linux/arch/x86/mm/mpx.c
<<
>>
Prefs
   1/*
   2 * mpx.c - Memory Protection eXtensions
   3 *
   4 * Copyright (c) 2014, Intel Corporation.
   5 * Qiaowei Ren <qiaowei.ren@intel.com>
   6 * Dave Hansen <dave.hansen@intel.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/slab.h>
  10#include <linux/syscalls.h>
  11#include <linux/sched/sysctl.h>
  12
  13#include <asm/insn.h>
  14#include <asm/mman.h>
  15#include <asm/mmu_context.h>
  16#include <asm/mpx.h>
  17#include <asm/processor.h>
  18#include <asm/fpu/internal.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <asm/trace/mpx.h>
  22
  23static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  24{
  25        if (is_64bit_mm(mm))
  26                return MPX_BD_SIZE_BYTES_64;
  27        else
  28                return MPX_BD_SIZE_BYTES_32;
  29}
  30
  31static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  32{
  33        if (is_64bit_mm(mm))
  34                return MPX_BT_SIZE_BYTES_64;
  35        else
  36                return MPX_BT_SIZE_BYTES_32;
  37}
  38
  39/*
  40 * This is really a simplified "vm_mmap". it only handles MPX
  41 * bounds tables (the bounds directory is user-allocated).
  42 */
  43static unsigned long mpx_mmap(unsigned long len)
  44{
  45        struct mm_struct *mm = current->mm;
  46        unsigned long addr, populate;
  47
  48        /* Only bounds table can be allocated here */
  49        if (len != mpx_bt_size_bytes(mm))
  50                return -EINVAL;
  51
  52        down_write(&mm->mmap_sem);
  53        addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  54                        MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate);
  55        up_write(&mm->mmap_sem);
  56        if (populate)
  57                mm_populate(addr, populate);
  58
  59        return addr;
  60}
  61
  62enum reg_type {
  63        REG_TYPE_RM = 0,
  64        REG_TYPE_INDEX,
  65        REG_TYPE_BASE,
  66};
  67
  68static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
  69                          enum reg_type type)
  70{
  71        int regno = 0;
  72
  73        static const int regoff[] = {
  74                offsetof(struct pt_regs, ax),
  75                offsetof(struct pt_regs, cx),
  76                offsetof(struct pt_regs, dx),
  77                offsetof(struct pt_regs, bx),
  78                offsetof(struct pt_regs, sp),
  79                offsetof(struct pt_regs, bp),
  80                offsetof(struct pt_regs, si),
  81                offsetof(struct pt_regs, di),
  82#ifdef CONFIG_X86_64
  83                offsetof(struct pt_regs, r8),
  84                offsetof(struct pt_regs, r9),
  85                offsetof(struct pt_regs, r10),
  86                offsetof(struct pt_regs, r11),
  87                offsetof(struct pt_regs, r12),
  88                offsetof(struct pt_regs, r13),
  89                offsetof(struct pt_regs, r14),
  90                offsetof(struct pt_regs, r15),
  91#endif
  92        };
  93        int nr_registers = ARRAY_SIZE(regoff);
  94        /*
  95         * Don't possibly decode a 32-bit instructions as
  96         * reading a 64-bit-only register.
  97         */
  98        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
  99                nr_registers -= 8;
 100
 101        switch (type) {
 102        case REG_TYPE_RM:
 103                regno = X86_MODRM_RM(insn->modrm.value);
 104                if (X86_REX_B(insn->rex_prefix.value))
 105                        regno += 8;
 106                break;
 107
 108        case REG_TYPE_INDEX:
 109                regno = X86_SIB_INDEX(insn->sib.value);
 110                if (X86_REX_X(insn->rex_prefix.value))
 111                        regno += 8;
 112                break;
 113
 114        case REG_TYPE_BASE:
 115                regno = X86_SIB_BASE(insn->sib.value);
 116                if (X86_REX_B(insn->rex_prefix.value))
 117                        regno += 8;
 118                break;
 119
 120        default:
 121                pr_err("invalid register type");
 122                BUG();
 123                break;
 124        }
 125
 126        if (regno >= nr_registers) {
 127                WARN_ONCE(1, "decoded an instruction with an invalid register");
 128                return -EINVAL;
 129        }
 130        return regoff[regno];
 131}
 132
 133/*
 134 * return the address being referenced be instruction
 135 * for rm=3 returning the content of the rm reg
 136 * for rm!=3 calculates the address using SIB and Disp
 137 */
 138static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
 139{
 140        unsigned long addr, base, indx;
 141        int addr_offset, base_offset, indx_offset;
 142        insn_byte_t sib;
 143
 144        insn_get_modrm(insn);
 145        insn_get_sib(insn);
 146        sib = insn->sib.value;
 147
 148        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 149                addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 150                if (addr_offset < 0)
 151                        goto out_err;
 152                addr = regs_get_register(regs, addr_offset);
 153        } else {
 154                if (insn->sib.nbytes) {
 155                        base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
 156                        if (base_offset < 0)
 157                                goto out_err;
 158
 159                        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
 160                        if (indx_offset < 0)
 161                                goto out_err;
 162
 163                        base = regs_get_register(regs, base_offset);
 164                        indx = regs_get_register(regs, indx_offset);
 165                        addr = base + indx * (1 << X86_SIB_SCALE(sib));
 166                } else {
 167                        addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 168                        if (addr_offset < 0)
 169                                goto out_err;
 170                        addr = regs_get_register(regs, addr_offset);
 171                }
 172                addr += insn->displacement.value;
 173        }
 174        return (void __user *)addr;
 175out_err:
 176        return (void __user *)-1;
 177}
 178
 179static int mpx_insn_decode(struct insn *insn,
 180                           struct pt_regs *regs)
 181{
 182        unsigned char buf[MAX_INSN_SIZE];
 183        int x86_64 = !test_thread_flag(TIF_IA32);
 184        int not_copied;
 185        int nr_copied;
 186
 187        not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
 188        nr_copied = sizeof(buf) - not_copied;
 189        /*
 190         * The decoder _should_ fail nicely if we pass it a short buffer.
 191         * But, let's not depend on that implementation detail.  If we
 192         * did not get anything, just error out now.
 193         */
 194        if (!nr_copied)
 195                return -EFAULT;
 196        insn_init(insn, buf, nr_copied, x86_64);
 197        insn_get_length(insn);
 198        /*
 199         * copy_from_user() tries to get as many bytes as we could see in
 200         * the largest possible instruction.  If the instruction we are
 201         * after is shorter than that _and_ we attempt to copy from
 202         * something unreadable, we might get a short read.  This is OK
 203         * as long as the read did not stop in the middle of the
 204         * instruction.  Check to see if we got a partial instruction.
 205         */
 206        if (nr_copied < insn->length)
 207                return -EFAULT;
 208
 209        insn_get_opcode(insn);
 210        /*
 211         * We only _really_ need to decode bndcl/bndcn/bndcu
 212         * Error out on anything else.
 213         */
 214        if (insn->opcode.bytes[0] != 0x0f)
 215                goto bad_opcode;
 216        if ((insn->opcode.bytes[1] != 0x1a) &&
 217            (insn->opcode.bytes[1] != 0x1b))
 218                goto bad_opcode;
 219
 220        return 0;
 221bad_opcode:
 222        return -EINVAL;
 223}
 224
 225/*
 226 * If a bounds overflow occurs then a #BR is generated. This
 227 * function decodes MPX instructions to get violation address
 228 * and set this address into extended struct siginfo.
 229 *
 230 * Note that this is not a super precise way of doing this.
 231 * Userspace could have, by the time we get here, written
 232 * anything it wants in to the instructions.  We can not
 233 * trust anything about it.  They might not be valid
 234 * instructions or might encode invalid registers, etc...
 235 *
 236 * The caller is expected to kfree() the returned siginfo_t.
 237 */
 238siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
 239{
 240        const struct mpx_bndreg_state *bndregs;
 241        const struct mpx_bndreg *bndreg;
 242        siginfo_t *info = NULL;
 243        struct insn insn;
 244        uint8_t bndregno;
 245        int err;
 246
 247        err = mpx_insn_decode(&insn, regs);
 248        if (err)
 249                goto err_out;
 250
 251        /*
 252         * We know at this point that we are only dealing with
 253         * MPX instructions.
 254         */
 255        insn_get_modrm(&insn);
 256        bndregno = X86_MODRM_REG(insn.modrm.value);
 257        if (bndregno > 3) {
 258                err = -EINVAL;
 259                goto err_out;
 260        }
 261        /* get bndregs field from current task's xsave area */
 262        bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
 263        if (!bndregs) {
 264                err = -EINVAL;
 265                goto err_out;
 266        }
 267        /* now go select the individual register in the set of 4 */
 268        bndreg = &bndregs->bndreg[bndregno];
 269
 270        info = kzalloc(sizeof(*info), GFP_KERNEL);
 271        if (!info) {
 272                err = -ENOMEM;
 273                goto err_out;
 274        }
 275        /*
 276         * The registers are always 64-bit, but the upper 32
 277         * bits are ignored in 32-bit mode.  Also, note that the
 278         * upper bounds are architecturally represented in 1's
 279         * complement form.
 280         *
 281         * The 'unsigned long' cast is because the compiler
 282         * complains when casting from integers to different-size
 283         * pointers.
 284         */
 285        info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
 286        info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 287        info->si_addr_lsb = 0;
 288        info->si_signo = SIGSEGV;
 289        info->si_errno = 0;
 290        info->si_code = SEGV_BNDERR;
 291        info->si_addr = mpx_get_addr_ref(&insn, regs);
 292        /*
 293         * We were not able to extract an address from the instruction,
 294         * probably because there was something invalid in it.
 295         */
 296        if (info->si_addr == (void *)-1) {
 297                err = -EINVAL;
 298                goto err_out;
 299        }
 300        trace_mpx_bounds_register_exception(info->si_addr, bndreg);
 301        return info;
 302err_out:
 303        /* info might be NULL, but kfree() handles that */
 304        kfree(info);
 305        return ERR_PTR(err);
 306}
 307
 308static __user void *mpx_get_bounds_dir(void)
 309{
 310        const struct mpx_bndcsr *bndcsr;
 311
 312        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 313                return MPX_INVALID_BOUNDS_DIR;
 314
 315        /*
 316         * The bounds directory pointer is stored in a register
 317         * only accessible if we first do an xsave.
 318         */
 319        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 320        if (!bndcsr)
 321                return MPX_INVALID_BOUNDS_DIR;
 322
 323        /*
 324         * Make sure the register looks valid by checking the
 325         * enable bit.
 326         */
 327        if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 328                return MPX_INVALID_BOUNDS_DIR;
 329
 330        /*
 331         * Lastly, mask off the low bits used for configuration
 332         * flags, and return the address of the bounds table.
 333         */
 334        return (void __user *)(unsigned long)
 335                (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 336}
 337
 338int mpx_enable_management(void)
 339{
 340        void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 341        struct mm_struct *mm = current->mm;
 342        int ret = 0;
 343
 344        /*
 345         * runtime in the userspace will be responsible for allocation of
 346         * the bounds directory. Then, it will save the base of the bounds
 347         * directory into XSAVE/XRSTOR Save Area and enable MPX through
 348         * XRSTOR instruction.
 349         *
 350         * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 351         * expected to be relatively expensive. Storing the bounds
 352         * directory here means that we do not have to do xsave in the
 353         * unmap path; we can just use mm->bd_addr instead.
 354         */
 355        bd_base = mpx_get_bounds_dir();
 356        down_write(&mm->mmap_sem);
 357        mm->bd_addr = bd_base;
 358        if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
 359                ret = -ENXIO;
 360
 361        up_write(&mm->mmap_sem);
 362        return ret;
 363}
 364
 365int mpx_disable_management(void)
 366{
 367        struct mm_struct *mm = current->mm;
 368
 369        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 370                return -ENXIO;
 371
 372        down_write(&mm->mmap_sem);
 373        mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
 374        up_write(&mm->mmap_sem);
 375        return 0;
 376}
 377
 378static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 379                unsigned long *curval,
 380                unsigned long __user *addr,
 381                unsigned long old_val, unsigned long new_val)
 382{
 383        int ret;
 384        /*
 385         * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 386         * the pointer that we pass to it to figure out how much
 387         * data to cmpxchg.  We have to be careful here not to
 388         * pass a pointer to a 64-bit data type when we only want
 389         * a 32-bit copy.
 390         */
 391        if (is_64bit_mm(mm)) {
 392                ret = user_atomic_cmpxchg_inatomic(curval,
 393                                addr, old_val, new_val);
 394        } else {
 395                u32 uninitialized_var(curval_32);
 396                u32 old_val_32 = old_val;
 397                u32 new_val_32 = new_val;
 398                u32 __user *addr_32 = (u32 __user *)addr;
 399
 400                ret = user_atomic_cmpxchg_inatomic(&curval_32,
 401                                addr_32, old_val_32, new_val_32);
 402                *curval = curval_32;
 403        }
 404        return ret;
 405}
 406
 407/*
 408 * With 32-bit mode, a bounds directory is 4MB, and the size of each
 409 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 410 * and the size of each bounds table is 4MB.
 411 */
 412static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 413{
 414        unsigned long expected_old_val = 0;
 415        unsigned long actual_old_val = 0;
 416        unsigned long bt_addr;
 417        unsigned long bd_new_entry;
 418        int ret = 0;
 419
 420        /*
 421         * Carve the virtual space out of userspace for the new
 422         * bounds table:
 423         */
 424        bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 425        if (IS_ERR((void *)bt_addr))
 426                return PTR_ERR((void *)bt_addr);
 427        /*
 428         * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 429         */
 430        bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 431
 432        /*
 433         * Go poke the address of the new bounds table in to the
 434         * bounds directory entry out in userspace memory.  Note:
 435         * we may race with another CPU instantiating the same table.
 436         * In that case the cmpxchg will see an unexpected
 437         * 'actual_old_val'.
 438         *
 439         * This can fault, but that's OK because we do not hold
 440         * mmap_sem at this point, unlike some of the other part
 441         * of the MPX code that have to pagefault_disable().
 442         */
 443        ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
 444                                   expected_old_val, bd_new_entry);
 445        if (ret)
 446                goto out_unmap;
 447
 448        /*
 449         * The user_atomic_cmpxchg_inatomic() will only return nonzero
 450         * for faults, *not* if the cmpxchg itself fails.  Now we must
 451         * verify that the cmpxchg itself completed successfully.
 452         */
 453        /*
 454         * We expected an empty 'expected_old_val', but instead found
 455         * an apparently valid entry.  Assume we raced with another
 456         * thread to instantiate this table and desclare succecss.
 457         */
 458        if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 459                ret = 0;
 460                goto out_unmap;
 461        }
 462        /*
 463         * We found a non-empty bd_entry but it did not have the
 464         * VALID_FLAG set.  Return an error which will result in
 465         * a SEGV since this probably means that somebody scribbled
 466         * some invalid data in to a bounds table.
 467         */
 468        if (expected_old_val != actual_old_val) {
 469                ret = -EINVAL;
 470                goto out_unmap;
 471        }
 472        trace_mpx_new_bounds_table(bt_addr);
 473        return 0;
 474out_unmap:
 475        vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 476        return ret;
 477}
 478
 479/*
 480 * When a BNDSTX instruction attempts to save bounds to a bounds
 481 * table, it will first attempt to look up the table in the
 482 * first-level bounds directory.  If it does not find a table in
 483 * the directory, a #BR is generated and we get here in order to
 484 * allocate a new table.
 485 *
 486 * With 32-bit mode, the size of BD is 4MB, and the size of each
 487 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 488 * and the size of each bound table is 4MB.
 489 */
 490static int do_mpx_bt_fault(void)
 491{
 492        unsigned long bd_entry, bd_base;
 493        const struct mpx_bndcsr *bndcsr;
 494        struct mm_struct *mm = current->mm;
 495
 496        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 497        if (!bndcsr)
 498                return -EINVAL;
 499        /*
 500         * Mask off the preserve and enable bits
 501         */
 502        bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 503        /*
 504         * The hardware provides the address of the missing or invalid
 505         * entry via BNDSTATUS, so we don't have to go look it up.
 506         */
 507        bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 508        /*
 509         * Make sure the directory entry is within where we think
 510         * the directory is.
 511         */
 512        if ((bd_entry < bd_base) ||
 513            (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 514                return -EINVAL;
 515
 516        return allocate_bt(mm, (long __user *)bd_entry);
 517}
 518
 519int mpx_handle_bd_fault(void)
 520{
 521        /*
 522         * Userspace never asked us to manage the bounds tables,
 523         * so refuse to help.
 524         */
 525        if (!kernel_managing_mpx_tables(current->mm))
 526                return -EINVAL;
 527
 528        if (do_mpx_bt_fault()) {
 529                force_sig(SIGSEGV, current);
 530                /*
 531                 * The force_sig() is essentially "handling" this
 532                 * exception, so we do not pass up the error
 533                 * from do_mpx_bt_fault().
 534                 */
 535        }
 536        return 0;
 537}
 538
 539/*
 540 * A thin wrapper around get_user_pages().  Returns 0 if the
 541 * fault was resolved or -errno if not.
 542 */
 543static int mpx_resolve_fault(long __user *addr, int write)
 544{
 545        long gup_ret;
 546        int nr_pages = 1;
 547
 548        gup_ret = get_user_pages((unsigned long)addr, nr_pages,
 549                        write ? FOLL_WRITE : 0, NULL, NULL);
 550        /*
 551         * get_user_pages() returns number of pages gotten.
 552         * 0 means we failed to fault in and get anything,
 553         * probably because 'addr' is bad.
 554         */
 555        if (!gup_ret)
 556                return -EFAULT;
 557        /* Other error, return it */
 558        if (gup_ret < 0)
 559                return gup_ret;
 560        /* must have gup'd a page and gup_ret>0, success */
 561        return 0;
 562}
 563
 564static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 565                                             unsigned long bd_entry)
 566{
 567        unsigned long bt_addr = bd_entry;
 568        int align_to_bytes;
 569        /*
 570         * Bit 0 in a bt_entry is always the valid bit.
 571         */
 572        bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 573        /*
 574         * Tables are naturally aligned at 8-byte boundaries
 575         * on 64-bit and 4-byte boundaries on 32-bit.  The
 576         * documentation makes it appear that the low bits
 577         * are ignored by the hardware, so we do the same.
 578         */
 579        if (is_64bit_mm(mm))
 580                align_to_bytes = 8;
 581        else
 582                align_to_bytes = 4;
 583        bt_addr &= ~(align_to_bytes-1);
 584        return bt_addr;
 585}
 586
 587/*
 588 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 589 * we might run off the end of the bounds table if we are on
 590 * a 64-bit kernel and try to get 8 bytes.
 591 */
 592int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 593                long __user *bd_entry_ptr)
 594{
 595        u32 bd_entry_32;
 596        int ret;
 597
 598        if (is_64bit_mm(mm))
 599                return get_user(*bd_entry_ret, bd_entry_ptr);
 600
 601        /*
 602         * Note that get_user() uses the type of the *pointer* to
 603         * establish the size of the get, not the destination.
 604         */
 605        ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 606        *bd_entry_ret = bd_entry_32;
 607        return ret;
 608}
 609
 610/*
 611 * Get the base of bounds tables pointed by specific bounds
 612 * directory entry.
 613 */
 614static int get_bt_addr(struct mm_struct *mm,
 615                        long __user *bd_entry_ptr,
 616                        unsigned long *bt_addr_result)
 617{
 618        int ret;
 619        int valid_bit;
 620        unsigned long bd_entry;
 621        unsigned long bt_addr;
 622
 623        if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
 624                return -EFAULT;
 625
 626        while (1) {
 627                int need_write = 0;
 628
 629                pagefault_disable();
 630                ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 631                pagefault_enable();
 632                if (!ret)
 633                        break;
 634                if (ret == -EFAULT)
 635                        ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 636                /*
 637                 * If we could not resolve the fault, consider it
 638                 * userspace's fault and error out.
 639                 */
 640                if (ret)
 641                        return ret;
 642        }
 643
 644        valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 645        bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 646
 647        /*
 648         * When the kernel is managing bounds tables, a bounds directory
 649         * entry will either have a valid address (plus the valid bit)
 650         * *OR* be completely empty. If we see a !valid entry *and* some
 651         * data in the address field, we know something is wrong. This
 652         * -EINVAL return will cause a SIGSEGV.
 653         */
 654        if (!valid_bit && bt_addr)
 655                return -EINVAL;
 656        /*
 657         * Do we have an completely zeroed bt entry?  That is OK.  It
 658         * just means there was no bounds table for this memory.  Make
 659         * sure to distinguish this from -EINVAL, which will cause
 660         * a SEGV.
 661         */
 662        if (!valid_bit)
 663                return -ENOENT;
 664
 665        *bt_addr_result = bt_addr;
 666        return 0;
 667}
 668
 669static inline int bt_entry_size_bytes(struct mm_struct *mm)
 670{
 671        if (is_64bit_mm(mm))
 672                return MPX_BT_ENTRY_BYTES_64;
 673        else
 674                return MPX_BT_ENTRY_BYTES_32;
 675}
 676
 677/*
 678 * Take a virtual address and turns it in to the offset in bytes
 679 * inside of the bounds table where the bounds table entry
 680 * controlling 'addr' can be found.
 681 */
 682static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 683                unsigned long addr)
 684{
 685        unsigned long bt_table_nr_entries;
 686        unsigned long offset = addr;
 687
 688        if (is_64bit_mm(mm)) {
 689                /* Bottom 3 bits are ignored on 64-bit */
 690                offset >>= 3;
 691                bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 692        } else {
 693                /* Bottom 2 bits are ignored on 32-bit */
 694                offset >>= 2;
 695                bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 696        }
 697        /*
 698         * We know the size of the table in to which we are
 699         * indexing, and we have eliminated all the low bits
 700         * which are ignored for indexing.
 701         *
 702         * Mask out all the high bits which we do not need
 703         * to index in to the table.  Note that the tables
 704         * are always powers of two so this gives us a proper
 705         * mask.
 706         */
 707        offset &= (bt_table_nr_entries-1);
 708        /*
 709         * We now have an entry offset in terms of *entries* in
 710         * the table.  We need to scale it back up to bytes.
 711         */
 712        offset *= bt_entry_size_bytes(mm);
 713        return offset;
 714}
 715
 716/*
 717 * How much virtual address space does a single bounds
 718 * directory entry cover?
 719 *
 720 * Note, we need a long long because 4GB doesn't fit in
 721 * to a long on 32-bit.
 722 */
 723static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 724{
 725        unsigned long long virt_space;
 726        unsigned long long GB = (1ULL << 30);
 727
 728        /*
 729         * This covers 32-bit emulation as well as 32-bit kernels
 730         * running on 64-bit hardware.
 731         */
 732        if (!is_64bit_mm(mm))
 733                return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 734
 735        /*
 736         * 'x86_virt_bits' returns what the hardware is capable
 737         * of, and returns the full >32-bit address space when
 738         * running 32-bit kernels on 64-bit hardware.
 739         */
 740        virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 741        return virt_space / MPX_BD_NR_ENTRIES_64;
 742}
 743
 744/*
 745 * Free the backing physical pages of bounds table 'bt_addr'.
 746 * Assume start...end is within that bounds table.
 747 */
 748static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 749                unsigned long bt_addr,
 750                unsigned long start_mapping, unsigned long end_mapping)
 751{
 752        struct vm_area_struct *vma;
 753        unsigned long addr, len;
 754        unsigned long start;
 755        unsigned long end;
 756
 757        /*
 758         * if we 'end' on a boundary, the offset will be 0 which
 759         * is not what we want.  Back it up a byte to get the
 760         * last bt entry.  Then once we have the entry itself,
 761         * move 'end' back up by the table entry size.
 762         */
 763        start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 764        end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 765        /*
 766         * Move end back up by one entry.  Among other things
 767         * this ensures that it remains page-aligned and does
 768         * not screw up zap_page_range()
 769         */
 770        end += bt_entry_size_bytes(mm);
 771
 772        /*
 773         * Find the first overlapping vma. If vma->vm_start > start, there
 774         * will be a hole in the bounds table. This -EINVAL return will
 775         * cause a SIGSEGV.
 776         */
 777        vma = find_vma(mm, start);
 778        if (!vma || vma->vm_start > start)
 779                return -EINVAL;
 780
 781        /*
 782         * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 783         * be split. So we need to look across the entire 'start -> end'
 784         * range of this bounds table, find all of the VM_MPX VMAs, and
 785         * zap only those.
 786         */
 787        addr = start;
 788        while (vma && vma->vm_start < end) {
 789                /*
 790                 * We followed a bounds directory entry down
 791                 * here.  If we find a non-MPX VMA, that's bad,
 792                 * so stop immediately and return an error.  This
 793                 * probably results in a SIGSEGV.
 794                 */
 795                if (!(vma->vm_flags & VM_MPX))
 796                        return -EINVAL;
 797
 798                len = min(vma->vm_end, end) - addr;
 799                zap_page_range(vma, addr, len, NULL);
 800                trace_mpx_unmap_zap(addr, addr+len);
 801
 802                vma = vma->vm_next;
 803                addr = vma->vm_start;
 804        }
 805        return 0;
 806}
 807
 808static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 809                unsigned long addr)
 810{
 811        /*
 812         * There are several ways to derive the bd offsets.  We
 813         * use the following approach here:
 814         * 1. We know the size of the virtual address space
 815         * 2. We know the number of entries in a bounds table
 816         * 3. We know that each entry covers a fixed amount of
 817         *    virtual address space.
 818         * So, we can just divide the virtual address by the
 819         * virtual space used by one entry to determine which
 820         * entry "controls" the given virtual address.
 821         */
 822        if (is_64bit_mm(mm)) {
 823                int bd_entry_size = 8; /* 64-bit pointer */
 824                /*
 825                 * Take the 64-bit addressing hole in to account.
 826                 */
 827                addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 828                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 829        } else {
 830                int bd_entry_size = 4; /* 32-bit pointer */
 831                /*
 832                 * 32-bit has no hole so this case needs no mask
 833                 */
 834                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 835        }
 836        /*
 837         * The two return calls above are exact copies.  If we
 838         * pull out a single copy and put it in here, gcc won't
 839         * realize that we're doing a power-of-2 divide and use
 840         * shifts.  It uses a real divide.  If we put them up
 841         * there, it manages to figure it out (gcc 4.8.3).
 842         */
 843}
 844
 845static int unmap_entire_bt(struct mm_struct *mm,
 846                long __user *bd_entry, unsigned long bt_addr)
 847{
 848        unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 849        unsigned long uninitialized_var(actual_old_val);
 850        int ret;
 851
 852        while (1) {
 853                int need_write = 1;
 854                unsigned long cleared_bd_entry = 0;
 855
 856                pagefault_disable();
 857                ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 858                                bd_entry, expected_old_val, cleared_bd_entry);
 859                pagefault_enable();
 860                if (!ret)
 861                        break;
 862                if (ret == -EFAULT)
 863                        ret = mpx_resolve_fault(bd_entry, need_write);
 864                /*
 865                 * If we could not resolve the fault, consider it
 866                 * userspace's fault and error out.
 867                 */
 868                if (ret)
 869                        return ret;
 870        }
 871        /*
 872         * The cmpxchg was performed, check the results.
 873         */
 874        if (actual_old_val != expected_old_val) {
 875                /*
 876                 * Someone else raced with us to unmap the table.
 877                 * That is OK, since we were both trying to do
 878                 * the same thing.  Declare success.
 879                 */
 880                if (!actual_old_val)
 881                        return 0;
 882                /*
 883                 * Something messed with the bounds directory
 884                 * entry.  We hold mmap_sem for read or write
 885                 * here, so it could not be a _new_ bounds table
 886                 * that someone just allocated.  Something is
 887                 * wrong, so pass up the error and SIGSEGV.
 888                 */
 889                return -EINVAL;
 890        }
 891        /*
 892         * Note, we are likely being called under do_munmap() already. To
 893         * avoid recursion, do_munmap() will check whether it comes
 894         * from one bounds table through VM_MPX flag.
 895         */
 896        return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm));
 897}
 898
 899static int try_unmap_single_bt(struct mm_struct *mm,
 900               unsigned long start, unsigned long end)
 901{
 902        struct vm_area_struct *next;
 903        struct vm_area_struct *prev;
 904        /*
 905         * "bta" == Bounds Table Area: the area controlled by the
 906         * bounds table that we are unmapping.
 907         */
 908        unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 909        unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 910        unsigned long uninitialized_var(bt_addr);
 911        void __user *bde_vaddr;
 912        int ret;
 913        /*
 914         * We already unlinked the VMAs from the mm's rbtree so 'start'
 915         * is guaranteed to be in a hole. This gets us the first VMA
 916         * before the hole in to 'prev' and the next VMA after the hole
 917         * in to 'next'.
 918         */
 919        next = find_vma_prev(mm, start, &prev);
 920        /*
 921         * Do not count other MPX bounds table VMAs as neighbors.
 922         * Although theoretically possible, we do not allow bounds
 923         * tables for bounds tables so our heads do not explode.
 924         * If we count them as neighbors here, we may end up with
 925         * lots of tables even though we have no actual table
 926         * entries in use.
 927         */
 928        while (next && (next->vm_flags & VM_MPX))
 929                next = next->vm_next;
 930        while (prev && (prev->vm_flags & VM_MPX))
 931                prev = prev->vm_prev;
 932        /*
 933         * We know 'start' and 'end' lie within an area controlled
 934         * by a single bounds table.  See if there are any other
 935         * VMAs controlled by that bounds table.  If there are not
 936         * then we can "expand" the are we are unmapping to possibly
 937         * cover the entire table.
 938         */
 939        next = find_vma_prev(mm, start, &prev);
 940        if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 941            (!next || next->vm_start >= bta_end_vaddr)) {
 942                /*
 943                 * No neighbor VMAs controlled by same bounds
 944                 * table.  Try to unmap the whole thing
 945                 */
 946                start = bta_start_vaddr;
 947                end = bta_end_vaddr;
 948        }
 949
 950        bde_vaddr = mm->bd_addr + mpx_get_bd_entry_offset(mm, start);
 951        ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 952        /*
 953         * No bounds table there, so nothing to unmap.
 954         */
 955        if (ret == -ENOENT) {
 956                ret = 0;
 957                return 0;
 958        }
 959        if (ret)
 960                return ret;
 961        /*
 962         * We are unmapping an entire table.  Either because the
 963         * unmap that started this whole process was large enough
 964         * to cover an entire table, or that the unmap was small
 965         * but was the area covered by a bounds table.
 966         */
 967        if ((start == bta_start_vaddr) &&
 968            (end == bta_end_vaddr))
 969                return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 970        return zap_bt_entries_mapping(mm, bt_addr, start, end);
 971}
 972
 973static int mpx_unmap_tables(struct mm_struct *mm,
 974                unsigned long start, unsigned long end)
 975{
 976        unsigned long one_unmap_start;
 977        trace_mpx_unmap_search(start, end);
 978
 979        one_unmap_start = start;
 980        while (one_unmap_start < end) {
 981                int ret;
 982                unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 983                                                       bd_entry_virt_space(mm));
 984                unsigned long one_unmap_end = end;
 985                /*
 986                 * if the end is beyond the current bounds table,
 987                 * move it back so we only deal with a single one
 988                 * at a time
 989                 */
 990                if (one_unmap_end > next_unmap_start)
 991                        one_unmap_end = next_unmap_start;
 992                ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 993                if (ret)
 994                        return ret;
 995
 996                one_unmap_start = next_unmap_start;
 997        }
 998        return 0;
 999}
1000
1001/*
1002 * Free unused bounds tables covered in a virtual address region being
1003 * munmap()ed. Assume end > start.
1004 *
1005 * This function will be called by do_munmap(), and the VMAs covering
1006 * the virtual address region start...end have already been split if
1007 * necessary, and the 'vma' is the first vma in this range (start -> end).
1008 */
1009void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1010                unsigned long start, unsigned long end)
1011{
1012        int ret;
1013
1014        /*
1015         * Refuse to do anything unless userspace has asked
1016         * the kernel to help manage the bounds tables,
1017         */
1018        if (!kernel_managing_mpx_tables(current->mm))
1019                return;
1020        /*
1021         * This will look across the entire 'start -> end' range,
1022         * and find all of the non-VM_MPX VMAs.
1023         *
1024         * To avoid recursion, if a VM_MPX vma is found in the range
1025         * (start->end), we will not continue follow-up work. This
1026         * recursion represents having bounds tables for bounds tables,
1027         * which should not occur normally. Being strict about it here
1028         * helps ensure that we do not have an exploitable stack overflow.
1029         */
1030        do {
1031                if (vma->vm_flags & VM_MPX)
1032                        return;
1033                vma = vma->vm_next;
1034        } while (vma && vma->vm_start < end);
1035
1036        ret = mpx_unmap_tables(mm, start, end);
1037        if (ret)
1038                force_sig(SIGSEGV, current);
1039}
1040