linux/drivers/bluetooth/hci_intel.c
<<
>>
Prefs
   1/*
   2 *
   3 *  Bluetooth HCI UART driver for Intel devices
   4 *
   5 *  Copyright (C) 2015  Intel Corporation
   6 *
   7 *
   8 *  This program is free software; you can redistribute it and/or modify
   9 *  it under the terms of the GNU General Public License as published by
  10 *  the Free Software Foundation; either version 2 of the License, or
  11 *  (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/errno.h>
  26#include <linux/skbuff.h>
  27#include <linux/firmware.h>
  28#include <linux/module.h>
  29#include <linux/wait.h>
  30#include <linux/tty.h>
  31#include <linux/platform_device.h>
  32#include <linux/gpio/consumer.h>
  33#include <linux/acpi.h>
  34#include <linux/interrupt.h>
  35#include <linux/pm_runtime.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39
  40#include "hci_uart.h"
  41#include "btintel.h"
  42
  43#define STATE_BOOTLOADER        0
  44#define STATE_DOWNLOADING       1
  45#define STATE_FIRMWARE_LOADED   2
  46#define STATE_FIRMWARE_FAILED   3
  47#define STATE_BOOTING           4
  48#define STATE_LPM_ENABLED       5
  49#define STATE_TX_ACTIVE         6
  50#define STATE_SUSPENDED         7
  51#define STATE_LPM_TRANSACTION   8
  52
  53#define HCI_LPM_WAKE_PKT 0xf0
  54#define HCI_LPM_PKT 0xf1
  55#define HCI_LPM_MAX_SIZE 10
  56#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
  57
  58#define LPM_OP_TX_NOTIFY 0x00
  59#define LPM_OP_SUSPEND_ACK 0x02
  60#define LPM_OP_RESUME_ACK 0x03
  61
  62#define LPM_SUSPEND_DELAY_MS 1000
  63
  64struct hci_lpm_pkt {
  65        __u8 opcode;
  66        __u8 dlen;
  67        __u8 data[0];
  68} __packed;
  69
  70struct intel_device {
  71        struct list_head list;
  72        struct platform_device *pdev;
  73        struct gpio_desc *reset;
  74        struct hci_uart *hu;
  75        struct mutex hu_lock;
  76        int irq;
  77};
  78
  79static LIST_HEAD(intel_device_list);
  80static DEFINE_MUTEX(intel_device_list_lock);
  81
  82struct intel_data {
  83        struct sk_buff *rx_skb;
  84        struct sk_buff_head txq;
  85        struct work_struct busy_work;
  86        struct hci_uart *hu;
  87        unsigned long flags;
  88};
  89
  90static u8 intel_convert_speed(unsigned int speed)
  91{
  92        switch (speed) {
  93        case 9600:
  94                return 0x00;
  95        case 19200:
  96                return 0x01;
  97        case 38400:
  98                return 0x02;
  99        case 57600:
 100                return 0x03;
 101        case 115200:
 102                return 0x04;
 103        case 230400:
 104                return 0x05;
 105        case 460800:
 106                return 0x06;
 107        case 921600:
 108                return 0x07;
 109        case 1843200:
 110                return 0x08;
 111        case 3250000:
 112                return 0x09;
 113        case 2000000:
 114                return 0x0a;
 115        case 3000000:
 116                return 0x0b;
 117        default:
 118                return 0xff;
 119        }
 120}
 121
 122static int intel_wait_booting(struct hci_uart *hu)
 123{
 124        struct intel_data *intel = hu->priv;
 125        int err;
 126
 127        err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
 128                                  TASK_INTERRUPTIBLE,
 129                                  msecs_to_jiffies(1000));
 130
 131        if (err == -EINTR) {
 132                bt_dev_err(hu->hdev, "Device boot interrupted");
 133                return -EINTR;
 134        }
 135
 136        if (err) {
 137                bt_dev_err(hu->hdev, "Device boot timeout");
 138                return -ETIMEDOUT;
 139        }
 140
 141        return err;
 142}
 143
 144#ifdef CONFIG_PM
 145static int intel_wait_lpm_transaction(struct hci_uart *hu)
 146{
 147        struct intel_data *intel = hu->priv;
 148        int err;
 149
 150        err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
 151                                  TASK_INTERRUPTIBLE,
 152                                  msecs_to_jiffies(1000));
 153
 154        if (err == -EINTR) {
 155                bt_dev_err(hu->hdev, "LPM transaction interrupted");
 156                return -EINTR;
 157        }
 158
 159        if (err) {
 160                bt_dev_err(hu->hdev, "LPM transaction timeout");
 161                return -ETIMEDOUT;
 162        }
 163
 164        return err;
 165}
 166
 167static int intel_lpm_suspend(struct hci_uart *hu)
 168{
 169        static const u8 suspend[] = { 0x01, 0x01, 0x01 };
 170        struct intel_data *intel = hu->priv;
 171        struct sk_buff *skb;
 172
 173        if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 174            test_bit(STATE_SUSPENDED, &intel->flags))
 175                return 0;
 176
 177        if (test_bit(STATE_TX_ACTIVE, &intel->flags))
 178                return -EAGAIN;
 179
 180        bt_dev_dbg(hu->hdev, "Suspending");
 181
 182        skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
 183        if (!skb) {
 184                bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 185                return -ENOMEM;
 186        }
 187
 188        memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
 189        hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 190
 191        set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 192
 193        /* LPM flow is a priority, enqueue packet at list head */
 194        skb_queue_head(&intel->txq, skb);
 195        hci_uart_tx_wakeup(hu);
 196
 197        intel_wait_lpm_transaction(hu);
 198        /* Even in case of failure, continue and test the suspended flag */
 199
 200        clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 201
 202        if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
 203                bt_dev_err(hu->hdev, "Device suspend error");
 204                return -EINVAL;
 205        }
 206
 207        bt_dev_dbg(hu->hdev, "Suspended");
 208
 209        hci_uart_set_flow_control(hu, true);
 210
 211        return 0;
 212}
 213
 214static int intel_lpm_resume(struct hci_uart *hu)
 215{
 216        struct intel_data *intel = hu->priv;
 217        struct sk_buff *skb;
 218
 219        if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 220            !test_bit(STATE_SUSPENDED, &intel->flags))
 221                return 0;
 222
 223        bt_dev_dbg(hu->hdev, "Resuming");
 224
 225        hci_uart_set_flow_control(hu, false);
 226
 227        skb = bt_skb_alloc(0, GFP_KERNEL);
 228        if (!skb) {
 229                bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 230                return -ENOMEM;
 231        }
 232
 233        hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
 234
 235        set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 236
 237        /* LPM flow is a priority, enqueue packet at list head */
 238        skb_queue_head(&intel->txq, skb);
 239        hci_uart_tx_wakeup(hu);
 240
 241        intel_wait_lpm_transaction(hu);
 242        /* Even in case of failure, continue and test the suspended flag */
 243
 244        clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 245
 246        if (test_bit(STATE_SUSPENDED, &intel->flags)) {
 247                bt_dev_err(hu->hdev, "Device resume error");
 248                return -EINVAL;
 249        }
 250
 251        bt_dev_dbg(hu->hdev, "Resumed");
 252
 253        return 0;
 254}
 255#endif /* CONFIG_PM */
 256
 257static int intel_lpm_host_wake(struct hci_uart *hu)
 258{
 259        static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
 260        struct intel_data *intel = hu->priv;
 261        struct sk_buff *skb;
 262
 263        hci_uart_set_flow_control(hu, false);
 264
 265        clear_bit(STATE_SUSPENDED, &intel->flags);
 266
 267        skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
 268        if (!skb) {
 269                bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 270                return -ENOMEM;
 271        }
 272
 273        memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
 274               sizeof(lpm_resume_ack));
 275        hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 276
 277        /* LPM flow is a priority, enqueue packet at list head */
 278        skb_queue_head(&intel->txq, skb);
 279        hci_uart_tx_wakeup(hu);
 280
 281        bt_dev_dbg(hu->hdev, "Resumed by controller");
 282
 283        return 0;
 284}
 285
 286static irqreturn_t intel_irq(int irq, void *dev_id)
 287{
 288        struct intel_device *idev = dev_id;
 289
 290        dev_info(&idev->pdev->dev, "hci_intel irq\n");
 291
 292        mutex_lock(&idev->hu_lock);
 293        if (idev->hu)
 294                intel_lpm_host_wake(idev->hu);
 295        mutex_unlock(&idev->hu_lock);
 296
 297        /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
 298        pm_runtime_get(&idev->pdev->dev);
 299        pm_runtime_mark_last_busy(&idev->pdev->dev);
 300        pm_runtime_put_autosuspend(&idev->pdev->dev);
 301
 302        return IRQ_HANDLED;
 303}
 304
 305static int intel_set_power(struct hci_uart *hu, bool powered)
 306{
 307        struct list_head *p;
 308        int err = -ENODEV;
 309
 310        mutex_lock(&intel_device_list_lock);
 311
 312        list_for_each(p, &intel_device_list) {
 313                struct intel_device *idev = list_entry(p, struct intel_device,
 314                                                       list);
 315
 316                /* tty device and pdev device should share the same parent
 317                 * which is the UART port.
 318                 */
 319                if (hu->tty->dev->parent != idev->pdev->dev.parent)
 320                        continue;
 321
 322                if (!idev->reset) {
 323                        err = -ENOTSUPP;
 324                        break;
 325                }
 326
 327                BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
 328                        hu, dev_name(&idev->pdev->dev), powered);
 329
 330                gpiod_set_value(idev->reset, powered);
 331
 332                /* Provide to idev a hu reference which is used to run LPM
 333                 * transactions (lpm suspend/resume) from PM callbacks.
 334                 * hu needs to be protected against concurrent removing during
 335                 * these PM ops.
 336                 */
 337                mutex_lock(&idev->hu_lock);
 338                idev->hu = powered ? hu : NULL;
 339                mutex_unlock(&idev->hu_lock);
 340
 341                if (idev->irq < 0)
 342                        break;
 343
 344                if (powered && device_can_wakeup(&idev->pdev->dev)) {
 345                        err = devm_request_threaded_irq(&idev->pdev->dev,
 346                                                        idev->irq, NULL,
 347                                                        intel_irq,
 348                                                        IRQF_ONESHOT,
 349                                                        "bt-host-wake", idev);
 350                        if (err) {
 351                                BT_ERR("hu %p, unable to allocate irq-%d",
 352                                       hu, idev->irq);
 353                                break;
 354                        }
 355
 356                        device_wakeup_enable(&idev->pdev->dev);
 357
 358                        pm_runtime_set_active(&idev->pdev->dev);
 359                        pm_runtime_use_autosuspend(&idev->pdev->dev);
 360                        pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
 361                                                         LPM_SUSPEND_DELAY_MS);
 362                        pm_runtime_enable(&idev->pdev->dev);
 363                } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
 364                        devm_free_irq(&idev->pdev->dev, idev->irq, idev);
 365                        device_wakeup_disable(&idev->pdev->dev);
 366
 367                        pm_runtime_disable(&idev->pdev->dev);
 368                }
 369        }
 370
 371        mutex_unlock(&intel_device_list_lock);
 372
 373        return err;
 374}
 375
 376static void intel_busy_work(struct work_struct *work)
 377{
 378        struct list_head *p;
 379        struct intel_data *intel = container_of(work, struct intel_data,
 380                                                busy_work);
 381
 382        /* Link is busy, delay the suspend */
 383        mutex_lock(&intel_device_list_lock);
 384        list_for_each(p, &intel_device_list) {
 385                struct intel_device *idev = list_entry(p, struct intel_device,
 386                                                       list);
 387
 388                if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
 389                        pm_runtime_get(&idev->pdev->dev);
 390                        pm_runtime_mark_last_busy(&idev->pdev->dev);
 391                        pm_runtime_put_autosuspend(&idev->pdev->dev);
 392                        break;
 393                }
 394        }
 395        mutex_unlock(&intel_device_list_lock);
 396}
 397
 398static int intel_open(struct hci_uart *hu)
 399{
 400        struct intel_data *intel;
 401
 402        BT_DBG("hu %p", hu);
 403
 404        intel = kzalloc(sizeof(*intel), GFP_KERNEL);
 405        if (!intel)
 406                return -ENOMEM;
 407
 408        skb_queue_head_init(&intel->txq);
 409        INIT_WORK(&intel->busy_work, intel_busy_work);
 410
 411        intel->hu = hu;
 412
 413        hu->priv = intel;
 414
 415        if (!intel_set_power(hu, true))
 416                set_bit(STATE_BOOTING, &intel->flags);
 417
 418        return 0;
 419}
 420
 421static int intel_close(struct hci_uart *hu)
 422{
 423        struct intel_data *intel = hu->priv;
 424
 425        BT_DBG("hu %p", hu);
 426
 427        cancel_work_sync(&intel->busy_work);
 428
 429        intel_set_power(hu, false);
 430
 431        skb_queue_purge(&intel->txq);
 432        kfree_skb(intel->rx_skb);
 433        kfree(intel);
 434
 435        hu->priv = NULL;
 436        return 0;
 437}
 438
 439static int intel_flush(struct hci_uart *hu)
 440{
 441        struct intel_data *intel = hu->priv;
 442
 443        BT_DBG("hu %p", hu);
 444
 445        skb_queue_purge(&intel->txq);
 446
 447        return 0;
 448}
 449
 450static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 451{
 452        struct sk_buff *skb;
 453        struct hci_event_hdr *hdr;
 454        struct hci_ev_cmd_complete *evt;
 455
 456        skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
 457        if (!skb)
 458                return -ENOMEM;
 459
 460        hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
 461        hdr->evt = HCI_EV_CMD_COMPLETE;
 462        hdr->plen = sizeof(*evt) + 1;
 463
 464        evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
 465        evt->ncmd = 0x01;
 466        evt->opcode = cpu_to_le16(opcode);
 467
 468        *skb_put(skb, 1) = 0x00;
 469
 470        hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 471
 472        return hci_recv_frame(hdev, skb);
 473}
 474
 475static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
 476{
 477        struct intel_data *intel = hu->priv;
 478        struct hci_dev *hdev = hu->hdev;
 479        u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
 480        struct sk_buff *skb;
 481        int err;
 482
 483        /* This can be the first command sent to the chip, check
 484         * that the controller is ready.
 485         */
 486        err = intel_wait_booting(hu);
 487
 488        clear_bit(STATE_BOOTING, &intel->flags);
 489
 490        /* In case of timeout, try to continue anyway */
 491        if (err && err != -ETIMEDOUT)
 492                return err;
 493
 494        bt_dev_info(hdev, "Change controller speed to %d", speed);
 495
 496        speed_cmd[3] = intel_convert_speed(speed);
 497        if (speed_cmd[3] == 0xff) {
 498                bt_dev_err(hdev, "Unsupported speed");
 499                return -EINVAL;
 500        }
 501
 502        /* Device will not accept speed change if Intel version has not been
 503         * previously requested.
 504         */
 505        skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
 506        if (IS_ERR(skb)) {
 507                bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
 508                           PTR_ERR(skb));
 509                return PTR_ERR(skb);
 510        }
 511        kfree_skb(skb);
 512
 513        skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
 514        if (!skb) {
 515                bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
 516                return -ENOMEM;
 517        }
 518
 519        memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
 520        hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 521
 522        hci_uart_set_flow_control(hu, true);
 523
 524        skb_queue_tail(&intel->txq, skb);
 525        hci_uart_tx_wakeup(hu);
 526
 527        /* wait 100ms to change baudrate on controller side */
 528        msleep(100);
 529
 530        hci_uart_set_baudrate(hu, speed);
 531        hci_uart_set_flow_control(hu, false);
 532
 533        return 0;
 534}
 535
 536static int intel_setup(struct hci_uart *hu)
 537{
 538        static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
 539                                          0x00, 0x08, 0x04, 0x00 };
 540        struct intel_data *intel = hu->priv;
 541        struct hci_dev *hdev = hu->hdev;
 542        struct sk_buff *skb;
 543        struct intel_version ver;
 544        struct intel_boot_params *params;
 545        struct list_head *p;
 546        const struct firmware *fw;
 547        const u8 *fw_ptr;
 548        char fwname[64];
 549        u32 frag_len;
 550        ktime_t calltime, delta, rettime;
 551        unsigned long long duration;
 552        unsigned int init_speed, oper_speed;
 553        int speed_change = 0;
 554        int err;
 555
 556        bt_dev_dbg(hdev, "start intel_setup");
 557
 558        hu->hdev->set_diag = btintel_set_diag;
 559        hu->hdev->set_bdaddr = btintel_set_bdaddr;
 560
 561        calltime = ktime_get();
 562
 563        if (hu->init_speed)
 564                init_speed = hu->init_speed;
 565        else
 566                init_speed = hu->proto->init_speed;
 567
 568        if (hu->oper_speed)
 569                oper_speed = hu->oper_speed;
 570        else
 571                oper_speed = hu->proto->oper_speed;
 572
 573        if (oper_speed && init_speed && oper_speed != init_speed)
 574                speed_change = 1;
 575
 576        /* Check that the controller is ready */
 577        err = intel_wait_booting(hu);
 578
 579        clear_bit(STATE_BOOTING, &intel->flags);
 580
 581        /* In case of timeout, try to continue anyway */
 582        if (err && err != -ETIMEDOUT)
 583                return err;
 584
 585        set_bit(STATE_BOOTLOADER, &intel->flags);
 586
 587        /* Read the Intel version information to determine if the device
 588         * is in bootloader mode or if it already has operational firmware
 589         * loaded.
 590         */
 591         err = btintel_read_version(hdev, &ver);
 592         if (err)
 593                return err;
 594
 595        /* The hardware platform number has a fixed value of 0x37 and
 596         * for now only accept this single value.
 597         */
 598        if (ver.hw_platform != 0x37) {
 599                bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
 600                           ver.hw_platform);
 601                return -EINVAL;
 602        }
 603
 604        /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
 605         * supported by this firmware loading method. This check has been
 606         * put in place to ensure correct forward compatibility options
 607         * when newer hardware variants come along.
 608         */
 609        if (ver.hw_variant != 0x0b) {
 610                bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 611                           ver.hw_variant);
 612                return -EINVAL;
 613        }
 614
 615        btintel_version_info(hdev, &ver);
 616
 617        /* The firmware variant determines if the device is in bootloader
 618         * mode or is running operational firmware. The value 0x06 identifies
 619         * the bootloader and the value 0x23 identifies the operational
 620         * firmware.
 621         *
 622         * When the operational firmware is already present, then only
 623         * the check for valid Bluetooth device address is needed. This
 624         * determines if the device will be added as configured or
 625         * unconfigured controller.
 626         *
 627         * It is not possible to use the Secure Boot Parameters in this
 628         * case since that command is only available in bootloader mode.
 629         */
 630        if (ver.fw_variant == 0x23) {
 631                clear_bit(STATE_BOOTLOADER, &intel->flags);
 632                btintel_check_bdaddr(hdev);
 633                return 0;
 634        }
 635
 636        /* If the device is not in bootloader mode, then the only possible
 637         * choice is to return an error and abort the device initialization.
 638         */
 639        if (ver.fw_variant != 0x06) {
 640                bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
 641                           ver.fw_variant);
 642                return -ENODEV;
 643        }
 644
 645        /* Read the secure boot parameters to identify the operating
 646         * details of the bootloader.
 647         */
 648        skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
 649        if (IS_ERR(skb)) {
 650                bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
 651                           PTR_ERR(skb));
 652                return PTR_ERR(skb);
 653        }
 654
 655        if (skb->len != sizeof(*params)) {
 656                bt_dev_err(hdev, "Intel boot parameters size mismatch");
 657                kfree_skb(skb);
 658                return -EILSEQ;
 659        }
 660
 661        params = (struct intel_boot_params *)skb->data;
 662        if (params->status) {
 663                bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
 664                           params->status);
 665                err = -bt_to_errno(params->status);
 666                kfree_skb(skb);
 667                return err;
 668        }
 669
 670        bt_dev_info(hdev, "Device revision is %u",
 671                    le16_to_cpu(params->dev_revid));
 672
 673        bt_dev_info(hdev, "Secure boot is %s",
 674                    params->secure_boot ? "enabled" : "disabled");
 675
 676        bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
 677                params->min_fw_build_nn, params->min_fw_build_cw,
 678                2000 + params->min_fw_build_yy);
 679
 680        /* It is required that every single firmware fragment is acknowledged
 681         * with a command complete event. If the boot parameters indicate
 682         * that this bootloader does not send them, then abort the setup.
 683         */
 684        if (params->limited_cce != 0x00) {
 685                bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
 686                           params->limited_cce);
 687                kfree_skb(skb);
 688                return -EINVAL;
 689        }
 690
 691        /* If the OTP has no valid Bluetooth device address, then there will
 692         * also be no valid address for the operational firmware.
 693         */
 694        if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
 695                bt_dev_info(hdev, "No device address configured");
 696                set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
 697        }
 698
 699        /* With this Intel bootloader only the hardware variant and device
 700         * revision information are used to select the right firmware.
 701         *
 702         * Currently this bootloader support is limited to hardware variant
 703         * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
 704         */
 705        snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
 706                 le16_to_cpu(params->dev_revid));
 707
 708        err = request_firmware(&fw, fwname, &hdev->dev);
 709        if (err < 0) {
 710                bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
 711                           err);
 712                kfree_skb(skb);
 713                return err;
 714        }
 715
 716        bt_dev_info(hdev, "Found device firmware: %s", fwname);
 717
 718        /* Save the DDC file name for later */
 719        snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
 720                 le16_to_cpu(params->dev_revid));
 721
 722        kfree_skb(skb);
 723
 724        if (fw->size < 644) {
 725                bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
 726                           fw->size);
 727                err = -EBADF;
 728                goto done;
 729        }
 730
 731        set_bit(STATE_DOWNLOADING, &intel->flags);
 732
 733        /* Start the firmware download transaction with the Init fragment
 734         * represented by the 128 bytes of CSS header.
 735         */
 736        err = btintel_secure_send(hdev, 0x00, 128, fw->data);
 737        if (err < 0) {
 738                bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
 739                goto done;
 740        }
 741
 742        /* Send the 256 bytes of public key information from the firmware
 743         * as the PKey fragment.
 744         */
 745        err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
 746        if (err < 0) {
 747                bt_dev_err(hdev, "Failed to send firmware public key (%d)",
 748                           err);
 749                goto done;
 750        }
 751
 752        /* Send the 256 bytes of signature information from the firmware
 753         * as the Sign fragment.
 754         */
 755        err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
 756        if (err < 0) {
 757                bt_dev_err(hdev, "Failed to send firmware signature (%d)",
 758                           err);
 759                goto done;
 760        }
 761
 762        fw_ptr = fw->data + 644;
 763        frag_len = 0;
 764
 765        while (fw_ptr - fw->data < fw->size) {
 766                struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
 767
 768                frag_len += sizeof(*cmd) + cmd->plen;
 769
 770                bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
 771                           fw->size);
 772
 773                /* The parameter length of the secure send command requires
 774                 * a 4 byte alignment. It happens so that the firmware file
 775                 * contains proper Intel_NOP commands to align the fragments
 776                 * as needed.
 777                 *
 778                 * Send set of commands with 4 byte alignment from the
 779                 * firmware data buffer as a single Data fragement.
 780                 */
 781                if (frag_len % 4)
 782                        continue;
 783
 784                /* Send each command from the firmware data buffer as
 785                 * a single Data fragment.
 786                 */
 787                err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
 788                if (err < 0) {
 789                        bt_dev_err(hdev, "Failed to send firmware data (%d)",
 790                                   err);
 791                        goto done;
 792                }
 793
 794                fw_ptr += frag_len;
 795                frag_len = 0;
 796        }
 797
 798        set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
 799
 800        bt_dev_info(hdev, "Waiting for firmware download to complete");
 801
 802        /* Before switching the device into operational mode and with that
 803         * booting the loaded firmware, wait for the bootloader notification
 804         * that all fragments have been successfully received.
 805         *
 806         * When the event processing receives the notification, then the
 807         * STATE_DOWNLOADING flag will be cleared.
 808         *
 809         * The firmware loading should not take longer than 5 seconds
 810         * and thus just timeout if that happens and fail the setup
 811         * of this device.
 812         */
 813        err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
 814                                  TASK_INTERRUPTIBLE,
 815                                  msecs_to_jiffies(5000));
 816        if (err == -EINTR) {
 817                bt_dev_err(hdev, "Firmware loading interrupted");
 818                err = -EINTR;
 819                goto done;
 820        }
 821
 822        if (err) {
 823                bt_dev_err(hdev, "Firmware loading timeout");
 824                err = -ETIMEDOUT;
 825                goto done;
 826        }
 827
 828        if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
 829                bt_dev_err(hdev, "Firmware loading failed");
 830                err = -ENOEXEC;
 831                goto done;
 832        }
 833
 834        rettime = ktime_get();
 835        delta = ktime_sub(rettime, calltime);
 836        duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 837
 838        bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
 839
 840done:
 841        release_firmware(fw);
 842
 843        if (err < 0)
 844                return err;
 845
 846        /* We need to restore the default speed before Intel reset */
 847        if (speed_change) {
 848                err = intel_set_baudrate(hu, init_speed);
 849                if (err)
 850                        return err;
 851        }
 852
 853        calltime = ktime_get();
 854
 855        set_bit(STATE_BOOTING, &intel->flags);
 856
 857        skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
 858                             HCI_CMD_TIMEOUT);
 859        if (IS_ERR(skb))
 860                return PTR_ERR(skb);
 861
 862        kfree_skb(skb);
 863
 864        /* The bootloader will not indicate when the device is ready. This
 865         * is done by the operational firmware sending bootup notification.
 866         *
 867         * Booting into operational firmware should not take longer than
 868         * 1 second. However if that happens, then just fail the setup
 869         * since something went wrong.
 870         */
 871        bt_dev_info(hdev, "Waiting for device to boot");
 872
 873        err = intel_wait_booting(hu);
 874        if (err)
 875                return err;
 876
 877        clear_bit(STATE_BOOTING, &intel->flags);
 878
 879        rettime = ktime_get();
 880        delta = ktime_sub(rettime, calltime);
 881        duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 882
 883        bt_dev_info(hdev, "Device booted in %llu usecs", duration);
 884
 885        /* Enable LPM if matching pdev with wakeup enabled, set TX active
 886         * until further LPM TX notification.
 887         */
 888        mutex_lock(&intel_device_list_lock);
 889        list_for_each(p, &intel_device_list) {
 890                struct intel_device *dev = list_entry(p, struct intel_device,
 891                                                      list);
 892                if (hu->tty->dev->parent == dev->pdev->dev.parent) {
 893                        if (device_may_wakeup(&dev->pdev->dev)) {
 894                                set_bit(STATE_LPM_ENABLED, &intel->flags);
 895                                set_bit(STATE_TX_ACTIVE, &intel->flags);
 896                        }
 897                        break;
 898                }
 899        }
 900        mutex_unlock(&intel_device_list_lock);
 901
 902        /* Ignore errors, device can work without DDC parameters */
 903        btintel_load_ddc_config(hdev, fwname);
 904
 905        skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
 906        if (IS_ERR(skb))
 907                return PTR_ERR(skb);
 908        kfree_skb(skb);
 909
 910        if (speed_change) {
 911                err = intel_set_baudrate(hu, oper_speed);
 912                if (err)
 913                        return err;
 914        }
 915
 916        bt_dev_info(hdev, "Setup complete");
 917
 918        clear_bit(STATE_BOOTLOADER, &intel->flags);
 919
 920        return 0;
 921}
 922
 923static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 924{
 925        struct hci_uart *hu = hci_get_drvdata(hdev);
 926        struct intel_data *intel = hu->priv;
 927        struct hci_event_hdr *hdr;
 928
 929        if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
 930            !test_bit(STATE_BOOTING, &intel->flags))
 931                goto recv;
 932
 933        hdr = (void *)skb->data;
 934
 935        /* When the firmware loading completes the device sends
 936         * out a vendor specific event indicating the result of
 937         * the firmware loading.
 938         */
 939        if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
 940            skb->data[2] == 0x06) {
 941                if (skb->data[3] != 0x00)
 942                        set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
 943
 944                if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
 945                    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
 946                        smp_mb__after_atomic();
 947                        wake_up_bit(&intel->flags, STATE_DOWNLOADING);
 948                }
 949
 950        /* When switching to the operational firmware the device
 951         * sends a vendor specific event indicating that the bootup
 952         * completed.
 953         */
 954        } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
 955                   skb->data[2] == 0x02) {
 956                if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
 957                        smp_mb__after_atomic();
 958                        wake_up_bit(&intel->flags, STATE_BOOTING);
 959                }
 960        }
 961recv:
 962        return hci_recv_frame(hdev, skb);
 963}
 964
 965static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
 966{
 967        struct hci_uart *hu = hci_get_drvdata(hdev);
 968        struct intel_data *intel = hu->priv;
 969
 970        bt_dev_dbg(hdev, "TX idle notification (%d)", value);
 971
 972        if (value) {
 973                set_bit(STATE_TX_ACTIVE, &intel->flags);
 974                schedule_work(&intel->busy_work);
 975        } else {
 976                clear_bit(STATE_TX_ACTIVE, &intel->flags);
 977        }
 978}
 979
 980static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
 981{
 982        struct hci_lpm_pkt *lpm = (void *)skb->data;
 983        struct hci_uart *hu = hci_get_drvdata(hdev);
 984        struct intel_data *intel = hu->priv;
 985
 986        switch (lpm->opcode) {
 987        case LPM_OP_TX_NOTIFY:
 988                if (lpm->dlen < 1) {
 989                        bt_dev_err(hu->hdev, "Invalid LPM notification packet");
 990                        break;
 991                }
 992                intel_recv_lpm_notify(hdev, lpm->data[0]);
 993                break;
 994        case LPM_OP_SUSPEND_ACK:
 995                set_bit(STATE_SUSPENDED, &intel->flags);
 996                if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
 997                        smp_mb__after_atomic();
 998                        wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 999                }
1000                break;
1001        case LPM_OP_RESUME_ACK:
1002                clear_bit(STATE_SUSPENDED, &intel->flags);
1003                if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1004                        smp_mb__after_atomic();
1005                        wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1006                }
1007                break;
1008        default:
1009                bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1010                break;
1011        }
1012
1013        kfree_skb(skb);
1014
1015        return 0;
1016}
1017
1018#define INTEL_RECV_LPM \
1019        .type = HCI_LPM_PKT, \
1020        .hlen = HCI_LPM_HDR_SIZE, \
1021        .loff = 1, \
1022        .lsize = 1, \
1023        .maxlen = HCI_LPM_MAX_SIZE
1024
1025static const struct h4_recv_pkt intel_recv_pkts[] = {
1026        { H4_RECV_ACL,    .recv = hci_recv_frame   },
1027        { H4_RECV_SCO,    .recv = hci_recv_frame   },
1028        { H4_RECV_EVENT,  .recv = intel_recv_event },
1029        { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1030};
1031
1032static int intel_recv(struct hci_uart *hu, const void *data, int count)
1033{
1034        struct intel_data *intel = hu->priv;
1035
1036        if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1037                return -EUNATCH;
1038
1039        intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1040                                    intel_recv_pkts,
1041                                    ARRAY_SIZE(intel_recv_pkts));
1042        if (IS_ERR(intel->rx_skb)) {
1043                int err = PTR_ERR(intel->rx_skb);
1044                bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1045                intel->rx_skb = NULL;
1046                return err;
1047        }
1048
1049        return count;
1050}
1051
1052static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1053{
1054        struct intel_data *intel = hu->priv;
1055        struct list_head *p;
1056
1057        BT_DBG("hu %p skb %p", hu, skb);
1058
1059        /* Be sure our controller is resumed and potential LPM transaction
1060         * completed before enqueuing any packet.
1061         */
1062        mutex_lock(&intel_device_list_lock);
1063        list_for_each(p, &intel_device_list) {
1064                struct intel_device *idev = list_entry(p, struct intel_device,
1065                                                       list);
1066
1067                if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1068                        pm_runtime_get_sync(&idev->pdev->dev);
1069                        pm_runtime_mark_last_busy(&idev->pdev->dev);
1070                        pm_runtime_put_autosuspend(&idev->pdev->dev);
1071                        break;
1072                }
1073        }
1074        mutex_unlock(&intel_device_list_lock);
1075
1076        skb_queue_tail(&intel->txq, skb);
1077
1078        return 0;
1079}
1080
1081static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1082{
1083        struct intel_data *intel = hu->priv;
1084        struct sk_buff *skb;
1085
1086        skb = skb_dequeue(&intel->txq);
1087        if (!skb)
1088                return skb;
1089
1090        if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1091            (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1092                struct hci_command_hdr *cmd = (void *)skb->data;
1093                __u16 opcode = le16_to_cpu(cmd->opcode);
1094
1095                /* When the 0xfc01 command is issued to boot into
1096                 * the operational firmware, it will actually not
1097                 * send a command complete event. To keep the flow
1098                 * control working inject that event here.
1099                 */
1100                if (opcode == 0xfc01)
1101                        inject_cmd_complete(hu->hdev, opcode);
1102        }
1103
1104        /* Prepend skb with frame type */
1105        memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1106
1107        return skb;
1108}
1109
1110static const struct hci_uart_proto intel_proto = {
1111        .id             = HCI_UART_INTEL,
1112        .name           = "Intel",
1113        .manufacturer   = 2,
1114        .init_speed     = 115200,
1115        .oper_speed     = 3000000,
1116        .open           = intel_open,
1117        .close          = intel_close,
1118        .flush          = intel_flush,
1119        .setup          = intel_setup,
1120        .set_baudrate   = intel_set_baudrate,
1121        .recv           = intel_recv,
1122        .enqueue        = intel_enqueue,
1123        .dequeue        = intel_dequeue,
1124};
1125
1126#ifdef CONFIG_ACPI
1127static const struct acpi_device_id intel_acpi_match[] = {
1128        { "INT33E1", 0 },
1129        { },
1130};
1131MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1132#endif
1133
1134#ifdef CONFIG_PM
1135static int intel_suspend_device(struct device *dev)
1136{
1137        struct intel_device *idev = dev_get_drvdata(dev);
1138
1139        mutex_lock(&idev->hu_lock);
1140        if (idev->hu)
1141                intel_lpm_suspend(idev->hu);
1142        mutex_unlock(&idev->hu_lock);
1143
1144        return 0;
1145}
1146
1147static int intel_resume_device(struct device *dev)
1148{
1149        struct intel_device *idev = dev_get_drvdata(dev);
1150
1151        mutex_lock(&idev->hu_lock);
1152        if (idev->hu)
1153                intel_lpm_resume(idev->hu);
1154        mutex_unlock(&idev->hu_lock);
1155
1156        return 0;
1157}
1158#endif
1159
1160#ifdef CONFIG_PM_SLEEP
1161static int intel_suspend(struct device *dev)
1162{
1163        struct intel_device *idev = dev_get_drvdata(dev);
1164
1165        if (device_may_wakeup(dev))
1166                enable_irq_wake(idev->irq);
1167
1168        return intel_suspend_device(dev);
1169}
1170
1171static int intel_resume(struct device *dev)
1172{
1173        struct intel_device *idev = dev_get_drvdata(dev);
1174
1175        if (device_may_wakeup(dev))
1176                disable_irq_wake(idev->irq);
1177
1178        return intel_resume_device(dev);
1179}
1180#endif
1181
1182static const struct dev_pm_ops intel_pm_ops = {
1183        SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1184        SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1185};
1186
1187static int intel_probe(struct platform_device *pdev)
1188{
1189        struct intel_device *idev;
1190
1191        idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1192        if (!idev)
1193                return -ENOMEM;
1194
1195        mutex_init(&idev->hu_lock);
1196
1197        idev->pdev = pdev;
1198
1199        idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1200        if (IS_ERR(idev->reset)) {
1201                dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1202                return PTR_ERR(idev->reset);
1203        }
1204
1205        idev->irq = platform_get_irq(pdev, 0);
1206        if (idev->irq < 0) {
1207                struct gpio_desc *host_wake;
1208
1209                dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1210
1211                host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1212                if (IS_ERR(host_wake)) {
1213                        dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1214                        goto no_irq;
1215                }
1216
1217                idev->irq = gpiod_to_irq(host_wake);
1218                if (idev->irq < 0) {
1219                        dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1220                        goto no_irq;
1221                }
1222        }
1223
1224        /* Only enable wake-up/irq when controller is powered */
1225        device_set_wakeup_capable(&pdev->dev, true);
1226        device_wakeup_disable(&pdev->dev);
1227
1228no_irq:
1229        platform_set_drvdata(pdev, idev);
1230
1231        /* Place this instance on the device list */
1232        mutex_lock(&intel_device_list_lock);
1233        list_add_tail(&idev->list, &intel_device_list);
1234        mutex_unlock(&intel_device_list_lock);
1235
1236        dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1237                 desc_to_gpio(idev->reset), idev->irq);
1238
1239        return 0;
1240}
1241
1242static int intel_remove(struct platform_device *pdev)
1243{
1244        struct intel_device *idev = platform_get_drvdata(pdev);
1245
1246        device_wakeup_disable(&pdev->dev);
1247
1248        mutex_lock(&intel_device_list_lock);
1249        list_del(&idev->list);
1250        mutex_unlock(&intel_device_list_lock);
1251
1252        dev_info(&pdev->dev, "unregistered.\n");
1253
1254        return 0;
1255}
1256
1257static struct platform_driver intel_driver = {
1258        .probe = intel_probe,
1259        .remove = intel_remove,
1260        .driver = {
1261                .name = "hci_intel",
1262                .acpi_match_table = ACPI_PTR(intel_acpi_match),
1263                .pm = &intel_pm_ops,
1264        },
1265};
1266
1267int __init intel_init(void)
1268{
1269        platform_driver_register(&intel_driver);
1270
1271        return hci_uart_register_proto(&intel_proto);
1272}
1273
1274int __exit intel_deinit(void)
1275{
1276        platform_driver_unregister(&intel_driver);
1277
1278        return hci_uart_unregister_proto(&intel_proto);
1279}
1280