linux/drivers/i2c/busses/i2c-at91.c
<<
>>
Prefs
   1/*
   2 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
   3 *
   4 *  Copyright (C) 2011 Weinmann Medical GmbH
   5 *  Author: Nikolaus Voss <n.voss@weinmann.de>
   6 *
   7 *  Evolved from original work by:
   8 *  Copyright (C) 2004 Rick Bronson
   9 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
  10 *
  11 *  Borrowed heavily from original work by:
  12 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or
  17 *  (at your option) any later version.
  18 */
  19
  20#include <linux/clk.h>
  21#include <linux/completion.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/err.h>
  25#include <linux/i2c.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/module.h>
  29#include <linux/of.h>
  30#include <linux/of_device.h>
  31#include <linux/platform_device.h>
  32#include <linux/slab.h>
  33#include <linux/platform_data/dma-atmel.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/pinctrl/consumer.h>
  36
  37#define DEFAULT_TWI_CLK_HZ              100000          /* max 400 Kbits/s */
  38#define AT91_I2C_TIMEOUT        msecs_to_jiffies(100)   /* transfer timeout */
  39#define AT91_I2C_DMA_THRESHOLD  8                       /* enable DMA if transfer size is bigger than this threshold */
  40#define AUTOSUSPEND_TIMEOUT             2000
  41#define AT91_I2C_MAX_ALT_CMD_DATA_SIZE  256
  42
  43/* AT91 TWI register definitions */
  44#define AT91_TWI_CR             0x0000  /* Control Register */
  45#define AT91_TWI_START          BIT(0)  /* Send a Start Condition */
  46#define AT91_TWI_STOP           BIT(1)  /* Send a Stop Condition */
  47#define AT91_TWI_MSEN           BIT(2)  /* Master Transfer Enable */
  48#define AT91_TWI_MSDIS          BIT(3)  /* Master Transfer Disable */
  49#define AT91_TWI_SVEN           BIT(4)  /* Slave Transfer Enable */
  50#define AT91_TWI_SVDIS          BIT(5)  /* Slave Transfer Disable */
  51#define AT91_TWI_QUICK          BIT(6)  /* SMBus quick command */
  52#define AT91_TWI_SWRST          BIT(7)  /* Software Reset */
  53#define AT91_TWI_ACMEN          BIT(16) /* Alternative Command Mode Enable */
  54#define AT91_TWI_ACMDIS         BIT(17) /* Alternative Command Mode Disable */
  55#define AT91_TWI_THRCLR         BIT(24) /* Transmit Holding Register Clear */
  56#define AT91_TWI_RHRCLR         BIT(25) /* Receive Holding Register Clear */
  57#define AT91_TWI_LOCKCLR        BIT(26) /* Lock Clear */
  58#define AT91_TWI_FIFOEN         BIT(28) /* FIFO Enable */
  59#define AT91_TWI_FIFODIS        BIT(29) /* FIFO Disable */
  60
  61#define AT91_TWI_MMR            0x0004  /* Master Mode Register */
  62#define AT91_TWI_IADRSZ_1       0x0100  /* Internal Device Address Size */
  63#define AT91_TWI_MREAD          BIT(12) /* Master Read Direction */
  64
  65#define AT91_TWI_IADR           0x000c  /* Internal Address Register */
  66
  67#define AT91_TWI_CWGR           0x0010  /* Clock Waveform Generator Reg */
  68#define AT91_TWI_CWGR_HOLD_MAX  0x1f
  69#define AT91_TWI_CWGR_HOLD(x)   (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
  70
  71#define AT91_TWI_SR             0x0020  /* Status Register */
  72#define AT91_TWI_TXCOMP         BIT(0)  /* Transmission Complete */
  73#define AT91_TWI_RXRDY          BIT(1)  /* Receive Holding Register Ready */
  74#define AT91_TWI_TXRDY          BIT(2)  /* Transmit Holding Register Ready */
  75#define AT91_TWI_OVRE           BIT(6)  /* Overrun Error */
  76#define AT91_TWI_UNRE           BIT(7)  /* Underrun Error */
  77#define AT91_TWI_NACK           BIT(8)  /* Not Acknowledged */
  78#define AT91_TWI_LOCK           BIT(23) /* TWI Lock due to Frame Errors */
  79
  80#define AT91_TWI_INT_MASK \
  81        (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
  82
  83#define AT91_TWI_IER            0x0024  /* Interrupt Enable Register */
  84#define AT91_TWI_IDR            0x0028  /* Interrupt Disable Register */
  85#define AT91_TWI_IMR            0x002c  /* Interrupt Mask Register */
  86#define AT91_TWI_RHR            0x0030  /* Receive Holding Register */
  87#define AT91_TWI_THR            0x0034  /* Transmit Holding Register */
  88
  89#define AT91_TWI_ACR            0x0040  /* Alternative Command Register */
  90#define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
  91#define AT91_TWI_ACR_DIR        BIT(8)
  92
  93#define AT91_TWI_FMR            0x0050  /* FIFO Mode Register */
  94#define AT91_TWI_FMR_TXRDYM(mode)       (((mode) & 0x3) << 0)
  95#define AT91_TWI_FMR_TXRDYM_MASK        (0x3 << 0)
  96#define AT91_TWI_FMR_RXRDYM(mode)       (((mode) & 0x3) << 4)
  97#define AT91_TWI_FMR_RXRDYM_MASK        (0x3 << 4)
  98#define AT91_TWI_ONE_DATA       0x0
  99#define AT91_TWI_TWO_DATA       0x1
 100#define AT91_TWI_FOUR_DATA      0x2
 101
 102#define AT91_TWI_FLR            0x0054  /* FIFO Level Register */
 103
 104#define AT91_TWI_FSR            0x0060  /* FIFO Status Register */
 105#define AT91_TWI_FIER           0x0064  /* FIFO Interrupt Enable Register */
 106#define AT91_TWI_FIDR           0x0068  /* FIFO Interrupt Disable Register */
 107#define AT91_TWI_FIMR           0x006c  /* FIFO Interrupt Mask Register */
 108
 109#define AT91_TWI_VER            0x00fc  /* Version Register */
 110
 111struct at91_twi_pdata {
 112        unsigned clk_max_div;
 113        unsigned clk_offset;
 114        bool has_unre_flag;
 115        bool has_alt_cmd;
 116        bool has_hold_field;
 117        struct at_dma_slave dma_slave;
 118};
 119
 120struct at91_twi_dma {
 121        struct dma_chan *chan_rx;
 122        struct dma_chan *chan_tx;
 123        struct scatterlist sg[2];
 124        struct dma_async_tx_descriptor *data_desc;
 125        enum dma_data_direction direction;
 126        bool buf_mapped;
 127        bool xfer_in_progress;
 128};
 129
 130struct at91_twi_dev {
 131        struct device *dev;
 132        void __iomem *base;
 133        struct completion cmd_complete;
 134        struct clk *clk;
 135        u8 *buf;
 136        size_t buf_len;
 137        struct i2c_msg *msg;
 138        int irq;
 139        unsigned imr;
 140        unsigned transfer_status;
 141        struct i2c_adapter adapter;
 142        unsigned twi_cwgr_reg;
 143        struct at91_twi_pdata *pdata;
 144        bool use_dma;
 145        bool use_alt_cmd;
 146        bool recv_len_abort;
 147        u32 fifo_size;
 148        struct at91_twi_dma dma;
 149};
 150
 151static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
 152{
 153        return readl_relaxed(dev->base + reg);
 154}
 155
 156static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
 157{
 158        writel_relaxed(val, dev->base + reg);
 159}
 160
 161static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
 162{
 163        at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
 164}
 165
 166static void at91_twi_irq_save(struct at91_twi_dev *dev)
 167{
 168        dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
 169        at91_disable_twi_interrupts(dev);
 170}
 171
 172static void at91_twi_irq_restore(struct at91_twi_dev *dev)
 173{
 174        at91_twi_write(dev, AT91_TWI_IER, dev->imr);
 175}
 176
 177static void at91_init_twi_bus(struct at91_twi_dev *dev)
 178{
 179        at91_disable_twi_interrupts(dev);
 180        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
 181        /* FIFO should be enabled immediately after the software reset */
 182        if (dev->fifo_size)
 183                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
 184        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
 185        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
 186        at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
 187}
 188
 189/*
 190 * Calculate symmetric clock as stated in datasheet:
 191 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 192 */
 193static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
 194{
 195        int ckdiv, cdiv, div, hold = 0;
 196        struct at91_twi_pdata *pdata = dev->pdata;
 197        int offset = pdata->clk_offset;
 198        int max_ckdiv = pdata->clk_max_div;
 199        u32 twd_hold_time_ns = 0;
 200
 201        div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
 202                                       2 * twi_clk) - offset);
 203        ckdiv = fls(div >> 8);
 204        cdiv = div >> ckdiv;
 205
 206        if (ckdiv > max_ckdiv) {
 207                dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
 208                         ckdiv, max_ckdiv);
 209                ckdiv = max_ckdiv;
 210                cdiv = 255;
 211        }
 212
 213        if (pdata->has_hold_field) {
 214                of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
 215                                     &twd_hold_time_ns);
 216
 217                /*
 218                 * hold time = HOLD + 3 x T_peripheral_clock
 219                 * Use clk rate in kHz to prevent overflows when computing
 220                 * hold.
 221                 */
 222                hold = DIV_ROUND_UP(twd_hold_time_ns
 223                                    * (clk_get_rate(dev->clk) / 1000), 1000000);
 224                hold -= 3;
 225                if (hold < 0)
 226                        hold = 0;
 227                if (hold > AT91_TWI_CWGR_HOLD_MAX) {
 228                        dev_warn(dev->dev,
 229                                 "HOLD field set to its maximum value (%d instead of %d)\n",
 230                                 AT91_TWI_CWGR_HOLD_MAX, hold);
 231                        hold = AT91_TWI_CWGR_HOLD_MAX;
 232                }
 233        }
 234
 235        dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
 236                            | AT91_TWI_CWGR_HOLD(hold);
 237
 238        dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
 239                cdiv, ckdiv, hold, twd_hold_time_ns);
 240}
 241
 242static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
 243{
 244        struct at91_twi_dma *dma = &dev->dma;
 245
 246        at91_twi_irq_save(dev);
 247
 248        if (dma->xfer_in_progress) {
 249                if (dma->direction == DMA_FROM_DEVICE)
 250                        dmaengine_terminate_all(dma->chan_rx);
 251                else
 252                        dmaengine_terminate_all(dma->chan_tx);
 253                dma->xfer_in_progress = false;
 254        }
 255        if (dma->buf_mapped) {
 256                dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 257                                 dev->buf_len, dma->direction);
 258                dma->buf_mapped = false;
 259        }
 260
 261        at91_twi_irq_restore(dev);
 262}
 263
 264static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 265{
 266        if (!dev->buf_len)
 267                return;
 268
 269        /* 8bit write works with and without FIFO */
 270        writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 271
 272        /* send stop when last byte has been written */
 273        if (--dev->buf_len == 0)
 274                if (!dev->use_alt_cmd)
 275                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 276
 277        dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
 278
 279        ++dev->buf;
 280}
 281
 282static void at91_twi_write_data_dma_callback(void *data)
 283{
 284        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 285
 286        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 287                         dev->buf_len, DMA_TO_DEVICE);
 288
 289        /*
 290         * When this callback is called, THR/TX FIFO is likely not to be empty
 291         * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 292         * Status Register to be sure that the STOP bit has been sent and the
 293         * transfer is completed. The NACK interrupt has already been enabled,
 294         * we just have to enable TXCOMP one.
 295         */
 296        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 297        if (!dev->use_alt_cmd)
 298                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 299}
 300
 301static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 302{
 303        dma_addr_t dma_addr;
 304        struct dma_async_tx_descriptor *txdesc;
 305        struct at91_twi_dma *dma = &dev->dma;
 306        struct dma_chan *chan_tx = dma->chan_tx;
 307        unsigned int sg_len = 1;
 308
 309        if (!dev->buf_len)
 310                return;
 311
 312        dma->direction = DMA_TO_DEVICE;
 313
 314        at91_twi_irq_save(dev);
 315        dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 316                                  DMA_TO_DEVICE);
 317        if (dma_mapping_error(dev->dev, dma_addr)) {
 318                dev_err(dev->dev, "dma map failed\n");
 319                return;
 320        }
 321        dma->buf_mapped = true;
 322        at91_twi_irq_restore(dev);
 323
 324        if (dev->fifo_size) {
 325                size_t part1_len, part2_len;
 326                struct scatterlist *sg;
 327                unsigned fifo_mr;
 328
 329                sg_len = 0;
 330
 331                part1_len = dev->buf_len & ~0x3;
 332                if (part1_len) {
 333                        sg = &dma->sg[sg_len++];
 334                        sg_dma_len(sg) = part1_len;
 335                        sg_dma_address(sg) = dma_addr;
 336                }
 337
 338                part2_len = dev->buf_len & 0x3;
 339                if (part2_len) {
 340                        sg = &dma->sg[sg_len++];
 341                        sg_dma_len(sg) = part2_len;
 342                        sg_dma_address(sg) = dma_addr + part1_len;
 343                }
 344
 345                /*
 346                 * DMA controller is triggered when at least 4 data can be
 347                 * written into the TX FIFO
 348                 */
 349                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 350                fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 351                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 352                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 353        } else {
 354                sg_dma_len(&dma->sg[0]) = dev->buf_len;
 355                sg_dma_address(&dma->sg[0]) = dma_addr;
 356        }
 357
 358        txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 359                                         DMA_MEM_TO_DEV,
 360                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 361        if (!txdesc) {
 362                dev_err(dev->dev, "dma prep slave sg failed\n");
 363                goto error;
 364        }
 365
 366        txdesc->callback = at91_twi_write_data_dma_callback;
 367        txdesc->callback_param = dev;
 368
 369        dma->xfer_in_progress = true;
 370        dmaengine_submit(txdesc);
 371        dma_async_issue_pending(chan_tx);
 372
 373        return;
 374
 375error:
 376        at91_twi_dma_cleanup(dev);
 377}
 378
 379static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 380{
 381        /*
 382         * If we are in this case, it means there is garbage data in RHR, so
 383         * delete them.
 384         */
 385        if (!dev->buf_len) {
 386                at91_twi_read(dev, AT91_TWI_RHR);
 387                return;
 388        }
 389
 390        /* 8bit read works with and without FIFO */
 391        *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 392        --dev->buf_len;
 393
 394        /* return if aborting, we only needed to read RHR to clear RXRDY*/
 395        if (dev->recv_len_abort)
 396                return;
 397
 398        /* handle I2C_SMBUS_BLOCK_DATA */
 399        if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 400                /* ensure length byte is a valid value */
 401                if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 402                        dev->msg->flags &= ~I2C_M_RECV_LEN;
 403                        dev->buf_len += *dev->buf;
 404                        dev->msg->len = dev->buf_len + 1;
 405                        dev_dbg(dev->dev, "received block length %d\n",
 406                                         dev->buf_len);
 407                } else {
 408                        /* abort and send the stop by reading one more byte */
 409                        dev->recv_len_abort = true;
 410                        dev->buf_len = 1;
 411                }
 412        }
 413
 414        /* send stop if second but last byte has been read */
 415        if (!dev->use_alt_cmd && dev->buf_len == 1)
 416                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 417
 418        dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
 419
 420        ++dev->buf;
 421}
 422
 423static void at91_twi_read_data_dma_callback(void *data)
 424{
 425        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 426        unsigned ier = AT91_TWI_TXCOMP;
 427
 428        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 429                         dev->buf_len, DMA_FROM_DEVICE);
 430
 431        if (!dev->use_alt_cmd) {
 432                /* The last two bytes have to be read without using dma */
 433                dev->buf += dev->buf_len - 2;
 434                dev->buf_len = 2;
 435                ier |= AT91_TWI_RXRDY;
 436        }
 437        at91_twi_write(dev, AT91_TWI_IER, ier);
 438}
 439
 440static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 441{
 442        dma_addr_t dma_addr;
 443        struct dma_async_tx_descriptor *rxdesc;
 444        struct at91_twi_dma *dma = &dev->dma;
 445        struct dma_chan *chan_rx = dma->chan_rx;
 446        size_t buf_len;
 447
 448        buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 449        dma->direction = DMA_FROM_DEVICE;
 450
 451        /* Keep in mind that we won't use dma to read the last two bytes */
 452        at91_twi_irq_save(dev);
 453        dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 454        if (dma_mapping_error(dev->dev, dma_addr)) {
 455                dev_err(dev->dev, "dma map failed\n");
 456                return;
 457        }
 458        dma->buf_mapped = true;
 459        at91_twi_irq_restore(dev);
 460
 461        if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 462                unsigned fifo_mr;
 463
 464                /*
 465                 * DMA controller is triggered when at least 4 data can be
 466                 * read from the RX FIFO
 467                 */
 468                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 469                fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 470                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 471                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 472        }
 473
 474        sg_dma_len(&dma->sg[0]) = buf_len;
 475        sg_dma_address(&dma->sg[0]) = dma_addr;
 476
 477        rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 478                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 479        if (!rxdesc) {
 480                dev_err(dev->dev, "dma prep slave sg failed\n");
 481                goto error;
 482        }
 483
 484        rxdesc->callback = at91_twi_read_data_dma_callback;
 485        rxdesc->callback_param = dev;
 486
 487        dma->xfer_in_progress = true;
 488        dmaengine_submit(rxdesc);
 489        dma_async_issue_pending(dma->chan_rx);
 490
 491        return;
 492
 493error:
 494        at91_twi_dma_cleanup(dev);
 495}
 496
 497static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 498{
 499        struct at91_twi_dev *dev = dev_id;
 500        const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 501        const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 502
 503        if (!irqstatus)
 504                return IRQ_NONE;
 505        /*
 506         * In reception, the behavior of the twi device (before sama5d2) is
 507         * weird. There is some magic about RXRDY flag! When a data has been
 508         * almost received, the reception of a new one is anticipated if there
 509         * is no stop command to send. That is the reason why ask for sending
 510         * the stop command not on the last data but on the second last one.
 511         *
 512         * Unfortunately, we could still have the RXRDY flag set even if the
 513         * transfer is done and we have read the last data. It might happen
 514         * when the i2c slave device sends too quickly data after receiving the
 515         * ack from the master. The data has been almost received before having
 516         * the order to send stop. In this case, sending the stop command could
 517         * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 518         * the RXRDY interrupt first in order to not keep garbage data in the
 519         * Receive Holding Register for the next transfer.
 520         */
 521        if (irqstatus & AT91_TWI_RXRDY)
 522                at91_twi_read_next_byte(dev);
 523
 524        /*
 525         * When a NACK condition is detected, the I2C controller sets the NACK,
 526         * TXCOMP and TXRDY bits all together in the Status Register (SR).
 527         *
 528         * 1 - Handling NACK errors with CPU write transfer.
 529         *
 530         * In such case, we should not write the next byte into the Transmit
 531         * Holding Register (THR) otherwise the I2C controller would start a new
 532         * transfer and the I2C slave is likely to reply by another NACK.
 533         *
 534         * 2 - Handling NACK errors with DMA write transfer.
 535         *
 536         * By setting the TXRDY bit in the SR, the I2C controller also triggers
 537         * the DMA controller to write the next data into the THR. Then the
 538         * result depends on the hardware version of the I2C controller.
 539         *
 540         * 2a - Without support of the Alternative Command mode.
 541         *
 542         * This is the worst case: the DMA controller is triggered to write the
 543         * next data into the THR, hence starting a new transfer: the I2C slave
 544         * is likely to reply by another NACK.
 545         * Concurrently, this interrupt handler is likely to be called to manage
 546         * the first NACK before the I2C controller detects the second NACK and
 547         * sets once again the NACK bit into the SR.
 548         * When handling the first NACK, this interrupt handler disables the I2C
 549         * controller interruptions, especially the NACK interrupt.
 550         * Hence, the NACK bit is pending into the SR. This is why we should
 551         * read the SR to clear all pending interrupts at the beginning of
 552         * at91_do_twi_transfer() before actually starting a new transfer.
 553         *
 554         * 2b - With support of the Alternative Command mode.
 555         *
 556         * When a NACK condition is detected, the I2C controller also locks the
 557         * THR (and sets the LOCK bit in the SR): even though the DMA controller
 558         * is triggered by the TXRDY bit to write the next data into the THR,
 559         * this data actually won't go on the I2C bus hence a second NACK is not
 560         * generated.
 561         */
 562        if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 563                at91_disable_twi_interrupts(dev);
 564                complete(&dev->cmd_complete);
 565        } else if (irqstatus & AT91_TWI_TXRDY) {
 566                at91_twi_write_next_byte(dev);
 567        }
 568
 569        /* catch error flags */
 570        dev->transfer_status |= status;
 571
 572        return IRQ_HANDLED;
 573}
 574
 575static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 576{
 577        int ret;
 578        unsigned long time_left;
 579        bool has_unre_flag = dev->pdata->has_unre_flag;
 580        bool has_alt_cmd = dev->pdata->has_alt_cmd;
 581
 582        /*
 583         * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 584         * read flag but shows the state of the transmission at the time the
 585         * Status Register is read. According to the programmer datasheet,
 586         * TXCOMP is set when both holding register and internal shifter are
 587         * empty and STOP condition has been sent.
 588         * Consequently, we should enable NACK interrupt rather than TXCOMP to
 589         * detect transmission failure.
 590         * Indeed let's take the case of an i2c write command using DMA.
 591         * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 592         * TXCOMP bits are set together into the Status Register.
 593         * LOCK is a clear on write bit, which is set to prevent the DMA
 594         * controller from sending new data on the i2c bus after a NACK
 595         * condition has happened. Once locked, this i2c peripheral stops
 596         * triggering the DMA controller for new data but it is more than
 597         * likely that a new DMA transaction is already in progress, writing
 598         * into the Transmit Holding Register. Since the peripheral is locked,
 599         * these new data won't be sent to the i2c bus but they will remain
 600         * into the Transmit Holding Register, so TXCOMP bit is cleared.
 601         * Then when the interrupt handler is called, the Status Register is
 602         * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 603         * manage the error properly, without waiting for timeout.
 604         * This case can be reproduced easyly when writing into an at24 eeprom.
 605         *
 606         * Besides, the TXCOMP bit is already set before the i2c transaction
 607         * has been started. For read transactions, this bit is cleared when
 608         * writing the START bit into the Control Register. So the
 609         * corresponding interrupt can safely be enabled just after.
 610         * However for write transactions managed by the CPU, we first write
 611         * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 612         * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 613         * the interrupt handler would be called immediately and the i2c command
 614         * would be reported as completed.
 615         * Also when a write transaction is managed by the DMA controller,
 616         * enabling the TXCOMP interrupt in this function may lead to a race
 617         * condition since we don't know whether the TXCOMP interrupt is enabled
 618         * before or after the DMA has started to write into THR. So the TXCOMP
 619         * interrupt is enabled later by at91_twi_write_data_dma_callback().
 620         * Immediately after in that DMA callback, if the alternative command
 621         * mode is not used, we still need to send the STOP condition manually
 622         * writing the corresponding bit into the Control Register.
 623         */
 624
 625        dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
 626                (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 627
 628        reinit_completion(&dev->cmd_complete);
 629        dev->transfer_status = 0;
 630
 631        /* Clear pending interrupts, such as NACK. */
 632        at91_twi_read(dev, AT91_TWI_SR);
 633
 634        if (dev->fifo_size) {
 635                unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 636
 637                /* Reset FIFO mode register */
 638                fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 639                             AT91_TWI_FMR_RXRDYM_MASK);
 640                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 641                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 642                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 643
 644                /* Flush FIFOs */
 645                at91_twi_write(dev, AT91_TWI_CR,
 646                               AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 647        }
 648
 649        if (!dev->buf_len) {
 650                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 651                at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 652        } else if (dev->msg->flags & I2C_M_RD) {
 653                unsigned start_flags = AT91_TWI_START;
 654
 655                /* if only one byte is to be read, immediately stop transfer */
 656                if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
 657                    !(dev->msg->flags & I2C_M_RECV_LEN))
 658                        start_flags |= AT91_TWI_STOP;
 659                at91_twi_write(dev, AT91_TWI_CR, start_flags);
 660                /*
 661                 * When using dma without alternative command mode, the last
 662                 * byte has to be read manually in order to not send the stop
 663                 * command too late and then to receive extra data.
 664                 * In practice, there are some issues if you use the dma to
 665                 * read n-1 bytes because of latency.
 666                 * Reading n-2 bytes with dma and the two last ones manually
 667                 * seems to be the best solution.
 668                 */
 669                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 670                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 671                        at91_twi_read_data_dma(dev);
 672                } else {
 673                        at91_twi_write(dev, AT91_TWI_IER,
 674                                       AT91_TWI_TXCOMP |
 675                                       AT91_TWI_NACK |
 676                                       AT91_TWI_RXRDY);
 677                }
 678        } else {
 679                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 680                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 681                        at91_twi_write_data_dma(dev);
 682                } else {
 683                        at91_twi_write_next_byte(dev);
 684                        at91_twi_write(dev, AT91_TWI_IER,
 685                                       AT91_TWI_TXCOMP |
 686                                       AT91_TWI_NACK |
 687                                       AT91_TWI_TXRDY);
 688                }
 689        }
 690
 691        time_left = wait_for_completion_timeout(&dev->cmd_complete,
 692                                              dev->adapter.timeout);
 693        if (time_left == 0) {
 694                dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 695                dev_err(dev->dev, "controller timed out\n");
 696                at91_init_twi_bus(dev);
 697                ret = -ETIMEDOUT;
 698                goto error;
 699        }
 700        if (dev->transfer_status & AT91_TWI_NACK) {
 701                dev_dbg(dev->dev, "received nack\n");
 702                ret = -EREMOTEIO;
 703                goto error;
 704        }
 705        if (dev->transfer_status & AT91_TWI_OVRE) {
 706                dev_err(dev->dev, "overrun while reading\n");
 707                ret = -EIO;
 708                goto error;
 709        }
 710        if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 711                dev_err(dev->dev, "underrun while writing\n");
 712                ret = -EIO;
 713                goto error;
 714        }
 715        if ((has_alt_cmd || dev->fifo_size) &&
 716            (dev->transfer_status & AT91_TWI_LOCK)) {
 717                dev_err(dev->dev, "tx locked\n");
 718                ret = -EIO;
 719                goto error;
 720        }
 721        if (dev->recv_len_abort) {
 722                dev_err(dev->dev, "invalid smbus block length recvd\n");
 723                ret = -EPROTO;
 724                goto error;
 725        }
 726
 727        dev_dbg(dev->dev, "transfer complete\n");
 728
 729        return 0;
 730
 731error:
 732        /* first stop DMA transfer if still in progress */
 733        at91_twi_dma_cleanup(dev);
 734        /* then flush THR/FIFO and unlock TX if locked */
 735        if ((has_alt_cmd || dev->fifo_size) &&
 736            (dev->transfer_status & AT91_TWI_LOCK)) {
 737                dev_dbg(dev->dev, "unlock tx\n");
 738                at91_twi_write(dev, AT91_TWI_CR,
 739                               AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 740        }
 741        return ret;
 742}
 743
 744static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 745{
 746        struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 747        int ret;
 748        unsigned int_addr_flag = 0;
 749        struct i2c_msg *m_start = msg;
 750        bool is_read;
 751
 752        dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 753
 754        ret = pm_runtime_get_sync(dev->dev);
 755        if (ret < 0)
 756                goto out;
 757
 758        if (num == 2) {
 759                int internal_address = 0;
 760                int i;
 761
 762                /* 1st msg is put into the internal address, start with 2nd */
 763                m_start = &msg[1];
 764                for (i = 0; i < msg->len; ++i) {
 765                        const unsigned addr = msg->buf[msg->len - 1 - i];
 766
 767                        internal_address |= addr << (8 * i);
 768                        int_addr_flag += AT91_TWI_IADRSZ_1;
 769                }
 770                at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 771        }
 772
 773        dev->use_alt_cmd = false;
 774        is_read = (m_start->flags & I2C_M_RD);
 775        if (dev->pdata->has_alt_cmd) {
 776                if (m_start->len > 0 &&
 777                    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
 778                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 779                        at91_twi_write(dev, AT91_TWI_ACR,
 780                                       AT91_TWI_ACR_DATAL(m_start->len) |
 781                                       ((is_read) ? AT91_TWI_ACR_DIR : 0));
 782                        dev->use_alt_cmd = true;
 783                } else {
 784                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 785                }
 786        }
 787
 788        at91_twi_write(dev, AT91_TWI_MMR,
 789                       (m_start->addr << 16) |
 790                       int_addr_flag |
 791                       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 792
 793        dev->buf_len = m_start->len;
 794        dev->buf = m_start->buf;
 795        dev->msg = m_start;
 796        dev->recv_len_abort = false;
 797
 798        ret = at91_do_twi_transfer(dev);
 799
 800        ret = (ret < 0) ? ret : num;
 801out:
 802        pm_runtime_mark_last_busy(dev->dev);
 803        pm_runtime_put_autosuspend(dev->dev);
 804
 805        return ret;
 806}
 807
 808/*
 809 * The hardware can handle at most two messages concatenated by a
 810 * repeated start via it's internal address feature.
 811 */
 812static struct i2c_adapter_quirks at91_twi_quirks = {
 813        .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 814        .max_comb_1st_msg_len = 3,
 815};
 816
 817static u32 at91_twi_func(struct i2c_adapter *adapter)
 818{
 819        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 820                | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 821}
 822
 823static struct i2c_algorithm at91_twi_algorithm = {
 824        .master_xfer    = at91_twi_xfer,
 825        .functionality  = at91_twi_func,
 826};
 827
 828static struct at91_twi_pdata at91rm9200_config = {
 829        .clk_max_div = 5,
 830        .clk_offset = 3,
 831        .has_unre_flag = true,
 832        .has_alt_cmd = false,
 833        .has_hold_field = false,
 834};
 835
 836static struct at91_twi_pdata at91sam9261_config = {
 837        .clk_max_div = 5,
 838        .clk_offset = 4,
 839        .has_unre_flag = false,
 840        .has_alt_cmd = false,
 841        .has_hold_field = false,
 842};
 843
 844static struct at91_twi_pdata at91sam9260_config = {
 845        .clk_max_div = 7,
 846        .clk_offset = 4,
 847        .has_unre_flag = false,
 848        .has_alt_cmd = false,
 849        .has_hold_field = false,
 850};
 851
 852static struct at91_twi_pdata at91sam9g20_config = {
 853        .clk_max_div = 7,
 854        .clk_offset = 4,
 855        .has_unre_flag = false,
 856        .has_alt_cmd = false,
 857        .has_hold_field = false,
 858};
 859
 860static struct at91_twi_pdata at91sam9g10_config = {
 861        .clk_max_div = 7,
 862        .clk_offset = 4,
 863        .has_unre_flag = false,
 864        .has_alt_cmd = false,
 865        .has_hold_field = false,
 866};
 867
 868static const struct platform_device_id at91_twi_devtypes[] = {
 869        {
 870                .name = "i2c-at91rm9200",
 871                .driver_data = (unsigned long) &at91rm9200_config,
 872        }, {
 873                .name = "i2c-at91sam9261",
 874                .driver_data = (unsigned long) &at91sam9261_config,
 875        }, {
 876                .name = "i2c-at91sam9260",
 877                .driver_data = (unsigned long) &at91sam9260_config,
 878        }, {
 879                .name = "i2c-at91sam9g20",
 880                .driver_data = (unsigned long) &at91sam9g20_config,
 881        }, {
 882                .name = "i2c-at91sam9g10",
 883                .driver_data = (unsigned long) &at91sam9g10_config,
 884        }, {
 885                /* sentinel */
 886        }
 887};
 888
 889#if defined(CONFIG_OF)
 890static struct at91_twi_pdata at91sam9x5_config = {
 891        .clk_max_div = 7,
 892        .clk_offset = 4,
 893        .has_unre_flag = false,
 894        .has_alt_cmd = false,
 895        .has_hold_field = false,
 896};
 897
 898static struct at91_twi_pdata sama5d4_config = {
 899        .clk_max_div = 7,
 900        .clk_offset = 4,
 901        .has_unre_flag = false,
 902        .has_alt_cmd = false,
 903        .has_hold_field = true,
 904};
 905
 906static struct at91_twi_pdata sama5d2_config = {
 907        .clk_max_div = 7,
 908        .clk_offset = 4,
 909        .has_unre_flag = true,
 910        .has_alt_cmd = true,
 911        .has_hold_field = true,
 912};
 913
 914static const struct of_device_id atmel_twi_dt_ids[] = {
 915        {
 916                .compatible = "atmel,at91rm9200-i2c",
 917                .data = &at91rm9200_config,
 918        } , {
 919                .compatible = "atmel,at91sam9260-i2c",
 920                .data = &at91sam9260_config,
 921        } , {
 922                .compatible = "atmel,at91sam9261-i2c",
 923                .data = &at91sam9261_config,
 924        } , {
 925                .compatible = "atmel,at91sam9g20-i2c",
 926                .data = &at91sam9g20_config,
 927        } , {
 928                .compatible = "atmel,at91sam9g10-i2c",
 929                .data = &at91sam9g10_config,
 930        }, {
 931                .compatible = "atmel,at91sam9x5-i2c",
 932                .data = &at91sam9x5_config,
 933        }, {
 934                .compatible = "atmel,sama5d4-i2c",
 935                .data = &sama5d4_config,
 936        }, {
 937                .compatible = "atmel,sama5d2-i2c",
 938                .data = &sama5d2_config,
 939        }, {
 940                /* sentinel */
 941        }
 942};
 943MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
 944#endif
 945
 946static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 947{
 948        int ret = 0;
 949        struct dma_slave_config slave_config;
 950        struct at91_twi_dma *dma = &dev->dma;
 951        enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 952
 953        /*
 954         * The actual width of the access will be chosen in
 955         * dmaengine_prep_slave_sg():
 956         * for each buffer in the scatter-gather list, if its size is aligned
 957         * to addr_width then addr_width accesses will be performed to transfer
 958         * the buffer. On the other hand, if the buffer size is not aligned to
 959         * addr_width then the buffer is transferred using single byte accesses.
 960         * Please refer to the Atmel eXtended DMA controller driver.
 961         * When FIFOs are used, the TXRDYM threshold can always be set to
 962         * trigger the XDMAC when at least 4 data can be written into the TX
 963         * FIFO, even if single byte accesses are performed.
 964         * However the RXRDYM threshold must be set to fit the access width,
 965         * deduced from buffer length, so the XDMAC is triggered properly to
 966         * read data from the RX FIFO.
 967         */
 968        if (dev->fifo_size)
 969                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 970
 971        memset(&slave_config, 0, sizeof(slave_config));
 972        slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 973        slave_config.src_addr_width = addr_width;
 974        slave_config.src_maxburst = 1;
 975        slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 976        slave_config.dst_addr_width = addr_width;
 977        slave_config.dst_maxburst = 1;
 978        slave_config.device_fc = false;
 979
 980        dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 981        if (IS_ERR(dma->chan_tx)) {
 982                ret = PTR_ERR(dma->chan_tx);
 983                dma->chan_tx = NULL;
 984                goto error;
 985        }
 986
 987        dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 988        if (IS_ERR(dma->chan_rx)) {
 989                ret = PTR_ERR(dma->chan_rx);
 990                dma->chan_rx = NULL;
 991                goto error;
 992        }
 993
 994        slave_config.direction = DMA_MEM_TO_DEV;
 995        if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 996                dev_err(dev->dev, "failed to configure tx channel\n");
 997                ret = -EINVAL;
 998                goto error;
 999        }
1000
1001        slave_config.direction = DMA_DEV_TO_MEM;
1002        if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
1003                dev_err(dev->dev, "failed to configure rx channel\n");
1004                ret = -EINVAL;
1005                goto error;
1006        }
1007
1008        sg_init_table(dma->sg, 2);
1009        dma->buf_mapped = false;
1010        dma->xfer_in_progress = false;
1011        dev->use_dma = true;
1012
1013        dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1014                 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1015
1016        return ret;
1017
1018error:
1019        if (ret != -EPROBE_DEFER)
1020                dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
1021        if (dma->chan_rx)
1022                dma_release_channel(dma->chan_rx);
1023        if (dma->chan_tx)
1024                dma_release_channel(dma->chan_tx);
1025        return ret;
1026}
1027
1028static struct at91_twi_pdata *at91_twi_get_driver_data(
1029                                        struct platform_device *pdev)
1030{
1031        if (pdev->dev.of_node) {
1032                const struct of_device_id *match;
1033                match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1034                if (!match)
1035                        return NULL;
1036                return (struct at91_twi_pdata *)match->data;
1037        }
1038        return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1039}
1040
1041static int at91_twi_probe(struct platform_device *pdev)
1042{
1043        struct at91_twi_dev *dev;
1044        struct resource *mem;
1045        int rc;
1046        u32 phy_addr;
1047        u32 bus_clk_rate;
1048
1049        dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1050        if (!dev)
1051                return -ENOMEM;
1052        init_completion(&dev->cmd_complete);
1053        dev->dev = &pdev->dev;
1054
1055        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1056        if (!mem)
1057                return -ENODEV;
1058        phy_addr = mem->start;
1059
1060        dev->pdata = at91_twi_get_driver_data(pdev);
1061        if (!dev->pdata)
1062                return -ENODEV;
1063
1064        dev->base = devm_ioremap_resource(&pdev->dev, mem);
1065        if (IS_ERR(dev->base))
1066                return PTR_ERR(dev->base);
1067
1068        dev->irq = platform_get_irq(pdev, 0);
1069        if (dev->irq < 0)
1070                return dev->irq;
1071
1072        rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1073                         dev_name(dev->dev), dev);
1074        if (rc) {
1075                dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1076                return rc;
1077        }
1078
1079        platform_set_drvdata(pdev, dev);
1080
1081        dev->clk = devm_clk_get(dev->dev, NULL);
1082        if (IS_ERR(dev->clk)) {
1083                dev_err(dev->dev, "no clock defined\n");
1084                return -ENODEV;
1085        }
1086        clk_prepare_enable(dev->clk);
1087
1088        if (dev->dev->of_node) {
1089                rc = at91_twi_configure_dma(dev, phy_addr);
1090                if (rc == -EPROBE_DEFER)
1091                        return rc;
1092        }
1093
1094        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1095                                  &dev->fifo_size)) {
1096                dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1097        }
1098
1099        rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1100                        &bus_clk_rate);
1101        if (rc)
1102                bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1103
1104        at91_calc_twi_clock(dev, bus_clk_rate);
1105        at91_init_twi_bus(dev);
1106
1107        snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1108        i2c_set_adapdata(&dev->adapter, dev);
1109        dev->adapter.owner = THIS_MODULE;
1110        dev->adapter.class = I2C_CLASS_DEPRECATED;
1111        dev->adapter.algo = &at91_twi_algorithm;
1112        dev->adapter.quirks = &at91_twi_quirks;
1113        dev->adapter.dev.parent = dev->dev;
1114        dev->adapter.nr = pdev->id;
1115        dev->adapter.timeout = AT91_I2C_TIMEOUT;
1116        dev->adapter.dev.of_node = pdev->dev.of_node;
1117
1118        pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1119        pm_runtime_use_autosuspend(dev->dev);
1120        pm_runtime_set_active(dev->dev);
1121        pm_runtime_enable(dev->dev);
1122
1123        rc = i2c_add_numbered_adapter(&dev->adapter);
1124        if (rc) {
1125                clk_disable_unprepare(dev->clk);
1126
1127                pm_runtime_disable(dev->dev);
1128                pm_runtime_set_suspended(dev->dev);
1129
1130                return rc;
1131        }
1132
1133        dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1134                 at91_twi_read(dev, AT91_TWI_VER));
1135        return 0;
1136}
1137
1138static int at91_twi_remove(struct platform_device *pdev)
1139{
1140        struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1141
1142        i2c_del_adapter(&dev->adapter);
1143        clk_disable_unprepare(dev->clk);
1144
1145        pm_runtime_disable(dev->dev);
1146        pm_runtime_set_suspended(dev->dev);
1147
1148        return 0;
1149}
1150
1151#ifdef CONFIG_PM
1152
1153static int at91_twi_runtime_suspend(struct device *dev)
1154{
1155        struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1156
1157        clk_disable_unprepare(twi_dev->clk);
1158
1159        pinctrl_pm_select_sleep_state(dev);
1160
1161        return 0;
1162}
1163
1164static int at91_twi_runtime_resume(struct device *dev)
1165{
1166        struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1167
1168        pinctrl_pm_select_default_state(dev);
1169
1170        return clk_prepare_enable(twi_dev->clk);
1171}
1172
1173static int at91_twi_suspend_noirq(struct device *dev)
1174{
1175        if (!pm_runtime_status_suspended(dev))
1176                at91_twi_runtime_suspend(dev);
1177
1178        return 0;
1179}
1180
1181static int at91_twi_resume_noirq(struct device *dev)
1182{
1183        int ret;
1184
1185        if (!pm_runtime_status_suspended(dev)) {
1186                ret = at91_twi_runtime_resume(dev);
1187                if (ret)
1188                        return ret;
1189        }
1190
1191        pm_runtime_mark_last_busy(dev);
1192        pm_request_autosuspend(dev);
1193
1194        return 0;
1195}
1196
1197static const struct dev_pm_ops at91_twi_pm = {
1198        .suspend_noirq  = at91_twi_suspend_noirq,
1199        .resume_noirq   = at91_twi_resume_noirq,
1200        .runtime_suspend        = at91_twi_runtime_suspend,
1201        .runtime_resume         = at91_twi_runtime_resume,
1202};
1203
1204#define at91_twi_pm_ops (&at91_twi_pm)
1205#else
1206#define at91_twi_pm_ops NULL
1207#endif
1208
1209static struct platform_driver at91_twi_driver = {
1210        .probe          = at91_twi_probe,
1211        .remove         = at91_twi_remove,
1212        .id_table       = at91_twi_devtypes,
1213        .driver         = {
1214                .name   = "at91_i2c",
1215                .of_match_table = of_match_ptr(atmel_twi_dt_ids),
1216                .pm     = at91_twi_pm_ops,
1217        },
1218};
1219
1220static int __init at91_twi_init(void)
1221{
1222        return platform_driver_register(&at91_twi_driver);
1223}
1224
1225static void __exit at91_twi_exit(void)
1226{
1227        platform_driver_unregister(&at91_twi_driver);
1228}
1229
1230subsys_initcall(at91_twi_init);
1231module_exit(at91_twi_exit);
1232
1233MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1234MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1235MODULE_LICENSE("GPL");
1236MODULE_ALIAS("platform:at91_i2c");
1237