linux/drivers/crypto/qce/sha.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 and
   6 * only version 2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/device.h>
  15#include <linux/interrupt.h>
  16#include <crypto/internal/hash.h>
  17
  18#include "common.h"
  19#include "core.h"
  20#include "sha.h"
  21
  22/* crypto hw padding constant for first operation */
  23#define SHA_PADDING             64
  24#define SHA_PADDING_MASK        (SHA_PADDING - 1)
  25
  26static LIST_HEAD(ahash_algs);
  27
  28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  29        SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
  30};
  31
  32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  33        SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
  34        SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
  35};
  36
  37static void qce_ahash_done(void *data)
  38{
  39        struct crypto_async_request *async_req = data;
  40        struct ahash_request *req = ahash_request_cast(async_req);
  41        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  42        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  43        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  44        struct qce_device *qce = tmpl->qce;
  45        struct qce_result_dump *result = qce->dma.result_buf;
  46        unsigned int digestsize = crypto_ahash_digestsize(ahash);
  47        int error;
  48        u32 status;
  49
  50        error = qce_dma_terminate_all(&qce->dma);
  51        if (error)
  52                dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
  53
  54        dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
  55        dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
  56
  57        memcpy(rctx->digest, result->auth_iv, digestsize);
  58        if (req->result)
  59                memcpy(req->result, result->auth_iv, digestsize);
  60
  61        rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
  62        rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
  63
  64        error = qce_check_status(qce, &status);
  65        if (error < 0)
  66                dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
  67
  68        req->src = rctx->src_orig;
  69        req->nbytes = rctx->nbytes_orig;
  70        rctx->last_blk = false;
  71        rctx->first_blk = false;
  72
  73        qce->async_req_done(tmpl->qce, error);
  74}
  75
  76static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
  77{
  78        struct ahash_request *req = ahash_request_cast(async_req);
  79        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  80        struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
  81        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  82        struct qce_device *qce = tmpl->qce;
  83        unsigned long flags = rctx->flags;
  84        int ret;
  85
  86        if (IS_SHA_HMAC(flags)) {
  87                rctx->authkey = ctx->authkey;
  88                rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
  89        } else if (IS_CMAC(flags)) {
  90                rctx->authkey = ctx->authkey;
  91                rctx->authklen = AES_KEYSIZE_128;
  92        }
  93
  94        rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
  95        if (rctx->src_nents < 0) {
  96                dev_err(qce->dev, "Invalid numbers of src SG.\n");
  97                return rctx->src_nents;
  98        }
  99
 100        ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 101        if (ret < 0)
 102                return ret;
 103
 104        sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
 105
 106        ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 107        if (ret < 0)
 108                goto error_unmap_src;
 109
 110        ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
 111                               &rctx->result_sg, 1, qce_ahash_done, async_req);
 112        if (ret)
 113                goto error_unmap_dst;
 114
 115        qce_dma_issue_pending(&qce->dma);
 116
 117        ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
 118        if (ret)
 119                goto error_terminate;
 120
 121        return 0;
 122
 123error_terminate:
 124        qce_dma_terminate_all(&qce->dma);
 125error_unmap_dst:
 126        dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 127error_unmap_src:
 128        dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 129        return ret;
 130}
 131
 132static int qce_ahash_init(struct ahash_request *req)
 133{
 134        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 135        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 136        const u32 *std_iv = tmpl->std_iv;
 137
 138        memset(rctx, 0, sizeof(*rctx));
 139        rctx->first_blk = true;
 140        rctx->last_blk = false;
 141        rctx->flags = tmpl->alg_flags;
 142        memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
 143
 144        return 0;
 145}
 146
 147static int qce_ahash_export(struct ahash_request *req, void *out)
 148{
 149        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 150        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 151        unsigned long flags = rctx->flags;
 152        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 153        unsigned int blocksize =
 154                        crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 155
 156        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 157                struct sha1_state *out_state = out;
 158
 159                out_state->count = rctx->count;
 160                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 161                                       rctx->digest, digestsize);
 162                memcpy(out_state->buffer, rctx->buf, blocksize);
 163        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 164                struct sha256_state *out_state = out;
 165
 166                out_state->count = rctx->count;
 167                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 168                                       rctx->digest, digestsize);
 169                memcpy(out_state->buf, rctx->buf, blocksize);
 170        } else {
 171                return -EINVAL;
 172        }
 173
 174        return 0;
 175}
 176
 177static int qce_import_common(struct ahash_request *req, u64 in_count,
 178                             const u32 *state, const u8 *buffer, bool hmac)
 179{
 180        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 181        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 182        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 183        unsigned int blocksize;
 184        u64 count = in_count;
 185
 186        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 187        rctx->count = in_count;
 188        memcpy(rctx->buf, buffer, blocksize);
 189
 190        if (in_count <= blocksize) {
 191                rctx->first_blk = 1;
 192        } else {
 193                rctx->first_blk = 0;
 194                /*
 195                 * For HMAC, there is a hardware padding done when first block
 196                 * is set. Therefore the byte_count must be incremened by 64
 197                 * after the first block operation.
 198                 */
 199                if (hmac)
 200                        count += SHA_PADDING;
 201        }
 202
 203        rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
 204        rctx->byte_count[1] = (__force __be32)(count >> 32);
 205        qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
 206                               digestsize);
 207        rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
 208
 209        return 0;
 210}
 211
 212static int qce_ahash_import(struct ahash_request *req, const void *in)
 213{
 214        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 215        unsigned long flags = rctx->flags;
 216        bool hmac = IS_SHA_HMAC(flags);
 217        int ret = -EINVAL;
 218
 219        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 220                const struct sha1_state *state = in;
 221
 222                ret = qce_import_common(req, state->count, state->state,
 223                                        state->buffer, hmac);
 224        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 225                const struct sha256_state *state = in;
 226
 227                ret = qce_import_common(req, state->count, state->state,
 228                                        state->buf, hmac);
 229        }
 230
 231        return ret;
 232}
 233
 234static int qce_ahash_update(struct ahash_request *req)
 235{
 236        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 237        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 238        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 239        struct qce_device *qce = tmpl->qce;
 240        struct scatterlist *sg_last, *sg;
 241        unsigned int total, len;
 242        unsigned int hash_later;
 243        unsigned int nbytes;
 244        unsigned int blocksize;
 245
 246        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 247        rctx->count += req->nbytes;
 248
 249        /* check for buffer from previous updates and append it */
 250        total = req->nbytes + rctx->buflen;
 251
 252        if (total <= blocksize) {
 253                scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
 254                                         0, req->nbytes, 0);
 255                rctx->buflen += req->nbytes;
 256                return 0;
 257        }
 258
 259        /* save the original req structure fields */
 260        rctx->src_orig = req->src;
 261        rctx->nbytes_orig = req->nbytes;
 262
 263        /*
 264         * if we have data from previous update copy them on buffer. The old
 265         * data will be combined with current request bytes.
 266         */
 267        if (rctx->buflen)
 268                memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 269
 270        /* calculate how many bytes will be hashed later */
 271        hash_later = total % blocksize;
 272        if (hash_later) {
 273                unsigned int src_offset = req->nbytes - hash_later;
 274                scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
 275                                         hash_later, 0);
 276        }
 277
 278        /* here nbytes is multiple of blocksize */
 279        nbytes = total - hash_later;
 280
 281        len = rctx->buflen;
 282        sg = sg_last = req->src;
 283
 284        while (len < nbytes && sg) {
 285                if (len + sg_dma_len(sg) > nbytes)
 286                        break;
 287                len += sg_dma_len(sg);
 288                sg_last = sg;
 289                sg = sg_next(sg);
 290        }
 291
 292        if (!sg_last)
 293                return -EINVAL;
 294
 295        sg_mark_end(sg_last);
 296
 297        if (rctx->buflen) {
 298                sg_init_table(rctx->sg, 2);
 299                sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
 300                sg_chain(rctx->sg, 2, req->src);
 301                req->src = rctx->sg;
 302        }
 303
 304        req->nbytes = nbytes;
 305        rctx->buflen = hash_later;
 306
 307        return qce->async_req_enqueue(tmpl->qce, &req->base);
 308}
 309
 310static int qce_ahash_final(struct ahash_request *req)
 311{
 312        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 313        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 314        struct qce_device *qce = tmpl->qce;
 315
 316        if (!rctx->buflen)
 317                return 0;
 318
 319        rctx->last_blk = true;
 320
 321        rctx->src_orig = req->src;
 322        rctx->nbytes_orig = req->nbytes;
 323
 324        memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 325        sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
 326
 327        req->src = rctx->sg;
 328        req->nbytes = rctx->buflen;
 329
 330        return qce->async_req_enqueue(tmpl->qce, &req->base);
 331}
 332
 333static int qce_ahash_digest(struct ahash_request *req)
 334{
 335        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 336        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 337        struct qce_device *qce = tmpl->qce;
 338        int ret;
 339
 340        ret = qce_ahash_init(req);
 341        if (ret)
 342                return ret;
 343
 344        rctx->src_orig = req->src;
 345        rctx->nbytes_orig = req->nbytes;
 346        rctx->first_blk = true;
 347        rctx->last_blk = true;
 348
 349        return qce->async_req_enqueue(tmpl->qce, &req->base);
 350}
 351
 352struct qce_ahash_result {
 353        struct completion completion;
 354        int error;
 355};
 356
 357static void qce_digest_complete(struct crypto_async_request *req, int error)
 358{
 359        struct qce_ahash_result *result = req->data;
 360
 361        if (error == -EINPROGRESS)
 362                return;
 363
 364        result->error = error;
 365        complete(&result->completion);
 366}
 367
 368static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
 369                                 unsigned int keylen)
 370{
 371        unsigned int digestsize = crypto_ahash_digestsize(tfm);
 372        struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 373        struct qce_ahash_result result;
 374        struct ahash_request *req;
 375        struct scatterlist sg;
 376        unsigned int blocksize;
 377        struct crypto_ahash *ahash_tfm;
 378        u8 *buf;
 379        int ret;
 380        const char *alg_name;
 381
 382        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 383        memset(ctx->authkey, 0, sizeof(ctx->authkey));
 384
 385        if (keylen <= blocksize) {
 386                memcpy(ctx->authkey, key, keylen);
 387                return 0;
 388        }
 389
 390        if (digestsize == SHA1_DIGEST_SIZE)
 391                alg_name = "sha1-qce";
 392        else if (digestsize == SHA256_DIGEST_SIZE)
 393                alg_name = "sha256-qce";
 394        else
 395                return -EINVAL;
 396
 397        ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
 398                                       CRYPTO_ALG_TYPE_AHASH_MASK);
 399        if (IS_ERR(ahash_tfm))
 400                return PTR_ERR(ahash_tfm);
 401
 402        req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
 403        if (!req) {
 404                ret = -ENOMEM;
 405                goto err_free_ahash;
 406        }
 407
 408        init_completion(&result.completion);
 409        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 410                                   qce_digest_complete, &result);
 411        crypto_ahash_clear_flags(ahash_tfm, ~0);
 412
 413        buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
 414        if (!buf) {
 415                ret = -ENOMEM;
 416                goto err_free_req;
 417        }
 418
 419        memcpy(buf, key, keylen);
 420        sg_init_one(&sg, buf, keylen);
 421        ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
 422
 423        ret = crypto_ahash_digest(req);
 424        if (ret == -EINPROGRESS || ret == -EBUSY) {
 425                ret = wait_for_completion_interruptible(&result.completion);
 426                if (!ret)
 427                        ret = result.error;
 428        }
 429
 430        if (ret)
 431                crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 432
 433        kfree(buf);
 434err_free_req:
 435        ahash_request_free(req);
 436err_free_ahash:
 437        crypto_free_ahash(ahash_tfm);
 438        return ret;
 439}
 440
 441static int qce_ahash_cra_init(struct crypto_tfm *tfm)
 442{
 443        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 444        struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
 445
 446        crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
 447        memset(ctx, 0, sizeof(*ctx));
 448        return 0;
 449}
 450
 451struct qce_ahash_def {
 452        unsigned long flags;
 453        const char *name;
 454        const char *drv_name;
 455        unsigned int digestsize;
 456        unsigned int blocksize;
 457        unsigned int statesize;
 458        const u32 *std_iv;
 459};
 460
 461static const struct qce_ahash_def ahash_def[] = {
 462        {
 463                .flags          = QCE_HASH_SHA1,
 464                .name           = "sha1",
 465                .drv_name       = "sha1-qce",
 466                .digestsize     = SHA1_DIGEST_SIZE,
 467                .blocksize      = SHA1_BLOCK_SIZE,
 468                .statesize      = sizeof(struct sha1_state),
 469                .std_iv         = std_iv_sha1,
 470        },
 471        {
 472                .flags          = QCE_HASH_SHA256,
 473                .name           = "sha256",
 474                .drv_name       = "sha256-qce",
 475                .digestsize     = SHA256_DIGEST_SIZE,
 476                .blocksize      = SHA256_BLOCK_SIZE,
 477                .statesize      = sizeof(struct sha256_state),
 478                .std_iv         = std_iv_sha256,
 479        },
 480        {
 481                .flags          = QCE_HASH_SHA1_HMAC,
 482                .name           = "hmac(sha1)",
 483                .drv_name       = "hmac-sha1-qce",
 484                .digestsize     = SHA1_DIGEST_SIZE,
 485                .blocksize      = SHA1_BLOCK_SIZE,
 486                .statesize      = sizeof(struct sha1_state),
 487                .std_iv         = std_iv_sha1,
 488        },
 489        {
 490                .flags          = QCE_HASH_SHA256_HMAC,
 491                .name           = "hmac(sha256)",
 492                .drv_name       = "hmac-sha256-qce",
 493                .digestsize     = SHA256_DIGEST_SIZE,
 494                .blocksize      = SHA256_BLOCK_SIZE,
 495                .statesize      = sizeof(struct sha256_state),
 496                .std_iv         = std_iv_sha256,
 497        },
 498};
 499
 500static int qce_ahash_register_one(const struct qce_ahash_def *def,
 501                                  struct qce_device *qce)
 502{
 503        struct qce_alg_template *tmpl;
 504        struct ahash_alg *alg;
 505        struct crypto_alg *base;
 506        int ret;
 507
 508        tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
 509        if (!tmpl)
 510                return -ENOMEM;
 511
 512        tmpl->std_iv = def->std_iv;
 513
 514        alg = &tmpl->alg.ahash;
 515        alg->init = qce_ahash_init;
 516        alg->update = qce_ahash_update;
 517        alg->final = qce_ahash_final;
 518        alg->digest = qce_ahash_digest;
 519        alg->export = qce_ahash_export;
 520        alg->import = qce_ahash_import;
 521        if (IS_SHA_HMAC(def->flags))
 522                alg->setkey = qce_ahash_hmac_setkey;
 523        alg->halg.digestsize = def->digestsize;
 524        alg->halg.statesize = def->statesize;
 525
 526        base = &alg->halg.base;
 527        base->cra_blocksize = def->blocksize;
 528        base->cra_priority = 300;
 529        base->cra_flags = CRYPTO_ALG_ASYNC;
 530        base->cra_ctxsize = sizeof(struct qce_sha_ctx);
 531        base->cra_alignmask = 0;
 532        base->cra_module = THIS_MODULE;
 533        base->cra_init = qce_ahash_cra_init;
 534        INIT_LIST_HEAD(&base->cra_list);
 535
 536        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 537        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 538                 def->drv_name);
 539
 540        INIT_LIST_HEAD(&tmpl->entry);
 541        tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
 542        tmpl->alg_flags = def->flags;
 543        tmpl->qce = qce;
 544
 545        ret = crypto_register_ahash(alg);
 546        if (ret) {
 547                kfree(tmpl);
 548                dev_err(qce->dev, "%s registration failed\n", base->cra_name);
 549                return ret;
 550        }
 551
 552        list_add_tail(&tmpl->entry, &ahash_algs);
 553        dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
 554        return 0;
 555}
 556
 557static void qce_ahash_unregister(struct qce_device *qce)
 558{
 559        struct qce_alg_template *tmpl, *n;
 560
 561        list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
 562                crypto_unregister_ahash(&tmpl->alg.ahash);
 563                list_del(&tmpl->entry);
 564                kfree(tmpl);
 565        }
 566}
 567
 568static int qce_ahash_register(struct qce_device *qce)
 569{
 570        int ret, i;
 571
 572        for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
 573                ret = qce_ahash_register_one(&ahash_def[i], qce);
 574                if (ret)
 575                        goto err;
 576        }
 577
 578        return 0;
 579err:
 580        qce_ahash_unregister(qce);
 581        return ret;
 582}
 583
 584const struct qce_algo_ops ahash_ops = {
 585        .type = CRYPTO_ALG_TYPE_AHASH,
 586        .register_algs = qce_ahash_register,
 587        .unregister_algs = qce_ahash_unregister,
 588        .async_req_handle = qce_ahash_async_req_handle,
 589};
 590