linux/drivers/i2c/busses/i2c-img-scb.c
<<
>>
Prefs
   1/*
   2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
   3 *
   4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 * There are three ways that this I2C controller can be driven:
  11 *
  12 * - Raw control of the SDA and SCK signals.
  13 *
  14 *   This corresponds to MODE_RAW, which takes control of the signals
  15 *   directly for a certain number of clock cycles (the INT_TIMING
  16 *   interrupt can be used for timing).
  17 *
  18 * - Atomic commands. A low level I2C symbol (such as generate
  19 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
  20 *   ACK) is given to the hardware, with detection of completion by bits
  21 *   in the LINESTAT register.
  22 *
  23 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
  24 *   state machine in the interrupt handler to compose/react to I2C
  25 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
  26 *   which emits a simple fixed sequence of atomic mode commands.
  27 *
  28 *   Due to software control, the use of atomic commands usually results
  29 *   in suboptimal use of the bus, with gaps between the I2C symbols while
  30 *   the driver decides what to do next.
  31 *
  32 * - Automatic mode. A bus address, and whether to read/write is
  33 *   specified, and the hardware takes care of the I2C state machine,
  34 *   using a FIFO to send/receive bytes of data to an I2C slave. The
  35 *   driver just has to keep the FIFO drained or filled in response to the
  36 *   appropriate FIFO interrupts.
  37 *
  38 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
  39 *   with control of repeated start bits between I2C messages.
  40 *
  41 *   Use of automatic mode and the FIFO can make much more efficient use
  42 *   of the bus compared to individual atomic commands, with potentially
  43 *   no wasted time between I2C symbols or I2C messages.
  44 *
  45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
  46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
  47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
  48 * started by the writing of data into the FIFO.
  49 *
  50 * The other modes are used in specific circumstances where MODE_ATOMIC and
  51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
  52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
  53 * it is in a sane state.
  54 *
  55 * Notice that the driver implements a timer-based timeout mechanism.
  56 * The reason for this mechanism is to reduce the number of interrupts
  57 * received in automatic mode.
  58 *
  59 * The driver would get a slave event and transaction done interrupts for
  60 * each atomic mode command that gets completed. However, these events are
  61 * not needed in automatic mode, becase those atomic mode commands are
  62 * managed automatically by the hardware.
  63 *
  64 * In practice, normal I2C transactions will be complete well before you
  65 * get the timer interrupt, as the timer is re-scheduled during FIFO
  66 * maintenance and disabled after the transaction is complete.
  67 *
  68 * In this way normal automatic mode operation isn't impacted by
  69 * unnecessary interrupts, but the exceptional abort condition can still be
  70 * detected (with a slight delay).
  71 */
  72
  73#include <linux/bitops.h>
  74#include <linux/clk.h>
  75#include <linux/completion.h>
  76#include <linux/err.h>
  77#include <linux/i2c.h>
  78#include <linux/init.h>
  79#include <linux/interrupt.h>
  80#include <linux/io.h>
  81#include <linux/kernel.h>
  82#include <linux/module.h>
  83#include <linux/of_platform.h>
  84#include <linux/platform_device.h>
  85#include <linux/slab.h>
  86#include <linux/timer.h>
  87
  88/* Register offsets */
  89
  90#define SCB_STATUS_REG                  0x00
  91#define SCB_OVERRIDE_REG                0x04
  92#define SCB_READ_ADDR_REG               0x08
  93#define SCB_READ_COUNT_REG              0x0c
  94#define SCB_WRITE_ADDR_REG              0x10
  95#define SCB_READ_DATA_REG               0x14
  96#define SCB_WRITE_DATA_REG              0x18
  97#define SCB_FIFO_STATUS_REG             0x1c
  98#define SCB_CONTROL_SOFT_RESET          0x1f
  99#define SCB_CLK_SET_REG                 0x3c
 100#define SCB_INT_STATUS_REG              0x40
 101#define SCB_INT_CLEAR_REG               0x44
 102#define SCB_INT_MASK_REG                0x48
 103#define SCB_CONTROL_REG                 0x4c
 104#define SCB_TIME_TPL_REG                0x50
 105#define SCB_TIME_TPH_REG                0x54
 106#define SCB_TIME_TP2S_REG               0x58
 107#define SCB_TIME_TBI_REG                0x60
 108#define SCB_TIME_TSL_REG                0x64
 109#define SCB_TIME_TDL_REG                0x68
 110#define SCB_TIME_TSDL_REG               0x6c
 111#define SCB_TIME_TSDH_REG               0x70
 112#define SCB_READ_XADDR_REG              0x74
 113#define SCB_WRITE_XADDR_REG             0x78
 114#define SCB_WRITE_COUNT_REG             0x7c
 115#define SCB_CORE_REV_REG                0x80
 116#define SCB_TIME_TCKH_REG               0x84
 117#define SCB_TIME_TCKL_REG               0x88
 118#define SCB_FIFO_FLUSH_REG              0x8c
 119#define SCB_READ_FIFO_REG               0x94
 120#define SCB_CLEAR_REG                   0x98
 121
 122/* SCB_CONTROL_REG bits */
 123
 124#define SCB_CONTROL_CLK_ENABLE          0x1e0
 125#define SCB_CONTROL_TRANSACTION_HALT    0x200
 126
 127#define FIFO_READ_FULL                  BIT(0)
 128#define FIFO_READ_EMPTY                 BIT(1)
 129#define FIFO_WRITE_FULL                 BIT(2)
 130#define FIFO_WRITE_EMPTY                BIT(3)
 131
 132/* SCB_CLK_SET_REG bits */
 133#define SCB_FILT_DISABLE                BIT(31)
 134#define SCB_FILT_BYPASS                 BIT(30)
 135#define SCB_FILT_INC_MASK               0x7f
 136#define SCB_FILT_INC_SHIFT              16
 137#define SCB_INC_MASK                    0x7f
 138#define SCB_INC_SHIFT                   8
 139
 140/* SCB_INT_*_REG bits */
 141
 142#define INT_BUS_INACTIVE                BIT(0)
 143#define INT_UNEXPECTED_START            BIT(1)
 144#define INT_SCLK_LOW_TIMEOUT            BIT(2)
 145#define INT_SDAT_LOW_TIMEOUT            BIT(3)
 146#define INT_WRITE_ACK_ERR               BIT(4)
 147#define INT_ADDR_ACK_ERR                BIT(5)
 148#define INT_FIFO_FULL                   BIT(9)
 149#define INT_FIFO_FILLING                BIT(10)
 150#define INT_FIFO_EMPTY                  BIT(11)
 151#define INT_FIFO_EMPTYING               BIT(12)
 152#define INT_TRANSACTION_DONE            BIT(15)
 153#define INT_SLAVE_EVENT                 BIT(16)
 154#define INT_MASTER_HALTED               BIT(17)
 155#define INT_TIMING                      BIT(18)
 156#define INT_STOP_DETECTED               BIT(19)
 157
 158#define INT_FIFO_FULL_FILLING   (INT_FIFO_FULL  | INT_FIFO_FILLING)
 159
 160/* Level interrupts need clearing after handling instead of before */
 161#define INT_LEVEL                       0x01e00
 162
 163/* Don't allow any interrupts while the clock may be off */
 164#define INT_ENABLE_MASK_INACTIVE        0x00000
 165
 166/* Interrupt masks for the different driver modes */
 167
 168#define INT_ENABLE_MASK_RAW             INT_TIMING
 169
 170#define INT_ENABLE_MASK_ATOMIC          (INT_TRANSACTION_DONE | \
 171                                         INT_SLAVE_EVENT      | \
 172                                         INT_ADDR_ACK_ERR     | \
 173                                         INT_WRITE_ACK_ERR)
 174
 175#define INT_ENABLE_MASK_AUTOMATIC       (INT_SCLK_LOW_TIMEOUT | \
 176                                         INT_ADDR_ACK_ERR     | \
 177                                         INT_WRITE_ACK_ERR    | \
 178                                         INT_FIFO_FULL        | \
 179                                         INT_FIFO_FILLING     | \
 180                                         INT_FIFO_EMPTY       | \
 181                                         INT_MASTER_HALTED    | \
 182                                         INT_STOP_DETECTED)
 183
 184#define INT_ENABLE_MASK_WAITSTOP        (INT_SLAVE_EVENT      | \
 185                                         INT_ADDR_ACK_ERR     | \
 186                                         INT_WRITE_ACK_ERR)
 187
 188/* SCB_STATUS_REG fields */
 189
 190#define LINESTAT_SCLK_LINE_STATUS       BIT(0)
 191#define LINESTAT_SCLK_EN                BIT(1)
 192#define LINESTAT_SDAT_LINE_STATUS       BIT(2)
 193#define LINESTAT_SDAT_EN                BIT(3)
 194#define LINESTAT_DET_START_STATUS       BIT(4)
 195#define LINESTAT_DET_STOP_STATUS        BIT(5)
 196#define LINESTAT_DET_ACK_STATUS         BIT(6)
 197#define LINESTAT_DET_NACK_STATUS        BIT(7)
 198#define LINESTAT_BUS_IDLE               BIT(8)
 199#define LINESTAT_T_DONE_STATUS          BIT(9)
 200#define LINESTAT_SCLK_OUT_STATUS        BIT(10)
 201#define LINESTAT_SDAT_OUT_STATUS        BIT(11)
 202#define LINESTAT_GEN_LINE_MASK_STATUS   BIT(12)
 203#define LINESTAT_START_BIT_DET          BIT(13)
 204#define LINESTAT_STOP_BIT_DET           BIT(14)
 205#define LINESTAT_ACK_DET                BIT(15)
 206#define LINESTAT_NACK_DET               BIT(16)
 207#define LINESTAT_INPUT_HELD_V           BIT(17)
 208#define LINESTAT_ABORT_DET              BIT(18)
 209#define LINESTAT_ACK_OR_NACK_DET        (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
 210#define LINESTAT_INPUT_DATA             0xff000000
 211#define LINESTAT_INPUT_DATA_SHIFT       24
 212
 213#define LINESTAT_CLEAR_SHIFT            13
 214#define LINESTAT_LATCHED                (0x3f << LINESTAT_CLEAR_SHIFT)
 215
 216/* SCB_OVERRIDE_REG fields */
 217
 218#define OVERRIDE_SCLK_OVR               BIT(0)
 219#define OVERRIDE_SCLKEN_OVR             BIT(1)
 220#define OVERRIDE_SDAT_OVR               BIT(2)
 221#define OVERRIDE_SDATEN_OVR             BIT(3)
 222#define OVERRIDE_MASTER                 BIT(9)
 223#define OVERRIDE_LINE_OVR_EN            BIT(10)
 224#define OVERRIDE_DIRECT                 BIT(11)
 225#define OVERRIDE_CMD_SHIFT              4
 226#define OVERRIDE_CMD_MASK               0x1f
 227#define OVERRIDE_DATA_SHIFT             24
 228
 229#define OVERRIDE_SCLK_DOWN              (OVERRIDE_LINE_OVR_EN | \
 230                                         OVERRIDE_SCLKEN_OVR)
 231#define OVERRIDE_SCLK_UP                (OVERRIDE_LINE_OVR_EN | \
 232                                         OVERRIDE_SCLKEN_OVR | \
 233                                         OVERRIDE_SCLK_OVR)
 234#define OVERRIDE_SDAT_DOWN              (OVERRIDE_LINE_OVR_EN | \
 235                                         OVERRIDE_SDATEN_OVR)
 236#define OVERRIDE_SDAT_UP                (OVERRIDE_LINE_OVR_EN | \
 237                                         OVERRIDE_SDATEN_OVR | \
 238                                         OVERRIDE_SDAT_OVR)
 239
 240/* OVERRIDE_CMD values */
 241
 242#define CMD_PAUSE                       0x00
 243#define CMD_GEN_DATA                    0x01
 244#define CMD_GEN_START                   0x02
 245#define CMD_GEN_STOP                    0x03
 246#define CMD_GEN_ACK                     0x04
 247#define CMD_GEN_NACK                    0x05
 248#define CMD_RET_DATA                    0x08
 249#define CMD_RET_ACK                     0x09
 250
 251/* Fixed timing values */
 252
 253#define TIMEOUT_TBI                     0x0
 254#define TIMEOUT_TSL                     0xffff
 255#define TIMEOUT_TDL                     0x0
 256
 257/* Transaction timeout */
 258
 259#define IMG_I2C_TIMEOUT                 (msecs_to_jiffies(1000))
 260
 261/*
 262 * Worst incs are 1 (innacurate) and 16*256 (irregular).
 263 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
 264 * in the middle of the valid range (0-127).
 265 */
 266#define SCB_OPT_INC             64
 267
 268/* Setup the clock enable filtering for 25 ns */
 269#define SCB_FILT_GLITCH         25
 270
 271/*
 272 * Bits to return from interrupt handler functions for different modes.
 273 * This delays completion until we've finished with the registers, so that the
 274 * function waiting for completion can safely disable the clock to save power.
 275 */
 276#define ISR_COMPLETE_M          BIT(31)
 277#define ISR_FATAL_M             BIT(30)
 278#define ISR_WAITSTOP            BIT(29)
 279#define ISR_STATUS_M            0x0000ffff      /* contains +ve errno */
 280#define ISR_COMPLETE(err)       (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
 281#define ISR_FATAL(err)          (ISR_COMPLETE(err) | ISR_FATAL_M)
 282
 283enum img_i2c_mode {
 284        MODE_INACTIVE,
 285        MODE_RAW,
 286        MODE_ATOMIC,
 287        MODE_AUTOMATIC,
 288        MODE_SEQUENCE,
 289        MODE_FATAL,
 290        MODE_WAITSTOP,
 291        MODE_SUSPEND,
 292};
 293
 294/* Timing parameters for i2c modes (in ns) */
 295struct img_i2c_timings {
 296        const char *name;
 297        unsigned int max_bitrate;
 298        unsigned int tckh, tckl, tsdh, tsdl;
 299        unsigned int tp2s, tpl, tph;
 300};
 301
 302/* The timings array must be ordered from slower to faster */
 303static struct img_i2c_timings timings[] = {
 304        /* Standard mode */
 305        {
 306                .name = "standard",
 307                .max_bitrate = 100000,
 308                .tckh = 4000,
 309                .tckl = 4700,
 310                .tsdh = 4700,
 311                .tsdl = 8700,
 312                .tp2s = 4700,
 313                .tpl = 4700,
 314                .tph = 4000,
 315        },
 316        /* Fast mode */
 317        {
 318                .name = "fast",
 319                .max_bitrate = 400000,
 320                .tckh = 600,
 321                .tckl = 1300,
 322                .tsdh = 600,
 323                .tsdl = 1200,
 324                .tp2s = 1300,
 325                .tpl = 600,
 326                .tph = 600,
 327        },
 328};
 329
 330/* Reset dance */
 331static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
 332                                  CMD_GEN_DATA, 0xff,
 333                                  CMD_RET_ACK,
 334                                  CMD_GEN_START,
 335                                  CMD_GEN_STOP,
 336                                  0 };
 337/* Just issue a stop (after an abort condition) */
 338static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
 339                                  0 };
 340
 341/* We're interested in different interrupts depending on the mode */
 342static unsigned int img_i2c_int_enable_by_mode[] = {
 343        [MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
 344        [MODE_RAW]       = INT_ENABLE_MASK_RAW,
 345        [MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
 346        [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
 347        [MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
 348        [MODE_FATAL]     = 0,
 349        [MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
 350        [MODE_SUSPEND]   = 0,
 351};
 352
 353/* Atomic command names */
 354static const char * const img_i2c_atomic_cmd_names[] = {
 355        [CMD_PAUSE]     = "PAUSE",
 356        [CMD_GEN_DATA]  = "GEN_DATA",
 357        [CMD_GEN_START] = "GEN_START",
 358        [CMD_GEN_STOP]  = "GEN_STOP",
 359        [CMD_GEN_ACK]   = "GEN_ACK",
 360        [CMD_GEN_NACK]  = "GEN_NACK",
 361        [CMD_RET_DATA]  = "RET_DATA",
 362        [CMD_RET_ACK]   = "RET_ACK",
 363};
 364
 365struct img_i2c {
 366        struct i2c_adapter adap;
 367
 368        void __iomem *base;
 369
 370        /*
 371         * The scb core clock is used to get the input frequency, and to disable
 372         * it after every set of transactions to save some power.
 373         */
 374        struct clk *scb_clk, *sys_clk;
 375        unsigned int bitrate;
 376        bool need_wr_rd_fence;
 377
 378        /* state */
 379        struct completion msg_complete;
 380        spinlock_t lock;        /* lock before doing anything with the state */
 381        struct i2c_msg msg;
 382
 383        /* After the last transaction, wait for a stop bit */
 384        bool last_msg;
 385        int msg_status;
 386
 387        enum img_i2c_mode mode;
 388        u32 int_enable;         /* depends on mode */
 389        u32 line_status;        /* line status over command */
 390
 391        /*
 392         * To avoid slave event interrupts in automatic mode, use a timer to
 393         * poll the abort condition if we don't get an interrupt for too long.
 394         */
 395        struct timer_list check_timer;
 396        bool t_halt;
 397
 398        /* atomic mode state */
 399        bool at_t_done;
 400        bool at_slave_event;
 401        int at_cur_cmd;
 402        u8 at_cur_data;
 403
 404        /* Sequence: either reset or stop. See img_i2c_sequence. */
 405        u8 *seq;
 406
 407        /* raw mode */
 408        unsigned int raw_timeout;
 409};
 410
 411static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
 412{
 413        writel(value, i2c->base + offset);
 414}
 415
 416static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
 417{
 418        return readl(i2c->base + offset);
 419}
 420
 421/*
 422 * The code to read from the master read fifo, and write to the master
 423 * write fifo, checks a bit in an SCB register before every byte to
 424 * ensure that the fifo is not full (write fifo) or empty (read fifo).
 425 * Due to clock domain crossing inside the SCB block the updated value
 426 * of this bit is only visible after 2 cycles.
 427 *
 428 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
 429 * revision register), and it's called after reading from or writing to the
 430 * fifos to ensure that subsequent reads of the fifo status bits do not read
 431 * stale values.
 432 */
 433static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
 434{
 435        if (i2c->need_wr_rd_fence) {
 436                img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 437                img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 438        }
 439}
 440
 441static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
 442{
 443        i2c->mode = mode;
 444        i2c->int_enable = img_i2c_int_enable_by_mode[mode];
 445        i2c->line_status = 0;
 446}
 447
 448static void img_i2c_raw_op(struct img_i2c *i2c)
 449{
 450        i2c->raw_timeout = 0;
 451        img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 452                OVERRIDE_SCLKEN_OVR |
 453                OVERRIDE_SDATEN_OVR |
 454                OVERRIDE_MASTER |
 455                OVERRIDE_LINE_OVR_EN |
 456                OVERRIDE_DIRECT |
 457                ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 458                (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
 459}
 460
 461static const char *img_i2c_atomic_op_name(unsigned int cmd)
 462{
 463        if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
 464                return "UNKNOWN";
 465        return img_i2c_atomic_cmd_names[cmd];
 466}
 467
 468/* Send a single atomic mode command to the hardware */
 469static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
 470{
 471        i2c->at_cur_cmd = cmd;
 472        i2c->at_cur_data = data;
 473
 474        /* work around lack of data setup time when generating data */
 475        if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
 476                u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 477
 478                if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
 479                        /* hold the data line down for a moment */
 480                        img_i2c_switch_mode(i2c, MODE_RAW);
 481                        img_i2c_raw_op(i2c);
 482                        return;
 483                }
 484        }
 485
 486        dev_dbg(i2c->adap.dev.parent,
 487                "atomic cmd=%s (%d) data=%#x\n",
 488                img_i2c_atomic_op_name(cmd), cmd, data);
 489        i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
 490        i2c->at_slave_event = false;
 491        i2c->line_status = 0;
 492
 493        img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 494                ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 495                OVERRIDE_MASTER |
 496                OVERRIDE_DIRECT |
 497                (data << OVERRIDE_DATA_SHIFT));
 498}
 499
 500/* Start a transaction in atomic mode */
 501static void img_i2c_atomic_start(struct img_i2c *i2c)
 502{
 503        img_i2c_switch_mode(i2c, MODE_ATOMIC);
 504        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 505        img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
 506}
 507
 508static void img_i2c_soft_reset(struct img_i2c *i2c)
 509{
 510        i2c->t_halt = false;
 511        img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
 512        img_i2c_writel(i2c, SCB_CONTROL_REG,
 513                       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
 514}
 515
 516/*
 517 * Enable or release transaction halt for control of repeated starts.
 518 * In version 3.3 of the IP when transaction halt is set, an interrupt
 519 * will be generated after each byte of a transfer instead of after
 520 * every transfer but before the stop bit.
 521 * Due to this behaviour we have to be careful that every time we
 522 * release the transaction halt we have to re-enable it straight away
 523 * so that we only process a single byte, not doing so will result in
 524 * all remaining bytes been processed and a stop bit being issued,
 525 * which will prevent us having a repeated start.
 526 */
 527static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
 528{
 529        u32 val;
 530
 531        if (i2c->t_halt == t_halt)
 532                return;
 533        i2c->t_halt = t_halt;
 534        val = img_i2c_readl(i2c, SCB_CONTROL_REG);
 535        if (t_halt)
 536                val |= SCB_CONTROL_TRANSACTION_HALT;
 537        else
 538                val &= ~SCB_CONTROL_TRANSACTION_HALT;
 539        img_i2c_writel(i2c, SCB_CONTROL_REG, val);
 540}
 541
 542/* Drain data from the FIFO into the buffer (automatic mode) */
 543static void img_i2c_read_fifo(struct img_i2c *i2c)
 544{
 545        while (i2c->msg.len) {
 546                u32 fifo_status;
 547                u8 data;
 548
 549                img_i2c_wr_rd_fence(i2c);
 550                fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 551                if (fifo_status & FIFO_READ_EMPTY)
 552                        break;
 553
 554                data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
 555                *i2c->msg.buf = data;
 556
 557                img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
 558                i2c->msg.len--;
 559                i2c->msg.buf++;
 560        }
 561}
 562
 563/* Fill the FIFO with data from the buffer (automatic mode) */
 564static void img_i2c_write_fifo(struct img_i2c *i2c)
 565{
 566        while (i2c->msg.len) {
 567                u32 fifo_status;
 568
 569                img_i2c_wr_rd_fence(i2c);
 570                fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 571                if (fifo_status & FIFO_WRITE_FULL)
 572                        break;
 573
 574                img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
 575                i2c->msg.len--;
 576                i2c->msg.buf++;
 577        }
 578
 579        /* Disable fifo emptying interrupt if nothing more to write */
 580        if (!i2c->msg.len)
 581                i2c->int_enable &= ~INT_FIFO_EMPTYING;
 582}
 583
 584/* Start a read transaction in automatic mode */
 585static void img_i2c_read(struct img_i2c *i2c)
 586{
 587        img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 588        if (!i2c->last_msg)
 589                i2c->int_enable |= INT_SLAVE_EVENT;
 590
 591        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 592        img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
 593        img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
 594
 595        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 596}
 597
 598/* Start a write transaction in automatic mode */
 599static void img_i2c_write(struct img_i2c *i2c)
 600{
 601        img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 602        if (!i2c->last_msg)
 603                i2c->int_enable |= INT_SLAVE_EVENT;
 604
 605        img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
 606        img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
 607
 608        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 609        img_i2c_write_fifo(i2c);
 610
 611        /* img_i2c_write_fifo() may modify int_enable */
 612        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 613}
 614
 615/*
 616 * Indicate that the transaction is complete. This is called from the
 617 * ISR to wake up the waiting thread, after which the ISR must not
 618 * access any more SCB registers.
 619 */
 620static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
 621{
 622        img_i2c_switch_mode(i2c, MODE_INACTIVE);
 623        if (status) {
 624                i2c->msg_status = status;
 625                img_i2c_transaction_halt(i2c, false);
 626        }
 627        complete(&i2c->msg_complete);
 628}
 629
 630static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
 631                                        u32 int_status, u32 line_status)
 632{
 633        /* Stay in raw mode for this, so we don't just loop infinitely */
 634        img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
 635        img_i2c_switch_mode(i2c, MODE_ATOMIC);
 636        return 0;
 637}
 638
 639static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
 640                                u32 line_status)
 641{
 642        if (int_status & INT_TIMING) {
 643                if (i2c->raw_timeout == 0)
 644                        return img_i2c_raw_atomic_delay_handler(i2c,
 645                                int_status, line_status);
 646                --i2c->raw_timeout;
 647        }
 648        return 0;
 649}
 650
 651static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
 652{
 653        static const unsigned int continue_bits[] = {
 654                [CMD_GEN_START] = LINESTAT_START_BIT_DET,
 655                [CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
 656                [CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
 657                [CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
 658                [CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
 659        };
 660        int next_cmd = -1;
 661        u8 next_data = 0x00;
 662
 663        if (int_status & INT_SLAVE_EVENT)
 664                i2c->at_slave_event = true;
 665        if (int_status & INT_TRANSACTION_DONE)
 666                i2c->at_t_done = true;
 667
 668        if (!i2c->at_slave_event || !i2c->at_t_done)
 669                return 0;
 670
 671        /* wait if no continue bits are set */
 672        if (i2c->at_cur_cmd >= 0 &&
 673            i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
 674                unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
 675
 676                if (cont_bits) {
 677                        cont_bits |= LINESTAT_ABORT_DET;
 678                        if (!(i2c->line_status & cont_bits))
 679                                return 0;
 680                }
 681        }
 682
 683        /* follow the sequence of commands in i2c->seq */
 684        next_cmd = *i2c->seq;
 685        /* stop on a nil */
 686        if (!next_cmd) {
 687                img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 688                return ISR_COMPLETE(0);
 689        }
 690        /* when generating data, the next byte is the data */
 691        if (next_cmd == CMD_GEN_DATA) {
 692                ++i2c->seq;
 693                next_data = *i2c->seq;
 694        }
 695        ++i2c->seq;
 696        img_i2c_atomic_op(i2c, next_cmd, next_data);
 697
 698        return 0;
 699}
 700
 701static void img_i2c_reset_start(struct img_i2c *i2c)
 702{
 703        /* Initiate the magic dance */
 704        img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 705        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 706        i2c->seq = img_i2c_reset_seq;
 707        i2c->at_slave_event = true;
 708        i2c->at_t_done = true;
 709        i2c->at_cur_cmd = -1;
 710
 711        /* img_i2c_reset_seq isn't empty so the following won't fail */
 712        img_i2c_sequence(i2c, 0);
 713}
 714
 715static void img_i2c_stop_start(struct img_i2c *i2c)
 716{
 717        /* Initiate a stop bit sequence */
 718        img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 719        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 720        i2c->seq = img_i2c_stop_seq;
 721        i2c->at_slave_event = true;
 722        i2c->at_t_done = true;
 723        i2c->at_cur_cmd = -1;
 724
 725        /* img_i2c_stop_seq isn't empty so the following won't fail */
 726        img_i2c_sequence(i2c, 0);
 727}
 728
 729static unsigned int img_i2c_atomic(struct img_i2c *i2c,
 730                                   u32 int_status,
 731                                   u32 line_status)
 732{
 733        int next_cmd = -1;
 734        u8 next_data = 0x00;
 735
 736        if (int_status & INT_SLAVE_EVENT)
 737                i2c->at_slave_event = true;
 738        if (int_status & INT_TRANSACTION_DONE)
 739                i2c->at_t_done = true;
 740
 741        if (!i2c->at_slave_event || !i2c->at_t_done)
 742                goto next_atomic_cmd;
 743        if (i2c->line_status & LINESTAT_ABORT_DET) {
 744                dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 745                next_cmd = CMD_GEN_STOP;
 746                i2c->msg_status = -EIO;
 747                goto next_atomic_cmd;
 748        }
 749
 750        /* i2c->at_cur_cmd may have completed */
 751        switch (i2c->at_cur_cmd) {
 752        case CMD_GEN_START:
 753                next_cmd = CMD_GEN_DATA;
 754                next_data = i2c_8bit_addr_from_msg(&i2c->msg);
 755                break;
 756        case CMD_GEN_DATA:
 757                if (i2c->line_status & LINESTAT_INPUT_HELD_V)
 758                        next_cmd = CMD_RET_ACK;
 759                break;
 760        case CMD_RET_ACK:
 761                if (i2c->line_status & LINESTAT_ACK_DET ||
 762                    (i2c->line_status & LINESTAT_NACK_DET &&
 763                    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
 764                        if (i2c->msg.len == 0) {
 765                                next_cmd = CMD_GEN_STOP;
 766                        } else if (i2c->msg.flags & I2C_M_RD) {
 767                                next_cmd = CMD_RET_DATA;
 768                        } else {
 769                                next_cmd = CMD_GEN_DATA;
 770                                next_data = *i2c->msg.buf;
 771                                --i2c->msg.len;
 772                                ++i2c->msg.buf;
 773                        }
 774                } else if (i2c->line_status & LINESTAT_NACK_DET) {
 775                        i2c->msg_status = -EIO;
 776                        next_cmd = CMD_GEN_STOP;
 777                }
 778                break;
 779        case CMD_RET_DATA:
 780                if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
 781                        *i2c->msg.buf = (i2c->line_status &
 782                                                LINESTAT_INPUT_DATA)
 783                                        >> LINESTAT_INPUT_DATA_SHIFT;
 784                        --i2c->msg.len;
 785                        ++i2c->msg.buf;
 786                        if (i2c->msg.len)
 787                                next_cmd = CMD_GEN_ACK;
 788                        else
 789                                next_cmd = CMD_GEN_NACK;
 790                }
 791                break;
 792        case CMD_GEN_ACK:
 793                if (i2c->line_status & LINESTAT_ACK_DET) {
 794                        next_cmd = CMD_RET_DATA;
 795                } else {
 796                        i2c->msg_status = -EIO;
 797                        next_cmd = CMD_GEN_STOP;
 798                }
 799                break;
 800        case CMD_GEN_NACK:
 801                next_cmd = CMD_GEN_STOP;
 802                break;
 803        case CMD_GEN_STOP:
 804                img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 805                return ISR_COMPLETE(0);
 806        default:
 807                dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
 808                        i2c->at_cur_cmd);
 809                i2c->msg_status = -EIO;
 810                next_cmd = CMD_GEN_STOP;
 811                break;
 812        }
 813
 814next_atomic_cmd:
 815        if (next_cmd != -1) {
 816                /* don't actually stop unless we're the last transaction */
 817                if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
 818                                                !i2c->last_msg)
 819                        return ISR_COMPLETE(0);
 820                img_i2c_atomic_op(i2c, next_cmd, next_data);
 821        }
 822        return 0;
 823}
 824
 825/*
 826 * Timer function to check if something has gone wrong in automatic mode (so we
 827 * don't have to handle so many interrupts just to catch an exception).
 828 */
 829static void img_i2c_check_timer(unsigned long arg)
 830{
 831        struct img_i2c *i2c = (struct img_i2c *)arg;
 832        unsigned long flags;
 833        unsigned int line_status;
 834
 835        spin_lock_irqsave(&i2c->lock, flags);
 836        line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 837
 838        /* check for an abort condition */
 839        if (line_status & LINESTAT_ABORT_DET) {
 840                dev_dbg(i2c->adap.dev.parent,
 841                        "abort condition detected by check timer\n");
 842                /* enable slave event interrupt mask to trigger irq */
 843                img_i2c_writel(i2c, SCB_INT_MASK_REG,
 844                               i2c->int_enable | INT_SLAVE_EVENT);
 845        }
 846
 847        spin_unlock_irqrestore(&i2c->lock, flags);
 848}
 849
 850static unsigned int img_i2c_auto(struct img_i2c *i2c,
 851                                 unsigned int int_status,
 852                                 unsigned int line_status)
 853{
 854        if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
 855                return ISR_COMPLETE(EIO);
 856
 857        if (line_status & LINESTAT_ABORT_DET) {
 858                dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 859                /* empty the read fifo */
 860                if ((i2c->msg.flags & I2C_M_RD) &&
 861                    (int_status & INT_FIFO_FULL_FILLING))
 862                        img_i2c_read_fifo(i2c);
 863                /* use atomic mode and try to force a stop bit */
 864                i2c->msg_status = -EIO;
 865                img_i2c_stop_start(i2c);
 866                return 0;
 867        }
 868
 869        /* Enable transaction halt on start bit */
 870        if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
 871                img_i2c_transaction_halt(i2c, !i2c->last_msg);
 872                /* we're no longer interested in the slave event */
 873                i2c->int_enable &= ~INT_SLAVE_EVENT;
 874        }
 875
 876        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 877
 878        if (int_status & INT_STOP_DETECTED) {
 879                /* Drain remaining data in FIFO and complete transaction */
 880                if (i2c->msg.flags & I2C_M_RD)
 881                        img_i2c_read_fifo(i2c);
 882                return ISR_COMPLETE(0);
 883        }
 884
 885        if (i2c->msg.flags & I2C_M_RD) {
 886                if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
 887                        img_i2c_read_fifo(i2c);
 888                        if (i2c->msg.len == 0)
 889                                return ISR_WAITSTOP;
 890                }
 891        } else {
 892                if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
 893                        if ((int_status & INT_FIFO_EMPTY) &&
 894                            i2c->msg.len == 0)
 895                                return ISR_WAITSTOP;
 896                        img_i2c_write_fifo(i2c);
 897                }
 898        }
 899        if (int_status & INT_MASTER_HALTED) {
 900                /*
 901                 * Release and then enable transaction halt, to
 902                 * allow only a single byte to proceed.
 903                 */
 904                img_i2c_transaction_halt(i2c, false);
 905                img_i2c_transaction_halt(i2c, !i2c->last_msg);
 906        }
 907
 908        return 0;
 909}
 910
 911static irqreturn_t img_i2c_isr(int irq, void *dev_id)
 912{
 913        struct img_i2c *i2c = (struct img_i2c *)dev_id;
 914        u32 int_status, line_status;
 915        /* We handle transaction completion AFTER accessing registers */
 916        unsigned int hret;
 917
 918        /* Read interrupt status register. */
 919        int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
 920        /* Clear detected interrupts. */
 921        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
 922
 923        /*
 924         * Read line status and clear it until it actually is clear.  We have
 925         * to be careful not to lose any line status bits that get latched.
 926         */
 927        line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 928        if (line_status & LINESTAT_LATCHED) {
 929                img_i2c_writel(i2c, SCB_CLEAR_REG,
 930                              (line_status & LINESTAT_LATCHED)
 931                                >> LINESTAT_CLEAR_SHIFT);
 932                img_i2c_wr_rd_fence(i2c);
 933        }
 934
 935        spin_lock(&i2c->lock);
 936
 937        /* Keep track of line status bits received */
 938        i2c->line_status &= ~LINESTAT_INPUT_DATA;
 939        i2c->line_status |= line_status;
 940
 941        /*
 942         * Certain interrupts indicate that sclk low timeout is not
 943         * a problem. If any of these are set, just continue.
 944         */
 945        if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
 946            !(int_status & (INT_SLAVE_EVENT |
 947                            INT_FIFO_EMPTY |
 948                            INT_FIFO_FULL))) {
 949                dev_crit(i2c->adap.dev.parent,
 950                         "fatal: clock low timeout occurred %s addr 0x%02x\n",
 951                         (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
 952                         i2c->msg.addr);
 953                hret = ISR_FATAL(EIO);
 954                goto out;
 955        }
 956
 957        if (i2c->mode == MODE_ATOMIC)
 958                hret = img_i2c_atomic(i2c, int_status, line_status);
 959        else if (i2c->mode == MODE_AUTOMATIC)
 960                hret = img_i2c_auto(i2c, int_status, line_status);
 961        else if (i2c->mode == MODE_SEQUENCE)
 962                hret = img_i2c_sequence(i2c, int_status);
 963        else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
 964                         (line_status & LINESTAT_STOP_BIT_DET))
 965                hret = ISR_COMPLETE(0);
 966        else if (i2c->mode == MODE_RAW)
 967                hret = img_i2c_raw(i2c, int_status, line_status);
 968        else
 969                hret = 0;
 970
 971        /* Clear detected level interrupts. */
 972        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
 973
 974out:
 975        if (hret & ISR_WAITSTOP) {
 976                /*
 977                 * Only wait for stop on last message.
 978                 * Also we may already have detected the stop bit.
 979                 */
 980                if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
 981                        hret = ISR_COMPLETE(0);
 982                else
 983                        img_i2c_switch_mode(i2c, MODE_WAITSTOP);
 984        }
 985
 986        /* now we've finished using regs, handle transaction completion */
 987        if (hret & ISR_COMPLETE_M) {
 988                int status = -(hret & ISR_STATUS_M);
 989
 990                img_i2c_complete_transaction(i2c, status);
 991                if (hret & ISR_FATAL_M)
 992                        img_i2c_switch_mode(i2c, MODE_FATAL);
 993        }
 994
 995        /* Enable interrupts (int_enable may be altered by changing mode) */
 996        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 997
 998        spin_unlock(&i2c->lock);
 999
1000        return IRQ_HANDLED;
1001}
1002
1003/* Force a bus reset sequence and wait for it to complete */
1004static int img_i2c_reset_bus(struct img_i2c *i2c)
1005{
1006        unsigned long flags;
1007        unsigned long time_left;
1008
1009        spin_lock_irqsave(&i2c->lock, flags);
1010        reinit_completion(&i2c->msg_complete);
1011        img_i2c_reset_start(i2c);
1012        spin_unlock_irqrestore(&i2c->lock, flags);
1013
1014        time_left = wait_for_completion_timeout(&i2c->msg_complete,
1015                                              IMG_I2C_TIMEOUT);
1016        if (time_left == 0)
1017                return -ETIMEDOUT;
1018        return 0;
1019}
1020
1021static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1022                        int num)
1023{
1024        struct img_i2c *i2c = i2c_get_adapdata(adap);
1025        bool atomic = false;
1026        int i, ret;
1027        unsigned long time_left;
1028
1029        if (i2c->mode == MODE_SUSPEND) {
1030                WARN(1, "refusing to service transaction in suspended state\n");
1031                return -EIO;
1032        }
1033
1034        if (i2c->mode == MODE_FATAL)
1035                return -EIO;
1036
1037        for (i = 0; i < num; i++) {
1038                /*
1039                 * 0 byte reads are not possible because the slave could try
1040                 * and pull the data line low, preventing a stop bit.
1041                 */
1042                if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1043                        return -EIO;
1044                /*
1045                 * 0 byte writes are possible and used for probing, but we
1046                 * cannot do them in automatic mode, so use atomic mode
1047                 * instead.
1048                 *
1049                 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1050                 * in atomic mode.
1051                 */
1052                if (!msgs[i].len ||
1053                    (msgs[i].flags & I2C_M_IGNORE_NAK))
1054                        atomic = true;
1055        }
1056
1057        ret = clk_prepare_enable(i2c->scb_clk);
1058        if (ret)
1059                return ret;
1060
1061        for (i = 0; i < num; i++) {
1062                struct i2c_msg *msg = &msgs[i];
1063                unsigned long flags;
1064
1065                spin_lock_irqsave(&i2c->lock, flags);
1066
1067                /*
1068                 * Make a copy of the message struct. We mustn't modify the
1069                 * original or we'll confuse drivers and i2c-dev.
1070                 */
1071                i2c->msg = *msg;
1072                i2c->msg_status = 0;
1073
1074                /*
1075                 * After the last message we must have waited for a stop bit.
1076                 * Not waiting can cause problems when the clock is disabled
1077                 * before the stop bit is sent, and the linux I2C interface
1078                 * requires separate transfers not to joined with repeated
1079                 * start.
1080                 */
1081                i2c->last_msg = (i == num - 1);
1082                reinit_completion(&i2c->msg_complete);
1083
1084                /*
1085                 * Clear line status and all interrupts before starting a
1086                 * transfer, as we may have unserviced interrupts from
1087                 * previous transfers that might be handled in the context
1088                 * of the new transfer.
1089                 */
1090                img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1091                img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1092
1093                if (atomic) {
1094                        img_i2c_atomic_start(i2c);
1095                } else {
1096                        /*
1097                         * Enable transaction halt if not the last message in
1098                         * the queue so that we can control repeated starts.
1099                         */
1100                        img_i2c_transaction_halt(i2c, !i2c->last_msg);
1101
1102                        if (msg->flags & I2C_M_RD)
1103                                img_i2c_read(i2c);
1104                        else
1105                                img_i2c_write(i2c);
1106
1107                        /*
1108                         * Release and then enable transaction halt, to
1109                         * allow only a single byte to proceed.
1110                         * This doesn't have an effect on the initial transfer
1111                         * but will allow the following transfers to start
1112                         * processing if the previous transfer was marked as
1113                         * complete while the i2c block was halted.
1114                         */
1115                        img_i2c_transaction_halt(i2c, false);
1116                        img_i2c_transaction_halt(i2c, !i2c->last_msg);
1117                }
1118                spin_unlock_irqrestore(&i2c->lock, flags);
1119
1120                time_left = wait_for_completion_timeout(&i2c->msg_complete,
1121                                                      IMG_I2C_TIMEOUT);
1122                del_timer_sync(&i2c->check_timer);
1123
1124                if (time_left == 0) {
1125                        dev_err(adap->dev.parent, "i2c transfer timed out\n");
1126                        i2c->msg_status = -ETIMEDOUT;
1127                        break;
1128                }
1129
1130                if (i2c->msg_status)
1131                        break;
1132        }
1133
1134        clk_disable_unprepare(i2c->scb_clk);
1135
1136        return i2c->msg_status ? i2c->msg_status : num;
1137}
1138
1139static u32 img_i2c_func(struct i2c_adapter *adap)
1140{
1141        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1142}
1143
1144static const struct i2c_algorithm img_i2c_algo = {
1145        .master_xfer = img_i2c_xfer,
1146        .functionality = img_i2c_func,
1147};
1148
1149static int img_i2c_init(struct img_i2c *i2c)
1150{
1151        unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1152        unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1153        struct img_i2c_timings timing;
1154        u32 rev;
1155
1156        ret = clk_prepare_enable(i2c->scb_clk);
1157        if (ret)
1158                return ret;
1159
1160        rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1161        if ((rev & 0x00ffffff) < 0x00020200) {
1162                dev_info(i2c->adap.dev.parent,
1163                         "Unknown hardware revision (%d.%d.%d.%d)\n",
1164                         (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1165                         (rev >> 8) & 0xff, rev & 0xff);
1166                clk_disable_unprepare(i2c->scb_clk);
1167                return -EINVAL;
1168        }
1169
1170        /* Fencing enabled by default. */
1171        i2c->need_wr_rd_fence = true;
1172
1173        /* Determine what mode we're in from the bitrate */
1174        timing = timings[0];
1175        for (i = 0; i < ARRAY_SIZE(timings); i++) {
1176                if (i2c->bitrate <= timings[i].max_bitrate) {
1177                        timing = timings[i];
1178                        break;
1179                }
1180        }
1181        if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1182                dev_warn(i2c->adap.dev.parent,
1183                         "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1184                         i2c->bitrate,
1185                         timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1186                timing = timings[ARRAY_SIZE(timings) - 1];
1187                i2c->bitrate = timing.max_bitrate;
1188        }
1189
1190        bitrate_khz = i2c->bitrate / 1000;
1191        clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1192
1193        /* Find the prescale that would give us that inc (approx delay = 0) */
1194        prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1195        prescale = clamp_t(unsigned int, prescale, 1, 8);
1196        clk_khz /= prescale;
1197
1198        /* Setup the clock increment value */
1199        inc = (256 * 16 * bitrate_khz) / clk_khz;
1200
1201        /*
1202         * The clock generation logic allows to filter glitches on the bus.
1203         * This filter is able to remove bus glitches shorter than 50ns.
1204         * If the clock enable rate is greater than 20 MHz, no filtering
1205         * is required, so we need to disable it.
1206         * If it's between the 20-40 MHz range, there's no need to divide
1207         * the clock to get a filter.
1208         */
1209        if (clk_khz < 20000) {
1210                filt = SCB_FILT_DISABLE;
1211        } else if (clk_khz < 40000) {
1212                filt = SCB_FILT_BYPASS;
1213        } else {
1214                /* Calculate filter clock */
1215                filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1216
1217                /* Scale up if needed */
1218                if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1219                        inc++;
1220
1221                if (filt > SCB_FILT_INC_MASK)
1222                        filt = SCB_FILT_INC_MASK;
1223
1224                filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1225        }
1226        data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1227        img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1228
1229        /* Obtain the clock period of the fx16 clock in ns */
1230        clk_period = (256 * 1000000) / (clk_khz * inc);
1231
1232        /* Calculate the bitrate in terms of internal clock pulses */
1233        int_bitrate = 1000000 / (bitrate_khz * clk_period);
1234        if ((1000000 % (bitrate_khz * clk_period)) >=
1235            ((bitrate_khz * clk_period) / 2))
1236                int_bitrate++;
1237
1238        /*
1239         * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1240         * values from there if they don't meet minimum timing requirements
1241         */
1242        tckh = int_bitrate / 2;
1243        tckl = int_bitrate - tckh;
1244
1245        /* Adjust TCKH and TCKL values */
1246        data = DIV_ROUND_UP(timing.tckl, clk_period);
1247
1248        if (tckl < data) {
1249                tckl = data;
1250                tckh = int_bitrate - tckl;
1251        }
1252
1253        if (tckh > 0)
1254                --tckh;
1255
1256        if (tckl > 0)
1257                --tckl;
1258
1259        img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1260        img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1261
1262        /* Setup TSDH value */
1263        tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1264
1265        if (tsdh > 1)
1266                data = tsdh - 1;
1267        else
1268                data = 0x01;
1269        img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1270
1271        /* This value is used later */
1272        tsdh = data;
1273
1274        /* Setup TPL value */
1275        data = timing.tpl / clk_period;
1276        if (data > 0)
1277                --data;
1278        img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1279
1280        /* Setup TPH value */
1281        data = timing.tph / clk_period;
1282        if (data > 0)
1283                --data;
1284        img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1285
1286        /* Setup TSDL value to TPL + TSDH + 2 */
1287        img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1288
1289        /* Setup TP2S value */
1290        data = timing.tp2s / clk_period;
1291        if (data > 0)
1292                --data;
1293        img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1294
1295        img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1296        img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1297        img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1298
1299        /* Take module out of soft reset and enable clocks */
1300        img_i2c_soft_reset(i2c);
1301
1302        /* Disable all interrupts */
1303        img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1304
1305        /* Clear all interrupts */
1306        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1307
1308        /* Clear the scb_line_status events */
1309        img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1310
1311        /* Enable interrupts */
1312        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1313
1314        /* Perform a synchronous sequence to reset the bus */
1315        ret = img_i2c_reset_bus(i2c);
1316
1317        clk_disable_unprepare(i2c->scb_clk);
1318
1319        return ret;
1320}
1321
1322static int img_i2c_probe(struct platform_device *pdev)
1323{
1324        struct device_node *node = pdev->dev.of_node;
1325        struct img_i2c *i2c;
1326        struct resource *res;
1327        int irq, ret;
1328        u32 val;
1329
1330        i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1331        if (!i2c)
1332                return -ENOMEM;
1333
1334        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1335        i2c->base = devm_ioremap_resource(&pdev->dev, res);
1336        if (IS_ERR(i2c->base))
1337                return PTR_ERR(i2c->base);
1338
1339        irq = platform_get_irq(pdev, 0);
1340        if (irq < 0) {
1341                dev_err(&pdev->dev, "can't get irq number\n");
1342                return irq;
1343        }
1344
1345        i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1346        if (IS_ERR(i2c->sys_clk)) {
1347                dev_err(&pdev->dev, "can't get system clock\n");
1348                return PTR_ERR(i2c->sys_clk);
1349        }
1350
1351        i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1352        if (IS_ERR(i2c->scb_clk)) {
1353                dev_err(&pdev->dev, "can't get core clock\n");
1354                return PTR_ERR(i2c->scb_clk);
1355        }
1356
1357        ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1358                               pdev->name, i2c);
1359        if (ret) {
1360                dev_err(&pdev->dev, "can't request irq %d\n", irq);
1361                return ret;
1362        }
1363
1364        /* Set up the exception check timer */
1365        init_timer(&i2c->check_timer);
1366        i2c->check_timer.function = img_i2c_check_timer;
1367        i2c->check_timer.data = (unsigned long)i2c;
1368
1369        i2c->bitrate = timings[0].max_bitrate;
1370        if (!of_property_read_u32(node, "clock-frequency", &val))
1371                i2c->bitrate = val;
1372
1373        i2c_set_adapdata(&i2c->adap, i2c);
1374        i2c->adap.dev.parent = &pdev->dev;
1375        i2c->adap.dev.of_node = node;
1376        i2c->adap.owner = THIS_MODULE;
1377        i2c->adap.algo = &img_i2c_algo;
1378        i2c->adap.retries = 5;
1379        i2c->adap.nr = pdev->id;
1380        snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1381
1382        img_i2c_switch_mode(i2c, MODE_INACTIVE);
1383        spin_lock_init(&i2c->lock);
1384        init_completion(&i2c->msg_complete);
1385
1386        platform_set_drvdata(pdev, i2c);
1387
1388        ret = clk_prepare_enable(i2c->sys_clk);
1389        if (ret)
1390                return ret;
1391
1392        ret = img_i2c_init(i2c);
1393        if (ret)
1394                goto disable_clk;
1395
1396        ret = i2c_add_numbered_adapter(&i2c->adap);
1397        if (ret < 0)
1398                goto disable_clk;
1399
1400        return 0;
1401
1402disable_clk:
1403        clk_disable_unprepare(i2c->sys_clk);
1404        return ret;
1405}
1406
1407static int img_i2c_remove(struct platform_device *dev)
1408{
1409        struct img_i2c *i2c = platform_get_drvdata(dev);
1410
1411        i2c_del_adapter(&i2c->adap);
1412        clk_disable_unprepare(i2c->sys_clk);
1413
1414        return 0;
1415}
1416
1417#ifdef CONFIG_PM_SLEEP
1418static int img_i2c_suspend(struct device *dev)
1419{
1420        struct img_i2c *i2c = dev_get_drvdata(dev);
1421
1422        img_i2c_switch_mode(i2c, MODE_SUSPEND);
1423
1424        clk_disable_unprepare(i2c->sys_clk);
1425
1426        return 0;
1427}
1428
1429static int img_i2c_resume(struct device *dev)
1430{
1431        struct img_i2c *i2c = dev_get_drvdata(dev);
1432        int ret;
1433
1434        ret = clk_prepare_enable(i2c->sys_clk);
1435        if (ret)
1436                return ret;
1437
1438        img_i2c_init(i2c);
1439
1440        return 0;
1441}
1442#endif /* CONFIG_PM_SLEEP */
1443
1444static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1445
1446static const struct of_device_id img_scb_i2c_match[] = {
1447        { .compatible = "img,scb-i2c" },
1448        { }
1449};
1450MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1451
1452static struct platform_driver img_scb_i2c_driver = {
1453        .driver = {
1454                .name           = "img-i2c-scb",
1455                .of_match_table = img_scb_i2c_match,
1456                .pm             = &img_i2c_pm,
1457        },
1458        .probe = img_i2c_probe,
1459        .remove = img_i2c_remove,
1460};
1461module_platform_driver(img_scb_i2c_driver);
1462
1463MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1464MODULE_DESCRIPTION("IMG host I2C driver");
1465MODULE_LICENSE("GPL v2");
1466