linux/block/blk-mq.c
<<
>>
Prefs
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
  23#include <linux/delay.h>
  24#include <linux/crash_dump.h>
  25#include <linux/prefetch.h>
  26
  27#include <trace/events/block.h>
  28
  29#include <linux/blk-mq.h>
  30#include "blk.h"
  31#include "blk-mq.h"
  32#include "blk-mq-tag.h"
  33
  34static DEFINE_MUTEX(all_q_mutex);
  35static LIST_HEAD(all_q_list);
  36
  37/*
  38 * Check if any of the ctx's have pending work in this hardware queue
  39 */
  40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  41{
  42        return sbitmap_any_bit_set(&hctx->ctx_map);
  43}
  44
  45/*
  46 * Mark this ctx as having pending work in this hardware queue
  47 */
  48static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  49                                     struct blk_mq_ctx *ctx)
  50{
  51        if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
  52                sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
  53}
  54
  55static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  56                                      struct blk_mq_ctx *ctx)
  57{
  58        sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
  59}
  60
  61void blk_mq_freeze_queue_start(struct request_queue *q)
  62{
  63        int freeze_depth;
  64
  65        freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
  66        if (freeze_depth == 1) {
  67                percpu_ref_kill(&q->q_usage_counter);
  68                blk_mq_run_hw_queues(q, false);
  69        }
  70}
  71EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
  72
  73static void blk_mq_freeze_queue_wait(struct request_queue *q)
  74{
  75        wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
  76}
  77
  78/*
  79 * Guarantee no request is in use, so we can change any data structure of
  80 * the queue afterward.
  81 */
  82void blk_freeze_queue(struct request_queue *q)
  83{
  84        /*
  85         * In the !blk_mq case we are only calling this to kill the
  86         * q_usage_counter, otherwise this increases the freeze depth
  87         * and waits for it to return to zero.  For this reason there is
  88         * no blk_unfreeze_queue(), and blk_freeze_queue() is not
  89         * exported to drivers as the only user for unfreeze is blk_mq.
  90         */
  91        blk_mq_freeze_queue_start(q);
  92        blk_mq_freeze_queue_wait(q);
  93}
  94
  95void blk_mq_freeze_queue(struct request_queue *q)
  96{
  97        /*
  98         * ...just an alias to keep freeze and unfreeze actions balanced
  99         * in the blk_mq_* namespace
 100         */
 101        blk_freeze_queue(q);
 102}
 103EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 104
 105void blk_mq_unfreeze_queue(struct request_queue *q)
 106{
 107        int freeze_depth;
 108
 109        freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 110        WARN_ON_ONCE(freeze_depth < 0);
 111        if (!freeze_depth) {
 112                percpu_ref_reinit(&q->q_usage_counter);
 113                wake_up_all(&q->mq_freeze_wq);
 114        }
 115}
 116EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 117
 118void blk_mq_wake_waiters(struct request_queue *q)
 119{
 120        struct blk_mq_hw_ctx *hctx;
 121        unsigned int i;
 122
 123        queue_for_each_hw_ctx(q, hctx, i)
 124                if (blk_mq_hw_queue_mapped(hctx))
 125                        blk_mq_tag_wakeup_all(hctx->tags, true);
 126
 127        /*
 128         * If we are called because the queue has now been marked as
 129         * dying, we need to ensure that processes currently waiting on
 130         * the queue are notified as well.
 131         */
 132        wake_up_all(&q->mq_freeze_wq);
 133}
 134
 135bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 136{
 137        return blk_mq_has_free_tags(hctx->tags);
 138}
 139EXPORT_SYMBOL(blk_mq_can_queue);
 140
 141static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 142                               struct request *rq, int op,
 143                               unsigned int op_flags)
 144{
 145        if (blk_queue_io_stat(q))
 146                op_flags |= REQ_IO_STAT;
 147
 148        INIT_LIST_HEAD(&rq->queuelist);
 149        /* csd/requeue_work/fifo_time is initialized before use */
 150        rq->q = q;
 151        rq->mq_ctx = ctx;
 152        req_set_op_attrs(rq, op, op_flags);
 153        /* do not touch atomic flags, it needs atomic ops against the timer */
 154        rq->cpu = -1;
 155        INIT_HLIST_NODE(&rq->hash);
 156        RB_CLEAR_NODE(&rq->rb_node);
 157        rq->rq_disk = NULL;
 158        rq->part = NULL;
 159        rq->start_time = jiffies;
 160#ifdef CONFIG_BLK_CGROUP
 161        rq->rl = NULL;
 162        set_start_time_ns(rq);
 163        rq->io_start_time_ns = 0;
 164#endif
 165        rq->nr_phys_segments = 0;
 166#if defined(CONFIG_BLK_DEV_INTEGRITY)
 167        rq->nr_integrity_segments = 0;
 168#endif
 169        rq->special = NULL;
 170        /* tag was already set */
 171        rq->errors = 0;
 172
 173        rq->cmd = rq->__cmd;
 174
 175        rq->extra_len = 0;
 176        rq->sense_len = 0;
 177        rq->resid_len = 0;
 178        rq->sense = NULL;
 179
 180        INIT_LIST_HEAD(&rq->timeout_list);
 181        rq->timeout = 0;
 182
 183        rq->end_io = NULL;
 184        rq->end_io_data = NULL;
 185        rq->next_rq = NULL;
 186
 187        ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
 188}
 189
 190static struct request *
 191__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
 192{
 193        struct request *rq;
 194        unsigned int tag;
 195
 196        tag = blk_mq_get_tag(data);
 197        if (tag != BLK_MQ_TAG_FAIL) {
 198                rq = data->hctx->tags->rqs[tag];
 199
 200                if (blk_mq_tag_busy(data->hctx)) {
 201                        rq->cmd_flags = REQ_MQ_INFLIGHT;
 202                        atomic_inc(&data->hctx->nr_active);
 203                }
 204
 205                rq->tag = tag;
 206                blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
 207                return rq;
 208        }
 209
 210        return NULL;
 211}
 212
 213struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
 214                unsigned int flags)
 215{
 216        struct blk_mq_ctx *ctx;
 217        struct blk_mq_hw_ctx *hctx;
 218        struct request *rq;
 219        struct blk_mq_alloc_data alloc_data;
 220        int ret;
 221
 222        ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
 223        if (ret)
 224                return ERR_PTR(ret);
 225
 226        ctx = blk_mq_get_ctx(q);
 227        hctx = blk_mq_map_queue(q, ctx->cpu);
 228        blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 229        rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
 230        blk_mq_put_ctx(ctx);
 231
 232        if (!rq) {
 233                blk_queue_exit(q);
 234                return ERR_PTR(-EWOULDBLOCK);
 235        }
 236
 237        rq->__data_len = 0;
 238        rq->__sector = (sector_t) -1;
 239        rq->bio = rq->biotail = NULL;
 240        return rq;
 241}
 242EXPORT_SYMBOL(blk_mq_alloc_request);
 243
 244struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
 245                unsigned int flags, unsigned int hctx_idx)
 246{
 247        struct blk_mq_hw_ctx *hctx;
 248        struct blk_mq_ctx *ctx;
 249        struct request *rq;
 250        struct blk_mq_alloc_data alloc_data;
 251        int ret;
 252
 253        /*
 254         * If the tag allocator sleeps we could get an allocation for a
 255         * different hardware context.  No need to complicate the low level
 256         * allocator for this for the rare use case of a command tied to
 257         * a specific queue.
 258         */
 259        if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 260                return ERR_PTR(-EINVAL);
 261
 262        if (hctx_idx >= q->nr_hw_queues)
 263                return ERR_PTR(-EIO);
 264
 265        ret = blk_queue_enter(q, true);
 266        if (ret)
 267                return ERR_PTR(ret);
 268
 269        /*
 270         * Check if the hardware context is actually mapped to anything.
 271         * If not tell the caller that it should skip this queue.
 272         */
 273        hctx = q->queue_hw_ctx[hctx_idx];
 274        if (!blk_mq_hw_queue_mapped(hctx)) {
 275                ret = -EXDEV;
 276                goto out_queue_exit;
 277        }
 278        ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
 279
 280        blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 281        rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
 282        if (!rq) {
 283                ret = -EWOULDBLOCK;
 284                goto out_queue_exit;
 285        }
 286
 287        return rq;
 288
 289out_queue_exit:
 290        blk_queue_exit(q);
 291        return ERR_PTR(ret);
 292}
 293EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 294
 295static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 296                                  struct blk_mq_ctx *ctx, struct request *rq)
 297{
 298        const int tag = rq->tag;
 299        struct request_queue *q = rq->q;
 300
 301        if (rq->cmd_flags & REQ_MQ_INFLIGHT)
 302                atomic_dec(&hctx->nr_active);
 303        rq->cmd_flags = 0;
 304
 305        clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 306        blk_mq_put_tag(hctx, ctx, tag);
 307        blk_queue_exit(q);
 308}
 309
 310void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
 311{
 312        struct blk_mq_ctx *ctx = rq->mq_ctx;
 313
 314        ctx->rq_completed[rq_is_sync(rq)]++;
 315        __blk_mq_free_request(hctx, ctx, rq);
 316
 317}
 318EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
 319
 320void blk_mq_free_request(struct request *rq)
 321{
 322        blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
 323}
 324EXPORT_SYMBOL_GPL(blk_mq_free_request);
 325
 326inline void __blk_mq_end_request(struct request *rq, int error)
 327{
 328        blk_account_io_done(rq);
 329
 330        if (rq->end_io) {
 331                rq->end_io(rq, error);
 332        } else {
 333                if (unlikely(blk_bidi_rq(rq)))
 334                        blk_mq_free_request(rq->next_rq);
 335                blk_mq_free_request(rq);
 336        }
 337}
 338EXPORT_SYMBOL(__blk_mq_end_request);
 339
 340void blk_mq_end_request(struct request *rq, int error)
 341{
 342        if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 343                BUG();
 344        __blk_mq_end_request(rq, error);
 345}
 346EXPORT_SYMBOL(blk_mq_end_request);
 347
 348static void __blk_mq_complete_request_remote(void *data)
 349{
 350        struct request *rq = data;
 351
 352        rq->q->softirq_done_fn(rq);
 353}
 354
 355static void blk_mq_ipi_complete_request(struct request *rq)
 356{
 357        struct blk_mq_ctx *ctx = rq->mq_ctx;
 358        bool shared = false;
 359        int cpu;
 360
 361        if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 362                rq->q->softirq_done_fn(rq);
 363                return;
 364        }
 365
 366        cpu = get_cpu();
 367        if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 368                shared = cpus_share_cache(cpu, ctx->cpu);
 369
 370        if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 371                rq->csd.func = __blk_mq_complete_request_remote;
 372                rq->csd.info = rq;
 373                rq->csd.flags = 0;
 374                smp_call_function_single_async(ctx->cpu, &rq->csd);
 375        } else {
 376                rq->q->softirq_done_fn(rq);
 377        }
 378        put_cpu();
 379}
 380
 381static void __blk_mq_complete_request(struct request *rq)
 382{
 383        struct request_queue *q = rq->q;
 384
 385        if (!q->softirq_done_fn)
 386                blk_mq_end_request(rq, rq->errors);
 387        else
 388                blk_mq_ipi_complete_request(rq);
 389}
 390
 391/**
 392 * blk_mq_complete_request - end I/O on a request
 393 * @rq:         the request being processed
 394 *
 395 * Description:
 396 *      Ends all I/O on a request. It does not handle partial completions.
 397 *      The actual completion happens out-of-order, through a IPI handler.
 398 **/
 399void blk_mq_complete_request(struct request *rq, int error)
 400{
 401        struct request_queue *q = rq->q;
 402
 403        if (unlikely(blk_should_fake_timeout(q)))
 404                return;
 405        if (!blk_mark_rq_complete(rq)) {
 406                rq->errors = error;
 407                __blk_mq_complete_request(rq);
 408        }
 409}
 410EXPORT_SYMBOL(blk_mq_complete_request);
 411
 412int blk_mq_request_started(struct request *rq)
 413{
 414        return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 415}
 416EXPORT_SYMBOL_GPL(blk_mq_request_started);
 417
 418void blk_mq_start_request(struct request *rq)
 419{
 420        struct request_queue *q = rq->q;
 421
 422        trace_block_rq_issue(q, rq);
 423
 424        rq->resid_len = blk_rq_bytes(rq);
 425        if (unlikely(blk_bidi_rq(rq)))
 426                rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
 427
 428        blk_add_timer(rq);
 429
 430        /*
 431         * Ensure that ->deadline is visible before set the started
 432         * flag and clear the completed flag.
 433         */
 434        smp_mb__before_atomic();
 435
 436        /*
 437         * Mark us as started and clear complete. Complete might have been
 438         * set if requeue raced with timeout, which then marked it as
 439         * complete. So be sure to clear complete again when we start
 440         * the request, otherwise we'll ignore the completion event.
 441         */
 442        if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 443                set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 444        if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
 445                clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 446
 447        if (q->dma_drain_size && blk_rq_bytes(rq)) {
 448                /*
 449                 * Make sure space for the drain appears.  We know we can do
 450                 * this because max_hw_segments has been adjusted to be one
 451                 * fewer than the device can handle.
 452                 */
 453                rq->nr_phys_segments++;
 454        }
 455}
 456EXPORT_SYMBOL(blk_mq_start_request);
 457
 458static void __blk_mq_requeue_request(struct request *rq)
 459{
 460        struct request_queue *q = rq->q;
 461
 462        trace_block_rq_requeue(q, rq);
 463
 464        if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 465                if (q->dma_drain_size && blk_rq_bytes(rq))
 466                        rq->nr_phys_segments--;
 467        }
 468}
 469
 470void blk_mq_requeue_request(struct request *rq)
 471{
 472        __blk_mq_requeue_request(rq);
 473
 474        BUG_ON(blk_queued_rq(rq));
 475        blk_mq_add_to_requeue_list(rq, true);
 476}
 477EXPORT_SYMBOL(blk_mq_requeue_request);
 478
 479static void blk_mq_requeue_work(struct work_struct *work)
 480{
 481        struct request_queue *q =
 482                container_of(work, struct request_queue, requeue_work.work);
 483        LIST_HEAD(rq_list);
 484        struct request *rq, *next;
 485        unsigned long flags;
 486
 487        spin_lock_irqsave(&q->requeue_lock, flags);
 488        list_splice_init(&q->requeue_list, &rq_list);
 489        spin_unlock_irqrestore(&q->requeue_lock, flags);
 490
 491        list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 492                if (!(rq->cmd_flags & REQ_SOFTBARRIER))
 493                        continue;
 494
 495                rq->cmd_flags &= ~REQ_SOFTBARRIER;
 496                list_del_init(&rq->queuelist);
 497                blk_mq_insert_request(rq, true, false, false);
 498        }
 499
 500        while (!list_empty(&rq_list)) {
 501                rq = list_entry(rq_list.next, struct request, queuelist);
 502                list_del_init(&rq->queuelist);
 503                blk_mq_insert_request(rq, false, false, false);
 504        }
 505
 506        /*
 507         * Use the start variant of queue running here, so that running
 508         * the requeue work will kick stopped queues.
 509         */
 510        blk_mq_start_hw_queues(q);
 511}
 512
 513void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
 514{
 515        struct request_queue *q = rq->q;
 516        unsigned long flags;
 517
 518        /*
 519         * We abuse this flag that is otherwise used by the I/O scheduler to
 520         * request head insertation from the workqueue.
 521         */
 522        BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
 523
 524        spin_lock_irqsave(&q->requeue_lock, flags);
 525        if (at_head) {
 526                rq->cmd_flags |= REQ_SOFTBARRIER;
 527                list_add(&rq->queuelist, &q->requeue_list);
 528        } else {
 529                list_add_tail(&rq->queuelist, &q->requeue_list);
 530        }
 531        spin_unlock_irqrestore(&q->requeue_lock, flags);
 532}
 533EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 534
 535void blk_mq_cancel_requeue_work(struct request_queue *q)
 536{
 537        cancel_delayed_work_sync(&q->requeue_work);
 538}
 539EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
 540
 541void blk_mq_kick_requeue_list(struct request_queue *q)
 542{
 543        kblockd_schedule_delayed_work(&q->requeue_work, 0);
 544}
 545EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 546
 547void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 548                                    unsigned long msecs)
 549{
 550        kblockd_schedule_delayed_work(&q->requeue_work,
 551                                      msecs_to_jiffies(msecs));
 552}
 553EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 554
 555void blk_mq_abort_requeue_list(struct request_queue *q)
 556{
 557        unsigned long flags;
 558        LIST_HEAD(rq_list);
 559
 560        spin_lock_irqsave(&q->requeue_lock, flags);
 561        list_splice_init(&q->requeue_list, &rq_list);
 562        spin_unlock_irqrestore(&q->requeue_lock, flags);
 563
 564        while (!list_empty(&rq_list)) {
 565                struct request *rq;
 566
 567                rq = list_first_entry(&rq_list, struct request, queuelist);
 568                list_del_init(&rq->queuelist);
 569                rq->errors = -EIO;
 570                blk_mq_end_request(rq, rq->errors);
 571        }
 572}
 573EXPORT_SYMBOL(blk_mq_abort_requeue_list);
 574
 575struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 576{
 577        if (tag < tags->nr_tags) {
 578                prefetch(tags->rqs[tag]);
 579                return tags->rqs[tag];
 580        }
 581
 582        return NULL;
 583}
 584EXPORT_SYMBOL(blk_mq_tag_to_rq);
 585
 586struct blk_mq_timeout_data {
 587        unsigned long next;
 588        unsigned int next_set;
 589};
 590
 591void blk_mq_rq_timed_out(struct request *req, bool reserved)
 592{
 593        struct blk_mq_ops *ops = req->q->mq_ops;
 594        enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 595
 596        /*
 597         * We know that complete is set at this point. If STARTED isn't set
 598         * anymore, then the request isn't active and the "timeout" should
 599         * just be ignored. This can happen due to the bitflag ordering.
 600         * Timeout first checks if STARTED is set, and if it is, assumes
 601         * the request is active. But if we race with completion, then
 602         * we both flags will get cleared. So check here again, and ignore
 603         * a timeout event with a request that isn't active.
 604         */
 605        if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
 606                return;
 607
 608        if (ops->timeout)
 609                ret = ops->timeout(req, reserved);
 610
 611        switch (ret) {
 612        case BLK_EH_HANDLED:
 613                __blk_mq_complete_request(req);
 614                break;
 615        case BLK_EH_RESET_TIMER:
 616                blk_add_timer(req);
 617                blk_clear_rq_complete(req);
 618                break;
 619        case BLK_EH_NOT_HANDLED:
 620                break;
 621        default:
 622                printk(KERN_ERR "block: bad eh return: %d\n", ret);
 623                break;
 624        }
 625}
 626
 627static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 628                struct request *rq, void *priv, bool reserved)
 629{
 630        struct blk_mq_timeout_data *data = priv;
 631
 632        if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 633                /*
 634                 * If a request wasn't started before the queue was
 635                 * marked dying, kill it here or it'll go unnoticed.
 636                 */
 637                if (unlikely(blk_queue_dying(rq->q))) {
 638                        rq->errors = -EIO;
 639                        blk_mq_end_request(rq, rq->errors);
 640                }
 641                return;
 642        }
 643
 644        if (time_after_eq(jiffies, rq->deadline)) {
 645                if (!blk_mark_rq_complete(rq))
 646                        blk_mq_rq_timed_out(rq, reserved);
 647        } else if (!data->next_set || time_after(data->next, rq->deadline)) {
 648                data->next = rq->deadline;
 649                data->next_set = 1;
 650        }
 651}
 652
 653static void blk_mq_timeout_work(struct work_struct *work)
 654{
 655        struct request_queue *q =
 656                container_of(work, struct request_queue, timeout_work);
 657        struct blk_mq_timeout_data data = {
 658                .next           = 0,
 659                .next_set       = 0,
 660        };
 661        int i;
 662
 663        /* A deadlock might occur if a request is stuck requiring a
 664         * timeout at the same time a queue freeze is waiting
 665         * completion, since the timeout code would not be able to
 666         * acquire the queue reference here.
 667         *
 668         * That's why we don't use blk_queue_enter here; instead, we use
 669         * percpu_ref_tryget directly, because we need to be able to
 670         * obtain a reference even in the short window between the queue
 671         * starting to freeze, by dropping the first reference in
 672         * blk_mq_freeze_queue_start, and the moment the last request is
 673         * consumed, marked by the instant q_usage_counter reaches
 674         * zero.
 675         */
 676        if (!percpu_ref_tryget(&q->q_usage_counter))
 677                return;
 678
 679        blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 680
 681        if (data.next_set) {
 682                data.next = blk_rq_timeout(round_jiffies_up(data.next));
 683                mod_timer(&q->timeout, data.next);
 684        } else {
 685                struct blk_mq_hw_ctx *hctx;
 686
 687                queue_for_each_hw_ctx(q, hctx, i) {
 688                        /* the hctx may be unmapped, so check it here */
 689                        if (blk_mq_hw_queue_mapped(hctx))
 690                                blk_mq_tag_idle(hctx);
 691                }
 692        }
 693        blk_queue_exit(q);
 694}
 695
 696/*
 697 * Reverse check our software queue for entries that we could potentially
 698 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 699 * too much time checking for merges.
 700 */
 701static bool blk_mq_attempt_merge(struct request_queue *q,
 702                                 struct blk_mq_ctx *ctx, struct bio *bio)
 703{
 704        struct request *rq;
 705        int checked = 8;
 706
 707        list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 708                int el_ret;
 709
 710                if (!checked--)
 711                        break;
 712
 713                if (!blk_rq_merge_ok(rq, bio))
 714                        continue;
 715
 716                el_ret = blk_try_merge(rq, bio);
 717                if (el_ret == ELEVATOR_BACK_MERGE) {
 718                        if (bio_attempt_back_merge(q, rq, bio)) {
 719                                ctx->rq_merged++;
 720                                return true;
 721                        }
 722                        break;
 723                } else if (el_ret == ELEVATOR_FRONT_MERGE) {
 724                        if (bio_attempt_front_merge(q, rq, bio)) {
 725                                ctx->rq_merged++;
 726                                return true;
 727                        }
 728                        break;
 729                }
 730        }
 731
 732        return false;
 733}
 734
 735struct flush_busy_ctx_data {
 736        struct blk_mq_hw_ctx *hctx;
 737        struct list_head *list;
 738};
 739
 740static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 741{
 742        struct flush_busy_ctx_data *flush_data = data;
 743        struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 744        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 745
 746        sbitmap_clear_bit(sb, bitnr);
 747        spin_lock(&ctx->lock);
 748        list_splice_tail_init(&ctx->rq_list, flush_data->list);
 749        spin_unlock(&ctx->lock);
 750        return true;
 751}
 752
 753/*
 754 * Process software queues that have been marked busy, splicing them
 755 * to the for-dispatch
 756 */
 757static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 758{
 759        struct flush_busy_ctx_data data = {
 760                .hctx = hctx,
 761                .list = list,
 762        };
 763
 764        sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
 765}
 766
 767static inline unsigned int queued_to_index(unsigned int queued)
 768{
 769        if (!queued)
 770                return 0;
 771
 772        return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
 773}
 774
 775/*
 776 * Run this hardware queue, pulling any software queues mapped to it in.
 777 * Note that this function currently has various problems around ordering
 778 * of IO. In particular, we'd like FIFO behaviour on handling existing
 779 * items on the hctx->dispatch list. Ignore that for now.
 780 */
 781static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 782{
 783        struct request_queue *q = hctx->queue;
 784        struct request *rq;
 785        LIST_HEAD(rq_list);
 786        LIST_HEAD(driver_list);
 787        struct list_head *dptr;
 788        int queued;
 789
 790        if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 791                return;
 792
 793        WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
 794                cpu_online(hctx->next_cpu));
 795
 796        hctx->run++;
 797
 798        /*
 799         * Touch any software queue that has pending entries.
 800         */
 801        flush_busy_ctxs(hctx, &rq_list);
 802
 803        /*
 804         * If we have previous entries on our dispatch list, grab them
 805         * and stuff them at the front for more fair dispatch.
 806         */
 807        if (!list_empty_careful(&hctx->dispatch)) {
 808                spin_lock(&hctx->lock);
 809                if (!list_empty(&hctx->dispatch))
 810                        list_splice_init(&hctx->dispatch, &rq_list);
 811                spin_unlock(&hctx->lock);
 812        }
 813
 814        /*
 815         * Start off with dptr being NULL, so we start the first request
 816         * immediately, even if we have more pending.
 817         */
 818        dptr = NULL;
 819
 820        /*
 821         * Now process all the entries, sending them to the driver.
 822         */
 823        queued = 0;
 824        while (!list_empty(&rq_list)) {
 825                struct blk_mq_queue_data bd;
 826                int ret;
 827
 828                rq = list_first_entry(&rq_list, struct request, queuelist);
 829                list_del_init(&rq->queuelist);
 830
 831                bd.rq = rq;
 832                bd.list = dptr;
 833                bd.last = list_empty(&rq_list);
 834
 835                ret = q->mq_ops->queue_rq(hctx, &bd);
 836                switch (ret) {
 837                case BLK_MQ_RQ_QUEUE_OK:
 838                        queued++;
 839                        break;
 840                case BLK_MQ_RQ_QUEUE_BUSY:
 841                        list_add(&rq->queuelist, &rq_list);
 842                        __blk_mq_requeue_request(rq);
 843                        break;
 844                default:
 845                        pr_err("blk-mq: bad return on queue: %d\n", ret);
 846                case BLK_MQ_RQ_QUEUE_ERROR:
 847                        rq->errors = -EIO;
 848                        blk_mq_end_request(rq, rq->errors);
 849                        break;
 850                }
 851
 852                if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 853                        break;
 854
 855                /*
 856                 * We've done the first request. If we have more than 1
 857                 * left in the list, set dptr to defer issue.
 858                 */
 859                if (!dptr && rq_list.next != rq_list.prev)
 860                        dptr = &driver_list;
 861        }
 862
 863        hctx->dispatched[queued_to_index(queued)]++;
 864
 865        /*
 866         * Any items that need requeuing? Stuff them into hctx->dispatch,
 867         * that is where we will continue on next queue run.
 868         */
 869        if (!list_empty(&rq_list)) {
 870                spin_lock(&hctx->lock);
 871                list_splice(&rq_list, &hctx->dispatch);
 872                spin_unlock(&hctx->lock);
 873                /*
 874                 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
 875                 * it's possible the queue is stopped and restarted again
 876                 * before this. Queue restart will dispatch requests. And since
 877                 * requests in rq_list aren't added into hctx->dispatch yet,
 878                 * the requests in rq_list might get lost.
 879                 *
 880                 * blk_mq_run_hw_queue() already checks the STOPPED bit
 881                 **/
 882                blk_mq_run_hw_queue(hctx, true);
 883        }
 884}
 885
 886/*
 887 * It'd be great if the workqueue API had a way to pass
 888 * in a mask and had some smarts for more clever placement.
 889 * For now we just round-robin here, switching for every
 890 * BLK_MQ_CPU_WORK_BATCH queued items.
 891 */
 892static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
 893{
 894        if (hctx->queue->nr_hw_queues == 1)
 895                return WORK_CPU_UNBOUND;
 896
 897        if (--hctx->next_cpu_batch <= 0) {
 898                int cpu = hctx->next_cpu, next_cpu;
 899
 900                next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
 901                if (next_cpu >= nr_cpu_ids)
 902                        next_cpu = cpumask_first(hctx->cpumask);
 903
 904                hctx->next_cpu = next_cpu;
 905                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
 906
 907                return cpu;
 908        }
 909
 910        return hctx->next_cpu;
 911}
 912
 913void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 914{
 915        if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
 916            !blk_mq_hw_queue_mapped(hctx)))
 917                return;
 918
 919        if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
 920                int cpu = get_cpu();
 921                if (cpumask_test_cpu(cpu, hctx->cpumask)) {
 922                        __blk_mq_run_hw_queue(hctx);
 923                        put_cpu();
 924                        return;
 925                }
 926
 927                put_cpu();
 928        }
 929
 930        kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
 931}
 932
 933void blk_mq_run_hw_queues(struct request_queue *q, bool async)
 934{
 935        struct blk_mq_hw_ctx *hctx;
 936        int i;
 937
 938        queue_for_each_hw_ctx(q, hctx, i) {
 939                if ((!blk_mq_hctx_has_pending(hctx) &&
 940                    list_empty_careful(&hctx->dispatch)) ||
 941                    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 942                        continue;
 943
 944                blk_mq_run_hw_queue(hctx, async);
 945        }
 946}
 947EXPORT_SYMBOL(blk_mq_run_hw_queues);
 948
 949void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 950{
 951        cancel_work(&hctx->run_work);
 952        cancel_delayed_work(&hctx->delay_work);
 953        set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 954}
 955EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 956
 957void blk_mq_stop_hw_queues(struct request_queue *q)
 958{
 959        struct blk_mq_hw_ctx *hctx;
 960        int i;
 961
 962        queue_for_each_hw_ctx(q, hctx, i)
 963                blk_mq_stop_hw_queue(hctx);
 964}
 965EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 966
 967void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 968{
 969        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 970
 971        blk_mq_run_hw_queue(hctx, false);
 972}
 973EXPORT_SYMBOL(blk_mq_start_hw_queue);
 974
 975void blk_mq_start_hw_queues(struct request_queue *q)
 976{
 977        struct blk_mq_hw_ctx *hctx;
 978        int i;
 979
 980        queue_for_each_hw_ctx(q, hctx, i)
 981                blk_mq_start_hw_queue(hctx);
 982}
 983EXPORT_SYMBOL(blk_mq_start_hw_queues);
 984
 985void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
 986{
 987        struct blk_mq_hw_ctx *hctx;
 988        int i;
 989
 990        queue_for_each_hw_ctx(q, hctx, i) {
 991                if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 992                        continue;
 993
 994                clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 995                blk_mq_run_hw_queue(hctx, async);
 996        }
 997}
 998EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 999
1000static void blk_mq_run_work_fn(struct work_struct *work)
1001{
1002        struct blk_mq_hw_ctx *hctx;
1003
1004        hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1005
1006        __blk_mq_run_hw_queue(hctx);
1007}
1008
1009static void blk_mq_delay_work_fn(struct work_struct *work)
1010{
1011        struct blk_mq_hw_ctx *hctx;
1012
1013        hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1014
1015        if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1016                __blk_mq_run_hw_queue(hctx);
1017}
1018
1019void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1020{
1021        if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1022                return;
1023
1024        kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1025                        &hctx->delay_work, msecs_to_jiffies(msecs));
1026}
1027EXPORT_SYMBOL(blk_mq_delay_queue);
1028
1029static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1030                                            struct request *rq,
1031                                            bool at_head)
1032{
1033        struct blk_mq_ctx *ctx = rq->mq_ctx;
1034
1035        trace_block_rq_insert(hctx->queue, rq);
1036
1037        if (at_head)
1038                list_add(&rq->queuelist, &ctx->rq_list);
1039        else
1040                list_add_tail(&rq->queuelist, &ctx->rq_list);
1041}
1042
1043static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1044                                    struct request *rq, bool at_head)
1045{
1046        struct blk_mq_ctx *ctx = rq->mq_ctx;
1047
1048        __blk_mq_insert_req_list(hctx, rq, at_head);
1049        blk_mq_hctx_mark_pending(hctx, ctx);
1050}
1051
1052void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1053                           bool async)
1054{
1055        struct blk_mq_ctx *ctx = rq->mq_ctx;
1056        struct request_queue *q = rq->q;
1057        struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1058
1059        spin_lock(&ctx->lock);
1060        __blk_mq_insert_request(hctx, rq, at_head);
1061        spin_unlock(&ctx->lock);
1062
1063        if (run_queue)
1064                blk_mq_run_hw_queue(hctx, async);
1065}
1066
1067static void blk_mq_insert_requests(struct request_queue *q,
1068                                     struct blk_mq_ctx *ctx,
1069                                     struct list_head *list,
1070                                     int depth,
1071                                     bool from_schedule)
1072
1073{
1074        struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1075
1076        trace_block_unplug(q, depth, !from_schedule);
1077
1078        /*
1079         * preemption doesn't flush plug list, so it's possible ctx->cpu is
1080         * offline now
1081         */
1082        spin_lock(&ctx->lock);
1083        while (!list_empty(list)) {
1084                struct request *rq;
1085
1086                rq = list_first_entry(list, struct request, queuelist);
1087                BUG_ON(rq->mq_ctx != ctx);
1088                list_del_init(&rq->queuelist);
1089                __blk_mq_insert_req_list(hctx, rq, false);
1090        }
1091        blk_mq_hctx_mark_pending(hctx, ctx);
1092        spin_unlock(&ctx->lock);
1093
1094        blk_mq_run_hw_queue(hctx, from_schedule);
1095}
1096
1097static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1098{
1099        struct request *rqa = container_of(a, struct request, queuelist);
1100        struct request *rqb = container_of(b, struct request, queuelist);
1101
1102        return !(rqa->mq_ctx < rqb->mq_ctx ||
1103                 (rqa->mq_ctx == rqb->mq_ctx &&
1104                  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1105}
1106
1107void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1108{
1109        struct blk_mq_ctx *this_ctx;
1110        struct request_queue *this_q;
1111        struct request *rq;
1112        LIST_HEAD(list);
1113        LIST_HEAD(ctx_list);
1114        unsigned int depth;
1115
1116        list_splice_init(&plug->mq_list, &list);
1117
1118        list_sort(NULL, &list, plug_ctx_cmp);
1119
1120        this_q = NULL;
1121        this_ctx = NULL;
1122        depth = 0;
1123
1124        while (!list_empty(&list)) {
1125                rq = list_entry_rq(list.next);
1126                list_del_init(&rq->queuelist);
1127                BUG_ON(!rq->q);
1128                if (rq->mq_ctx != this_ctx) {
1129                        if (this_ctx) {
1130                                blk_mq_insert_requests(this_q, this_ctx,
1131                                                        &ctx_list, depth,
1132                                                        from_schedule);
1133                        }
1134
1135                        this_ctx = rq->mq_ctx;
1136                        this_q = rq->q;
1137                        depth = 0;
1138                }
1139
1140                depth++;
1141                list_add_tail(&rq->queuelist, &ctx_list);
1142        }
1143
1144        /*
1145         * If 'this_ctx' is set, we know we have entries to complete
1146         * on 'ctx_list'. Do those.
1147         */
1148        if (this_ctx) {
1149                blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1150                                       from_schedule);
1151        }
1152}
1153
1154static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1155{
1156        init_request_from_bio(rq, bio);
1157
1158        blk_account_io_start(rq, 1);
1159}
1160
1161static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1162{
1163        return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1164                !blk_queue_nomerges(hctx->queue);
1165}
1166
1167static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1168                                         struct blk_mq_ctx *ctx,
1169                                         struct request *rq, struct bio *bio)
1170{
1171        if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1172                blk_mq_bio_to_request(rq, bio);
1173                spin_lock(&ctx->lock);
1174insert_rq:
1175                __blk_mq_insert_request(hctx, rq, false);
1176                spin_unlock(&ctx->lock);
1177                return false;
1178        } else {
1179                struct request_queue *q = hctx->queue;
1180
1181                spin_lock(&ctx->lock);
1182                if (!blk_mq_attempt_merge(q, ctx, bio)) {
1183                        blk_mq_bio_to_request(rq, bio);
1184                        goto insert_rq;
1185                }
1186
1187                spin_unlock(&ctx->lock);
1188                __blk_mq_free_request(hctx, ctx, rq);
1189                return true;
1190        }
1191}
1192
1193struct blk_map_ctx {
1194        struct blk_mq_hw_ctx *hctx;
1195        struct blk_mq_ctx *ctx;
1196};
1197
1198static struct request *blk_mq_map_request(struct request_queue *q,
1199                                          struct bio *bio,
1200                                          struct blk_map_ctx *data)
1201{
1202        struct blk_mq_hw_ctx *hctx;
1203        struct blk_mq_ctx *ctx;
1204        struct request *rq;
1205        int op = bio_data_dir(bio);
1206        int op_flags = 0;
1207        struct blk_mq_alloc_data alloc_data;
1208
1209        blk_queue_enter_live(q);
1210        ctx = blk_mq_get_ctx(q);
1211        hctx = blk_mq_map_queue(q, ctx->cpu);
1212
1213        if (rw_is_sync(bio_op(bio), bio->bi_opf))
1214                op_flags |= REQ_SYNC;
1215
1216        trace_block_getrq(q, bio, op);
1217        blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1218        rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1219
1220        data->hctx = alloc_data.hctx;
1221        data->ctx = alloc_data.ctx;
1222        data->hctx->queued++;
1223        return rq;
1224}
1225
1226static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1227{
1228        int ret;
1229        struct request_queue *q = rq->q;
1230        struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1231        struct blk_mq_queue_data bd = {
1232                .rq = rq,
1233                .list = NULL,
1234                .last = 1
1235        };
1236        blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1237
1238        /*
1239         * For OK queue, we are done. For error, kill it. Any other
1240         * error (busy), just add it to our list as we previously
1241         * would have done
1242         */
1243        ret = q->mq_ops->queue_rq(hctx, &bd);
1244        if (ret == BLK_MQ_RQ_QUEUE_OK) {
1245                *cookie = new_cookie;
1246                return 0;
1247        }
1248
1249        __blk_mq_requeue_request(rq);
1250
1251        if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1252                *cookie = BLK_QC_T_NONE;
1253                rq->errors = -EIO;
1254                blk_mq_end_request(rq, rq->errors);
1255                return 0;
1256        }
1257
1258        return -1;
1259}
1260
1261/*
1262 * Multiple hardware queue variant. This will not use per-process plugs,
1263 * but will attempt to bypass the hctx queueing if we can go straight to
1264 * hardware for SYNC IO.
1265 */
1266static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1267{
1268        const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1269        const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1270        struct blk_map_ctx data;
1271        struct request *rq;
1272        unsigned int request_count = 0;
1273        struct blk_plug *plug;
1274        struct request *same_queue_rq = NULL;
1275        blk_qc_t cookie;
1276
1277        blk_queue_bounce(q, &bio);
1278
1279        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1280                bio_io_error(bio);
1281                return BLK_QC_T_NONE;
1282        }
1283
1284        blk_queue_split(q, &bio, q->bio_split);
1285
1286        if (!is_flush_fua && !blk_queue_nomerges(q) &&
1287            blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1288                return BLK_QC_T_NONE;
1289
1290        rq = blk_mq_map_request(q, bio, &data);
1291        if (unlikely(!rq))
1292                return BLK_QC_T_NONE;
1293
1294        cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1295
1296        if (unlikely(is_flush_fua)) {
1297                blk_mq_bio_to_request(rq, bio);
1298                blk_insert_flush(rq);
1299                goto run_queue;
1300        }
1301
1302        plug = current->plug;
1303        /*
1304         * If the driver supports defer issued based on 'last', then
1305         * queue it up like normal since we can potentially save some
1306         * CPU this way.
1307         */
1308        if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1309            !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1310                struct request *old_rq = NULL;
1311
1312                blk_mq_bio_to_request(rq, bio);
1313
1314                /*
1315                 * We do limited pluging. If the bio can be merged, do that.
1316                 * Otherwise the existing request in the plug list will be
1317                 * issued. So the plug list will have one request at most
1318                 */
1319                if (plug) {
1320                        /*
1321                         * The plug list might get flushed before this. If that
1322                         * happens, same_queue_rq is invalid and plug list is
1323                         * empty
1324                         */
1325                        if (same_queue_rq && !list_empty(&plug->mq_list)) {
1326                                old_rq = same_queue_rq;
1327                                list_del_init(&old_rq->queuelist);
1328                        }
1329                        list_add_tail(&rq->queuelist, &plug->mq_list);
1330                } else /* is_sync */
1331                        old_rq = rq;
1332                blk_mq_put_ctx(data.ctx);
1333                if (!old_rq)
1334                        goto done;
1335                if (!blk_mq_direct_issue_request(old_rq, &cookie))
1336                        goto done;
1337                blk_mq_insert_request(old_rq, false, true, true);
1338                goto done;
1339        }
1340
1341        if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1342                /*
1343                 * For a SYNC request, send it to the hardware immediately. For
1344                 * an ASYNC request, just ensure that we run it later on. The
1345                 * latter allows for merging opportunities and more efficient
1346                 * dispatching.
1347                 */
1348run_queue:
1349                blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1350        }
1351        blk_mq_put_ctx(data.ctx);
1352done:
1353        return cookie;
1354}
1355
1356/*
1357 * Single hardware queue variant. This will attempt to use any per-process
1358 * plug for merging and IO deferral.
1359 */
1360static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1361{
1362        const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1363        const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1364        struct blk_plug *plug;
1365        unsigned int request_count = 0;
1366        struct blk_map_ctx data;
1367        struct request *rq;
1368        blk_qc_t cookie;
1369
1370        blk_queue_bounce(q, &bio);
1371
1372        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1373                bio_io_error(bio);
1374                return BLK_QC_T_NONE;
1375        }
1376
1377        blk_queue_split(q, &bio, q->bio_split);
1378
1379        if (!is_flush_fua && !blk_queue_nomerges(q)) {
1380                if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381                        return BLK_QC_T_NONE;
1382        } else
1383                request_count = blk_plug_queued_count(q);
1384
1385        rq = blk_mq_map_request(q, bio, &data);
1386        if (unlikely(!rq))
1387                return BLK_QC_T_NONE;
1388
1389        cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1390
1391        if (unlikely(is_flush_fua)) {
1392                blk_mq_bio_to_request(rq, bio);
1393                blk_insert_flush(rq);
1394                goto run_queue;
1395        }
1396
1397        /*
1398         * A task plug currently exists. Since this is completely lockless,
1399         * utilize that to temporarily store requests until the task is
1400         * either done or scheduled away.
1401         */
1402        plug = current->plug;
1403        if (plug) {
1404                blk_mq_bio_to_request(rq, bio);
1405                if (!request_count)
1406                        trace_block_plug(q);
1407
1408                blk_mq_put_ctx(data.ctx);
1409
1410                if (request_count >= BLK_MAX_REQUEST_COUNT) {
1411                        blk_flush_plug_list(plug, false);
1412                        trace_block_plug(q);
1413                }
1414
1415                list_add_tail(&rq->queuelist, &plug->mq_list);
1416                return cookie;
1417        }
1418
1419        if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1420                /*
1421                 * For a SYNC request, send it to the hardware immediately. For
1422                 * an ASYNC request, just ensure that we run it later on. The
1423                 * latter allows for merging opportunities and more efficient
1424                 * dispatching.
1425                 */
1426run_queue:
1427                blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1428        }
1429
1430        blk_mq_put_ctx(data.ctx);
1431        return cookie;
1432}
1433
1434static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1435                struct blk_mq_tags *tags, unsigned int hctx_idx)
1436{
1437        struct page *page;
1438
1439        if (tags->rqs && set->ops->exit_request) {
1440                int i;
1441
1442                for (i = 0; i < tags->nr_tags; i++) {
1443                        if (!tags->rqs[i])
1444                                continue;
1445                        set->ops->exit_request(set->driver_data, tags->rqs[i],
1446                                                hctx_idx, i);
1447                        tags->rqs[i] = NULL;
1448                }
1449        }
1450
1451        while (!list_empty(&tags->page_list)) {
1452                page = list_first_entry(&tags->page_list, struct page, lru);
1453                list_del_init(&page->lru);
1454                /*
1455                 * Remove kmemleak object previously allocated in
1456                 * blk_mq_init_rq_map().
1457                 */
1458                kmemleak_free(page_address(page));
1459                __free_pages(page, page->private);
1460        }
1461
1462        kfree(tags->rqs);
1463
1464        blk_mq_free_tags(tags);
1465}
1466
1467static size_t order_to_size(unsigned int order)
1468{
1469        return (size_t)PAGE_SIZE << order;
1470}
1471
1472static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1473                unsigned int hctx_idx)
1474{
1475        struct blk_mq_tags *tags;
1476        unsigned int i, j, entries_per_page, max_order = 4;
1477        size_t rq_size, left;
1478
1479        tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1480                                set->numa_node,
1481                                BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1482        if (!tags)
1483                return NULL;
1484
1485        INIT_LIST_HEAD(&tags->page_list);
1486
1487        tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1488                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1489                                 set->numa_node);
1490        if (!tags->rqs) {
1491                blk_mq_free_tags(tags);
1492                return NULL;
1493        }
1494
1495        /*
1496         * rq_size is the size of the request plus driver payload, rounded
1497         * to the cacheline size
1498         */
1499        rq_size = round_up(sizeof(struct request) + set->cmd_size,
1500                                cache_line_size());
1501        left = rq_size * set->queue_depth;
1502
1503        for (i = 0; i < set->queue_depth; ) {
1504                int this_order = max_order;
1505                struct page *page;
1506                int to_do;
1507                void *p;
1508
1509                while (this_order && left < order_to_size(this_order - 1))
1510                        this_order--;
1511
1512                do {
1513                        page = alloc_pages_node(set->numa_node,
1514                                GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1515                                this_order);
1516                        if (page)
1517                                break;
1518                        if (!this_order--)
1519                                break;
1520                        if (order_to_size(this_order) < rq_size)
1521                                break;
1522                } while (1);
1523
1524                if (!page)
1525                        goto fail;
1526
1527                page->private = this_order;
1528                list_add_tail(&page->lru, &tags->page_list);
1529
1530                p = page_address(page);
1531                /*
1532                 * Allow kmemleak to scan these pages as they contain pointers
1533                 * to additional allocations like via ops->init_request().
1534                 */
1535                kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1536                entries_per_page = order_to_size(this_order) / rq_size;
1537                to_do = min(entries_per_page, set->queue_depth - i);
1538                left -= to_do * rq_size;
1539                for (j = 0; j < to_do; j++) {
1540                        tags->rqs[i] = p;
1541                        if (set->ops->init_request) {
1542                                if (set->ops->init_request(set->driver_data,
1543                                                tags->rqs[i], hctx_idx, i,
1544                                                set->numa_node)) {
1545                                        tags->rqs[i] = NULL;
1546                                        goto fail;
1547                                }
1548                        }
1549
1550                        p += rq_size;
1551                        i++;
1552                }
1553        }
1554        return tags;
1555
1556fail:
1557        blk_mq_free_rq_map(set, tags, hctx_idx);
1558        return NULL;
1559}
1560
1561/*
1562 * 'cpu' is going away. splice any existing rq_list entries from this
1563 * software queue to the hw queue dispatch list, and ensure that it
1564 * gets run.
1565 */
1566static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1567{
1568        struct blk_mq_hw_ctx *hctx;
1569        struct blk_mq_ctx *ctx;
1570        LIST_HEAD(tmp);
1571
1572        hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1573        ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1574
1575        spin_lock(&ctx->lock);
1576        if (!list_empty(&ctx->rq_list)) {
1577                list_splice_init(&ctx->rq_list, &tmp);
1578                blk_mq_hctx_clear_pending(hctx, ctx);
1579        }
1580        spin_unlock(&ctx->lock);
1581
1582        if (list_empty(&tmp))
1583                return 0;
1584
1585        spin_lock(&hctx->lock);
1586        list_splice_tail_init(&tmp, &hctx->dispatch);
1587        spin_unlock(&hctx->lock);
1588
1589        blk_mq_run_hw_queue(hctx, true);
1590        return 0;
1591}
1592
1593static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1594{
1595        cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1596                                            &hctx->cpuhp_dead);
1597}
1598
1599/* hctx->ctxs will be freed in queue's release handler */
1600static void blk_mq_exit_hctx(struct request_queue *q,
1601                struct blk_mq_tag_set *set,
1602                struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1603{
1604        unsigned flush_start_tag = set->queue_depth;
1605
1606        blk_mq_tag_idle(hctx);
1607
1608        if (set->ops->exit_request)
1609                set->ops->exit_request(set->driver_data,
1610                                       hctx->fq->flush_rq, hctx_idx,
1611                                       flush_start_tag + hctx_idx);
1612
1613        if (set->ops->exit_hctx)
1614                set->ops->exit_hctx(hctx, hctx_idx);
1615
1616        blk_mq_remove_cpuhp(hctx);
1617        blk_free_flush_queue(hctx->fq);
1618        sbitmap_free(&hctx->ctx_map);
1619}
1620
1621static void blk_mq_exit_hw_queues(struct request_queue *q,
1622                struct blk_mq_tag_set *set, int nr_queue)
1623{
1624        struct blk_mq_hw_ctx *hctx;
1625        unsigned int i;
1626
1627        queue_for_each_hw_ctx(q, hctx, i) {
1628                if (i == nr_queue)
1629                        break;
1630                blk_mq_exit_hctx(q, set, hctx, i);
1631        }
1632}
1633
1634static void blk_mq_free_hw_queues(struct request_queue *q,
1635                struct blk_mq_tag_set *set)
1636{
1637        struct blk_mq_hw_ctx *hctx;
1638        unsigned int i;
1639
1640        queue_for_each_hw_ctx(q, hctx, i)
1641                free_cpumask_var(hctx->cpumask);
1642}
1643
1644static int blk_mq_init_hctx(struct request_queue *q,
1645                struct blk_mq_tag_set *set,
1646                struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1647{
1648        int node;
1649        unsigned flush_start_tag = set->queue_depth;
1650
1651        node = hctx->numa_node;
1652        if (node == NUMA_NO_NODE)
1653                node = hctx->numa_node = set->numa_node;
1654
1655        INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1656        INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1657        spin_lock_init(&hctx->lock);
1658        INIT_LIST_HEAD(&hctx->dispatch);
1659        hctx->queue = q;
1660        hctx->queue_num = hctx_idx;
1661        hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1662
1663        cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1664
1665        hctx->tags = set->tags[hctx_idx];
1666
1667        /*
1668         * Allocate space for all possible cpus to avoid allocation at
1669         * runtime
1670         */
1671        hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1672                                        GFP_KERNEL, node);
1673        if (!hctx->ctxs)
1674                goto unregister_cpu_notifier;
1675
1676        if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1677                              node))
1678                goto free_ctxs;
1679
1680        hctx->nr_ctx = 0;
1681
1682        if (set->ops->init_hctx &&
1683            set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1684                goto free_bitmap;
1685
1686        hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1687        if (!hctx->fq)
1688                goto exit_hctx;
1689
1690        if (set->ops->init_request &&
1691            set->ops->init_request(set->driver_data,
1692                                   hctx->fq->flush_rq, hctx_idx,
1693                                   flush_start_tag + hctx_idx, node))
1694                goto free_fq;
1695
1696        return 0;
1697
1698 free_fq:
1699        kfree(hctx->fq);
1700 exit_hctx:
1701        if (set->ops->exit_hctx)
1702                set->ops->exit_hctx(hctx, hctx_idx);
1703 free_bitmap:
1704        sbitmap_free(&hctx->ctx_map);
1705 free_ctxs:
1706        kfree(hctx->ctxs);
1707 unregister_cpu_notifier:
1708        blk_mq_remove_cpuhp(hctx);
1709        return -1;
1710}
1711
1712static void blk_mq_init_cpu_queues(struct request_queue *q,
1713                                   unsigned int nr_hw_queues)
1714{
1715        unsigned int i;
1716
1717        for_each_possible_cpu(i) {
1718                struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1719                struct blk_mq_hw_ctx *hctx;
1720
1721                memset(__ctx, 0, sizeof(*__ctx));
1722                __ctx->cpu = i;
1723                spin_lock_init(&__ctx->lock);
1724                INIT_LIST_HEAD(&__ctx->rq_list);
1725                __ctx->queue = q;
1726
1727                /* If the cpu isn't online, the cpu is mapped to first hctx */
1728                if (!cpu_online(i))
1729                        continue;
1730
1731                hctx = blk_mq_map_queue(q, i);
1732
1733                /*
1734                 * Set local node, IFF we have more than one hw queue. If
1735                 * not, we remain on the home node of the device
1736                 */
1737                if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1738                        hctx->numa_node = local_memory_node(cpu_to_node(i));
1739        }
1740}
1741
1742static void blk_mq_map_swqueue(struct request_queue *q,
1743                               const struct cpumask *online_mask)
1744{
1745        unsigned int i;
1746        struct blk_mq_hw_ctx *hctx;
1747        struct blk_mq_ctx *ctx;
1748        struct blk_mq_tag_set *set = q->tag_set;
1749
1750        /*
1751         * Avoid others reading imcomplete hctx->cpumask through sysfs
1752         */
1753        mutex_lock(&q->sysfs_lock);
1754
1755        queue_for_each_hw_ctx(q, hctx, i) {
1756                cpumask_clear(hctx->cpumask);
1757                hctx->nr_ctx = 0;
1758        }
1759
1760        /*
1761         * Map software to hardware queues
1762         */
1763        for_each_possible_cpu(i) {
1764                /* If the cpu isn't online, the cpu is mapped to first hctx */
1765                if (!cpumask_test_cpu(i, online_mask))
1766                        continue;
1767
1768                ctx = per_cpu_ptr(q->queue_ctx, i);
1769                hctx = blk_mq_map_queue(q, i);
1770
1771                cpumask_set_cpu(i, hctx->cpumask);
1772                ctx->index_hw = hctx->nr_ctx;
1773                hctx->ctxs[hctx->nr_ctx++] = ctx;
1774        }
1775
1776        mutex_unlock(&q->sysfs_lock);
1777
1778        queue_for_each_hw_ctx(q, hctx, i) {
1779                /*
1780                 * If no software queues are mapped to this hardware queue,
1781                 * disable it and free the request entries.
1782                 */
1783                if (!hctx->nr_ctx) {
1784                        if (set->tags[i]) {
1785                                blk_mq_free_rq_map(set, set->tags[i], i);
1786                                set->tags[i] = NULL;
1787                        }
1788                        hctx->tags = NULL;
1789                        continue;
1790                }
1791
1792                /* unmapped hw queue can be remapped after CPU topo changed */
1793                if (!set->tags[i])
1794                        set->tags[i] = blk_mq_init_rq_map(set, i);
1795                hctx->tags = set->tags[i];
1796                WARN_ON(!hctx->tags);
1797
1798                /*
1799                 * Set the map size to the number of mapped software queues.
1800                 * This is more accurate and more efficient than looping
1801                 * over all possibly mapped software queues.
1802                 */
1803                sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1804
1805                /*
1806                 * Initialize batch roundrobin counts
1807                 */
1808                hctx->next_cpu = cpumask_first(hctx->cpumask);
1809                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1810        }
1811}
1812
1813static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1814{
1815        struct blk_mq_hw_ctx *hctx;
1816        int i;
1817
1818        queue_for_each_hw_ctx(q, hctx, i) {
1819                if (shared)
1820                        hctx->flags |= BLK_MQ_F_TAG_SHARED;
1821                else
1822                        hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1823        }
1824}
1825
1826static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1827{
1828        struct request_queue *q;
1829
1830        list_for_each_entry(q, &set->tag_list, tag_set_list) {
1831                blk_mq_freeze_queue(q);
1832                queue_set_hctx_shared(q, shared);
1833                blk_mq_unfreeze_queue(q);
1834        }
1835}
1836
1837static void blk_mq_del_queue_tag_set(struct request_queue *q)
1838{
1839        struct blk_mq_tag_set *set = q->tag_set;
1840
1841        mutex_lock(&set->tag_list_lock);
1842        list_del_init(&q->tag_set_list);
1843        if (list_is_singular(&set->tag_list)) {
1844                /* just transitioned to unshared */
1845                set->flags &= ~BLK_MQ_F_TAG_SHARED;
1846                /* update existing queue */
1847                blk_mq_update_tag_set_depth(set, false);
1848        }
1849        mutex_unlock(&set->tag_list_lock);
1850}
1851
1852static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1853                                     struct request_queue *q)
1854{
1855        q->tag_set = set;
1856
1857        mutex_lock(&set->tag_list_lock);
1858
1859        /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1860        if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1861                set->flags |= BLK_MQ_F_TAG_SHARED;
1862                /* update existing queue */
1863                blk_mq_update_tag_set_depth(set, true);
1864        }
1865        if (set->flags & BLK_MQ_F_TAG_SHARED)
1866                queue_set_hctx_shared(q, true);
1867        list_add_tail(&q->tag_set_list, &set->tag_list);
1868
1869        mutex_unlock(&set->tag_list_lock);
1870}
1871
1872/*
1873 * It is the actual release handler for mq, but we do it from
1874 * request queue's release handler for avoiding use-after-free
1875 * and headache because q->mq_kobj shouldn't have been introduced,
1876 * but we can't group ctx/kctx kobj without it.
1877 */
1878void blk_mq_release(struct request_queue *q)
1879{
1880        struct blk_mq_hw_ctx *hctx;
1881        unsigned int i;
1882
1883        /* hctx kobj stays in hctx */
1884        queue_for_each_hw_ctx(q, hctx, i) {
1885                if (!hctx)
1886                        continue;
1887                kfree(hctx->ctxs);
1888                kfree(hctx);
1889        }
1890
1891        q->mq_map = NULL;
1892
1893        kfree(q->queue_hw_ctx);
1894
1895        /* ctx kobj stays in queue_ctx */
1896        free_percpu(q->queue_ctx);
1897}
1898
1899struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1900{
1901        struct request_queue *uninit_q, *q;
1902
1903        uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1904        if (!uninit_q)
1905                return ERR_PTR(-ENOMEM);
1906
1907        q = blk_mq_init_allocated_queue(set, uninit_q);
1908        if (IS_ERR(q))
1909                blk_cleanup_queue(uninit_q);
1910
1911        return q;
1912}
1913EXPORT_SYMBOL(blk_mq_init_queue);
1914
1915static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1916                                                struct request_queue *q)
1917{
1918        int i, j;
1919        struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1920
1921        blk_mq_sysfs_unregister(q);
1922        for (i = 0; i < set->nr_hw_queues; i++) {
1923                int node;
1924
1925                if (hctxs[i])
1926                        continue;
1927
1928                node = blk_mq_hw_queue_to_node(q->mq_map, i);
1929                hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1930                                        GFP_KERNEL, node);
1931                if (!hctxs[i])
1932                        break;
1933
1934                if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1935                                                node)) {
1936                        kfree(hctxs[i]);
1937                        hctxs[i] = NULL;
1938                        break;
1939                }
1940
1941                atomic_set(&hctxs[i]->nr_active, 0);
1942                hctxs[i]->numa_node = node;
1943                hctxs[i]->queue_num = i;
1944
1945                if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1946                        free_cpumask_var(hctxs[i]->cpumask);
1947                        kfree(hctxs[i]);
1948                        hctxs[i] = NULL;
1949                        break;
1950                }
1951                blk_mq_hctx_kobj_init(hctxs[i]);
1952        }
1953        for (j = i; j < q->nr_hw_queues; j++) {
1954                struct blk_mq_hw_ctx *hctx = hctxs[j];
1955
1956                if (hctx) {
1957                        if (hctx->tags) {
1958                                blk_mq_free_rq_map(set, hctx->tags, j);
1959                                set->tags[j] = NULL;
1960                        }
1961                        blk_mq_exit_hctx(q, set, hctx, j);
1962                        free_cpumask_var(hctx->cpumask);
1963                        kobject_put(&hctx->kobj);
1964                        kfree(hctx->ctxs);
1965                        kfree(hctx);
1966                        hctxs[j] = NULL;
1967
1968                }
1969        }
1970        q->nr_hw_queues = i;
1971        blk_mq_sysfs_register(q);
1972}
1973
1974struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1975                                                  struct request_queue *q)
1976{
1977        /* mark the queue as mq asap */
1978        q->mq_ops = set->ops;
1979
1980        q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1981        if (!q->queue_ctx)
1982                goto err_exit;
1983
1984        q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1985                                                GFP_KERNEL, set->numa_node);
1986        if (!q->queue_hw_ctx)
1987                goto err_percpu;
1988
1989        q->mq_map = set->mq_map;
1990
1991        blk_mq_realloc_hw_ctxs(set, q);
1992        if (!q->nr_hw_queues)
1993                goto err_hctxs;
1994
1995        INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1996        blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1997
1998        q->nr_queues = nr_cpu_ids;
1999
2000        q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2001
2002        if (!(set->flags & BLK_MQ_F_SG_MERGE))
2003                q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2004
2005        q->sg_reserved_size = INT_MAX;
2006
2007        INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2008        INIT_LIST_HEAD(&q->requeue_list);
2009        spin_lock_init(&q->requeue_lock);
2010
2011        if (q->nr_hw_queues > 1)
2012                blk_queue_make_request(q, blk_mq_make_request);
2013        else
2014                blk_queue_make_request(q, blk_sq_make_request);
2015
2016        /*
2017         * Do this after blk_queue_make_request() overrides it...
2018         */
2019        q->nr_requests = set->queue_depth;
2020
2021        if (set->ops->complete)
2022                blk_queue_softirq_done(q, set->ops->complete);
2023
2024        blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2025
2026        get_online_cpus();
2027        mutex_lock(&all_q_mutex);
2028
2029        list_add_tail(&q->all_q_node, &all_q_list);
2030        blk_mq_add_queue_tag_set(set, q);
2031        blk_mq_map_swqueue(q, cpu_online_mask);
2032
2033        mutex_unlock(&all_q_mutex);
2034        put_online_cpus();
2035
2036        return q;
2037
2038err_hctxs:
2039        kfree(q->queue_hw_ctx);
2040err_percpu:
2041        free_percpu(q->queue_ctx);
2042err_exit:
2043        q->mq_ops = NULL;
2044        return ERR_PTR(-ENOMEM);
2045}
2046EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2047
2048void blk_mq_free_queue(struct request_queue *q)
2049{
2050        struct blk_mq_tag_set   *set = q->tag_set;
2051
2052        mutex_lock(&all_q_mutex);
2053        list_del_init(&q->all_q_node);
2054        mutex_unlock(&all_q_mutex);
2055
2056        blk_mq_del_queue_tag_set(q);
2057
2058        blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2059        blk_mq_free_hw_queues(q, set);
2060}
2061
2062/* Basically redo blk_mq_init_queue with queue frozen */
2063static void blk_mq_queue_reinit(struct request_queue *q,
2064                                const struct cpumask *online_mask)
2065{
2066        WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2067
2068        blk_mq_sysfs_unregister(q);
2069
2070        /*
2071         * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2072         * we should change hctx numa_node according to new topology (this
2073         * involves free and re-allocate memory, worthy doing?)
2074         */
2075
2076        blk_mq_map_swqueue(q, online_mask);
2077
2078        blk_mq_sysfs_register(q);
2079}
2080
2081/*
2082 * New online cpumask which is going to be set in this hotplug event.
2083 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2084 * one-by-one and dynamically allocating this could result in a failure.
2085 */
2086static struct cpumask cpuhp_online_new;
2087
2088static void blk_mq_queue_reinit_work(void)
2089{
2090        struct request_queue *q;
2091
2092        mutex_lock(&all_q_mutex);
2093        /*
2094         * We need to freeze and reinit all existing queues.  Freezing
2095         * involves synchronous wait for an RCU grace period and doing it
2096         * one by one may take a long time.  Start freezing all queues in
2097         * one swoop and then wait for the completions so that freezing can
2098         * take place in parallel.
2099         */
2100        list_for_each_entry(q, &all_q_list, all_q_node)
2101                blk_mq_freeze_queue_start(q);
2102        list_for_each_entry(q, &all_q_list, all_q_node) {
2103                blk_mq_freeze_queue_wait(q);
2104
2105                /*
2106                 * timeout handler can't touch hw queue during the
2107                 * reinitialization
2108                 */
2109                del_timer_sync(&q->timeout);
2110        }
2111
2112        list_for_each_entry(q, &all_q_list, all_q_node)
2113                blk_mq_queue_reinit(q, &cpuhp_online_new);
2114
2115        list_for_each_entry(q, &all_q_list, all_q_node)
2116                blk_mq_unfreeze_queue(q);
2117
2118        mutex_unlock(&all_q_mutex);
2119}
2120
2121static int blk_mq_queue_reinit_dead(unsigned int cpu)
2122{
2123        cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2124        blk_mq_queue_reinit_work();
2125        return 0;
2126}
2127
2128/*
2129 * Before hotadded cpu starts handling requests, new mappings must be
2130 * established.  Otherwise, these requests in hw queue might never be
2131 * dispatched.
2132 *
2133 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2134 * for CPU0, and ctx1 for CPU1).
2135 *
2136 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2137 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2138 *
2139 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2140 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2141 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2142 * is ignored.
2143 */
2144static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2145{
2146        cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2147        cpumask_set_cpu(cpu, &cpuhp_online_new);
2148        blk_mq_queue_reinit_work();
2149        return 0;
2150}
2151
2152static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2153{
2154        int i;
2155
2156        for (i = 0; i < set->nr_hw_queues; i++) {
2157                set->tags[i] = blk_mq_init_rq_map(set, i);
2158                if (!set->tags[i])
2159                        goto out_unwind;
2160        }
2161
2162        return 0;
2163
2164out_unwind:
2165        while (--i >= 0)
2166                blk_mq_free_rq_map(set, set->tags[i], i);
2167
2168        return -ENOMEM;
2169}
2170
2171/*
2172 * Allocate the request maps associated with this tag_set. Note that this
2173 * may reduce the depth asked for, if memory is tight. set->queue_depth
2174 * will be updated to reflect the allocated depth.
2175 */
2176static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2177{
2178        unsigned int depth;
2179        int err;
2180
2181        depth = set->queue_depth;
2182        do {
2183                err = __blk_mq_alloc_rq_maps(set);
2184                if (!err)
2185                        break;
2186
2187                set->queue_depth >>= 1;
2188                if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2189                        err = -ENOMEM;
2190                        break;
2191                }
2192        } while (set->queue_depth);
2193
2194        if (!set->queue_depth || err) {
2195                pr_err("blk-mq: failed to allocate request map\n");
2196                return -ENOMEM;
2197        }
2198
2199        if (depth != set->queue_depth)
2200                pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2201                                                depth, set->queue_depth);
2202
2203        return 0;
2204}
2205
2206/*
2207 * Alloc a tag set to be associated with one or more request queues.
2208 * May fail with EINVAL for various error conditions. May adjust the
2209 * requested depth down, if if it too large. In that case, the set
2210 * value will be stored in set->queue_depth.
2211 */
2212int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2213{
2214        int ret;
2215
2216        BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2217
2218        if (!set->nr_hw_queues)
2219                return -EINVAL;
2220        if (!set->queue_depth)
2221                return -EINVAL;
2222        if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2223                return -EINVAL;
2224
2225        if (!set->ops->queue_rq)
2226                return -EINVAL;
2227
2228        if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2229                pr_info("blk-mq: reduced tag depth to %u\n",
2230                        BLK_MQ_MAX_DEPTH);
2231                set->queue_depth = BLK_MQ_MAX_DEPTH;
2232        }
2233
2234        /*
2235         * If a crashdump is active, then we are potentially in a very
2236         * memory constrained environment. Limit us to 1 queue and
2237         * 64 tags to prevent using too much memory.
2238         */
2239        if (is_kdump_kernel()) {
2240                set->nr_hw_queues = 1;
2241                set->queue_depth = min(64U, set->queue_depth);
2242        }
2243        /*
2244         * There is no use for more h/w queues than cpus.
2245         */
2246        if (set->nr_hw_queues > nr_cpu_ids)
2247                set->nr_hw_queues = nr_cpu_ids;
2248
2249        set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2250                                 GFP_KERNEL, set->numa_node);
2251        if (!set->tags)
2252                return -ENOMEM;
2253
2254        ret = -ENOMEM;
2255        set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2256                        GFP_KERNEL, set->numa_node);
2257        if (!set->mq_map)
2258                goto out_free_tags;
2259
2260        if (set->ops->map_queues)
2261                ret = set->ops->map_queues(set);
2262        else
2263                ret = blk_mq_map_queues(set);
2264        if (ret)
2265                goto out_free_mq_map;
2266
2267        ret = blk_mq_alloc_rq_maps(set);
2268        if (ret)
2269                goto out_free_mq_map;
2270
2271        mutex_init(&set->tag_list_lock);
2272        INIT_LIST_HEAD(&set->tag_list);
2273
2274        return 0;
2275
2276out_free_mq_map:
2277        kfree(set->mq_map);
2278        set->mq_map = NULL;
2279out_free_tags:
2280        kfree(set->tags);
2281        set->tags = NULL;
2282        return ret;
2283}
2284EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2285
2286void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2287{
2288        int i;
2289
2290        for (i = 0; i < nr_cpu_ids; i++) {
2291                if (set->tags[i])
2292                        blk_mq_free_rq_map(set, set->tags[i], i);
2293        }
2294
2295        kfree(set->mq_map);
2296        set->mq_map = NULL;
2297
2298        kfree(set->tags);
2299        set->tags = NULL;
2300}
2301EXPORT_SYMBOL(blk_mq_free_tag_set);
2302
2303int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2304{
2305        struct blk_mq_tag_set *set = q->tag_set;
2306        struct blk_mq_hw_ctx *hctx;
2307        int i, ret;
2308
2309        if (!set || nr > set->queue_depth)
2310                return -EINVAL;
2311
2312        ret = 0;
2313        queue_for_each_hw_ctx(q, hctx, i) {
2314                if (!hctx->tags)
2315                        continue;
2316                ret = blk_mq_tag_update_depth(hctx->tags, nr);
2317                if (ret)
2318                        break;
2319        }
2320
2321        if (!ret)
2322                q->nr_requests = nr;
2323
2324        return ret;
2325}
2326
2327void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2328{
2329        struct request_queue *q;
2330
2331        if (nr_hw_queues > nr_cpu_ids)
2332                nr_hw_queues = nr_cpu_ids;
2333        if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2334                return;
2335
2336        list_for_each_entry(q, &set->tag_list, tag_set_list)
2337                blk_mq_freeze_queue(q);
2338
2339        set->nr_hw_queues = nr_hw_queues;
2340        list_for_each_entry(q, &set->tag_list, tag_set_list) {
2341                blk_mq_realloc_hw_ctxs(set, q);
2342
2343                if (q->nr_hw_queues > 1)
2344                        blk_queue_make_request(q, blk_mq_make_request);
2345                else
2346                        blk_queue_make_request(q, blk_sq_make_request);
2347
2348                blk_mq_queue_reinit(q, cpu_online_mask);
2349        }
2350
2351        list_for_each_entry(q, &set->tag_list, tag_set_list)
2352                blk_mq_unfreeze_queue(q);
2353}
2354EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2355
2356void blk_mq_disable_hotplug(void)
2357{
2358        mutex_lock(&all_q_mutex);
2359}
2360
2361void blk_mq_enable_hotplug(void)
2362{
2363        mutex_unlock(&all_q_mutex);
2364}
2365
2366static int __init blk_mq_init(void)
2367{
2368        cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2369                                blk_mq_hctx_notify_dead);
2370
2371        cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2372                                  blk_mq_queue_reinit_prepare,
2373                                  blk_mq_queue_reinit_dead);
2374        return 0;
2375}
2376subsys_initcall(blk_mq_init);
2377