linux/block/blk.h
<<
>>
Prefs
   1#ifndef BLK_INTERNAL_H
   2#define BLK_INTERNAL_H
   3
   4#include <linux/idr.h>
   5#include <linux/blk-mq.h>
   6#include "blk-mq.h"
   7
   8/* Amount of time in which a process may batch requests */
   9#define BLK_BATCH_TIME  (HZ/50UL)
  10
  11/* Number of requests a "batching" process may submit */
  12#define BLK_BATCH_REQ   32
  13
  14/* Max future timer expiry for timeouts */
  15#define BLK_MAX_TIMEOUT         (5 * HZ)
  16
  17struct blk_flush_queue {
  18        unsigned int            flush_queue_delayed:1;
  19        unsigned int            flush_pending_idx:1;
  20        unsigned int            flush_running_idx:1;
  21        unsigned long           flush_pending_since;
  22        struct list_head        flush_queue[2];
  23        struct list_head        flush_data_in_flight;
  24        struct request          *flush_rq;
  25
  26        /*
  27         * flush_rq shares tag with this rq, both can't be active
  28         * at the same time
  29         */
  30        struct request          *orig_rq;
  31        spinlock_t              mq_flush_lock;
  32};
  33
  34extern struct kmem_cache *blk_requestq_cachep;
  35extern struct kmem_cache *request_cachep;
  36extern struct kobj_type blk_queue_ktype;
  37extern struct ida blk_queue_ida;
  38
  39static inline struct blk_flush_queue *blk_get_flush_queue(
  40                struct request_queue *q, struct blk_mq_ctx *ctx)
  41{
  42        if (q->mq_ops)
  43                return blk_mq_map_queue(q, ctx->cpu)->fq;
  44        return q->fq;
  45}
  46
  47static inline void __blk_get_queue(struct request_queue *q)
  48{
  49        kobject_get(&q->kobj);
  50}
  51
  52struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
  53                int node, int cmd_size);
  54void blk_free_flush_queue(struct blk_flush_queue *q);
  55
  56int blk_init_rl(struct request_list *rl, struct request_queue *q,
  57                gfp_t gfp_mask);
  58void blk_exit_rl(struct request_list *rl);
  59void init_request_from_bio(struct request *req, struct bio *bio);
  60void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  61                        struct bio *bio);
  62void blk_queue_bypass_start(struct request_queue *q);
  63void blk_queue_bypass_end(struct request_queue *q);
  64void blk_dequeue_request(struct request *rq);
  65void __blk_queue_free_tags(struct request_queue *q);
  66bool __blk_end_bidi_request(struct request *rq, int error,
  67                            unsigned int nr_bytes, unsigned int bidi_bytes);
  68void blk_freeze_queue(struct request_queue *q);
  69
  70static inline void blk_queue_enter_live(struct request_queue *q)
  71{
  72        /*
  73         * Given that running in generic_make_request() context
  74         * guarantees that a live reference against q_usage_counter has
  75         * been established, further references under that same context
  76         * need not check that the queue has been frozen (marked dead).
  77         */
  78        percpu_ref_get(&q->q_usage_counter);
  79}
  80
  81#ifdef CONFIG_BLK_DEV_INTEGRITY
  82void blk_flush_integrity(void);
  83#else
  84static inline void blk_flush_integrity(void)
  85{
  86}
  87#endif
  88
  89void blk_timeout_work(struct work_struct *work);
  90unsigned long blk_rq_timeout(unsigned long timeout);
  91void blk_add_timer(struct request *req);
  92void blk_delete_timer(struct request *);
  93
  94
  95bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
  96                             struct bio *bio);
  97bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
  98                            struct bio *bio);
  99bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 100                            unsigned int *request_count,
 101                            struct request **same_queue_rq);
 102unsigned int blk_plug_queued_count(struct request_queue *q);
 103
 104void blk_account_io_start(struct request *req, bool new_io);
 105void blk_account_io_completion(struct request *req, unsigned int bytes);
 106void blk_account_io_done(struct request *req);
 107
 108/*
 109 * Internal atomic flags for request handling
 110 */
 111enum rq_atomic_flags {
 112        REQ_ATOM_COMPLETE = 0,
 113        REQ_ATOM_STARTED,
 114};
 115
 116/*
 117 * EH timer and IO completion will both attempt to 'grab' the request, make
 118 * sure that only one of them succeeds
 119 */
 120static inline int blk_mark_rq_complete(struct request *rq)
 121{
 122        return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 123}
 124
 125static inline void blk_clear_rq_complete(struct request *rq)
 126{
 127        clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 128}
 129
 130/*
 131 * Internal elevator interface
 132 */
 133#define ELV_ON_HASH(rq) ((rq)->cmd_flags & REQ_HASHED)
 134
 135void blk_insert_flush(struct request *rq);
 136
 137static inline struct request *__elv_next_request(struct request_queue *q)
 138{
 139        struct request *rq;
 140        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 141
 142        while (1) {
 143                if (!list_empty(&q->queue_head)) {
 144                        rq = list_entry_rq(q->queue_head.next);
 145                        return rq;
 146                }
 147
 148                /*
 149                 * Flush request is running and flush request isn't queueable
 150                 * in the drive, we can hold the queue till flush request is
 151                 * finished. Even we don't do this, driver can't dispatch next
 152                 * requests and will requeue them. And this can improve
 153                 * throughput too. For example, we have request flush1, write1,
 154                 * flush 2. flush1 is dispatched, then queue is hold, write1
 155                 * isn't inserted to queue. After flush1 is finished, flush2
 156                 * will be dispatched. Since disk cache is already clean,
 157                 * flush2 will be finished very soon, so looks like flush2 is
 158                 * folded to flush1.
 159                 * Since the queue is hold, a flag is set to indicate the queue
 160                 * should be restarted later. Please see flush_end_io() for
 161                 * details.
 162                 */
 163                if (fq->flush_pending_idx != fq->flush_running_idx &&
 164                                !queue_flush_queueable(q)) {
 165                        fq->flush_queue_delayed = 1;
 166                        return NULL;
 167                }
 168                if (unlikely(blk_queue_bypass(q)) ||
 169                    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
 170                        return NULL;
 171        }
 172}
 173
 174static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
 175{
 176        struct elevator_queue *e = q->elevator;
 177
 178        if (e->type->ops.elevator_activate_req_fn)
 179                e->type->ops.elevator_activate_req_fn(q, rq);
 180}
 181
 182static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
 183{
 184        struct elevator_queue *e = q->elevator;
 185
 186        if (e->type->ops.elevator_deactivate_req_fn)
 187                e->type->ops.elevator_deactivate_req_fn(q, rq);
 188}
 189
 190#ifdef CONFIG_FAIL_IO_TIMEOUT
 191int blk_should_fake_timeout(struct request_queue *);
 192ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
 193ssize_t part_timeout_store(struct device *, struct device_attribute *,
 194                                const char *, size_t);
 195#else
 196static inline int blk_should_fake_timeout(struct request_queue *q)
 197{
 198        return 0;
 199}
 200#endif
 201
 202int ll_back_merge_fn(struct request_queue *q, struct request *req,
 203                     struct bio *bio);
 204int ll_front_merge_fn(struct request_queue *q, struct request *req, 
 205                      struct bio *bio);
 206int attempt_back_merge(struct request_queue *q, struct request *rq);
 207int attempt_front_merge(struct request_queue *q, struct request *rq);
 208int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 209                                struct request *next);
 210void blk_recalc_rq_segments(struct request *rq);
 211void blk_rq_set_mixed_merge(struct request *rq);
 212bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
 213int blk_try_merge(struct request *rq, struct bio *bio);
 214
 215void blk_queue_congestion_threshold(struct request_queue *q);
 216
 217int blk_dev_init(void);
 218
 219
 220/*
 221 * Return the threshold (number of used requests) at which the queue is
 222 * considered to be congested.  It include a little hysteresis to keep the
 223 * context switch rate down.
 224 */
 225static inline int queue_congestion_on_threshold(struct request_queue *q)
 226{
 227        return q->nr_congestion_on;
 228}
 229
 230/*
 231 * The threshold at which a queue is considered to be uncongested
 232 */
 233static inline int queue_congestion_off_threshold(struct request_queue *q)
 234{
 235        return q->nr_congestion_off;
 236}
 237
 238extern int blk_update_nr_requests(struct request_queue *, unsigned int);
 239
 240/*
 241 * Contribute to IO statistics IFF:
 242 *
 243 *      a) it's attached to a gendisk, and
 244 *      b) the queue had IO stats enabled when this request was started, and
 245 *      c) it's a file system request
 246 */
 247static inline int blk_do_io_stat(struct request *rq)
 248{
 249        return rq->rq_disk &&
 250               (rq->cmd_flags & REQ_IO_STAT) &&
 251                (rq->cmd_type == REQ_TYPE_FS);
 252}
 253
 254/*
 255 * Internal io_context interface
 256 */
 257void get_io_context(struct io_context *ioc);
 258struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
 259struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
 260                             gfp_t gfp_mask);
 261void ioc_clear_queue(struct request_queue *q);
 262
 263int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
 264
 265/**
 266 * create_io_context - try to create task->io_context
 267 * @gfp_mask: allocation mask
 268 * @node: allocation node
 269 *
 270 * If %current->io_context is %NULL, allocate a new io_context and install
 271 * it.  Returns the current %current->io_context which may be %NULL if
 272 * allocation failed.
 273 *
 274 * Note that this function can't be called with IRQ disabled because
 275 * task_lock which protects %current->io_context is IRQ-unsafe.
 276 */
 277static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
 278{
 279        WARN_ON_ONCE(irqs_disabled());
 280        if (unlikely(!current->io_context))
 281                create_task_io_context(current, gfp_mask, node);
 282        return current->io_context;
 283}
 284
 285/*
 286 * Internal throttling interface
 287 */
 288#ifdef CONFIG_BLK_DEV_THROTTLING
 289extern void blk_throtl_drain(struct request_queue *q);
 290extern int blk_throtl_init(struct request_queue *q);
 291extern void blk_throtl_exit(struct request_queue *q);
 292#else /* CONFIG_BLK_DEV_THROTTLING */
 293static inline void blk_throtl_drain(struct request_queue *q) { }
 294static inline int blk_throtl_init(struct request_queue *q) { return 0; }
 295static inline void blk_throtl_exit(struct request_queue *q) { }
 296#endif /* CONFIG_BLK_DEV_THROTTLING */
 297
 298#endif /* BLK_INTERNAL_H */
 299