linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  20 * DEALINGS IN THE SOFTWARE.
  21 */
  22
  23/*
  24 * GK20A does not have dedicated video memory, and to accurately represent this
  25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
  26 * implementation must be done directly on top of system memory, while
  27 * preserving coherency for read and write operations.
  28 *
  29 * Instmem can be allocated through two means:
  30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
  31 *    pages contiguous to the GPU. This is the preferred way.
  32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
  33 *    contiguous memory.
  34 *
  35 * In both cases CPU read and writes are performed by creating a write-combined
  36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
  37 * be conservative we do this every time we acquire or release an instobj, but
  38 * ideally L2 management should be handled at a higher level.
  39 *
  40 * To improve performance, CPU mappings are not removed upon instobj release.
  41 * Instead they are placed into a LRU list to be recycled when the mapped space
  42 * goes beyond a certain threshold. At the moment this limit is 1MB.
  43 */
  44#include "priv.h"
  45
  46#include <core/memory.h>
  47#include <core/mm.h>
  48#include <core/tegra.h>
  49#include <subdev/fb.h>
  50#include <subdev/ltc.h>
  51
  52struct gk20a_instobj {
  53        struct nvkm_memory memory;
  54        struct nvkm_mem mem;
  55        struct gk20a_instmem *imem;
  56
  57        /* CPU mapping */
  58        u32 *vaddr;
  59};
  60#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
  61
  62/*
  63 * Used for objects allocated using the DMA API
  64 */
  65struct gk20a_instobj_dma {
  66        struct gk20a_instobj base;
  67
  68        dma_addr_t handle;
  69        struct nvkm_mm_node r;
  70};
  71#define gk20a_instobj_dma(p) \
  72        container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
  73
  74/*
  75 * Used for objects flattened using the IOMMU API
  76 */
  77struct gk20a_instobj_iommu {
  78        struct gk20a_instobj base;
  79
  80        /* to link into gk20a_instmem::vaddr_lru */
  81        struct list_head vaddr_node;
  82        /* how many clients are using vaddr? */
  83        u32 use_cpt;
  84
  85        /* will point to the higher half of pages */
  86        dma_addr_t *dma_addrs;
  87        /* array of base.mem->size pages (+ dma_addr_ts) */
  88        struct page *pages[];
  89};
  90#define gk20a_instobj_iommu(p) \
  91        container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
  92
  93struct gk20a_instmem {
  94        struct nvkm_instmem base;
  95
  96        /* protects vaddr_* and gk20a_instobj::vaddr* */
  97        spinlock_t lock;
  98
  99        /* CPU mappings LRU */
 100        unsigned int vaddr_use;
 101        unsigned int vaddr_max;
 102        struct list_head vaddr_lru;
 103
 104        /* Only used if IOMMU if present */
 105        struct mutex *mm_mutex;
 106        struct nvkm_mm *mm;
 107        struct iommu_domain *domain;
 108        unsigned long iommu_pgshift;
 109        u16 iommu_bit;
 110
 111        /* Only used by DMA API */
 112        unsigned long attrs;
 113};
 114#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
 115
 116static enum nvkm_memory_target
 117gk20a_instobj_target(struct nvkm_memory *memory)
 118{
 119        return NVKM_MEM_TARGET_HOST;
 120}
 121
 122static u64
 123gk20a_instobj_addr(struct nvkm_memory *memory)
 124{
 125        return gk20a_instobj(memory)->mem.offset;
 126}
 127
 128static u64
 129gk20a_instobj_size(struct nvkm_memory *memory)
 130{
 131        return (u64)gk20a_instobj(memory)->mem.size << 12;
 132}
 133
 134/*
 135 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
 136 */
 137static void
 138gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
 139{
 140        struct gk20a_instmem *imem = obj->base.imem;
 141        /* there should not be any user left... */
 142        WARN_ON(obj->use_cpt);
 143        list_del(&obj->vaddr_node);
 144        vunmap(obj->base.vaddr);
 145        obj->base.vaddr = NULL;
 146        imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
 147        nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
 148                   imem->vaddr_max);
 149}
 150
 151/*
 152 * Must be called while holding gk20a_instmem::lock
 153 */
 154static void
 155gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
 156{
 157        while (imem->vaddr_use + size > imem->vaddr_max) {
 158                /* no candidate that can be unmapped, abort... */
 159                if (list_empty(&imem->vaddr_lru))
 160                        break;
 161
 162                gk20a_instobj_iommu_recycle_vaddr(
 163                                list_first_entry(&imem->vaddr_lru,
 164                                struct gk20a_instobj_iommu, vaddr_node));
 165        }
 166}
 167
 168static void __iomem *
 169gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
 170{
 171        struct gk20a_instobj *node = gk20a_instobj(memory);
 172        struct gk20a_instmem *imem = node->imem;
 173        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 174
 175        nvkm_ltc_flush(ltc);
 176
 177        return node->vaddr;
 178}
 179
 180static void __iomem *
 181gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
 182{
 183        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 184        struct gk20a_instmem *imem = node->base.imem;
 185        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 186        const u64 size = nvkm_memory_size(memory);
 187        unsigned long flags;
 188
 189        nvkm_ltc_flush(ltc);
 190
 191        spin_lock_irqsave(&imem->lock, flags);
 192
 193        if (node->base.vaddr) {
 194                if (!node->use_cpt) {
 195                        /* remove from LRU list since mapping in use again */
 196                        list_del(&node->vaddr_node);
 197                }
 198                goto out;
 199        }
 200
 201        /* try to free some address space if we reached the limit */
 202        gk20a_instmem_vaddr_gc(imem, size);
 203
 204        /* map the pages */
 205        node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
 206                                pgprot_writecombine(PAGE_KERNEL));
 207        if (!node->base.vaddr) {
 208                nvkm_error(&imem->base.subdev, "cannot map instobj - "
 209                           "this is not going to end well...\n");
 210                goto out;
 211        }
 212
 213        imem->vaddr_use += size;
 214        nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
 215                   imem->vaddr_use, imem->vaddr_max);
 216
 217out:
 218        node->use_cpt++;
 219        spin_unlock_irqrestore(&imem->lock, flags);
 220
 221        return node->base.vaddr;
 222}
 223
 224static void
 225gk20a_instobj_release_dma(struct nvkm_memory *memory)
 226{
 227        struct gk20a_instobj *node = gk20a_instobj(memory);
 228        struct gk20a_instmem *imem = node->imem;
 229        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 230
 231        /* in case we got a write-combined mapping */
 232        wmb();
 233        nvkm_ltc_invalidate(ltc);
 234}
 235
 236static void
 237gk20a_instobj_release_iommu(struct nvkm_memory *memory)
 238{
 239        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 240        struct gk20a_instmem *imem = node->base.imem;
 241        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 242        unsigned long flags;
 243
 244        spin_lock_irqsave(&imem->lock, flags);
 245
 246        /* we should at least have one user to release... */
 247        if (WARN_ON(node->use_cpt == 0))
 248                goto out;
 249
 250        /* add unused objs to the LRU list to recycle their mapping */
 251        if (--node->use_cpt == 0)
 252                list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
 253
 254out:
 255        spin_unlock_irqrestore(&imem->lock, flags);
 256
 257        wmb();
 258        nvkm_ltc_invalidate(ltc);
 259}
 260
 261static u32
 262gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
 263{
 264        struct gk20a_instobj *node = gk20a_instobj(memory);
 265
 266        return node->vaddr[offset / 4];
 267}
 268
 269static void
 270gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
 271{
 272        struct gk20a_instobj *node = gk20a_instobj(memory);
 273
 274        node->vaddr[offset / 4] = data;
 275}
 276
 277static void
 278gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
 279{
 280        struct gk20a_instobj *node = gk20a_instobj(memory);
 281
 282        nvkm_vm_map_at(vma, offset, &node->mem);
 283}
 284
 285static void *
 286gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
 287{
 288        struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
 289        struct gk20a_instmem *imem = node->base.imem;
 290        struct device *dev = imem->base.subdev.device->dev;
 291
 292        if (unlikely(!node->base.vaddr))
 293                goto out;
 294
 295        dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr,
 296                       node->handle, imem->attrs);
 297
 298out:
 299        return node;
 300}
 301
 302static void *
 303gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
 304{
 305        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 306        struct gk20a_instmem *imem = node->base.imem;
 307        struct device *dev = imem->base.subdev.device->dev;
 308        struct nvkm_mm_node *r;
 309        unsigned long flags;
 310        int i;
 311
 312        if (unlikely(list_empty(&node->base.mem.regions)))
 313                goto out;
 314
 315        spin_lock_irqsave(&imem->lock, flags);
 316
 317        /* vaddr has already been recycled */
 318        if (node->base.vaddr)
 319                gk20a_instobj_iommu_recycle_vaddr(node);
 320
 321        spin_unlock_irqrestore(&imem->lock, flags);
 322
 323        r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
 324                             rl_entry);
 325
 326        /* clear IOMMU bit to unmap pages */
 327        r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
 328
 329        /* Unmap pages from GPU address space and free them */
 330        for (i = 0; i < node->base.mem.size; i++) {
 331                iommu_unmap(imem->domain,
 332                            (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
 333                dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
 334                               DMA_BIDIRECTIONAL);
 335                __free_page(node->pages[i]);
 336        }
 337
 338        /* Release area from GPU address space */
 339        mutex_lock(imem->mm_mutex);
 340        nvkm_mm_free(imem->mm, &r);
 341        mutex_unlock(imem->mm_mutex);
 342
 343out:
 344        return node;
 345}
 346
 347static const struct nvkm_memory_func
 348gk20a_instobj_func_dma = {
 349        .dtor = gk20a_instobj_dtor_dma,
 350        .target = gk20a_instobj_target,
 351        .addr = gk20a_instobj_addr,
 352        .size = gk20a_instobj_size,
 353        .acquire = gk20a_instobj_acquire_dma,
 354        .release = gk20a_instobj_release_dma,
 355        .rd32 = gk20a_instobj_rd32,
 356        .wr32 = gk20a_instobj_wr32,
 357        .map = gk20a_instobj_map,
 358};
 359
 360static const struct nvkm_memory_func
 361gk20a_instobj_func_iommu = {
 362        .dtor = gk20a_instobj_dtor_iommu,
 363        .target = gk20a_instobj_target,
 364        .addr = gk20a_instobj_addr,
 365        .size = gk20a_instobj_size,
 366        .acquire = gk20a_instobj_acquire_iommu,
 367        .release = gk20a_instobj_release_iommu,
 368        .rd32 = gk20a_instobj_rd32,
 369        .wr32 = gk20a_instobj_wr32,
 370        .map = gk20a_instobj_map,
 371};
 372
 373static int
 374gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
 375                       struct gk20a_instobj **_node)
 376{
 377        struct gk20a_instobj_dma *node;
 378        struct nvkm_subdev *subdev = &imem->base.subdev;
 379        struct device *dev = subdev->device->dev;
 380
 381        if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
 382                return -ENOMEM;
 383        *_node = &node->base;
 384
 385        nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
 386
 387        node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
 388                                           &node->handle, GFP_KERNEL,
 389                                           imem->attrs);
 390        if (!node->base.vaddr) {
 391                nvkm_error(subdev, "cannot allocate DMA memory\n");
 392                return -ENOMEM;
 393        }
 394
 395        /* alignment check */
 396        if (unlikely(node->handle & (align - 1)))
 397                nvkm_warn(subdev,
 398                          "memory not aligned as requested: %pad (0x%x)\n",
 399                          &node->handle, align);
 400
 401        /* present memory for being mapped using small pages */
 402        node->r.type = 12;
 403        node->r.offset = node->handle >> 12;
 404        node->r.length = (npages << PAGE_SHIFT) >> 12;
 405
 406        node->base.mem.offset = node->handle;
 407
 408        INIT_LIST_HEAD(&node->base.mem.regions);
 409        list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
 410
 411        return 0;
 412}
 413
 414static int
 415gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
 416                         struct gk20a_instobj **_node)
 417{
 418        struct gk20a_instobj_iommu *node;
 419        struct nvkm_subdev *subdev = &imem->base.subdev;
 420        struct device *dev = subdev->device->dev;
 421        struct nvkm_mm_node *r;
 422        int ret;
 423        int i;
 424
 425        /*
 426         * despite their variable size, instmem allocations are small enough
 427         * (< 1 page) to be handled by kzalloc
 428         */
 429        if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
 430                             sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
 431                return -ENOMEM;
 432        *_node = &node->base;
 433        node->dma_addrs = (void *)(node->pages + npages);
 434
 435        nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
 436
 437        /* Allocate backing memory */
 438        for (i = 0; i < npages; i++) {
 439                struct page *p = alloc_page(GFP_KERNEL);
 440                dma_addr_t dma_adr;
 441
 442                if (p == NULL) {
 443                        ret = -ENOMEM;
 444                        goto free_pages;
 445                }
 446                node->pages[i] = p;
 447                dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
 448                if (dma_mapping_error(dev, dma_adr)) {
 449                        nvkm_error(subdev, "DMA mapping error!\n");
 450                        ret = -ENOMEM;
 451                        goto free_pages;
 452                }
 453                node->dma_addrs[i] = dma_adr;
 454        }
 455
 456        mutex_lock(imem->mm_mutex);
 457        /* Reserve area from GPU address space */
 458        ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
 459                           align >> imem->iommu_pgshift, &r);
 460        mutex_unlock(imem->mm_mutex);
 461        if (ret) {
 462                nvkm_error(subdev, "IOMMU space is full!\n");
 463                goto free_pages;
 464        }
 465
 466        /* Map into GPU address space */
 467        for (i = 0; i < npages; i++) {
 468                u32 offset = (r->offset + i) << imem->iommu_pgshift;
 469
 470                ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
 471                                PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
 472                if (ret < 0) {
 473                        nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
 474
 475                        while (i-- > 0) {
 476                                offset -= PAGE_SIZE;
 477                                iommu_unmap(imem->domain, offset, PAGE_SIZE);
 478                        }
 479                        goto release_area;
 480                }
 481        }
 482
 483        /* IOMMU bit tells that an address is to be resolved through the IOMMU */
 484        r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
 485
 486        node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
 487
 488        INIT_LIST_HEAD(&node->base.mem.regions);
 489        list_add_tail(&r->rl_entry, &node->base.mem.regions);
 490
 491        return 0;
 492
 493release_area:
 494        mutex_lock(imem->mm_mutex);
 495        nvkm_mm_free(imem->mm, &r);
 496        mutex_unlock(imem->mm_mutex);
 497
 498free_pages:
 499        for (i = 0; i < npages && node->pages[i] != NULL; i++) {
 500                dma_addr_t dma_addr = node->dma_addrs[i];
 501                if (dma_addr)
 502                        dma_unmap_page(dev, dma_addr, PAGE_SIZE,
 503                                       DMA_BIDIRECTIONAL);
 504                __free_page(node->pages[i]);
 505        }
 506
 507        return ret;
 508}
 509
 510static int
 511gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
 512                  struct nvkm_memory **pmemory)
 513{
 514        struct gk20a_instmem *imem = gk20a_instmem(base);
 515        struct nvkm_subdev *subdev = &imem->base.subdev;
 516        struct gk20a_instobj *node = NULL;
 517        int ret;
 518
 519        nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
 520                   imem->domain ? "IOMMU" : "DMA", size, align);
 521
 522        /* Round size and align to page bounds */
 523        size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
 524        align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
 525
 526        if (imem->domain)
 527                ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
 528                                               align, &node);
 529        else
 530                ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
 531                                             align, &node);
 532        *pmemory = node ? &node->memory : NULL;
 533        if (ret)
 534                return ret;
 535
 536        node->imem = imem;
 537
 538        /* present memory for being mapped using small pages */
 539        node->mem.size = size >> 12;
 540        node->mem.memtype = 0;
 541        node->mem.page_shift = 12;
 542
 543        nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
 544                   size, align, node->mem.offset);
 545
 546        return 0;
 547}
 548
 549static void *
 550gk20a_instmem_dtor(struct nvkm_instmem *base)
 551{
 552        struct gk20a_instmem *imem = gk20a_instmem(base);
 553
 554        /* perform some sanity checks... */
 555        if (!list_empty(&imem->vaddr_lru))
 556                nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
 557
 558        if (imem->vaddr_use != 0)
 559                nvkm_warn(&base->subdev, "instobj vmap area not empty! "
 560                          "0x%x bytes still mapped\n", imem->vaddr_use);
 561
 562        return imem;
 563}
 564
 565static const struct nvkm_instmem_func
 566gk20a_instmem = {
 567        .dtor = gk20a_instmem_dtor,
 568        .memory_new = gk20a_instobj_new,
 569        .persistent = true,
 570        .zero = false,
 571};
 572
 573int
 574gk20a_instmem_new(struct nvkm_device *device, int index,
 575                  struct nvkm_instmem **pimem)
 576{
 577        struct nvkm_device_tegra *tdev = device->func->tegra(device);
 578        struct gk20a_instmem *imem;
 579
 580        if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
 581                return -ENOMEM;
 582        nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
 583        spin_lock_init(&imem->lock);
 584        *pimem = &imem->base;
 585
 586        /* do not allow more than 1MB of CPU-mapped instmem */
 587        imem->vaddr_use = 0;
 588        imem->vaddr_max = 0x100000;
 589        INIT_LIST_HEAD(&imem->vaddr_lru);
 590
 591        if (tdev->iommu.domain) {
 592                imem->mm_mutex = &tdev->iommu.mutex;
 593                imem->mm = &tdev->iommu.mm;
 594                imem->domain = tdev->iommu.domain;
 595                imem->iommu_pgshift = tdev->iommu.pgshift;
 596                imem->iommu_bit = tdev->func->iommu_bit;
 597
 598                nvkm_info(&imem->base.subdev, "using IOMMU\n");
 599        } else {
 600                imem->attrs = DMA_ATTR_NON_CONSISTENT |
 601                              DMA_ATTR_WEAK_ORDERING |
 602                              DMA_ATTR_WRITE_COMBINE;
 603
 604                nvkm_info(&imem->base.subdev, "using DMA API\n");
 605        }
 606
 607        return 0;
 608}
 609