linux/drivers/gpu/drm/msm/mdp/mdp5/mdp5_ctl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 and
   6 * only version 2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include "mdp5_kms.h"
  15#include "mdp5_ctl.h"
  16
  17/*
  18 * CTL - MDP Control Pool Manager
  19 *
  20 * Controls are shared between all display interfaces.
  21 *
  22 * They are intended to be used for data path configuration.
  23 * The top level register programming describes the complete data path for
  24 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
  25 *
  26 * Hardware capabilities determine the number of concurrent data paths
  27 *
  28 * In certain use cases (high-resolution dual pipe), one single CTL can be
  29 * shared across multiple CRTCs.
  30 */
  31
  32#define CTL_STAT_BUSY           0x1
  33#define CTL_STAT_BOOKED 0x2
  34
  35struct op_mode {
  36        struct mdp5_interface intf;
  37
  38        bool encoder_enabled;
  39        uint32_t start_mask;
  40};
  41
  42struct mdp5_ctl {
  43        struct mdp5_ctl_manager *ctlm;
  44
  45        u32 id;
  46        int lm;
  47
  48        /* CTL status bitmask */
  49        u32 status;
  50
  51        /* Operation Mode Configuration for the Pipeline */
  52        struct op_mode pipeline;
  53
  54        /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
  55        spinlock_t hw_lock;
  56        u32 reg_offset;
  57
  58        /* when do CTL registers need to be flushed? (mask of trigger bits) */
  59        u32 pending_ctl_trigger;
  60
  61        bool cursor_on;
  62
  63        /* True if the current CTL has FLUSH bits pending for single FLUSH. */
  64        bool flush_pending;
  65
  66        struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
  67};
  68
  69struct mdp5_ctl_manager {
  70        struct drm_device *dev;
  71
  72        /* number of CTL / Layer Mixers in this hw config: */
  73        u32 nlm;
  74        u32 nctl;
  75
  76        /* to filter out non-present bits in the current hardware config */
  77        u32 flush_hw_mask;
  78
  79        /* status for single FLUSH */
  80        bool single_flush_supported;
  81        u32 single_flush_pending_mask;
  82
  83        /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
  84        spinlock_t pool_lock;
  85        struct mdp5_ctl ctls[MAX_CTL];
  86};
  87
  88static inline
  89struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
  90{
  91        struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
  92
  93        return to_mdp5_kms(to_mdp_kms(priv->kms));
  94}
  95
  96static inline
  97void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
  98{
  99        struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
 100
 101        (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
 102        mdp5_write(mdp5_kms, reg, data);
 103}
 104
 105static inline
 106u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
 107{
 108        struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
 109
 110        (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
 111        return mdp5_read(mdp5_kms, reg);
 112}
 113
 114static void set_display_intf(struct mdp5_kms *mdp5_kms,
 115                struct mdp5_interface *intf)
 116{
 117        unsigned long flags;
 118        u32 intf_sel;
 119
 120        spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
 121        intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
 122
 123        switch (intf->num) {
 124        case 0:
 125                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
 126                intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
 127                break;
 128        case 1:
 129                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
 130                intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
 131                break;
 132        case 2:
 133                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
 134                intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
 135                break;
 136        case 3:
 137                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
 138                intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
 139                break;
 140        default:
 141                BUG();
 142                break;
 143        }
 144
 145        mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
 146        spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
 147}
 148
 149static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
 150{
 151        unsigned long flags;
 152        u32 ctl_op = 0;
 153
 154        if (!mdp5_cfg_intf_is_virtual(intf->type))
 155                ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
 156
 157        switch (intf->type) {
 158        case INTF_DSI:
 159                if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
 160                        ctl_op |= MDP5_CTL_OP_CMD_MODE;
 161                break;
 162
 163        case INTF_WB:
 164                if (intf->mode == MDP5_INTF_WB_MODE_LINE)
 165                        ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
 166                break;
 167
 168        default:
 169                break;
 170        }
 171
 172        spin_lock_irqsave(&ctl->hw_lock, flags);
 173        ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
 174        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 175}
 176
 177int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl,
 178                struct mdp5_interface *intf, int lm)
 179{
 180        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 181        struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
 182
 183        if (unlikely(WARN_ON(intf->num != ctl->pipeline.intf.num))) {
 184                dev_err(mdp5_kms->dev->dev,
 185                        "CTL %d is allocated by INTF %d, but used by INTF %d\n",
 186                        ctl->id, ctl->pipeline.intf.num, intf->num);
 187                return -EINVAL;
 188        }
 189
 190        ctl->lm = lm;
 191
 192        memcpy(&ctl->pipeline.intf, intf, sizeof(*intf));
 193
 194        ctl->pipeline.start_mask = mdp_ctl_flush_mask_lm(ctl->lm) |
 195                                   mdp_ctl_flush_mask_encoder(intf);
 196
 197        /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
 198        if (!mdp5_cfg_intf_is_virtual(intf->type))
 199                set_display_intf(mdp5_kms, intf);
 200
 201        set_ctl_op(ctl, intf);
 202
 203        return 0;
 204}
 205
 206static bool start_signal_needed(struct mdp5_ctl *ctl)
 207{
 208        struct op_mode *pipeline = &ctl->pipeline;
 209
 210        if (!pipeline->encoder_enabled || pipeline->start_mask != 0)
 211                return false;
 212
 213        switch (pipeline->intf.type) {
 214        case INTF_WB:
 215                return true;
 216        case INTF_DSI:
 217                return pipeline->intf.mode == MDP5_INTF_DSI_MODE_COMMAND;
 218        default:
 219                return false;
 220        }
 221}
 222
 223/*
 224 * send_start_signal() - Overlay Processor Start Signal
 225 *
 226 * For a given control operation (display pipeline), a START signal needs to be
 227 * executed in order to kick off operation and activate all layers.
 228 * e.g.: DSI command mode, Writeback
 229 */
 230static void send_start_signal(struct mdp5_ctl *ctl)
 231{
 232        unsigned long flags;
 233
 234        spin_lock_irqsave(&ctl->hw_lock, flags);
 235        ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
 236        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 237}
 238
 239static void refill_start_mask(struct mdp5_ctl *ctl)
 240{
 241        struct op_mode *pipeline = &ctl->pipeline;
 242        struct mdp5_interface *intf = &ctl->pipeline.intf;
 243
 244        pipeline->start_mask = mdp_ctl_flush_mask_lm(ctl->lm);
 245
 246        /*
 247         * Writeback encoder needs to program & flush
 248         * address registers for each page flip..
 249         */
 250        if (intf->type == INTF_WB)
 251                pipeline->start_mask |= mdp_ctl_flush_mask_encoder(intf);
 252}
 253
 254/**
 255 * mdp5_ctl_set_encoder_state() - set the encoder state
 256 *
 257 * @enable: true, when encoder is ready for data streaming; false, otherwise.
 258 *
 259 * Note:
 260 * This encoder state is needed to trigger START signal (data path kickoff).
 261 */
 262int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled)
 263{
 264        if (WARN_ON(!ctl))
 265                return -EINVAL;
 266
 267        ctl->pipeline.encoder_enabled = enabled;
 268        DBG("intf_%d: %s", ctl->pipeline.intf.num, enabled ? "on" : "off");
 269
 270        if (start_signal_needed(ctl)) {
 271                send_start_signal(ctl);
 272                refill_start_mask(ctl);
 273        }
 274
 275        return 0;
 276}
 277
 278/*
 279 * Note:
 280 * CTL registers need to be flushed after calling this function
 281 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
 282 */
 283int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable)
 284{
 285        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 286        unsigned long flags;
 287        u32 blend_cfg;
 288        int lm = ctl->lm;
 289
 290        if (unlikely(WARN_ON(lm < 0))) {
 291                dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d",
 292                                ctl->id, lm);
 293                return -EINVAL;
 294        }
 295
 296        spin_lock_irqsave(&ctl->hw_lock, flags);
 297
 298        blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm));
 299
 300        if (enable)
 301                blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
 302        else
 303                blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
 304
 305        ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg);
 306        ctl->cursor_on = enable;
 307
 308        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 309
 310        ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
 311
 312        return 0;
 313}
 314
 315static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
 316                enum mdp_mixer_stage_id stage)
 317{
 318        switch (pipe) {
 319        case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
 320        case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
 321        case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
 322        case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
 323        case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
 324        case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
 325        case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
 326        case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
 327        case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
 328        case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
 329        default:        return 0;
 330        }
 331}
 332
 333static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
 334                enum mdp_mixer_stage_id stage)
 335{
 336        if (stage < STAGE6)
 337                return 0;
 338
 339        switch (pipe) {
 340        case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
 341        case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
 342        case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
 343        case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
 344        case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
 345        case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
 346        case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
 347        case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
 348        case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
 349        case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
 350        default:        return 0;
 351        }
 352}
 353
 354int mdp5_ctl_blend(struct mdp5_ctl *ctl, u8 *stage, u32 stage_cnt,
 355        u32 ctl_blend_op_flags)
 356{
 357        unsigned long flags;
 358        u32 blend_cfg = 0, blend_ext_cfg = 0;
 359        int i, start_stage;
 360
 361        if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
 362                start_stage = STAGE0;
 363                blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
 364        } else {
 365                start_stage = STAGE_BASE;
 366        }
 367
 368        for (i = start_stage; i < start_stage + stage_cnt; i++) {
 369                blend_cfg |= mdp_ctl_blend_mask(stage[i], i);
 370                blend_ext_cfg |= mdp_ctl_blend_ext_mask(stage[i], i);
 371        }
 372
 373        spin_lock_irqsave(&ctl->hw_lock, flags);
 374        if (ctl->cursor_on)
 375                blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
 376
 377        ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, ctl->lm), blend_cfg);
 378        ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, ctl->lm), blend_ext_cfg);
 379        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 380
 381        ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(ctl->lm);
 382
 383        DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", ctl->lm,
 384                blend_cfg, blend_ext_cfg);
 385
 386        return 0;
 387}
 388
 389u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
 390{
 391        if (intf->type == INTF_WB)
 392                return MDP5_CTL_FLUSH_WB;
 393
 394        switch (intf->num) {
 395        case 0: return MDP5_CTL_FLUSH_TIMING_0;
 396        case 1: return MDP5_CTL_FLUSH_TIMING_1;
 397        case 2: return MDP5_CTL_FLUSH_TIMING_2;
 398        case 3: return MDP5_CTL_FLUSH_TIMING_3;
 399        default: return 0;
 400        }
 401}
 402
 403u32 mdp_ctl_flush_mask_cursor(int cursor_id)
 404{
 405        switch (cursor_id) {
 406        case 0: return MDP5_CTL_FLUSH_CURSOR_0;
 407        case 1: return MDP5_CTL_FLUSH_CURSOR_1;
 408        default: return 0;
 409        }
 410}
 411
 412u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
 413{
 414        switch (pipe) {
 415        case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
 416        case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
 417        case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
 418        case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
 419        case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
 420        case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
 421        case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
 422        case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
 423        case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
 424        case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
 425        default:        return 0;
 426        }
 427}
 428
 429u32 mdp_ctl_flush_mask_lm(int lm)
 430{
 431        switch (lm) {
 432        case 0:  return MDP5_CTL_FLUSH_LM0;
 433        case 1:  return MDP5_CTL_FLUSH_LM1;
 434        case 2:  return MDP5_CTL_FLUSH_LM2;
 435        case 5:  return MDP5_CTL_FLUSH_LM5;
 436        default: return 0;
 437        }
 438}
 439
 440static u32 fix_sw_flush(struct mdp5_ctl *ctl, u32 flush_mask)
 441{
 442        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 443        u32 sw_mask = 0;
 444#define BIT_NEEDS_SW_FIX(bit) \
 445        (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
 446
 447        /* for some targets, cursor bit is the same as LM bit */
 448        if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
 449                sw_mask |= mdp_ctl_flush_mask_lm(ctl->lm);
 450
 451        return sw_mask;
 452}
 453
 454static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
 455                u32 *flush_id)
 456{
 457        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 458
 459        if (ctl->pair) {
 460                DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
 461                ctl->flush_pending = true;
 462                ctl_mgr->single_flush_pending_mask |= (*flush_mask);
 463                *flush_mask = 0;
 464
 465                if (ctl->pair->flush_pending) {
 466                        *flush_id = min_t(u32, ctl->id, ctl->pair->id);
 467                        *flush_mask = ctl_mgr->single_flush_pending_mask;
 468
 469                        ctl->flush_pending = false;
 470                        ctl->pair->flush_pending = false;
 471                        ctl_mgr->single_flush_pending_mask = 0;
 472
 473                        DBG("Single FLUSH mask %x,ID %d", *flush_mask,
 474                                *flush_id);
 475                }
 476        }
 477}
 478
 479/**
 480 * mdp5_ctl_commit() - Register Flush
 481 *
 482 * The flush register is used to indicate several registers are all
 483 * programmed, and are safe to update to the back copy of the double
 484 * buffered registers.
 485 *
 486 * Some registers FLUSH bits are shared when the hardware does not have
 487 * dedicated bits for them; handling these is the job of fix_sw_flush().
 488 *
 489 * CTL registers need to be flushed in some circumstances; if that is the
 490 * case, some trigger bits will be present in both flush mask and
 491 * ctl->pending_ctl_trigger.
 492 *
 493 * Return H/W flushed bit mask.
 494 */
 495u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask)
 496{
 497        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 498        struct op_mode *pipeline = &ctl->pipeline;
 499        unsigned long flags;
 500        u32 flush_id = ctl->id;
 501        u32 curr_ctl_flush_mask;
 502
 503        pipeline->start_mask &= ~flush_mask;
 504
 505        VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
 506                        pipeline->start_mask, ctl->pending_ctl_trigger);
 507
 508        if (ctl->pending_ctl_trigger & flush_mask) {
 509                flush_mask |= MDP5_CTL_FLUSH_CTL;
 510                ctl->pending_ctl_trigger = 0;
 511        }
 512
 513        flush_mask |= fix_sw_flush(ctl, flush_mask);
 514
 515        flush_mask &= ctl_mgr->flush_hw_mask;
 516
 517        curr_ctl_flush_mask = flush_mask;
 518
 519        fix_for_single_flush(ctl, &flush_mask, &flush_id);
 520
 521        if (flush_mask) {
 522                spin_lock_irqsave(&ctl->hw_lock, flags);
 523                ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
 524                spin_unlock_irqrestore(&ctl->hw_lock, flags);
 525        }
 526
 527        if (start_signal_needed(ctl)) {
 528                send_start_signal(ctl);
 529                refill_start_mask(ctl);
 530        }
 531
 532        return curr_ctl_flush_mask;
 533}
 534
 535u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
 536{
 537        return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
 538}
 539
 540int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
 541{
 542        return WARN_ON(!ctl) ? -EINVAL : ctl->id;
 543}
 544
 545/*
 546 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
 547 */
 548int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
 549{
 550        struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
 551        struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
 552
 553        /* do nothing silently if hw doesn't support */
 554        if (!ctl_mgr->single_flush_supported)
 555                return 0;
 556
 557        if (!enable) {
 558                ctlx->pair = NULL;
 559                ctly->pair = NULL;
 560                mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
 561                return 0;
 562        } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
 563                dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
 564                return -EINVAL;
 565        } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
 566                dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
 567                return -EINVAL;
 568        }
 569
 570        ctlx->pair = ctly;
 571        ctly->pair = ctlx;
 572
 573        mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
 574                   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
 575
 576        return 0;
 577}
 578
 579/*
 580 * mdp5_ctl_request() - CTL allocation
 581 *
 582 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
 583 * If no CTL is available in preferred category, allocate from the other one.
 584 *
 585 * @return fail if no CTL is available.
 586 */
 587struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
 588                int intf_num)
 589{
 590        struct mdp5_ctl *ctl = NULL;
 591        const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
 592        u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
 593        unsigned long flags;
 594        int c;
 595
 596        spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
 597
 598        /* search the preferred */
 599        for (c = 0; c < ctl_mgr->nctl; c++)
 600                if ((ctl_mgr->ctls[c].status & checkm) == match)
 601                        goto found;
 602
 603        dev_warn(ctl_mgr->dev->dev,
 604                "fall back to the other CTL category for INTF %d!\n", intf_num);
 605
 606        match ^= CTL_STAT_BOOKED;
 607        for (c = 0; c < ctl_mgr->nctl; c++)
 608                if ((ctl_mgr->ctls[c].status & checkm) == match)
 609                        goto found;
 610
 611        dev_err(ctl_mgr->dev->dev, "No more CTL available!");
 612        goto unlock;
 613
 614found:
 615        ctl = &ctl_mgr->ctls[c];
 616        ctl->pipeline.intf.num = intf_num;
 617        ctl->lm = -1;
 618        ctl->status |= CTL_STAT_BUSY;
 619        ctl->pending_ctl_trigger = 0;
 620        DBG("CTL %d allocated", ctl->id);
 621
 622unlock:
 623        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 624        return ctl;
 625}
 626
 627void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
 628{
 629        unsigned long flags;
 630        int c;
 631
 632        for (c = 0; c < ctl_mgr->nctl; c++) {
 633                struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
 634
 635                spin_lock_irqsave(&ctl->hw_lock, flags);
 636                ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
 637                spin_unlock_irqrestore(&ctl->hw_lock, flags);
 638        }
 639}
 640
 641void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
 642{
 643        kfree(ctl_mgr);
 644}
 645
 646struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
 647                void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
 648{
 649        struct mdp5_ctl_manager *ctl_mgr;
 650        const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
 651        int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
 652        const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
 653        unsigned long flags;
 654        int c, ret;
 655
 656        ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
 657        if (!ctl_mgr) {
 658                dev_err(dev->dev, "failed to allocate CTL manager\n");
 659                ret = -ENOMEM;
 660                goto fail;
 661        }
 662
 663        if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
 664                dev_err(dev->dev, "Increase static pool size to at least %d\n",
 665                                ctl_cfg->count);
 666                ret = -ENOSPC;
 667                goto fail;
 668        }
 669
 670        /* initialize the CTL manager: */
 671        ctl_mgr->dev = dev;
 672        ctl_mgr->nlm = hw_cfg->lm.count;
 673        ctl_mgr->nctl = ctl_cfg->count;
 674        ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
 675        spin_lock_init(&ctl_mgr->pool_lock);
 676
 677        /* initialize each CTL of the pool: */
 678        spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
 679        for (c = 0; c < ctl_mgr->nctl; c++) {
 680                struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
 681
 682                if (WARN_ON(!ctl_cfg->base[c])) {
 683                        dev_err(dev->dev, "CTL_%d: base is null!\n", c);
 684                        ret = -EINVAL;
 685                        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 686                        goto fail;
 687                }
 688                ctl->ctlm = ctl_mgr;
 689                ctl->id = c;
 690                ctl->reg_offset = ctl_cfg->base[c];
 691                ctl->status = 0;
 692                spin_lock_init(&ctl->hw_lock);
 693        }
 694
 695        /*
 696         * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
 697         * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
 698         * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
 699         * Single FLUSH is supported from hw rev v3.0.
 700         */
 701        if (rev >= 3) {
 702                ctl_mgr->single_flush_supported = true;
 703                /* Reserve CTL0/1 for INTF1/2 */
 704                ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
 705                ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
 706        }
 707        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 708        DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
 709
 710        return ctl_mgr;
 711
 712fail:
 713        if (ctl_mgr)
 714                mdp5_ctlm_destroy(ctl_mgr);
 715
 716        return ERR_PTR(ret);
 717}
 718