
1059                npt_enabled = false;
1060
1061        if (npt_enabled && !npt) {
1062                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063                npt_enabled = false;
1064        }
1065
1066        if (npt_enabled) {
1067                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068                kvm_enable_tdp();
1069        } else
1070                kvm_disable_tdp();
1071
1072        if (avic) {
1073                if (!npt_enabled ||
1074                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1075                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076                        avic = false;
1077                } else {
1078                        pr_info("AVIC enabled\n");
1079
1080                        hash_init(svm_vm_data_hash);
1081                        spin_lock_init(&svm_vm_data_hash_lock);
1082                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1083                }
1084        }
1085
1086        return 0;
1087
1088err:
1089        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1090        iopm_base = 0;
1091        return r;
1092}
1093
1094static __exit void svm_hardware_unsetup(void)
1095{
1096        int cpu;
1097
1098        for_each_possible_cpu(cpu)
1099                svm_cpu_uninit(cpu);
1100
1101        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1102        iopm_base = 0;
1103}
1104
1105static void init_seg(struct vmcb_seg *seg)
1106{
1107        seg->selector = 0;
1108        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1109                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1110        seg->limit = 0xffff;
1111        seg->base = 0;
1112}
1113
1114static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1115{
1116        seg->selector = 0;
1117        seg->attrib = SVM_SELECTOR_P_MASK | type;
1118        seg->limit = 0xffff;
1119        seg->base = 0;
1120}
1121
1122static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1123{
1124        struct vcpu_svm *svm = to_svm(vcpu);
1125        u64 g_tsc_offset = 0;
1126
1127        if (is_guest_mode(vcpu)) {
1128                g_tsc_offset = svm->vmcb->control.tsc_offset -
1129                               svm->nested.hsave->control.tsc_offset;
1130                svm->nested.hsave->control.tsc_offset = offset;
1131        } else
1132                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1133                                           svm->vmcb->control.tsc_offset,
1134                                           offset);
1135
1136        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1137
1138        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1139}
1140
1141static void avic_init_vmcb(struct vcpu_svm *svm)
1142{
1143        struct vmcb *vmcb = svm->vmcb;
1144        struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1145        phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1146        phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1147        phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1148
1149        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1150        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1151        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1152        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1153        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1154        svm->vcpu.arch.apicv_active = true;
1155}
1156
1157static void init_vmcb(struct vcpu_svm *svm)
1158{
1159        struct vmcb_control_area *control = &svm->vmcb->control;
1160        struct vmcb_save_area *save = &svm->vmcb->save;
1161
1162        svm->vcpu.fpu_active = 1;
1163        svm->vcpu.arch.hflags = 0;
1164
1165        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1166        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1167        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1168        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1169        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1170        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1171        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1172                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1173
1174        set_dr_intercepts(svm);
1175
1176        set_exception_intercept(svm, PF_VECTOR);
1177        set_exception_intercept(svm, UD_VECTOR);
1178        set_exception_intercept(svm, MC_VECTOR);
1179        set_exception_intercept(svm, AC_VECTOR);
1180        set_exception_intercept(svm, DB_VECTOR);
1181
1182        set_intercept(svm, INTERCEPT_INTR);
1183        set_intercept(svm, INTERCEPT_NMI);
1184        set_intercept(svm, INTERCEPT_SMI);
1185        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1186        set_intercept(svm, INTERCEPT_RDPMC);
1187        set_intercept(svm, INTERCEPT_CPUID);
1188        set_intercept(svm, INTERCEPT_INVD);
1189        set_intercept(svm, INTERCEPT_HLT);
1190        set_intercept(svm, INTERCEPT_INVLPG);
1191        set_intercept(svm, INTERCEPT_INVLPGA);
1192        set_intercept(svm, INTERCEPT_IOIO_PROT);
1193        set_intercept(svm, INTERCEPT_MSR_PROT);
1194        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1195        set_intercept(svm, INTERCEPT_SHUTDOWN);
1196        set_intercept(svm, INTERCEPT_VMRUN);
1197        set_intercept(svm, INTERCEPT_VMMCALL);
1198        set_intercept(svm, INTERCEPT_VMLOAD);
1199        set_intercept(svm, INTERCEPT_VMSAVE);
1200        set_intercept(svm, INTERCEPT_STGI);
1201        set_intercept(svm, INTERCEPT_CLGI);
1202        set_intercept(svm, INTERCEPT_SKINIT);
1203        set_intercept(svm, INTERCEPT_WBINVD);
1204        set_intercept(svm, INTERCEPT_MONITOR);
1205        set_intercept(svm, INTERCEPT_MWAIT);
1206        set_intercept(svm, INTERCEPT_XSETBV);
1207
1208        control->iopm_base_pa = iopm_base;
1209        control->msrpm_base_pa = __pa(svm->msrpm);
1210        control->int_ctl = V_INTR_MASKING_MASK;
1211
1212        init_seg(&save->es);
1213        init_seg(&save->ss);
1214        init_seg(&save->ds);
1215        init_seg(&save->fs);
1216        init_seg(&save->gs);
1217
1218        save->cs.selector = 0xf000;
1219        save->cs.base = 0xffff0000;
1220        /* Executable/Readable Code Segment */
1221        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1222                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1223        save->cs.limit = 0xffff;
1224
1225        save->gdtr.limit = 0xffff;
1226        save->idtr.limit = 0xffff;
1227
1228        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1229        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1230
1231        svm_set_efer(&svm->vcpu, 0);
1232        save->dr6 = 0xffff0ff0;
1233        kvm_set_rflags(&svm->vcpu, 2);
1234        save->rip = 0x0000fff0;
1235        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1236
1237        /*
1238         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1239         * It also updates the guest-visible cr0 value.
1240         */
1241        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1242        kvm_mmu_reset_context(&svm->vcpu);
1243
1244        save->cr4 = X86_CR4_PAE;
1245        /* rdx = ?? */
1246
1247        if (npt_enabled) {
1248                /* Setup VMCB for Nested Paging */
1249                control->nested_ctl = 1;
1250                clr_intercept(svm, INTERCEPT_INVLPG);
1251                clr_exception_intercept(svm, PF_VECTOR);
1252                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1253                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1254                save->g_pat = svm->vcpu.arch.pat;
1255                save->cr3 = 0;
1256                save->cr4 = 0;
1257        }
1258        svm->asid_generation = 0;
1259
1260        svm->nested.vmcb = 0;
1261        svm->vcpu.arch.hflags = 0;
1262
1263        if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1264                control->pause_filter_count = 3000;
1265                set_intercept(svm, INTERCEPT_PAUSE);
1266        }
1267
1268        if (avic)
1269                avic_init_vmcb(svm);
1270
1271        mark_all_dirty(svm->vmcb);
1272
1273        enable_gif(svm);
1274
1275}
1276
1277static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1278{
1279        u64 *avic_physical_id_table;
1280        struct kvm_arch *vm_data = &vcpu->kvm->arch;
1281
1282        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1283                return NULL;
1284
1285        avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1286
1287        return &avic_physical_id_table[index];
1288}
1289
1290/**
1291 * Note:
1292 * AVIC hardware walks the nested page table to check permissions,
1293 * but does not use the SPA address specified in the leaf page
1294 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1295 * field of the VMCB. Therefore, we set up the
1296 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1297 */
1298static int avic_init_access_page(struct kvm_vcpu *vcpu)
1299{
1300        struct kvm *kvm = vcpu->kvm;
1301        int ret;
1302
1303        if (kvm->arch.apic_access_page_done)
1304                return 0;
1305
1306        ret = x86_set_memory_region(kvm,
1307                                    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1308                                    APIC_DEFAULT_PHYS_BASE,
1309                                    PAGE_SIZE);
1310        if (ret)
1311                return ret;
1312
1313        kvm->arch.apic_access_page_done = true;
1314        return 0;
1315}
1316
1317static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1318{
1319        int ret;
1320        u64 *entry, new_entry;
1321        int id = vcpu->vcpu_id;
1322        struct vcpu_svm *svm = to_svm(vcpu);
1323
1324        ret = avic_init_access_page(vcpu);
1325        if (ret)
1326                return ret;
1327
1328        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1329                return -EINVAL;
1330
1331        if (!svm->vcpu.arch.apic->regs)
1332                return -EINVAL;
1333
1334        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1335
1336        /* Setting AVIC backing page address in the phy APIC ID table */
1337        entry = avic_get_physical_id_entry(vcpu, id);
1338        if (!entry)
1339                return -EINVAL;
1340
1341        new_entry = READ_ONCE(*entry);
1342        new_entry = (page_to_phys(svm->avic_backing_page) &
1343                     AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1344                     AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1345        WRITE_ONCE(*entry, new_entry);
1346
1347        svm->avic_physical_id_cache = entry;
1348
1349        return 0;
1350}
1351
1352static inline int avic_get_next_vm_id(void)
1353{
1354        int id;
1355
1356        spin_lock(&avic_vm_id_lock);
1357
1358        /* AVIC VM ID is one-based. */
1359        id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1360        if (id <= AVIC_VM_ID_MASK)
1361                __set_bit(id, avic_vm_id_bitmap);
1362        else
1363                id = -EAGAIN;
1364
1365        spin_unlock(&avic_vm_id_lock);
1366        return id;
1367}
1368
1369static inline int avic_free_vm_id(int id)
1370{
1371        if (id <= 0 || id > AVIC_VM_ID_MASK)
1372                return -EINVAL;
1373
1374        spin_lock(&avic_vm_id_lock);
1375        __clear_bit(id, avic_vm_id_bitmap);
1376        spin_unlock(&avic_vm_id_lock);
1377        return 0;
1378}
1379
1380static void avic_vm_destroy(struct kvm *kvm)
1381{
1382        unsigned long flags;
1383        struct kvm_arch *vm_data = &kvm->arch;
1384
1385        avic_free_vm_id(vm_data->avic_vm_id);
1386
1387        if (vm_data->avic_logical_id_table_page)
1388                __free_page(vm_data->avic_logical_id_table_page);
1389        if (vm_data->avic_physical_id_table_page)
1390                __free_page(vm_data->avic_physical_id_table_page);
1391
1392        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1393        hash_del(&vm_data->hnode);
1394        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1395}
1396
1397static int avic_vm_init(struct kvm *kvm)
1398{
1399        unsigned long flags;
1400        int vm_id, err = -ENOMEM;
1401        struct kvm_arch *vm_data = &kvm->arch;
1402        struct page *p_page;
1403        struct page *l_page;
1404
1405        if (!avic)
1406                return 0;
1407
1408        vm_id = avic_get_next_vm_id();
1409        if (vm_id < 0)
1410                return vm_id;
1411        vm_data->avic_vm_id = (u32)vm_id;
1412
1413        /* Allocating physical APIC ID table (4KB) */
1414        p_page = alloc_page(GFP_KERNEL);
1415        if (!p_page)
1416                goto free_avic;
1417
1418        vm_data->avic_physical_id_table_page = p_page;
1419        clear_page(page_address(p_page));
1420
1421        /* Allocating logical APIC ID table (4KB) */
1422        l_page = alloc_page(GFP_KERNEL);
1423        if (!l_page)
1424                goto free_avic;
1425
1426        vm_data->avic_logical_id_table_page = l_page;
1427        clear_page(page_address(l_page));
1428
1429        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430        hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1431        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432
1433        return 0;
1434
1435free_avic:
1436        avic_vm_destroy(kvm);
1437        return err;
1438}
1439
1440static inline int
1441avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1442{
1443        int ret = 0;
1444        unsigned long flags;
1445        struct amd_svm_iommu_ir *ir;
1446        struct vcpu_svm *svm = to_svm(vcpu);
1447
1448        if (!kvm_arch_has_assigned_device(vcpu->kvm))
1449                return 0;
1450
1451        /*
1452         * Here, we go through the per-vcpu ir_list to update all existing
1453         * interrupt remapping table entry targeting this vcpu.
1454         */
1455        spin_lock_irqsave(&svm->ir_list_lock, flags);
1456
1457        if (list_empty(&svm->ir_list))
1458                goto out;
1459
1460        list_for_each_entry(ir, &svm->ir_list, node) {
1461                ret = amd_iommu_update_ga(cpu, r, ir->data);
1462                if (ret)
1463                        break;
1464        }
1465out:
1466        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1467        return ret;
1468}
1469
1470static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471{
1472        u64 entry;
1473        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1474        int h_physical_id = kvm_cpu_get_apicid(cpu);
1475        struct vcpu_svm *svm = to_svm(vcpu);
1476
1477        if (!kvm_vcpu_apicv_active(vcpu))
1478                return;
1479
1480        if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1481                return;
1482
1483        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1484        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1485
1486        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1487        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1488
1489        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490        if (svm->avic_is_running)
1491                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1492
1493        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1494        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1495                                        svm->avic_is_running);
1496}
1497
1498static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1499{
1500        u64 entry;
1501        struct vcpu_svm *svm = to_svm(vcpu);
1502
1503        if (!kvm_vcpu_apicv_active(vcpu))
1504                return;
1505
1506        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1507        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1508                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1509
1510        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1511        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1512}
1513
1514/**
1515 * This function is called during VCPU halt/unhalt.
1516 */
1517static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1518{
1519        struct vcpu_svm *svm = to_svm(vcpu);
1520
1521        svm->avic_is_running = is_run;
1522        if (is_run)
1523                avic_vcpu_load(vcpu, vcpu->cpu);
1524        else
1525                avic_vcpu_put(vcpu);
1526}
1527
1528static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1529{
1530        struct vcpu_svm *svm = to_svm(vcpu);
1531        u32 dummy;
1532        u32 eax = 1;
1533
1534        if (!init_event) {
1535                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1536                                           MSR_IA32_APICBASE_ENABLE;
1537                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1538                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1539        }
1540        init_vmcb(svm);
1541
1542        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1543        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1544
1545        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1546                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1547}
1548
1549static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1550{
1551        struct vcpu_svm *svm;
1552        struct page *page;
1553        struct page *msrpm_pages;
1554        struct page *hsave_page;
1555        struct page *nested_msrpm_pages;
1556        int err;
1557
1558        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1559        if (!svm) {
1560                err = -ENOMEM;
1561                goto out;
1562        }
1563
1564        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1565        if (err)
1566                goto free_svm;
1567
1568        err = -ENOMEM;
1569        page = alloc_page(GFP_KERNEL);
1570        if (!page)
1571                goto uninit;
1572
1573        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1574        if (!msrpm_pages)
1575                goto free_page1;
1576
1577        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1578        if (!nested_msrpm_pages)
1579                goto free_page2;
1580
1581        hsave_page = alloc_page(GFP_KERNEL);
1582        if (!hsave_page)
1583                goto free_page3;
1584
1585        if (avic) {
1586                err = avic_init_backing_page(&svm->vcpu);
1587                if (err)
1588                        goto free_page4;
1589
1590                INIT_LIST_HEAD(&svm->ir_list);
1591                spin_lock_init(&svm->ir_list_lock);
1592        }
1593
1594        /* We initialize this flag to true to make sure that the is_running
1595         * bit would be set the first time the vcpu is loaded.
1596         */
1597        svm->avic_is_running = true;
1598
1599        svm->nested.hsave = page_address(hsave_page);
1600
1601        svm->msrpm = page_address(msrpm_pages);
1602        svm_vcpu_init_msrpm(svm->msrpm);
1603
1604        svm->nested.msrpm = page_address(nested_msrpm_pages);
1605        svm_vcpu_init_msrpm(svm->nested.msrpm);
1606
1607        svm->vmcb = page_address(page);
1608        clear_page(svm->vmcb);
1609        svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1610        svm->asid_generation = 0;
1611        init_vmcb(svm);
1612
1613        svm_init_osvw(&svm->vcpu);
1614
1615        return &svm->vcpu;
1616
1617free_page4:
1618        __free_page(hsave_page);
1619free_page3:
1620        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1621free_page2:
1622        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1623free_page1:
1624        __free_page(page);
1625uninit:
1626        kvm_vcpu_uninit(&svm->vcpu);
1627free_svm:
1628        kmem_cache_free(kvm_vcpu_cache, svm);
1629out:
1630        return ERR_PTR(err);
1631}
1632
1633static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1634{
1635        struct vcpu_svm *svm = to_svm(vcpu);
1636
1637        __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1638        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1639        __free_page(virt_to_page(svm->nested.hsave));
1640        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1641        kvm_vcpu_uninit(vcpu);
1642        kmem_cache_free(kvm_vcpu_cache, svm);
1643}
1644
1645static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1646{
1647        struct vcpu_svm *svm = to_svm(vcpu);
1648        int i;
1649
1650        if (unlikely(cpu != vcpu->cpu)) {
1651                svm->asid_generation = 0;
1652                mark_all_dirty(svm->vmcb);
1653        }
1654
1655#ifdef CONFIG_X86_64
1656        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1657#endif
1658        savesegment(fs, svm->host.fs);
1659        savesegment(gs, svm->host.gs);
1660        svm->host.ldt = kvm_read_ldt();
1661
1662        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1663                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1664
1665        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1666                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1667                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1668                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
1669                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1670                }
1671        }
1672        /* This assumes that the kernel never uses MSR_TSC_AUX */
1673        if (static_cpu_has(X86_FEATURE_RDTSCP))
1674                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1675
1676        avic_vcpu_load(vcpu, cpu);
1677}
1678
1679static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1680{
1681        struct vcpu_svm *svm = to_svm(vcpu);
1682        int i;
1683
1684        avic_vcpu_put(vcpu);
1685
1686        ++vcpu->stat.host_state_reload;
1687        kvm_load_ldt(svm->host.ldt);
1688#ifdef CONFIG_X86_64
1689        loadsegment(fs, svm->host.fs);
1690        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1691        load_gs_index(svm->host.gs);
1692#else
1693#ifdef CONFIG_X86_32_LAZY_GS
1694        loadsegment(gs, svm->host.gs);
1695#endif
1696#endif
1697        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1698                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1699}
1700
1701static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1702{
1703        avic_set_running(vcpu, false);
1704}
1705
1706static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1707{
1708        avic_set_running(vcpu, true);
1709}
1710
1711static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1712{
1713        return to_svm(vcpu)->vmcb->save.rflags;
1714}
1715
1716static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1717{
1718       /*
1719        * Any change of EFLAGS.VM is accompanied by a reload of SS
1720        * (caused by either a task switch or an inter-privilege IRET),
1721        * so we do not need to update the CPL here.
1722        */
1723        to_svm(vcpu)->vmcb->save.rflags = rflags;
1724}
1725
1726static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1727{
1728        return 0;
1729}
1730
1731static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1732{
1733        switch (reg) {
1734        case VCPU_EXREG_PDPTR:
1735                BUG_ON(!npt_enabled);
1736                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1737                break;
1738        default:
1739                BUG();
1740        }
1741}
1742
1743static void svm_set_vintr(struct vcpu_svm *svm)
1744{
1745        set_intercept(svm, INTERCEPT_VINTR);
1746}
1747
1748static void svm_clear_vintr(struct vcpu_svm *svm)
1749{
1750        clr_intercept(svm, INTERCEPT_VINTR);
1751}
1752
1753static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1754{
1755        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1756
1757        switch (seg) {
1758        case VCPU_SREG_CS: return &save->cs;
1759        case VCPU_SREG_DS: return &save->ds;
1760        case VCPU_SREG_ES: return &save->es;
1761        case VCPU_SREG_FS: return &save->fs;
1762        case VCPU_SREG_GS: return &save->gs;
1763        case VCPU_SREG_SS: return &save->ss;
1764        case VCPU_SREG_TR: return &save->tr;
1765        case VCPU_SREG_LDTR: return &save->ldtr;
1766        }
1767        BUG();
1768        return NULL;
1769}
1770
1771static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1772{
1773        struct vmcb_seg *s = svm_seg(vcpu, seg);
1774
1775        return s->base;
1776}
1777
1778static void svm_get_segment(struct kvm_vcpu *vcpu,
1779                            struct kvm_segment *var, int seg)
1780{
1781        struct vmcb_seg *s = svm_seg(vcpu, seg);
1782
1783        var->base = s->base;
1784        var->limit = s->limit;
1785        var->selector = s->selector;
1786        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1787        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1788        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1789        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1790        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1791        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1792        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1793
1794        /*
1795         * AMD CPUs circa 2014 track the G bit for all segments except CS.
1796         * However, the SVM spec states that the G bit is not observed by the
1797         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1798         * So let's synthesize a legal G bit for all segments, this helps
1799         * running KVM nested. It also helps cross-vendor migration, because
1800         * Intel's vmentry has a check on the 'G' bit.
1801         */
1802        var->g = s->limit > 0xfffff;
1803
1804        /*
1805         * AMD's VMCB does not have an explicit unusable field, so emulate it
1806         * for cross vendor migration purposes by "not present"
1807         */
1808        var->unusable = !var->present || (var->type == 0);
1809
1810        switch (seg) {
1811        case VCPU_SREG_TR:
1812                /*
1813                 * Work around a bug where the busy flag in the tr selector
1814                 * isn't exposed
1815                 */
1816                var->type |= 0x2;
1817                break;
1818        case VCPU_SREG_DS:
1819        case VCPU_SREG_ES:
1820        case VCPU_SREG_FS:
1821        case VCPU_SREG_GS:
1822                /*
1823                 * The accessed bit must always be set in the segment
1824                 * descriptor cache, although it can be cleared in the
1825                 * descriptor, the cached bit always remains at 1. Since
1826                 * Intel has a check on this, set it here to support
1827                 * cross-vendor migration.
1828                 */
1829                if (!var->unusable)
1830                        var->type |= 0x1;
1831                break;
1832        case VCPU_SREG_SS:
1833                /*
1834                 * On AMD CPUs sometimes the DB bit in the segment
1835                 * descriptor is left as 1, although the whole segment has
1836                 * been made unusable. Clear it here to pass an Intel VMX
1837                 * entry check when cross vendor migrating.
1838                 */
1839                if (var->unusable)
1840                        var->db = 0;
1841                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1842                break;
1843        }
1844}
1845
1846static int svm_get_cpl(struct kvm_vcpu *vcpu)
1847{
1848        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1849
1850        return save->cpl;
1851}
1852
1853static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1854{
1855        struct vcpu_svm *svm = to_svm(vcpu);
1856
1857        dt->size = svm->vmcb->save.idtr.limit;
1858        dt->address = svm->vmcb->save.idtr.base;
1859}
1860
1861static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1862{
1863        struct vcpu_svm *svm = to_svm(vcpu);
1864
1865        svm->vmcb->save.idtr.limit = dt->size;
1866        svm->vmcb->save.idtr.base = dt->address ;
1867        mark_dirty(svm->vmcb, VMCB_DT);
1868}
1869
1870static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1871{
1872        struct vcpu_svm *svm = to_svm(vcpu);
1873
1874        dt->size = svm->vmcb->save.gdtr.limit;
1875        dt->address = svm->vmcb->save.gdtr.base;
1876}
1877
1878static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1879{
1880        struct vcpu_svm *svm = to_svm(vcpu);
1881
1882        svm->vmcb->save.gdtr.limit = dt->size;
1883        svm->vmcb->save.gdtr.base = dt->address ;
1884        mark_dirty(svm->vmcb, VMCB_DT);
1885}
1886
1887static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1888{
1889}
1890
1891static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1892{
1893}
1894
1895static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1896{
1897}
1898
1899static void update_cr0_intercept(struct vcpu_svm *svm)
1900{
1901        ulong gcr0 = svm->vcpu.arch.cr0;
1902        u64 *hcr0 = &svm->vmcb->save.cr0;
1903
1904        if (!svm->vcpu.fpu_active)
1905                *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1906        else
1907                *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1908                        | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1909
1910        mark_dirty(svm->vmcb, VMCB_CR);
1911
1912        if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1913                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1914                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1915        } else {
1916                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1917                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1918        }
1919}
1920
1921static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1922{
1923        struct vcpu_svm *svm = to_svm(vcpu);
1924
1925#ifdef CONFIG_X86_64
1926        if (vcpu->arch.efer & EFER_LME) {
1927                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1928                        vcpu->arch.efer |= EFER_LMA;
1929                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1930                }
1931
1932                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1933                        vcpu->arch.efer &= ~EFER_LMA;
1934                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1935                }
1936        }
1937#endif
1938        vcpu->arch.cr0 = cr0;
1939
1940        if (!npt_enabled)
1941                cr0 |= X86_CR0_PG | X86_CR0_WP;
1942
1943        if (!vcpu->fpu_active)
1944                cr0 |= X86_CR0_TS;
1945        /*
1946         * re-enable caching here because the QEMU bios
1947         * does not do it - this results in some delay at
1948         * reboot
1949         */
1950        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1951                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1952        svm->vmcb->save.cr0 = cr0;
1953        mark_dirty(svm->vmcb, VMCB_CR);
1954        update_cr0_intercept(svm);
1955}
1956
1957static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1958{
1959        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1960        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1961
1962        if (cr4 & X86_CR4_VMXE)
1963                return 1;
1964
1965        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1966                svm_flush_tlb(vcpu);
1967
1968        vcpu->arch.cr4 = cr4;
1969        if (!npt_enabled)
1970                cr4 |= X86_CR4_PAE;
1971        cr4 |= host_cr4_mce;
1972        to_svm(vcpu)->vmcb->save.cr4 = cr4;
1973        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1974        return 0;
1975}
1976
1977static void svm_set_segment(struct kvm_vcpu *vcpu,
1978                            struct kvm_segment *var, int seg)
1979{
1980        struct vcpu_svm *svm = to_svm(vcpu);
1981        struct vmcb_seg *s = svm_seg(vcpu, seg);
1982
1983        s->base = var->base;
1984        s->limit = var->limit;
1985        s->selector = var->selector;
1986        if (var->unusable)
1987                s->attrib = 0;
1988        else {
1989                s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1990                s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1991                s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1992                s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1993                s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1994                s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1995                s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1996                s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1997        }
1998
1999        /*
2000         * This is always accurate, except if SYSRET returned to a segment
2001         * with SS.DPL != 3.  Intel does not have this quirk, and always
2002         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2003         * would entail passing the CPL to userspace and back.
2004         */
2005        if (seg == VCPU_SREG_SS)
2006                svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2007
2008        mark_dirty(svm->vmcb, VMCB_SEG);
2009}
2010
2011static void update_bp_intercept(struct kvm_vcpu *vcpu)
2012{
2013        struct vcpu_svm *svm = to_svm(vcpu);
2014
2015        clr_exception_intercept(svm, BP_VECTOR);
2016
2017        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2018                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2019                        set_exception_intercept(svm, BP_VECTOR);
2020        } else
2021                vcpu->guest_debug = 0;
2022}
2023
2024static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2025{
2026        if (sd->next_asid > sd->max_asid) {
2027                ++sd->asid_generation;
2028                sd->next_asid = 1;
2029                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2030        }
2031
2032        svm->asid_generation = sd->asid_generation;
2033        svm->vmcb->control.asid = sd->next_asid++;
2034
2035        mark_dirty(svm->vmcb, VMCB_ASID);
2036}
2037
2038static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2039{
2040        return to_svm(vcpu)->vmcb->save.dr6;
2041}
2042
2043static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2044{
2045        struct vcpu_svm *svm = to_svm(vcpu);
2046
2047        svm->vmcb->save.dr6 = value;
2048        mark_dirty(svm->vmcb, VMCB_DR);
2049}
2050
2051static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2052{
2053        struct vcpu_svm *svm = to_svm(vcpu);
2054
2055        get_debugreg(vcpu->arch.db[0], 0);
2056        get_debugreg(vcpu->arch.db[1], 1);
2057        get_debugreg(vcpu->arch.db[2], 2);
2058        get_debugreg(vcpu->arch.db[3], 3);
2059        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2060        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2061
2062        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2063        set_dr_intercepts(svm);
2064}
2065
2066static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2067{
2068        struct vcpu_svm *svm = to_svm(vcpu);
2069
2070        svm->vmcb->save.dr7 = value;
2071        mark_dirty(svm->vmcb, VMCB_DR);
2072}
2073
2074static int pf_interception(struct vcpu_svm *svm)
2075{
2076        u64 fault_address = svm->vmcb->control.exit_info_2;
2077        u32 error_code;
2078        int r = 1;
2079
2080        switch (svm->apf_reason) {
2081        default:
2082                error_code = svm->vmcb->control.exit_info_1;
2083
2084                trace_kvm_page_fault(fault_address, error_code);
2085                if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2086                        kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2087                r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2088                        svm->vmcb->control.insn_bytes,
2089                        svm->vmcb->control.insn_len);
2090                break;
2091        case KVM_PV_REASON_PAGE_NOT_PRESENT:
2092                svm->apf_reason = 0;
2093                local_irq_disable();
2094                kvm_async_pf_task_wait(fault_address);
2095                local_irq_enable();
2096                break;
2097        case KVM_PV_REASON_PAGE_READY:
2098                svm->apf_reason = 0;
2099                local_irq_disable();
2100                kvm_async_pf_task_wake(fault_address);
2101                local_irq_enable();
2102                break;
2103        }
2104        return r;
2105}
2106
2107static int db_interception(struct vcpu_svm *svm)
2108{
2109        struct kvm_run *kvm_run = svm->vcpu.run;
2110
2111        if (!(svm->vcpu.guest_debug &
2112              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2113                !svm->nmi_singlestep) {
2114                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2115                return 1;
2116        }
2117
2118        if (svm->nmi_singlestep) {
2119                svm->nmi_singlestep = false;
2120                if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2121                        svm->vmcb->save.rflags &=
2122                                ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2123        }
2124
2125        if (svm->vcpu.guest_debug &
2126            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2127                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2128                kvm_run->debug.arch.pc =
2129                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2130                kvm_run->debug.arch.exception = DB_VECTOR;
2131                return 0;
2132        }
2133
2134        return 1;
2135}
2136
2137static int bp_interception(struct vcpu_svm *svm)
2138{
2139        struct kvm_run *kvm_run = svm->vcpu.run;
2140
2141        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2142        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2143        kvm_run->debug.arch.exception = BP_VECTOR;
2144        return 0;
2145}
2146
2147static int ud_interception(struct vcpu_svm *svm)
2148{
2149        int er;
2150
2151        er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2152        if (er != EMULATE_DONE)
2153                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2154        return 1;
2155}
2156
2157static int ac_interception(struct vcpu_svm *svm)
2158{
2159        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2160        return 1;
2161}
2162
2163static void svm_fpu_activate(struct kvm_vcpu *vcpu)
2164{
2165        struct vcpu_svm *svm = to_svm(vcpu);
2166
2167        clr_exception_intercept(svm, NM_VECTOR);
2168
2169        svm->vcpu.fpu_active = 1;
2170        update_cr0_intercept(svm);
2171}
2172
2173static int nm_interception(struct vcpu_svm *svm)
2174{
2175        svm_fpu_activate(&svm->vcpu);
2176        return 1;
2177}
2178
2179static bool is_erratum_383(void)
2180{
2181        int err, i;
2182        u64 value;
2183
2184        if (!erratum_383_found)
2185                return false;
2186
2187        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2188        if (err)
2189                return false;
2190
2191        /* Bit 62 may or may not be set for this mce */
2192        value &= ~(1ULL << 62);
2193
2194        if (value != 0xb600000000010015ULL)
2195                return false;
2196
2197        /* Clear MCi_STATUS registers */
2198        for (i = 0; i < 6; ++i)
2199                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2200
2201        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2202        if (!err) {
2203                u32 low, high;
2204
2205                value &= ~(1ULL << 2);
2206                low    = lower_32_bits(value);
2207                high   = upper_32_bits(value);
2208
2209                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2210        }
2211
2212        /* Flush tlb to evict multi-match entries */
2213        __flush_tlb_all();
2214
2215        return true;
2216}
2217
2218static void svm_handle_mce(struct vcpu_svm *svm)
2219{
2220        if (is_erratum_383()) {
2221                /*
2222                 * Erratum 383 triggered. Guest state is corrupt so kill the
2223                 * guest.
2224                 */
2225                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2226
2227                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2228
2229                return;
2230        }
2231
2232        /*
2233         * On an #MC intercept the MCE handler is not called automatically in
2234         * the host. So do it by hand here.
2235         */
2236        asm volatile (
2237                "int $0x12\n");
2238        /* not sure if we ever come back to this point */
2239
2240        return;
2241}
2242
2243static int mc_interception(struct vcpu_svm *svm)
2244{
2245        return 1;
2246}
2247
2248static int shutdown_interception(struct vcpu_svm *svm)
2249{
2250        struct kvm_run *kvm_run = svm->vcpu.run;
2251
2252        /*
2253         * VMCB is undefined after a SHUTDOWN intercept
2254         * so reinitialize it.
2255         */
2256        clear_page(svm->vmcb);
2257        init_vmcb(svm);
2258
2259        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2260        return 0;
2261}
2262
2263static int io_interception(struct vcpu_svm *svm)
2264{
2265        struct kvm_vcpu *vcpu = &svm->vcpu;
2266        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2267        int size, in, string;
2268        unsigned port;
2269
2270        ++svm->vcpu.stat.io_exits;
2271        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2272        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2273        if (string || in)
2274                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2275
2276        port = io_info >> 16;
2277        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2278        svm->next_rip = svm->vmcb->control.exit_info_2;
2279        skip_emulated_instruction(&svm->vcpu);
2280
2281        return kvm_fast_pio_out(vcpu, size, port);
2282}
2283
2284static int nmi_interception(struct vcpu_svm *svm)
2285{
2286        return 1;
2287}
2288
2289static int intr_interception(struct vcpu_svm *svm)
2290{
2291        ++svm->vcpu.stat.irq_exits;
2292        return 1;
2293}
2294
2295static int nop_on_interception(struct vcpu_svm *svm)
2296{
2297        return 1;
2298}
2299
2300static int halt_interception(struct vcpu_svm *svm)
2301{
2302        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2303        return kvm_emulate_halt(&svm->vcpu);
2304}
2305
2306static int vmmcall_interception(struct vcpu_svm *svm)
2307{
2308        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2309        return kvm_emulate_hypercall(&svm->vcpu);
2310}
2311
2312static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2313{
2314        struct vcpu_svm *svm = to_svm(vcpu);
2315
2316        return svm->nested.nested_cr3;
2317}
2318
2319static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2320{
2321        struct vcpu_svm *svm = to_svm(vcpu);
2322        u64 cr3 = svm->nested.nested_cr3;
2323        u64 pdpte;
2324        int ret;
2325
2326        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2327                                       offset_in_page(cr3) + index * 8, 8);
2328        if (ret)
2329                return 0;
2330        return pdpte;
2331}
2332
2333static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2334                                   unsigned long root)
2335{
2336        struct vcpu_svm *svm = to_svm(vcpu);
2337
2338        svm->vmcb->control.nested_cr3 = root;
2339        mark_dirty(svm->vmcb, VMCB_NPT);
2340        svm_flush_tlb(vcpu);
2341}
2342
2343static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2344                                       struct x86_exception *fault)
2345{
2346        struct vcpu_svm *svm = to_svm(vcpu);
2347
2348        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2349                /*
2350                 * TODO: track the cause of the nested page fault, and
2351                 * correctly fill in the high bits of exit_info_1.
2352                 */
2353                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2354                svm->vmcb->control.exit_code_hi = 0;
2355                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2356                svm->vmcb->control.exit_info_2 = fault->address;
2357        }
2358
2359        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2360        svm->vmcb->control.exit_info_1 |= fault->error_code;
2361
2362        /*
2363         * The present bit is always zero for page structure faults on real
2364         * hardware.
2365         */
2366        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2367                svm->vmcb->control.exit_info_1 &= ~1;
2368
2369        nested_svm_vmexit(svm);
2370}
2371
2372static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2373{
2374        WARN_ON(mmu_is_nested(vcpu));
2375        kvm_init_shadow_mmu(vcpu);
2376        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2377        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2378        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2379        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2380        vcpu->arch.mmu.shadow_root_level = get_npt_level();
2381        reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2382        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2383}
2384
2385static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2386{
2387        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2388}
2389
2390static int nested_svm_check_permissions(struct vcpu_svm *svm)
2391{
2392        if (!(svm->vcpu.arch.efer & EFER_SVME)
2393            || !is_paging(&svm->vcpu)) {
2394                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2395                return 1;
2396        }
2397
2398        if (svm->vmcb->save.cpl) {
2399                kvm_inject_gp(&svm->vcpu, 0);
2400                return 1;
2401        }
2402
2403       return 0;
2404}
2405
2406static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2407                                      bool has_error_code, u32 error_code)
2408{
2409        int vmexit;
2410
2411        if (!is_guest_mode(&svm->vcpu))
2412                return 0;
2413
2414        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2415        svm->vmcb->control.exit_code_hi = 0;
2416        svm->vmcb->control.exit_info_1 = error_code;
2417        svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2418
2419        vmexit = nested_svm_intercept(svm);
2420        if (vmexit == NESTED_EXIT_DONE)
2421                svm->nested.exit_required = true;
2422
2423        return vmexit;
2424}
2425
2426/* This function returns true if it is save to enable the irq window */
2427static inline bool nested_svm_intr(struct vcpu_svm *svm)
2428{
2429        if (!is_guest_mode(&svm->vcpu))
2430                return true;
2431
2432        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2433                return true;
2434
2435        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2436                return false;
2437
2438        /*
2439         * if vmexit was already requested (by intercepted exception
2440         * for instance) do not overwrite it with "external interrupt"
2441         * vmexit.
2442         */
2443        if (svm->nested.exit_required)
2444                return false;
2445
2446        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2447        svm->vmcb->control.exit_info_1 = 0;
2448        svm->vmcb->control.exit_info_2 = 0;
2449
2450        if (svm->nested.intercept & 1ULL) {
2451                /*
2452                 * The #vmexit can't be emulated here directly because this
2453                 * code path runs with irqs and preemption disabled. A
2454                 * #vmexit emulation might sleep. Only signal request for
2455                 * the #vmexit here.
2456                 */
2457                svm->nested.exit_required = true;
2458                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2459                return false;
2460        }
2461
2462        return true;
2463}
2464
2465/* This function returns true if it is save to enable the nmi window */
2466static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2467{
2468        if (!is_guest_mode(&svm->vcpu))
2469                return true;
2470
2471        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2472                return true;
2473
2474        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2475        svm->nested.exit_required = true;
2476
2477        return false;
2478}
2479
2480static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2481{
2482        struct page *page;
2483
2484        might_sleep();
2485
2486        page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2487        if (is_error_page(page))
2488                goto error;
2489
2490        *_page = page;
2491
2492        return kmap(page);
2493
2494error:
2495        kvm_inject_gp(&svm->vcpu, 0);
2496
2497        return NULL;
2498}
2499
2500static void nested_svm_unmap(struct page *page)
2501{
2502        kunmap(page);
2503        kvm_release_page_dirty(page);
2504}
2505
2506static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2507{
2508        unsigned port, size, iopm_len;
2509        u16 val, mask;
2510        u8 start_bit;
2511        u64 gpa;
2512
2513        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2514                return NESTED_EXIT_HOST;
2515
2516        port = svm->vmcb->control.exit_info_1 >> 16;
2517        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2518                SVM_IOIO_SIZE_SHIFT;
2519        gpa  = svm->nested.vmcb_iopm + (port / 8);
2520        start_bit = port % 8;
2521        iopm_len = (start_bit + size > 8) ? 2 : 1;
2522        mask = (0xf >> (4 - size)) << start_bit;
2523        val = 0;
2524
2525        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2526                return NESTED_EXIT_DONE;
2527
2528        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2529}
2530
2531static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2532{
2533        u32 offset, msr, value;
2534        int write, mask;
2535
2536        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2537                return NESTED_EXIT_HOST;
2538
2539        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2540        offset = svm_msrpm_offset(msr);
2541        write  = svm->vmcb->control.exit_info_1 & 1;
2542        mask   = 1 << ((2 * (msr & 0xf)) + write);
2543
2544        if (offset == MSR_INVALID)
2545                return NESTED_EXIT_DONE;
2546
2547        /* Offset is in 32 bit units but need in 8 bit units */
2548        offset *= 4;
2549
2550        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2551                return NESTED_EXIT_DONE;
2552
2553        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2554}
2555
2556static int nested_svm_exit_special(struct vcpu_svm *svm)
2557{
2558        u32 exit_code = svm->vmcb->control.exit_code;
2559
2560        switch (exit_code) {
2561        case SVM_EXIT_INTR:
2562        case SVM_EXIT_NMI:
2563        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2564                return NESTED_EXIT_HOST;
2565        case SVM_EXIT_NPF:
2566                /* For now we are always handling NPFs when using them */
2567                if (npt_enabled)
2568                        return NESTED_EXIT_HOST;
2569                break;
2570        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2571                /* When we're shadowing, trap PFs, but not async PF */
2572                if (!npt_enabled && svm->apf_reason == 0)
2573                        return NESTED_EXIT_HOST;
2574                break;
2575        case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2576                nm_interception(svm);
2577                break;
2578        default:
2579                break;
2580        }
2581
2582        return NESTED_EXIT_CONTINUE;
2583}
2584
2585/*
2586 * If this function returns true, this #vmexit was already handled
2587 */
2588static int nested_svm_intercept(struct vcpu_svm *svm)
2589{
2590        u32 exit_code = svm->vmcb->control.exit_code;
2591        int vmexit = NESTED_EXIT_HOST;
2592
2593        switch (exit_code) {
2594        case SVM_EXIT_MSR:
2595                vmexit = nested_svm_exit_handled_msr(svm);
2596                break;
2597        case SVM_EXIT_IOIO:
2598                vmexit = nested_svm_intercept_ioio(svm);
2599                break;
2600        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2601                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2602                if (svm->nested.intercept_cr & bit)
2603                        vmexit = NESTED_EXIT_DONE;
2604                break;
2605        }
2606        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2607                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2608                if (svm->nested.intercept_dr & bit)
2609                        vmexit = NESTED_EXIT_DONE;
2610                break;
2611        }
2612        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2613                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2614                if (svm->nested.intercept_exceptions & excp_bits)
2615                        vmexit = NESTED_EXIT_DONE;
2616                /* async page fault always cause vmexit */
2617                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2618                         svm->apf_reason != 0)
2619                        vmexit = NESTED_EXIT_DONE;
2620                break;
2621        }
2622        case SVM_EXIT_ERR: {
2623                vmexit = NESTED_EXIT_DONE;
2624                break;
2625        }
2626        default: {
2627                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2628                if (svm->nested.intercept & exit_bits)
2629                        vmexit = NESTED_EXIT_DONE;
2630        }
2631        }
2632
2633        return vmexit;
2634}
2635
2636static int nested_svm_exit_handled(struct vcpu_svm *svm)
2637{
2638        int vmexit;
2639
2640        vmexit = nested_svm_intercept(svm);
2641
2642        if (vmexit == NESTED_EXIT_DONE)
2643                nested_svm_vmexit(svm);
2644
2645        return vmexit;
2646}
2647
2648static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2649{
2650        struct vmcb_control_area *dst  = &dst_vmcb->control;
2651        struct vmcb_control_area *from = &from_vmcb->control;
2652
2653        dst->intercept_cr         = from->intercept_cr;
2654        dst->intercept_dr         = from->intercept_dr;
2655        dst->intercept_exceptions = from->intercept_exceptions;
2656        dst->intercept            = from->intercept;
2657        dst->iopm_base_pa         = from->iopm_base_pa;
2658        dst->msrpm_base_pa        = from->msrpm_base_pa;
2659        dst->tsc_offset           = from->tsc_offset;
2660        dst->asid                 = from->asid;
2661        dst->tlb_ctl              = from->tlb_ctl;
2662        dst->int_ctl              = from->int_ctl;
2663        dst->int_vector           = from->int_vector;
2664        dst->int_state            = from->int_state;
2665        dst->exit_code            = from->exit_code;
2666        dst->exit_code_hi         = from->exit_code_hi;
2667        dst->exit_info_1          = from->exit_info_1;
2668        dst->exit_info_2          = from->exit_info_2;
2669        dst->exit_int_info        = from->exit_int_info;
2670        dst->exit_int_info_err    = from->exit_int_info_err;
2671        dst->nested_ctl           = from->nested_ctl;
2672        dst->event_inj            = from->event_inj;
2673        dst->event_inj_err        = from->event_inj_err;
2674        dst->nested_cr3           = from->nested_cr3;
2675        dst->lbr_ctl              = from->lbr_ctl;
2676}
2677
2678static int nested_svm_vmexit(struct vcpu_svm *svm)
2679{
2680        struct vmcb *nested_vmcb;
2681        struct vmcb *hsave = svm->nested.hsave;
2682        struct vmcb *vmcb = svm->vmcb;
2683        struct page *page;
2684
2685        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2686                                       vmcb->control.exit_info_1,
2687                                       vmcb->control.exit_info_2,
2688                                       vmcb->control.exit_int_info,
2689                                       vmcb->control.exit_int_info_err,
2690                                       KVM_ISA_SVM);
2691
2692        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2693        if (!nested_vmcb)
2694                return 1;
2695
2696        /* Exit Guest-Mode */
2697        leave_guest_mode(&svm->vcpu);
2698        svm->nested.vmcb = 0;
2699
2700        /* Give the current vmcb to the guest */
2701        disable_gif(svm);
2702
2703        nested_vmcb->save.es     = vmcb->save.es;
2704        nested_vmcb->save.cs     = vmcb->save.cs;
2705        nested_vmcb->save.ss     = vmcb->save.ss;
2706        nested_vmcb->save.ds     = vmcb->save.ds;
2707        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2708        nested_vmcb->save.idtr   = vmcb->save.idtr;
2709        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2710        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2711        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2712        nested_vmcb->save.cr2    = vmcb->save.cr2;
2713        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2714        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2715        nested_vmcb->save.rip    = vmcb->save.rip;
2716        nested_vmcb->save.rsp    = vmcb->save.rsp;
2717        nested_vmcb->save.rax    = vmcb->save.rax;
2718        nested_vmcb->save.dr7    = vmcb->save.dr7;
2719        nested_vmcb->save.dr6    = vmcb->save.dr6;
2720        nested_vmcb->save.cpl    = vmcb->save.cpl;
2721
2722        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2723        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2724        nested_vmcb->control.int_state         = vmcb->control.int_state;
2725        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2726        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2727        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2728        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2729        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2730        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2731
2732        if (svm->nrips_enabled)
2733                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2734
2735        /*
2736         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2737         * to make sure that we do not lose injected events. So check event_inj
2738         * here and copy it to exit_int_info if it is valid.
2739         * Exit_int_info and event_inj can't be both valid because the case
2740         * below only happens on a VMRUN instruction intercept which has
2741         * no valid exit_int_info set.
2742         */
2743        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2744                struct vmcb_control_area *nc = &nested_vmcb->control;
2745
2746                nc->exit_int_info     = vmcb->control.event_inj;
2747                nc->exit_int_info_err = vmcb->control.event_inj_err;
2748        }
2749
2750        nested_vmcb->control.tlb_ctl           = 0;
2751        nested_vmcb->control.event_inj         = 0;
2752        nested_vmcb->control.event_inj_err     = 0;
2753
2754        /* We always set V_INTR_MASKING and remember the old value in hflags */
2755        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2756                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2757
2758        /* Restore the original control entries */
2759        copy_vmcb_control_area(vmcb, hsave);
2760
2761        kvm_clear_exception_queue(&svm->vcpu);
2762        kvm_clear_interrupt_queue(&svm->vcpu);
2763
2764        svm->nested.nested_cr3 = 0;
2765
2766        /* Restore selected save entries */
2767        svm->vmcb->save.es = hsave->save.es;
2768        svm->vmcb->save.cs = hsave->save.cs;
2769        svm->vmcb->save.ss = hsave->save.ss;
2770        svm->vmcb->save.ds = hsave->save.ds;
2771        svm->vmcb->save.gdtr = hsave->save.gdtr;
2772        svm->vmcb->save.idtr = hsave->save.idtr;
2773        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2774        svm_set_efer(&svm->vcpu, hsave->save.efer);
2775        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2776        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2777        if (npt_enabled) {
2778                svm->vmcb->save.cr3 = hsave->save.cr3;
2779                svm->vcpu.arch.cr3 = hsave->save.cr3;
2780        } else {
2781                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2782        }
2783        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2784        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2785        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2786        svm->vmcb->save.dr7 = 0;
2787        svm->vmcb->save.cpl = 0;
2788        svm->vmcb->control.exit_int_info = 0;
2789
2790        mark_all_dirty(svm->vmcb);
2791
2792        nested_svm_unmap(page);
2793
2794        nested_svm_uninit_mmu_context(&svm->vcpu);
2795        kvm_mmu_reset_context(&svm->vcpu);
2796        kvm_mmu_load(&svm->vcpu);
2797
2798        return 0;
2799}
2800
2801static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2802{
2803        /*
2804         * This function merges the msr permission bitmaps of kvm and the
2805         * nested vmcb. It is optimized in that it only merges the parts where
2806         * the kvm msr permission bitmap may contain zero bits
2807         */
2808        int i;
2809
2810        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2811                return true;
2812
2813        for (i = 0; i < MSRPM_OFFSETS; i++) {
2814                u32 value, p;
2815                u64 offset;
2816
2817                if (msrpm_offsets[i] == 0xffffffff)
2818                        break;
2819
2820                p      = msrpm_offsets[i];
2821                offset = svm->nested.vmcb_msrpm + (p * 4);
2822
2823                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2824                        return false;
2825
2826                svm->nested.msrpm[p] = svm->msrpm[p] | value;
2827        }
2828
2829        svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2830
2831        return true;
2832}
2833
2834static bool nested_vmcb_checks(struct vmcb *vmcb)
2835{
2836        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2837                return false;
2838
2839        if (vmcb->control.asid == 0)
2840                return false;
2841
2842        if (vmcb->control.nested_ctl && !npt_enabled)
2843                return false;
2844
2845        return true;
2846}
2847
2848static bool nested_svm_vmrun(struct vcpu_svm *svm)
2849{
2850        struct vmcb *nested_vmcb;
2851        struct vmcb *hsave = svm->nested.hsave;
2852        struct vmcb *vmcb = svm->vmcb;
2853        struct page *page;
2854        u64 vmcb_gpa;
2855
2856        vmcb_gpa = svm->vmcb->save.rax;
2857
2858        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2859        if (!nested_vmcb)
2860                return false;
2861
2862        if (!nested_vmcb_checks(nested_vmcb)) {
2863                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2864                nested_vmcb->control.exit_code_hi = 0;
2865                nested_vmcb->control.exit_info_1  = 0;
2866                nested_vmcb->control.exit_info_2  = 0;
2867
2868                nested_svm_unmap(page);
2869
2870                return false;
2871        }
2872
2873        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2874                               nested_vmcb->save.rip,
2875                               nested_vmcb->control.int_ctl,
2876                               nested_vmcb->control.event_inj,
2877                               nested_vmcb->control.nested_ctl);
2878
2879        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2880                                    nested_vmcb->control.intercept_cr >> 16,
2881                                    nested_vmcb->control.intercept_exceptions,
2882                                    nested_vmcb->control.intercept);
2883
2884        /* Clear internal status */
2885        kvm_clear_exception_queue(&svm->vcpu);
2886        kvm_clear_interrupt_queue(&svm->vcpu);
2887
2888        /*
2889         * Save the old vmcb, so we don't need to pick what we save, but can
2890         * restore everything when a VMEXIT occurs
2891         */
2892        hsave->save.es     = vmcb->save.es;
2893        hsave->save.cs     = vmcb->save.cs;
2894        hsave->save.ss     = vmcb->save.ss;
2895        hsave->save.ds     = vmcb->save.ds;
2896        hsave->save.gdtr   = vmcb->save.gdtr;
2897        hsave->save.idtr   = vmcb->save.idtr;
2898        hsave->save.efer   = svm->vcpu.arch.efer;
2899        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2900        hsave->save.cr4    = svm->vcpu.arch.cr4;
2901        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2902        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2903        hsave->save.rsp    = vmcb->save.rsp;
2904        hsave->save.rax    = vmcb->save.rax;
2905        if (npt_enabled)
2906                hsave->save.cr3    = vmcb->save.cr3;
2907        else
2908                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2909
2910        copy_vmcb_control_area(hsave, vmcb);
2911
2912        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2913                svm->vcpu.arch.hflags |= HF_HIF_MASK;
2914        else
2915                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2916
2917        if (nested_vmcb->control.nested_ctl) {
2918                kvm_mmu_unload(&svm->vcpu);
2919                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2920                nested_svm_init_mmu_context(&svm->vcpu);
2921        }
2922
2923        /* Load the nested guest state */
2924        svm->vmcb->save.es = nested_vmcb->save.es;
2925        svm->vmcb->save.cs = nested_vmcb->save.cs;
2926        svm->vmcb->save.ss = nested_vmcb->save.ss;
2927        svm->vmcb->save.ds = nested_vmcb->save.ds;
2928        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2929        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2930        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2931        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2932        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2933        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2934        if (npt_enabled) {
2935                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2936                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2937        } else
2938                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2939
2940        /* Guest paging mode is active - reset mmu */
2941        kvm_mmu_reset_context(&svm->vcpu);
2942
2943        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2944        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2945        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2946        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2947
2948        /* In case we don't even reach vcpu_run, the fields are not updated */
2949        svm->vmcb->save.rax = nested_vmcb->save.rax;
2950        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2951        svm->vmcb->save.rip = nested_vmcb->save.rip;
2952        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2953        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2954        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2955
2956        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2957        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2958
2959        /* cache intercepts */
2960        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2961        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2962        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2963        svm->nested.intercept            = nested_vmcb->control.intercept;
2964
2965        svm_flush_tlb(&svm->vcpu);
2966        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2967        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2968                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2969        else
2970                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2971
2972        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2973                /* We only want the cr8 intercept bits of the guest */
2974                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2975                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2976        }
2977
2978        /* We don't want to see VMMCALLs from a nested guest */
2979        clr_intercept(svm, INTERCEPT_VMMCALL);
2980
2981        svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2982        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2983        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2984        svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2985        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2986        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2987
2988        nested_svm_unmap(page);
2989
2990        /* Enter Guest-Mode */
2991        enter_guest_mode(&svm->vcpu);
2992
2993        /*
2994         * Merge guest and host intercepts - must be called  with vcpu in
2995         * guest-mode to take affect here
2996         */
2997        recalc_intercepts(svm);
2998
2999        svm->nested.vmcb = vmcb_gpa;
3000
3001        enable_gif(svm);
3002
3003        mark_all_dirty(svm->vmcb);
3004
3005        return true;
3006}
3007
3008static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3009{
3010        to_vmcb->save.fs = from_vmcb->save.fs;
3011        to_vmcb->save.gs = from_vmcb->save.gs;
3012        to_vmcb->save.tr = from_vmcb->save.tr;
3013        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3014        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3015        to_vmcb->save.star = from_vmcb->save.star;
3016        to_vmcb->save.lstar = from_vmcb->save.lstar;
3017        to_vmcb->save.cstar = from_vmcb->save.cstar;
3018        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3019        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3020        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3021        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3022}
3023
3024static int vmload_interception(struct vcpu_svm *svm)
3025{
3026        struct vmcb *nested_vmcb;
3027        struct page *page;
3028
3029        if (nested_svm_check_permissions(svm))
3030                return 1;
3031
3032        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3033        if (!nested_vmcb)
3034                return 1;
3035
3036        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3037        skip_emulated_instruction(&svm->vcpu);
3038
3039        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3040        nested_svm_unmap(page);
3041
3042        return 1;
3043}
3044
3045static int vmsave_interception(struct vcpu_svm *svm)
3046{
3047        struct vmcb *nested_vmcb;
3048        struct page *page;
3049
3050        if (nested_svm_check_permissions(svm))
3051                return 1;
3052
3053        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3054        if (!nested_vmcb)
3055                return 1;
3056
3057        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3058        skip_emulated_instruction(&svm->vcpu);
3059
3060        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3061        nested_svm_unmap(page);
3062
3063        return 1;
3064}
3065
3066static int vmrun_interception(struct vcpu_svm *svm)
3067{
3068        if (nested_svm_check_permissions(svm))
3069                return 1;
3070
3071        /* Save rip after vmrun instruction */
3072        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3073
3074        if (!nested_svm_vmrun(svm))
3075                return 1;
3076
3077        if (!nested_svm_vmrun_msrpm(svm))
3078                goto failed;
3079
3080        return 1;
3081
3082failed:
3083
3084        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3085        svm->vmcb->control.exit_code_hi = 0;
3086        svm->vmcb->control.exit_info_1  = 0;
3087        svm->vmcb->control.exit_info_2  = 0;
3088
3089        nested_svm_vmexit(svm);
3090
3091        return 1;
3092}
3093
3094static int stgi_interception(struct vcpu_svm *svm)
3095{
3096        if (nested_svm_check_permissions(svm))
3097                return 1;
3098
3099        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3100        skip_emulated_instruction(&svm->vcpu);
3101        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3102
3103        enable_gif(svm);
3104
3105        return 1;
3106}
3107
3108static int clgi_interception(struct vcpu_svm *svm)
3109{
3110        if (nested_svm_check_permissions(svm))
3111                return 1;
3112
3113        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3114        skip_emulated_instruction(&svm->vcpu);
3115
3116        disable_gif(svm);
3117
3118        /* After a CLGI no interrupts should come */
3119        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3120                svm_clear_vintr(svm);
3121                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3122                mark_dirty(svm->vmcb, VMCB_INTR);
3123        }
3124
3125        return 1;
3126}
3127
3128static int invlpga_interception(struct vcpu_svm *svm)
3129{
3130        struct kvm_vcpu *vcpu = &svm->vcpu;
3131
3132        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3133                          kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3134
3135        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3136        kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3137
3138        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3139        skip_emulated_instruction(&svm->vcpu);
3140        return 1;
3141}
3142
3143static int skinit_interception(struct vcpu_svm *svm)
3144{
3145        trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3146
3147        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3148        return 1;
3149}
3150
3151static int wbinvd_interception(struct vcpu_svm *svm)
3152{
3153        kvm_emulate_wbinvd(&svm->vcpu);
3154        return 1;
3155}
3156
3157static int xsetbv_interception(struct vcpu_svm *svm)
3158{
3159        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3160        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3161
3162        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3163                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3164                skip_emulated_instruction(&svm->vcpu);
3165        }
3166
3167        return 1;
3168}
3169
3170static int task_switch_interception(struct vcpu_svm *svm)
3171{
3172        u16 tss_selector;
3173        int reason;
3174        int int_type = svm->vmcb->control.exit_int_info &
3175                SVM_EXITINTINFO_TYPE_MASK;
3176        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3177        uint32_t type =
3178                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3179        uint32_t idt_v =
3180                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3181        bool has_error_code = false;
3182        u32 error_code = 0;
3183
3184        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3185
3186        if (svm->vmcb->control.exit_info_2 &
3187            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3188                reason = TASK_SWITCH_IRET;
3189        else if (svm->vmcb->control.exit_info_2 &
3190                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3191                reason = TASK_SWITCH_JMP;
3192        else if (idt_v)
3193                reason = TASK_SWITCH_GATE;
3194        else
3195                reason = TASK_SWITCH_CALL;
3196
3197        if (reason == TASK_SWITCH_GATE) {
3198                switch (type) {
3199                case SVM_EXITINTINFO_TYPE_NMI:
3200                        svm->vcpu.arch.nmi_injected = false;
3201                        break;
3202                case SVM_EXITINTINFO_TYPE_EXEPT:
3203                        if (svm->vmcb->control.exit_info_2 &
3204                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3205                                has_error_code = true;
3206                                error_code =
3207                                        (u32)svm->vmcb->control.exit_info_2;
3208                        }
3209                        kvm_clear_exception_queue(&svm->vcpu);
3210                        break;
3211                case SVM_EXITINTINFO_TYPE_INTR:
3212                        kvm_clear_interrupt_queue(&svm->vcpu);
3213                        break;
3214                default:
3215                        break;
3216                }
3217        }
3218
3219        if (reason != TASK_SWITCH_GATE ||
3220            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3221            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3222             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3223                skip_emulated_instruction(&svm->vcpu);
3224
3225        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3226                int_vec = -1;
3227
3228        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3229                                has_error_code, error_code) == EMULATE_FAIL) {
3230                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3231                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3232                svm->vcpu.run->internal.ndata = 0;
3233                return 0;
3234        }
3235        return 1;
3236}
3237
3238static int cpuid_interception(struct vcpu_svm *svm)
3239{
3240        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3241        kvm_emulate_cpuid(&svm->vcpu);
3242        return 1;
3243}
3244
3245static int iret_interception(struct vcpu_svm *svm)
3246{
3247        ++svm->vcpu.stat.nmi_window_exits;
3248        clr_intercept(svm, INTERCEPT_IRET);
3249        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3250        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3251        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3252        return 1;
3253}
3254
3255static int invlpg_interception(struct vcpu_svm *svm)
3256{
3257        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3258                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3259
3260        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3261        skip_emulated_instruction(&svm->vcpu);
3262        return 1;
3263}
3264
3265static int emulate_on_interception(struct vcpu_svm *svm)
3266{
3267        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3268}
3269
3270static int rdpmc_interception(struct vcpu_svm *svm)
3271{
3272        int err;
3273
3274        if (!static_cpu_has(X86_FEATURE_NRIPS))
3275                return emulate_on_interception(svm);
3276
3277        err = kvm_rdpmc(&svm->vcpu);
3278        kvm_complete_insn_gp(&svm->vcpu, err);
3279
3280        return 1;
3281}
3282
3283static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3284                                            unsigned long val)
3285{
3286        unsigned long cr0 = svm->vcpu.arch.cr0;
3287        bool ret = false;
3288        u64 intercept;
3289
3290        intercept = svm->nested.intercept;
3291
3292        if (!is_guest_mode(&svm->vcpu) ||
3293            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3294                return false;
3295
3296        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3297        val &= ~SVM_CR0_SELECTIVE_MASK;
3298
3299        if (cr0 ^ val) {
3300                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3301                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3302        }
3303
3304        return ret;
3305}
3306
3307#define CR_VALID (1ULL << 63)
3308
3309static int cr_interception(struct vcpu_svm *svm)
3310{
3311        int reg, cr;
3312        unsigned long val;
3313        int err;
3314
3315        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3316                return emulate_on_interception(svm);
3317
3318        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3319                return emulate_on_interception(svm);
3320
3321        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3322        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3323                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3324        else
3325                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3326
3327        err = 0;
3328        if (cr >= 16) { /* mov to cr */
3329                cr -= 16;
3330                val = kvm_register_read(&svm->vcpu, reg);
3331                switch (cr) {
3332                case 0:
3333                        if (!check_selective_cr0_intercepted(svm, val))
3334                                err = kvm_set_cr0(&svm->vcpu, val);
3335                        else
3336                                return 1;
3337
3338                        break;
3339                case 3:
3340                        err = kvm_set_cr3(&svm->vcpu, val);
3341                        break;
3342                case 4:
3343                        err = kvm_set_cr4(&svm->vcpu, val);
3344                        break;
3345                case 8:
3346                        err = kvm_set_cr8(&svm->vcpu, val);
3347                        break;
3348                default:
3349                        WARN(1, "unhandled write to CR%d", cr);
3350                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3351                        return 1;
3352                }
3353        } else { /* mov from cr */
3354                switch (cr) {
3355                case 0:
3356                        val = kvm_read_cr0(&svm->vcpu);
3357                        break;
3358                case 2:
3359                        val = svm->vcpu.arch.cr2;
3360                        break;
3361                case 3:
3362                        val = kvm_read_cr3(&svm->vcpu);
3363                        break;
3364                case 4:
3365                        val = kvm_read_cr4(&svm->vcpu);
3366                        break;
3367                case 8:
3368                        val = kvm_get_cr8(&svm->vcpu);
3369                        break;
3370                default:
3371                        WARN(1, "unhandled read from CR%d", cr);
3372                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3373                        return 1;
3374                }
3375                kvm_register_write(&svm->vcpu, reg, val);
3376        }
3377        kvm_complete_insn_gp(&svm->vcpu, err);
3378
3379        return 1;
3380}
3381
3382static int dr_interception(struct vcpu_svm *svm)
3383{
3384        int reg, dr;
3385        unsigned long val;
3386
3387        if (svm->vcpu.guest_debug == 0) {
3388                /*
3389                 * No more DR vmexits; force a reload of the debug registers
3390                 * and reenter on this instruction.  The next vmexit will
3391                 * retrieve the full state of the debug registers.
3392                 */
3393                clr_dr_intercepts(svm);
3394                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3395                return 1;
3396        }
3397
3398        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3399                return emulate_on_interception(svm);
3400
3401        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3402        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3403
3404        if (dr >= 16) { /* mov to DRn */
3405                if (!kvm_require_dr(&svm->vcpu, dr - 16))
3406                        return 1;
3407                val = kvm_register_read(&svm->vcpu, reg);
3408                kvm_set_dr(&svm->vcpu, dr - 16, val);
3409        } else {
3410                if (!kvm_require_dr(&svm->vcpu, dr))
3411                        return 1;
3412                kvm_get_dr(&svm->vcpu, dr, &val);
3413                kvm_register_write(&svm->vcpu, reg, val);
3414        }
3415
3416        skip_emulated_instruction(&svm->vcpu);
3417
3418        return 1;
3419}
3420
3421static int cr8_write_interception(struct vcpu_svm *svm)
3422{
3423        struct kvm_run *kvm_run = svm->vcpu.run;
3424        int r;
3425
3426        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3427        /* instruction emulation calls kvm_set_cr8() */
3428        r = cr_interception(svm);
3429        if (lapic_in_kernel(&svm->vcpu))
3430                return r;
3431        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3432                return r;
3433        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3434        return 0;
3435}
3436
3437static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3438{
3439        struct vcpu_svm *svm = to_svm(vcpu);
3440
3441        switch (msr_info->index) {
3442        case MSR_IA32_TSC: {
3443                msr_info->data = svm->vmcb->control.tsc_offset +
3444                        kvm_scale_tsc(vcpu, rdtsc());
3445
3446                break;
3447        }
3448        case MSR_STAR:
3449                msr_info->data = svm->vmcb->save.star;
3450                break;
3451#ifdef CONFIG_X86_64
3452        case MSR_LSTAR:
3453                msr_info->data = svm->vmcb->save.lstar;
3454                break;
3455        case MSR_CSTAR:
3456                msr_info->data = svm->vmcb->save.cstar;
3457                break;
3458        case MSR_KERNEL_GS_BASE:
3459                msr_info->data = svm->vmcb->save.kernel_gs_base;
3460                break;
3461        case MSR_SYSCALL_MASK:
3462                msr_info->data = svm->vmcb->save.sfmask;
3463                break;
3464#endif
3465        case MSR_IA32_SYSENTER_CS:
3466                msr_info->data = svm->vmcb->save.sysenter_cs;
3467                break;
3468        case MSR_IA32_SYSENTER_EIP:
3469                msr_info->data = svm->sysenter_eip;
3470                break;
3471        case MSR_IA32_SYSENTER_ESP:
3472                msr_info->data = svm->sysenter_esp;
3473                break;
3474        case MSR_TSC_AUX:
3475                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3476                        return 1;
3477                msr_info->data = svm->tsc_aux;
3478                break;
3479        /*
3480         * Nobody will change the following 5 values in the VMCB so we can
3481         * safely return them on rdmsr. They will always be 0 until LBRV is
3482         * implemented.
3483         */
3484        case MSR_IA32_DEBUGCTLMSR:
3485                msr_info->data = svm->vmcb->save.dbgctl;
3486                break;
3487        case MSR_IA32_LASTBRANCHFROMIP:
3488                msr_info->data = svm->vmcb->save.br_from;
3489                break;
3490        case MSR_IA32_LASTBRANCHTOIP:
3491                msr_info->data = svm->vmcb->save.br_to;
3492                break;
3493        case MSR_IA32_LASTINTFROMIP:
3494                msr_info->data = svm->vmcb->save.last_excp_from;
3495                break;
3496        case MSR_IA32_LASTINTTOIP:
3497                msr_info->data = svm->vmcb->save.last_excp_to;
3498                break;
3499        case MSR_VM_HSAVE_PA:
3500                msr_info->data = svm->nested.hsave_msr;
3501                break;
3502        case MSR_VM_CR:
3503                msr_info->data = svm->nested.vm_cr_msr;
3504                break;
3505        case MSR_IA32_UCODE_REV:
3506                msr_info->data = 0x01000065;
3507                break;
3508        case MSR_F15H_IC_CFG: {
3509
3510                int family, model;
3511
3512                family = guest_cpuid_family(vcpu);
3513                model  = guest_cpuid_model(vcpu);
3514
3515                if (family < 0 || model < 0)
3516                        return kvm_get_msr_common(vcpu, msr_info);
3517
3518                msr_info->data = 0;
3519
3520                if (family == 0x15 &&
3521                    (model >= 0x2 && model < 0x20))
3522                        msr_info->data = 0x1E;
3523                }
3524                break;
3525        default:
3526                return kvm_get_msr_common(vcpu, msr_info);
3527        }
3528        return 0;
3529}
3530
3531static int rdmsr_interception(struct vcpu_svm *svm)
3532{
3533        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3534        struct msr_data msr_info;
3535
3536        msr_info.index = ecx;
3537        msr_info.host_initiated = false;
3538        if (svm_get_msr(&svm->vcpu, &msr_info)) {
3539                trace_kvm_msr_read_ex(ecx);
3540                kvm_inject_gp(&svm->vcpu, 0);
3541        } else {
3542                trace_kvm_msr_read(ecx, msr_info.data);
3543
3544                kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3545                                   msr_info.data & 0xffffffff);
3546                kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3547                                   msr_info.data >> 32);
3548                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3549                skip_emulated_instruction(&svm->vcpu);
3550        }
3551        return 1;
3552}
3553
3554static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3555{
3556        struct vcpu_svm *svm = to_svm(vcpu);
3557        int svm_dis, chg_mask;
3558
3559        if (data & ~SVM_VM_CR_VALID_MASK)
3560                return 1;
3561
3562        chg_mask = SVM_VM_CR_VALID_MASK;
3563
3564        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3565                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3566
3567        svm->nested.vm_cr_msr &= ~chg_mask;
3568        svm->nested.vm_cr_msr |= (data & chg_mask);
3569
3570        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3571
3572        /* check for svm_disable while efer.svme is set */
3573        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3574                return 1;
3575
3576        return 0;
3577}
3578
3579static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3580{
3581        struct vcpu_svm *svm = to_svm(vcpu);
3582
3583        u32 ecx = msr->index;
3584        u64 data = msr->data;
3585        switch (ecx) {
3586        case MSR_IA32_TSC:
3587                kvm_write_tsc(vcpu, msr);
3588                break;
3589        case MSR_STAR:
3590                svm->vmcb->save.star = data;
3591                break;
3592#ifdef CONFIG_X86_64
3593        case MSR_LSTAR:
3594                svm->vmcb->save.lstar = data;
3595                break;
3596        case MSR_CSTAR:
3597                svm->vmcb->save.cstar = data;
3598                break;
3599        case MSR_KERNEL_GS_BASE:
3600                svm->vmcb->save.kernel_gs_base = data;
3601                break;
3602        case MSR_SYSCALL_MASK:
3603                svm->vmcb->save.sfmask = data;
3604                break;
3605#endif
3606        case MSR_IA32_SYSENTER_CS:
3607                svm->vmcb->save.sysenter_cs = data;
3608                break;
3609        case MSR_IA32_SYSENTER_EIP:
3610                svm->sysenter_eip = data;
3611                svm->vmcb->save.sysenter_eip = data;
3612                break;
3613        case MSR_IA32_SYSENTER_ESP:
3614                svm->sysenter_esp = data;
3615                svm->vmcb->save.sysenter_esp = data;
3616                break;
3617        case MSR_TSC_AUX:
3618                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3619                        return 1;
3620
3621                /*
3622                 * This is rare, so we update the MSR here instead of using
3623                 * direct_access_msrs.  Doing that would require a rdmsr in
3624                 * svm_vcpu_put.
3625                 */
3626                svm->tsc_aux = data;
3627                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3628                break;
3629        case MSR_IA32_DEBUGCTLMSR:
3630                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3631                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3632                                    __func__, data);
3633                        break;
3634                }
3635                if (data & DEBUGCTL_RESERVED_BITS)
3636                        return 1;
3637
3638                svm->vmcb->save.dbgctl = data;
3639                mark_dirty(svm->vmcb, VMCB_LBR);
3640                if (data & (1ULL<<0))
3641                        svm_enable_lbrv(svm);
3642                else
3643                        svm_disable_lbrv(svm);
3644                break;
3645        case MSR_VM_HSAVE_PA:
3646                svm->nested.hsave_msr = data;
3647                break;
3648        case MSR_VM_CR:
3649                return svm_set_vm_cr(vcpu, data);
3650        case MSR_VM_IGNNE:
3651                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3652                break;
3653        case MSR_IA32_APICBASE:
3654                if (kvm_vcpu_apicv_active(vcpu))
3655                        avic_update_vapic_bar(to_svm(vcpu), data);
3656                /* Follow through */
3657        default:
3658                return kvm_set_msr_common(vcpu, msr);
3659        }
3660        return 0;
3661}
3662
3663static int wrmsr_interception(struct vcpu_svm *svm)
3664{
3665        struct msr_data msr;
3666        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3667        u64 data = kvm_read_edx_eax(&svm->vcpu);
3668
3669        msr.data = data;
3670        msr.index = ecx;
3671        msr.host_initiated = false;
3672
3673        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3674        if (kvm_set_msr(&svm->vcpu, &msr)) {
3675                trace_kvm_msr_write_ex(ecx, data);
3676                kvm_inject_gp(&svm->vcpu, 0);
3677        } else {
3678                trace_kvm_msr_write(ecx, data);
3679                skip_emulated_instruction(&svm->vcpu);
3680        }
3681        return 1;
3682}
3683
3684static int msr_interception(struct vcpu_svm *svm)
3685{
3686        if (svm->vmcb->control.exit_info_1)
3687                return wrmsr_interception(svm);
3688        else
3689                return rdmsr_interception(svm);
3690}
3691
3692static int interrupt_window_interception(struct vcpu_svm *svm)
3693{
3694        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3695        svm_clear_vintr(svm);
3696        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3697        mark_dirty(svm->vmcb, VMCB_INTR);
3698        ++svm->vcpu.stat.irq_window_exits;
3699        return 1;
3700}
3701
3702static int pause_interception(struct vcpu_svm *svm)
3703{
3704        kvm_vcpu_on_spin(&(svm->vcpu));
3705        return 1;
3706}
3707
3708static int nop_interception(struct vcpu_svm *svm)
3709{
3710        skip_emulated_instruction(&(svm->vcpu));
3711        return 1;
3712}
3713
3714static int monitor_interception(struct vcpu_svm *svm)
3715{
3716        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3717        return nop_interception(svm);
3718}
3719
3720static int mwait_interception(struct vcpu_svm *svm)
3721{
3722        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3723        return nop_interception(svm);
3724}
3725
3726enum avic_ipi_failure_cause {
3727        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3728        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3729        AVIC_IPI_FAILURE_INVALID_TARGET,
3730        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3731};
3732
3733static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3734{
3735        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3736        u32 icrl = svm->vmcb->control.exit_info_1;
3737        u32 id = svm->vmcb->control.exit_info_2 >> 32;
3738        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3739        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3740
3741        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3742
3743        switch (id) {
3744        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3745                /*
3746                 * AVIC hardware handles the generation of
3747                 * IPIs when the specified Message Type is Fixed
3748                 * (also known as fixed delivery mode) and
3749                 * the Trigger Mode is edge-triggered. The hardware
3750                 * also supports self and broadcast delivery modes
3751                 * specified via the Destination Shorthand(DSH)
3752                 * field of the ICRL. Logical and physical APIC ID
3753                 * formats are supported. All other IPI types cause
3754                 * a #VMEXIT, which needs to emulated.
3755                 */
3756                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3757                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3758                break;
3759        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3760                int i;
3761                struct kvm_vcpu *vcpu;
3762                struct kvm *kvm = svm->vcpu.kvm;
3763                struct kvm_lapic *apic = svm->vcpu.arch.apic;
3764
3765                /*
3766                 * At this point, we expect that the AVIC HW has already
3767                 * set the appropriate IRR bits on the valid target
3768                 * vcpus. So, we just need to kick the appropriate vcpu.
3769                 */
3770                kvm_for_each_vcpu(i, vcpu, kvm) {
3771                        bool m = kvm_apic_match_dest(vcpu, apic,
3772                                                     icrl & KVM_APIC_SHORT_MASK,
3773                                                     GET_APIC_DEST_FIELD(icrh),
3774                                                     icrl & KVM_APIC_DEST_MASK);
3775
3776                        if (m && !avic_vcpu_is_running(vcpu))
3777                                kvm_vcpu_wake_up(vcpu);
3778                }
3779                break;
3780        }
3781        case AVIC_IPI_FAILURE_INVALID_TARGET:
3782                break;
3783        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3784                WARN_ONCE(1, "Invalid backing page\n");
3785                break;
3786        default:
3787                pr_err("Unknown IPI interception\n");
3788        }
3789
3790        return 1;
3791}
3792
3793static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3794{
3795        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3796        int index;
3797        u32 *logical_apic_id_table;
3798        int dlid = GET_APIC_LOGICAL_ID(ldr);
3799
3800        if (!dlid)
3801                return NULL;
3802
3803        if (flat) { /* flat */
3804                index = ffs(dlid) - 1;
3805                if (index > 7)
3806                        return NULL;
3807        } else { /* cluster */
3808                int cluster = (dlid & 0xf0) >> 4;
3809                int apic = ffs(dlid & 0x0f) - 1;
3810
3811                if ((apic < 0) || (apic > 7) ||
3812                    (cluster >= 0xf))
3813                        return NULL;
3814                index = (cluster << 2) + apic;
3815        }
3816
3817        logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3818
3819        return &logical_apic_id_table[index];
3820}
3821
3822static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3823                          bool valid)
3824{
3825        bool flat;
3826        u32 *entry, new_entry;
3827
3828        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3829        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3830        if (!entry)
3831                return -EINVAL;
3832
3833        new_entry = READ_ONCE(*entry);
3834        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3835        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3836        if (valid)
3837                new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3838        else
3839                new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3840        WRITE_ONCE(*entry, new_entry);
3841
3842        return 0;
3843}
3844
3845static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3846{
3847        int ret;
3848        struct vcpu_svm *svm = to_svm(vcpu);
3849        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3850
3851        if (!ldr)
3852                return 1;
3853
3854        ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3855        if (ret && svm->ldr_reg) {
3856                avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3857                svm->ldr_reg = 0;
3858        } else {
3859                svm->ldr_reg = ldr;
3860        }
3861        return ret;
3862}
3863
3864static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3865{
3866        u64 *old, *new;
3867        struct vcpu_svm *svm = to_svm(vcpu);
3868        u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3869        u32 id = (apic_id_reg >> 24) & 0xff;
3870
3871        if (vcpu->vcpu_id == id)
3872                return 0;
3873
3874        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3875        new = avic_get_physical_id_entry(vcpu, id);
3876        if (!new || !old)
3877                return 1;
3878
3879        /* We need to move physical_id_entry to new offset */
3880        *new = *old;
3881        *old = 0ULL;
3882        to_svm(vcpu)->avic_physical_id_cache = new;
3883
3884        /*
3885         * Also update the guest physical APIC ID in the logical
3886         * APIC ID table entry if already setup the LDR.
3887         */
3888        if (svm->ldr_reg)
3889                avic_handle_ldr_update(vcpu);
3890
3891        return 0;
3892}
3893
3894static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3895{
3896        struct vcpu_svm *svm = to_svm(vcpu);
3897        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3898        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3899        u32 mod = (dfr >> 28) & 0xf;
3900
3901        /*
3902         * We assume that all local APICs are using the same type.
3903         * If this changes, we need to flush the AVIC logical
3904         * APID id table.
3905         */
3906        if (vm_data->ldr_mode == mod)
3907                return 0;
3908
3909        clear_page(page_address(vm_data->avic_logical_id_table_page));
3910        vm_data->ldr_mode = mod;
3911
3912        if (svm->ldr_reg)
3913                avic_handle_ldr_update(vcpu);
3914        return 0;
3915}
3916
3917static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3918{
3919        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3920        u32 offset = svm->vmcb->control.exit_info_1 &
3921                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3922
3923        switch (offset) {
3924        case APIC_ID:
3925                if (avic_handle_apic_id_update(&svm->vcpu))
3926                        return 0;
3927                break;
3928        case APIC_LDR:
3929                if (avic_handle_ldr_update(&svm->vcpu))
3930                        return 0;
3931                break;
3932        case APIC_DFR:
3933                avic_handle_dfr_update(&svm->vcpu);
3934                break;
3935        default:
3936                break;
3937        }
3938
3939        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3940
3941        return 1;
3942}
3943
3944static bool is_avic_unaccelerated_access_trap(u32 offset)
3945{
3946        bool ret = false;
3947
3948        switch (offset) {
3949        case APIC_ID:
3950        case APIC_EOI:
3951        case APIC_RRR:
3952        case APIC_LDR:
3953        case APIC_DFR:
3954        case APIC_SPIV:
3955        case APIC_ESR:
3956        case APIC_ICR:
3957        case APIC_LVTT:
3958        case APIC_LVTTHMR:
3959        case APIC_LVTPC:
3960        case APIC_LVT0:
3961        case APIC_LVT1:
3962        case APIC_LVTERR:
3963        case APIC_TMICT:
3964        case APIC_TDCR:
3965                ret = true;
3966                break;
3967        default:
3968                break;
3969        }
3970        return ret;
3971}
3972
3973static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3974{
3975        int ret = 0;
3976        u32 offset = svm->vmcb->control.exit_info_1 &
3977                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3978        u32 vector = svm->vmcb->control.exit_info_2 &
3979                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3980        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3981                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
3982        bool trap = is_avic_unaccelerated_access_trap(offset);
3983
3984        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3985                                            trap, write, vector);
3986        if (trap) {
3987                /* Handling Trap */
3988                WARN_ONCE(!write, "svm: Handling trap read.\n");
3989                ret = avic_unaccel_trap_write(svm);
3990        } else {
3991                /* Handling Fault */
3992                ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3993        }
3994
3995        return ret;
3996}
3997
3998static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3999        [SVM_EXIT_READ_CR0]                     = cr_interception,
4000        [SVM_EXIT_READ_CR3]                     = cr_interception,
4001        [SVM_EXIT_READ_CR4]                     = cr_interception,
4002        [SVM_EXIT_READ_CR8]                     = cr_interception,
4003        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4004        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4005        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4006        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4007        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4008        [SVM_EXIT_READ_DR0]                     = dr_interception,
4009        [SVM_EXIT_READ_DR1]                     = dr_interception,
4010        [SVM_EXIT_READ_DR2]                     = dr_interception,
4011        [SVM_EXIT_READ_DR3]                     = dr_interception,
4012        [SVM_EXIT_READ_DR4]                     = dr_interception,
4013        [SVM_EXIT_READ_DR5]                     = dr_interception,
4014        [SVM_EXIT_READ_DR6]                     = dr_interception,
4015        [SVM_EXIT_READ_DR7]                     = dr_interception,
4016        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4017        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4018        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4019        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4020        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4021        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4022        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4023        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4024        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4025        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4026        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4027        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4028        [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
4029        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4030        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4031        [SVM_EXIT_INTR]                         = intr_interception,
4032        [SVM_EXIT_NMI]                          = nmi_interception,
4033        [SVM_EXIT_SMI]                          = nop_on_interception,
4034        [SVM_EXIT_INIT]                         = nop_on_interception,
4035        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4036        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4037        [SVM_EXIT_CPUID]                        = cpuid_interception,
4038        [SVM_EXIT_IRET]                         = iret_interception,
4039        [SVM_EXIT_INVD]                         = emulate_on_interception,
4040        [SVM_EXIT_PAUSE]                        = pause_interception,
4041        [SVM_EXIT_HLT]                          = halt_interception,
4042        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4043        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4044        [SVM_EXIT_IOIO]                         = io_interception,
4045        [SVM_EXIT_MSR]                          = msr_interception,
4046        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4047        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4048        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4049        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4050        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4051        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4052        [SVM_EXIT_STGI]                         = stgi_interception,
4053        [SVM_EXIT_CLGI]                         = clgi_interception,
4054        [SVM_EXIT_SKINIT]                       = skinit_interception,
4055        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4056        [SVM_EXIT_MONITOR]                      = monitor_interception,
4057        [SVM_EXIT_MWAIT]                        = mwait_interception,
4058        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4059        [SVM_EXIT_NPF]                          = pf_interception,
4060        [SVM_EXIT_RSM]                          = emulate_on_interception,
4061        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4062        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4063};
4064
4065static void dump_vmcb(struct kvm_vcpu *vcpu)
4066{
4067        struct vcpu_svm *svm = to_svm(vcpu);
4068        struct vmcb_control_area *control = &svm->vmcb->control;
4069        struct vmcb_save_area *save = &svm->vmcb->save;
4070
4071        pr_err("VMCB Control Area:\n");
4072        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4073        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4074        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4075        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4076        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4077        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4078        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4079        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4080        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4081        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4082        pr_err("%-20s%d\n", "asid:", control->asid);
4083        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4084        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4085        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4086        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4087        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4088        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4089        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4090        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4091        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4092        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4093        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4094        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4095        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4096        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4097        pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4098        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4099        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4100        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4101        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4102        pr_err("VMCB State Save Area:\n");
4103        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4104               "es:",
4105               save->es.selector, save->es.attrib,
4106               save->es.limit, save->es.base);
4107        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4108               "cs:",
4109               save->cs.selector, save->cs.attrib,
4110               save->cs.limit, save->cs.base);
4111        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4112               "ss:",
4113               save->ss.selector, save->ss.attrib,
4114               save->ss.limit, save->ss.base);
4115        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4116               "ds:",
4117               save->ds.selector, save->ds.attrib,
4118               save->ds.limit, save->ds.base);
4119        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4120               "fs:",
4121               save->fs.selector, save->fs.attrib,
4122               save->fs.limit, save->fs.base);
4123        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4124               "gs:",
4125               save->gs.selector, save->gs.attrib,
4126               save->gs.limit, save->gs.base);
4127        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4128               "gdtr:",
4129               save->gdtr.selector, save->gdtr.attrib,
4130               save->gdtr.limit, save->gdtr.base);
4131        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4132               "ldtr:",
4133               save->ldtr.selector, save->ldtr.attrib,
4134               save->ldtr.limit, save->ldtr.base);
4135        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4136               "idtr:",
4137               save->idtr.selector, save->idtr.attrib,
4138               save->idtr.limit, save->idtr.base);
4139        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4140               "tr:",
4141               save->tr.selector, save->tr.attrib,
4142               save->tr.limit, save->tr.base);
4143        pr_err("cpl:            %d                efer:         %016llx\n",
4144                save->cpl, save->efer);
4145        pr_err("%-15s %016llx %-13s %016llx\n",
4146               "cr0:", save->cr0, "cr2:", save->cr2);
4147        pr_err("%-15s %016llx %-13s %016llx\n",
4148               "cr3:", save->cr3, "cr4:", save->cr4);
4149        pr_err("%-15s %016llx %-13s %016llx\n",
4150               "dr6:", save->dr6, "dr7:", save->dr7);
4151        pr_err("%-15s %016llx %-13s %016llx\n",
4152               "rip:", save->rip, "rflags:", save->rflags);
4153        pr_err("%-15s %016llx %-13s %016llx\n",
4154               "rsp:", save->rsp, "rax:", save->rax);
4155        pr_err("%-15s %016llx %-13s %016llx\n",
4156               "star:", save->star, "lstar:", save->lstar);
4157        pr_err("%-15s %016llx %-13s %016llx\n",
4158               "cstar:", save->cstar, "sfmask:", save->sfmask);
4159        pr_err("%-15s %016llx %-13s %016llx\n",
4160               "kernel_gs_base:", save->kernel_gs_base,
4161               "sysenter_cs:", save->sysenter_cs);
4162        pr_err("%-15s %016llx %-13s %016llx\n",
4163               "sysenter_esp:", save->sysenter_esp,
4164               "sysenter_eip:", save->sysenter_eip);
4165        pr_err("%-15s %016llx %-13s %016llx\n",
4166               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4167        pr_err("%-15s %016llx %-13s %016llx\n",
4168               "br_from:", save->br_from, "br_to:", save->br_to);
4169        pr_err("%-15s %016llx %-13s %016llx\n",
4170               "excp_from:", save->last_excp_from,
4171               "excp_to:", save->last_excp_to);
4172}
4173
4174static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4175{
4176        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4177
4178        *info1 = control->exit_info_1;
4179        *info2 = control->exit_info_2;
4180}
4181
4182static int handle_exit(struct kvm_vcpu *vcpu)
4183{
4184        struct vcpu_svm *svm = to_svm(vcpu);
4185        struct kvm_run *kvm_run = vcpu->run;
4186        u32 exit_code = svm->vmcb->control.exit_code;
4187
4188        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4189
4190        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4191                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4192        if (npt_enabled)
4193                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4194
4195        if (unlikely(svm->nested.exit_required)) {
4196                nested_svm_vmexit(svm);
4197                svm->nested.exit_required = false;
4198
4199                return 1;
4200        }
4201
4202        if (is_guest_mode(vcpu)) {
4203                int vmexit;
4204
4205                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4206                                        svm->vmcb->control.exit_info_1,
4207                                        svm->vmcb->control.exit_info_2,
4208                                        svm->vmcb->control.exit_int_info,
4209                                        svm->vmcb->control.exit_int_info_err,
4210                                        KVM_ISA_SVM);
4211
4212                vmexit = nested_svm_exit_special(svm);
4213
4214                if (vmexit == NESTED_EXIT_CONTINUE)
4215                        vmexit = nested_svm_exit_handled(svm);
4216
4217                if (vmexit == NESTED_EXIT_DONE)
4218                        return 1;
4219        }
4220
4221        svm_complete_interrupts(svm);
4222
4223        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4224                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4225                kvm_run->fail_entry.hardware_entry_failure_reason
4226                        = svm->vmcb->control.exit_code;
4227                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4228                dump_vmcb(vcpu);
4229                return 0;
4230        }
4231
4232        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4233            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4234            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4235            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4236                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4237                       "exit_code 0x%x\n",
4238                       __func__, svm->vmcb->control.exit_int_info,
4239                       exit_code);
4240
4241        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4242            || !svm_exit_handlers[exit_code]) {
4243                WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4244                kvm_queue_exception(vcpu, UD_VECTOR);
4245                return 1;
4246        }
4247
4248        return svm_exit_handlers[exit_code](svm);
4249}
4250
4251static void reload_tss(struct kvm_vcpu *vcpu)
4252{
4253        int cpu = raw_smp_processor_id();
4254
4255        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4256        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4257        load_TR_desc();
4258}
4259
4260static void pre_svm_run(struct vcpu_svm *svm)
4261{
4262        int cpu = raw_smp_processor_id();
4263
4264        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4265
4266        /* FIXME: handle wraparound of asid_generation */
4267        if (svm->asid_generation != sd->asid_generation)
4268                new_asid(svm, sd);
4269}
4270
4271static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4272{
4273        struct vcpu_svm *svm = to_svm(vcpu);
4274
4275        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4276        vcpu->arch.hflags |= HF_NMI_MASK;
4277        set_intercept(svm, INTERCEPT_IRET);
4278        ++vcpu->stat.nmi_injections;
4279}
4280
4281static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4282{
4283        struct vmcb_control_area *control;
4284
4285        /* The following fields are ignored when AVIC is enabled */
4286        control = &svm->vmcb->control;
4287        control->int_vector = irq;
4288        control->int_ctl &= ~V_INTR_PRIO_MASK;
4289        control->int_ctl |= V_IRQ_MASK |
4290                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4291        mark_dirty(svm->vmcb, VMCB_INTR);
4292}
4293
4294static void svm_set_irq(struct kvm_vcpu *vcpu)
4295{
4296        struct vcpu_svm *svm = to_svm(vcpu);
4297
4298        BUG_ON(!(gif_set(svm)));
4299
4300        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4301        ++vcpu->stat.irq_injections;
4302
4303        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4304                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4305}
4306
4307static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4308{
4309        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4310}
4311
4312static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4313{
4314        struct vcpu_svm *svm = to_svm(vcpu);
4315
4316        if (svm_nested_virtualize_tpr(vcpu) ||
4317            kvm_vcpu_apicv_active(vcpu))
4318                return;
4319
4320        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4321
4322        if (irr == -1)
4323                return;
4324
4325        if (tpr >= irr)
4326                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4327}
4328
4329static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4330{
4331        return;
4332}
4333
4334static bool svm_get_enable_apicv(void)
4335{
4336        return avic;
4337}
4338
4339static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4340{
4341}
4342
4343static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4344{
4345}
4346
4347/* Note: Currently only used by Hyper-V. */
4348static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4349{
4350        struct vcpu_svm *svm = to_svm(vcpu);
4351        struct vmcb *vmcb = svm->vmcb;
4352
4353        if (!avic)
4354                return;
4355
4356        vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4357        mark_dirty(vmcb, VMCB_INTR);
4358}
4359
4360static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4361{
4362        return;
4363}
4364
4365static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4366{
4367        return;
4368}
4369
4370static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4371{
4372        kvm_lapic_set_irr(vec, vcpu->arch.apic);
4373        smp_mb__after_atomic();
4374
4375        if (avic_vcpu_is_running(vcpu))
4376                wrmsrl(SVM_AVIC_DOORBELL,
4377                       kvm_cpu_get_apicid(vcpu->cpu));
4378        else
4379                kvm_vcpu_wake_up(vcpu);
4380}
4381
4382static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4383{
4384        unsigned long flags;
4385        struct amd_svm_iommu_ir *cur;
4386
4387        spin_lock_irqsave(&svm->ir_list_lock, flags);
4388        list_for_each_entry(cur, &svm->ir_list, node) {
4389                if (cur->data != pi->ir_data)
4390                        continue;
4391                list_del(&cur->node);
4392                kfree(cur);
4393                break;
4394        }
4395        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4396}
4397
4398static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4399{
4400        int ret = 0;
4401        unsigned long flags;
4402        struct amd_svm_iommu_ir *ir;
4403
4404        /**
4405         * In some cases, the existing irte is updaed and re-set,
4406         * so we need to check here if it's already been * added
4407         * to the ir_list.
4408         */
4409        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4410                struct kvm *kvm = svm->vcpu.kvm;
4411                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4412                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4413                struct vcpu_svm *prev_svm;
4414
4415                if (!prev_vcpu) {
4416                        ret = -EINVAL;
4417                        goto out;
4418                }
4419
4420                prev_svm = to_svm(prev_vcpu);
4421                svm_ir_list_del(prev_svm, pi);
4422        }
4423
4424        /**
4425         * Allocating new amd_iommu_pi_data, which will get
4426         * add to the per-vcpu ir_list.
4427         */
4428        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4429        if (!ir) {
4430                ret = -ENOMEM;
4431                goto out;
4432        }
4433        ir->data = pi->ir_data;
4434
4435        spin_lock_irqsave(&svm->ir_list_lock, flags);
4436        list_add(&ir->node, &svm->ir_list);
4437        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4438out:
4439        return ret;
4440}
4441
4442/**
4443 * Note:
4444 * The HW cannot support posting multicast/broadcast
4445 * interrupts to a vCPU. So, we still use legacy interrupt
4446 * remapping for these kind of interrupts.
4447 *
4448 * For lowest-priority interrupts, we only support
4449 * those with single CPU as the destination, e.g. user
4450 * configures the interrupts via /proc/irq or uses
4451 * irqbalance to make the interrupts single-CPU.
4452 */
4453static int
4454get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4455                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4456{
4457        struct kvm_lapic_irq irq;
4458        struct kvm_vcpu *vcpu = NULL;
4459
4460        kvm_set_msi_irq(kvm, e, &irq);
4461
4462        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4463                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4464                         __func__, irq.vector);
4465                return -1;
4466        }
4467
4468        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4469                 irq.vector);
4470        *svm = to_svm(vcpu);
4471        vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4472        vcpu_info->vector = irq.vector;
4473
4474        return 0;
4475}
4476
4477/*
4478 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4479 *
4480 * @kvm: kvm
4481 * @host_irq: host irq of the interrupt
4482 * @guest_irq: gsi of the interrupt
4483 * @set: set or unset PI
4484 * returns 0 on success, < 0 on failure
4485 */
4486static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4487                              uint32_t guest_irq, bool set)
4488{
4489        struct kvm_kernel_irq_routing_entry *e;
4490        struct kvm_irq_routing_table *irq_rt;
4491        int idx, ret = -EINVAL;
4492
4493        if (!kvm_arch_has_assigned_device(kvm) ||
4494            !irq_remapping_cap(IRQ_POSTING_CAP))
4495                return 0;
4496
4497        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4498                 __func__, host_irq, guest_irq, set);
4499
4500        idx = srcu_read_lock(&kvm->irq_srcu);
4501        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4502        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4503
4504        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4505                struct vcpu_data vcpu_info;
4506                struct vcpu_svm *svm = NULL;
4507
4508                if (e->type != KVM_IRQ_ROUTING_MSI)
4509                        continue;
4510
4511                /**
4512                 * Here, we setup with legacy mode in the following cases:
4513                 * 1. When cannot target interrupt to a specific vcpu.
4514                 * 2. Unsetting posted interrupt.
4515                 * 3. APIC virtialization is disabled for the vcpu.
4516                 */
4517                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4518                    kvm_vcpu_apicv_active(&svm->vcpu)) {
4519                        struct amd_iommu_pi_data pi;
4520
4521                        /* Try to enable guest_mode in IRTE */
4522                        pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4523                        pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4524                                                     svm->vcpu.vcpu_id);
4525                        pi.is_guest_mode = true;
4526                        pi.vcpu_data = &vcpu_info;
4527                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4528
4529                        /**
4530                         * Here, we successfully setting up vcpu affinity in
4531                         * IOMMU guest mode. Now, we need to store the posted
4532                         * interrupt information in a per-vcpu ir_list so that
4533                         * we can reference to them directly when we update vcpu
4534                         * scheduling information in IOMMU irte.
4535                         */
4536                        if (!ret && pi.is_guest_mode)
4537                                svm_ir_list_add(svm, &pi);
4538                } else {
4539                        /* Use legacy mode in IRTE */
4540                        struct amd_iommu_pi_data pi;
4541
4542                        /**
4543                         * Here, pi is used to:
4544                         * - Tell IOMMU to use legacy mode for this interrupt.
4545                         * - Retrieve ga_tag of prior interrupt remapping data.
4546                         */
4547                        pi.is_guest_mode = false;
4548                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4549
4550                        /**
4551                         * Check if the posted interrupt was previously
4552                         * setup with the guest_mode by checking if the ga_tag
4553                         * was cached. If so, we need to clean up the per-vcpu
4554                         * ir_list.
4555                         */
4556                        if (!ret && pi.prev_ga_tag) {
4557                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4558                                struct kvm_vcpu *vcpu;
4559
4560                                vcpu = kvm_get_vcpu_by_id(kvm, id);
4561                                if (vcpu)
4562                                        svm_ir_list_del(to_svm(vcpu), &pi);
4563                        }
4564                }
4565
4566                if (!ret && svm) {
4567                        trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4568                                                 host_irq, e->gsi,
4569                                                 vcpu_info.vector,
4570                                                 vcpu_info.pi_desc_addr, set);
4571                }
4572
4573                if (ret < 0) {
4574                        pr_err("%s: failed to update PI IRTE\n", __func__);
4575                        goto out;
4576                }
4577        }
4578
4579        ret = 0;
4580out:
4581        srcu_read_unlock(&kvm->irq_srcu, idx);
4582        return ret;
4583}
4584
4585static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4586{
4587        struct vcpu_svm *svm = to_svm(vcpu);
4588        struct vmcb *vmcb = svm->vmcb;
4589        int ret;
4590        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4591              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4592        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4593
4594        return ret;
4595}
4596
4597static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4598{
4599        struct vcpu_svm *svm = to_svm(vcpu);
4600
4601        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4602}
4603
4604static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4605{
4606        struct vcpu_svm *svm = to_svm(vcpu);
4607
4608        if (masked) {
4609                svm->vcpu.arch.hflags |= HF_NMI_MASK;
4610                set_intercept(svm, INTERCEPT_IRET);
4611        } else {
4612                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4613                clr_intercept(svm, INTERCEPT_IRET);
4614        }
4615}
4616
4617static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4618{
4619        struct vcpu_svm *svm = to_svm(vcpu);
4620        struct vmcb *vmcb = svm->vmcb;
4621        int ret;
4622
4623        if (!gif_set(svm) ||
4624             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4625                return 0;
4626
4627        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4628
4629        if (is_guest_mode(vcpu))
4630                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4631
4632        return ret;
4633}
4634
4635static void enable_irq_window(struct kvm_vcpu *vcpu)
4636{
4637        struct vcpu_svm *svm = to_svm(vcpu);
4638
4639        if (kvm_vcpu_apicv_active(vcpu))
4640                return;
4641
4642        /*
4643         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4644         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4645         * get that intercept, this function will be called again though and
4646         * we'll get the vintr intercept.
4647         */
4648        if (gif_set(svm) && nested_svm_intr(svm)) {
4649                svm_set_vintr(svm);
4650                svm_inject_irq(svm, 0x0);
4651        }
4652}
4653
4654static void enable_nmi_window(struct kvm_vcpu *vcpu)
4655{
4656        struct vcpu_svm *svm = to_svm(vcpu);
4657
4658        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4659            == HF_NMI_MASK)
4660                return; /* IRET will cause a vm exit */
4661
4662        /*
4663         * Something prevents NMI from been injected. Single step over possible
4664         * problem (IRET or exception injection or interrupt shadow)
4665         */
4666        svm->nmi_singlestep = true;
4667        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4668}
4669
4670static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4671{
4672        return 0;
4673}
4674
4675static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4676{
4677        struct vcpu_svm *svm = to_svm(vcpu);
4678
4679        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4680                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4681        else
4682                svm->asid_generation--;
4683}
4684
4685static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4686{
4687}
4688
4689static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4690{
4691        struct vcpu_svm *svm = to_svm(vcpu);
4692
4693        if (svm_nested_virtualize_tpr(vcpu))
4694                return;
4695
4696        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4697                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4698                kvm_set_cr8(vcpu, cr8);
4699        }
4700}
4701
4702static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4703{
4704        struct vcpu_svm *svm = to_svm(vcpu);
4705        u64 cr8;
4706
4707        if (svm_nested_virtualize_tpr(vcpu) ||
4708            kvm_vcpu_apicv_active(vcpu))
4709                return;
4710
4711        cr8 = kvm_get_cr8(vcpu);
4712        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4713        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4714}
4715
4716static void svm_complete_interrupts(struct vcpu_svm *svm)
4717{
4718        u8 vector;
4719        int type;
4720        u32 exitintinfo = svm->vmcb->control.exit_int_info;
4721        unsigned int3_injected = svm->int3_injected;
4722
4723        svm->int3_injected = 0;
4724
4725        /*
4726         * If we've made progress since setting HF_IRET_MASK, we've
4727         * executed an IRET and can allow NMI injection.
4728         */
4729        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4730            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4731                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4732                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4733        }
4734
4735        svm->vcpu.arch.nmi_injected = false;
4736        kvm_clear_exception_queue(&svm->vcpu);
4737        kvm_clear_interrupt_queue(&svm->vcpu);
4738
4739        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4740                return;
4741
4742        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4743
4744        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4745        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4746
4747        switch (type) {
4748        case SVM_EXITINTINFO_TYPE_NMI:
4749                svm->vcpu.arch.nmi_injected = true;
4750                break;
4751        case SVM_EXITINTINFO_TYPE_EXEPT:
4752                /*
4753                 * In case of software exceptions, do not reinject the vector,
4754                 * but re-execute the instruction instead. Rewind RIP first
4755                 * if we emulated INT3 before.
4756                 */
4757                if (kvm_exception_is_soft(vector)) {
4758                        if (vector == BP_VECTOR && int3_injected &&
4759                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4760                                kvm_rip_write(&svm->vcpu,
4761                                              kvm_rip_read(&svm->vcpu) -
4762                                              int3_injected);
4763                        break;
4764                }
4765                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4766                        u32 err = svm->vmcb->control.exit_int_info_err;
4767                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
4768
4769                } else
4770                        kvm_requeue_exception(&svm->vcpu, vector);
4771                break;
4772        case SVM_EXITINTINFO_TYPE_INTR:
4773                kvm_queue_interrupt(&svm->vcpu, vector, false);
4774                break;
4775        default:
4776                break;
4777        }
4778}
4779
4780static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4781{
4782        struct vcpu_svm *svm = to_svm(vcpu);
4783        struct vmcb_control_area *control = &svm->vmcb->control;
4784
4785        control->exit_int_info = control->event_inj;
4786        control->exit_int_info_err = control->event_inj_err;
4787        control->event_inj = 0;
4788        svm_complete_interrupts(svm);
4789}
4790
4791static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4792{
4793        struct vcpu_svm *svm = to_svm(vcpu);
4794
4795        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4796        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4797        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4798
4799        /*
4800         * A vmexit emulation is required before the vcpu can be executed
4801         * again.
4802         */
4803        if (unlikely(svm->nested.exit_required))
4804                return;
4805
4806        pre_svm_run(svm);
4807
4808        sync_lapic_to_cr8(vcpu);
4809
4810        svm->vmcb->save.cr2 = vcpu->arch.cr2;
4811
4812        clgi();
4813
4814        local_irq_enable();
4815
4816        asm volatile (
4817                "push %%" _ASM_BP "; \n\t"
4818                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4819                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4820                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4821                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4822                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4823                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4824#ifdef CONFIG_X86_64
4825                "mov %c[r8](%[svm]),  %%r8  \n\t"
4826                "mov %c[r9](%[svm]),  %%r9  \n\t"
4827                "mov %c[r10](%[svm]), %%r10 \n\t"
4828                "mov %c[r11](%[svm]), %%r11 \n\t"
4829                "mov %c[r12](%[svm]), %%r12 \n\t"
4830                "mov %c[r13](%[svm]), %%r13 \n\t"
4831                "mov %c[r14](%[svm]), %%r14 \n\t"
4832                "mov %c[r15](%[svm]), %%r15 \n\t"
4833#endif
4834
4835                /* Enter guest mode */
4836                "push %%" _ASM_AX " \n\t"
4837                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4838                __ex(SVM_VMLOAD) "\n\t"
4839                __ex(SVM_VMRUN) "\n\t"
4840                __ex(SVM_VMSAVE) "\n\t"
4841                "pop %%" _ASM_AX " \n\t"
4842
4843                /* Save guest registers, load host registers */
4844                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4845                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4846                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4847                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4848                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4849                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4850#ifdef CONFIG_X86_64
4851                "mov %%r8,  %c[r8](%[svm]) \n\t"
4852                "mov %%r9,  %c[r9](%[svm]) \n\t"
4853                "mov %%r10, %c[r10](%[svm]) \n\t"
4854                "mov %%r11, %c[r11](%[svm]) \n\t"
4855                "mov %%r12, %c[r12](%[svm]) \n\t"
4856                "mov %%r13, %c[r13](%[svm]) \n\t"
4857                "mov %%r14, %c[r14](%[svm]) \n\t"
4858                "mov %%r15, %c[r15](%[svm]) \n\t"
4859#endif
4860                "pop %%" _ASM_BP
4861                :
4862                : [svm]"a"(svm),
4863                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4864                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4865                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4866                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4867                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4868                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4869                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4870#ifdef CONFIG_X86_64
4871                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4872                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4873                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4874                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4875                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4876                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4877                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4878                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4879#endif
4880                : "cc", "memory"
4881#ifdef CONFIG_X86_64
4882                , "rbx", "rcx", "rdx", "rsi", "rdi"
4883                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4884#else
4885                , "ebx", "ecx", "edx", "esi", "edi"
4886#endif
4887                );
4888
4889#ifdef CONFIG_X86_64
4890        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4891#else
4892        loadsegment(fs, svm->host.fs);
4893#ifndef CONFIG_X86_32_LAZY_GS
4894        loadsegment(gs, svm->host.gs);
4895#endif
4896#endif
4897
4898        reload_tss(vcpu);
4899
4900        local_irq_disable();
4901
4902        vcpu->arch.cr2 = svm->vmcb->save.cr2;
4903        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4904        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4905        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4906
4907        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4908                kvm_before_handle_nmi(&svm->vcpu);
4909
4910        stgi();
4911
4912        /* Any pending NMI will happen here */
4913
4914        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4915                kvm_after_handle_nmi(&svm->vcpu);
4916
4917        sync_cr8_to_lapic(vcpu);
4918
4919        svm->next_rip = 0;
4920
4921        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4922
4923        /* if exit due to PF check for async PF */
4924        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4925                svm->apf_reason = kvm_read_and_reset_pf_reason();
4926
4927        if (npt_enabled) {
4928                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4929                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4930        }
4931
4932        /*
4933         * We need to handle MC intercepts here before the vcpu has a chance to
4934         * change the physical cpu
4935         */
4936        if (unlikely(svm->vmcb->control.exit_code ==
4937                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4938                svm_handle_mce(svm);
4939
4940        mark_all_clean(svm->vmcb);
4941}
4942
4943static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4944{
4945        struct vcpu_svm *svm = to_svm(vcpu);
4946
4947        svm->vmcb->save.cr3 = root;
4948        mark_dirty(svm->vmcb, VMCB_CR);
4949        svm_flush_tlb(vcpu);
4950}
4951
4952static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4953{
4954        struct vcpu_svm *svm = to_svm(vcpu);
4955
4956        svm->vmcb->control.nested_cr3 = root;
4957        mark_dirty(svm->vmcb, VMCB_NPT);
4958
4959        /* Also sync guest cr3 here in case we live migrate */
4960        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4961        mark_dirty(svm->vmcb, VMCB_CR);
4962
4963        svm_flush_tlb(vcpu);
4964}
4965
4966static int is_disabled(void)
4967{
4968        u64 vm_cr;
4969
4970        rdmsrl(MSR_VM_CR, vm_cr);
4971        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4972                return 1;
4973
4974        return 0;
4975}
4976
4977static void
4978svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4979{
4980        /*
4981         * Patch in the VMMCALL instruction:
4982         */
4983        hypercall[0] = 0x0f;
4984        hypercall[1] = 0x01;
4985        hypercall[2] = 0xd9;
4986}
4987
4988static void svm_check_processor_compat(void *rtn)
4989{
4990        *(int *)rtn = 0;
4991}
4992
4993static bool svm_cpu_has_accelerated_tpr(void)
4994{
4995        return false;
4996}
4997
4998static bool svm_has_high_real_mode_segbase(void)
4999{
5000        return true;
5001}
5002
5003static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5004{
5005        return 0;
5006}
5007
5008static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5009{
5010        struct vcpu_svm *svm = to_svm(vcpu);
5011        struct kvm_cpuid_entry2 *entry;
5012
5013        /* Update nrips enabled cache */
5014        svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5015
5016        if (!kvm_vcpu_apicv_active(vcpu))
5017                return;
5018
5019        entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5020        if (entry)
5021                entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5022}
5023
5024static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5025{
5026        switch (func) {
5027        case 0x1:
5028                if (avic)
5029                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5030                break;
5031        case 0x80000001:
5032                if (nested)
5033                        entry->ecx |= (1 << 2); /* Set SVM bit */
5034                break;
5035        case 0x8000000A:
5036                entry->eax = 1; /* SVM revision 1 */
5037                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5038                                   ASID emulation to nested SVM */
5039                entry->ecx = 0; /* Reserved */
5040                entry->edx = 0; /* Per default do not support any
5041                                   additional features */
5042
5043                /* Support next_rip if host supports it */
5044                if (boot_cpu_has(X86_FEATURE_NRIPS))
5045                        entry->edx |= SVM_FEATURE_NRIP;
5046
5047                /* Support NPT for the guest if enabled */
5048                if (npt_enabled)
5049                        entry->edx |= SVM_FEATURE_NPT;
5050
5051                break;
5052        }
5053}
5054
5055static int svm_get_lpage_level(void)
5056{
5057        return PT_PDPE_LEVEL;
5058}
5059
5060static bool svm_rdtscp_supported(void)
5061{
5062        return boot_cpu_has(X86_FEATURE_RDTSCP);
5063}
5064
5065static bool svm_invpcid_supported(void)
5066{
5067        return false;
5068}
5069
5070static bool svm_mpx_supported(void)
5071{
5072        return false;
5073}
5074
5075static bool svm_xsaves_supported(void)
5076{
5077        return false;
5078}
5079
5080static bool svm_has_wbinvd_exit(void)
5081{
5082        return true;
5083}
5084
5085static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
5086{
5087        struct vcpu_svm *svm = to_svm(vcpu);
5088
5089        set_exception_intercept(svm, NM_VECTOR);
5090        update_cr0_intercept(svm);
5091}
5092
5093#define PRE_EX(exit)  { .exit_code = (exit), \
5094                        .stage = X86_ICPT_PRE_EXCEPT, }
5095#define POST_EX(exit) { .exit_code = (exit), \
5096                        .stage = X86_ICPT_POST_EXCEPT, }
5097#define POST_MEM(exit) { .exit_code = (exit), \
5098                        .stage = X86_ICPT_POST_MEMACCESS, }
5099
5100static const struct __x86_intercept {
5101        u32 exit_code;
5102        enum x86_intercept_stage stage;
5103} x86_intercept_map[] = {
5104        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5105        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5106        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5107        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5108        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5109        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5110        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5111        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5112        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5113        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5114        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5115        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5116        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5117        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5118        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5119        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5120        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5121        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5122        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5123        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5124        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5125        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5126        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5127        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5128        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5129        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5130        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5131        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5132        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5133        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5134        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5135        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5136        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5137        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5138        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5139        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5140        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5141        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5142        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5143        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5144        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5145        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5146        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5147        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5148        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5149        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5150};
5151
5152#undef PRE_EX
5153#undef POST_EX
5154#undef POST_MEM
5155
5156static int svm_check_intercept(struct kvm_vcpu *vcpu,
5157                               struct x86_instruction_info *info,
5158                               enum x86_intercept_stage stage)
5159{
5160        struct vcpu_svm *svm = to_svm(vcpu);
5161        int vmexit, ret = X86EMUL_CONTINUE;
5162        struct __x86_intercept icpt_info;
5163        struct vmcb *vmcb = svm->vmcb;
5164
5165        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5166                goto out;
5167
5168        icpt_info = x86_intercept_map[info->intercept];
5169
5170        if (stage != icpt_info.stage)
5171                goto out;
5172
5173        switch (icpt_info.exit_code) {
5174        case SVM_EXIT_READ_CR0:
5175                if (info->intercept == x86_intercept_cr_read)
5176                        icpt_info.exit_code += info->modrm_reg;
5177                break;
5178        case SVM_EXIT_WRITE_CR0: {
5179                unsigned long cr0, val;
5180                u64 intercept;
5181
5182                if (info->intercept == x86_intercept_cr_write)
5183                        icpt_info.exit_code += info->modrm_reg;
5184
5185                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5186                    info->intercept == x86_intercept_clts)
5187                        break;
5188
5189                intercept = svm->nested.intercept;
5190
5191                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5192                        break;
5193
5194                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5195                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5196
5197                if (info->intercept == x86_intercept_lmsw) {
5198                        cr0 &= 0xfUL;
5199                        val &= 0xfUL;
5200                        /* lmsw can't clear PE - catch this here */
5201                        if (cr0 & X86_CR0_PE)
5202                                val |= X86_CR0_PE;
5203                }
5204
5205                if (cr0 ^ val)
5206                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5207
5208                break;
5209        }
5210        case SVM_EXIT_READ_DR0:
5211        case SVM_EXIT_WRITE_DR0:
5212                icpt_info.exit_code += info->modrm_reg;
5213                break;
5214        case SVM_EXIT_MSR:
5215                if (info->intercept == x86_intercept_wrmsr)
5216                        vmcb->control.exit_info_1 = 1;
5217                else
5218                        vmcb->control.exit_info_1 = 0;
5219                break;
5220        case SVM_EXIT_PAUSE:
5221                /*
5222                 * We get this for NOP only, but pause
5223                 * is rep not, check this here
5224                 */
5225                if (info->rep_prefix != REPE_PREFIX)
5226                        goto out;
5227        case SVM_EXIT_IOIO: {
5228                u64 exit_info;
5229                u32 bytes;
5230
5231                if (info->intercept == x86_intercept_in ||
5232                    info->intercept == x86_intercept_ins) {
5233                        exit_info = ((info->src_val & 0xffff) << 16) |
5234                                SVM_IOIO_TYPE_MASK;
5235                        bytes = info->dst_bytes;
5236                } else {
5237                        exit_info = (info->dst_val & 0xffff) << 16;
5238                        bytes = info->src_bytes;
5239                }
5240
5241                if (info->intercept == x86_intercept_outs ||
5242                    info->intercept == x86_intercept_ins)
5243                        exit_info |= SVM_IOIO_STR_MASK;
5244
5245                if (info->rep_prefix)
5246                        exit_info |= SVM_IOIO_REP_MASK;
5247
5248                bytes = min(bytes, 4u);
5249
5250                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5251
5252                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5253
5254                vmcb->control.exit_info_1 = exit_info;
5255                vmcb->control.exit_info_2 = info->next_rip;
5256
5257                break;
5258        }
5259        default:
5260                break;
5261        }
5262
5263        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5264        if (static_cpu_has(X86_FEATURE_NRIPS))
5265                vmcb->control.next_rip  = info->next_rip;
5266        vmcb->control.exit_code = icpt_info.exit_code;
5267        vmexit = nested_svm_exit_handled(svm);
5268
5269        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5270                                           : X86EMUL_CONTINUE;
5271
5272out:
5273        return ret;
5274}
5275
5276static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5277{
5278        local_irq_enable();
5279        /*
5280         * We must have an instruction with interrupts enabled, so
5281         * the timer interrupt isn't delayed by the interrupt shadow.
5282         */
5283        asm("nop");
5284        local_irq_disable();
5285}
5286
5287static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5288{
5289}
5290
5291static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5292{
5293        if (avic_handle_apic_id_update(vcpu) != 0)
5294                return;
5295        if (avic_handle_dfr_update(vcpu) != 0)
5296                return;
5297        avic_handle_ldr_update(vcpu);
5298}
5299
5300static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5301        .cpu_has_kvm_support = has_svm,
5302        .disabled_by_bios = is_disabled,
5303        .hardware_setup = svm_hardware_setup,
5304        .hardware_unsetup = svm_hardware_unsetup,
5305        .check_processor_compatibility = svm_check_processor_compat,
5306        .hardware_enable = svm_hardware_enable,
5307        .hardware_disable = svm_hardware_disable,
5308        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5309        .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5310
5311        .vcpu_create = svm_create_vcpu,
5312        .vcpu_free = svm_free_vcpu,
5313        .vcpu_reset = svm_vcpu_reset,
5314
5315        .vm_init = avic_vm_init,
5316        .vm_destroy = avic_vm_destroy,
5317
5318        .prepare_guest_switch = svm_prepare_guest_switch,
5319        .vcpu_load = svm_vcpu_load,
5320        .vcpu_put = svm_vcpu_put,
5321        .vcpu_blocking = svm_vcpu_blocking,
5322        .vcpu_unblocking = svm_vcpu_unblocking,
5323
5324        .update_bp_intercept = update_bp_intercept,
5325        .get_msr = svm_get_msr,
5326        .set_msr = svm_set_msr,
5327        .get_segment_base = svm_get_segment_base,
5328        .get_segment = svm_get_segment,
5329        .set_segment = svm_set_segment,
5330        .get_cpl = svm_get_cpl,
5331        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5332        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5333        .decache_cr3 = svm_decache_cr3,
5334        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5335        .set_cr0 = svm_set_cr0,
5336        .set_cr3 = svm_set_cr3,
5337        .set_cr4 = svm_set_cr4,
5338        .set_efer = svm_set_efer,
5339        .get_idt = svm_get_idt,
5340        .set_idt = svm_set_idt,
5341        .get_gdt = svm_get_gdt,
5342        .set_gdt = svm_set_gdt,
5343        .get_dr6 = svm_get_dr6,
5344        .set_dr6 = svm_set_dr6,
5345        .set_dr7 = svm_set_dr7,
5346        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5347        .cache_reg = svm_cache_reg,
5348        .get_rflags = svm_get_rflags,
5349        .set_rflags = svm_set_rflags,
5350
5351        .get_pkru = svm_get_pkru,
5352
5353        .fpu_activate = svm_fpu_activate,
5354        .fpu_deactivate = svm_fpu_deactivate,
5355
5356        .tlb_flush = svm_flush_tlb,
5357
5358        .run = svm_vcpu_run,
5359        .handle_exit = handle_exit,
5360        .skip_emulated_instruction = skip_emulated_instruction,
5361        .set_interrupt_shadow = svm_set_interrupt_shadow,
5362        .get_interrupt_shadow = svm_get_interrupt_shadow,
5363        .patch_hypercall = svm_patch_hypercall,
5364        .set_irq = svm_set_irq,
5365        .set_nmi = svm_inject_nmi,
5366        .queue_exception = svm_queue_exception,
5367        .cancel_injection = svm_cancel_injection,
5368        .interrupt_allowed = svm_interrupt_allowed,
5369        .nmi_allowed = svm_nmi_allowed,
5370        .get_nmi_mask = svm_get_nmi_mask,
5371        .set_nmi_mask = svm_set_nmi_mask,
5372        .enable_nmi_window = enable_nmi_window,
5373        .enable_irq_window = enable_irq_window,
5374        .update_cr8_intercept = update_cr8_intercept,
5375        .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5376        .get_enable_apicv = svm_get_enable_apicv,
5377        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5378        .load_eoi_exitmap = svm_load_eoi_exitmap,
5379        .sync_pir_to_irr = svm_sync_pir_to_irr,
5380        .hwapic_irr_update = svm_hwapic_irr_update,
5381        .hwapic_isr_update = svm_hwapic_isr_update,
5382        .apicv_post_state_restore = avic_post_state_restore,
5383
5384        .set_tss_addr = svm_set_tss_addr,
5385        .get_tdp_level = get_npt_level,
5386        .get_mt_mask = svm_get_mt_mask,
5387
5388        .get_exit_info = svm_get_exit_info,
5389
5390        .get_lpage_level = svm_get_lpage_level,
5391
5392        .cpuid_update = svm_cpuid_update,
5393
5394        .rdtscp_supported = svm_rdtscp_supported,
5395        .invpcid_supported = svm_invpcid_supported,
5396        .mpx_supported = svm_mpx_supported,
5397        .xsaves_supported = svm_xsaves_supported,
5398
5399        .set_supported_cpuid = svm_set_supported_cpuid,
5400
5401        .has_wbinvd_exit = svm_has_wbinvd_exit,
5402
5403        .write_tsc_offset = svm_write_tsc_offset,
5404
5405        .set_tdp_cr3 = set_tdp_cr3,
5406
5407        .check_intercept = svm_check_intercept,
5408        .handle_external_intr = svm_handle_external_intr,
5409
5410        .sched_in = svm_sched_in,
5411
5412        .pmu_ops = &amd_pmu_ops,
5413        .deliver_posted_interrupt = svm_deliver_avic_intr,
5414        .update_pi_irte = svm_update_pi_irte,
5415};
5416
5417static int __init svm_init(void)
5418{
5419        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5420                        __alignof__(struct vcpu_svm), THIS_MODULE);
5421}
5422
5423static void __exit svm_exit(void)
5424{
5425        kvm_exit();
5426}
5427
5428module_init(svm_init)
5429module_exit(svm_exit)
5430