linux/drivers/infiniband/hw/hfi1/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <rdma/ib_mad.h>
  49#include <rdma/ib_user_verbs.h>
  50#include <linux/io.h>
  51#include <linux/module.h>
  52#include <linux/utsname.h>
  53#include <linux/rculist.h>
  54#include <linux/mm.h>
  55#include <linux/vmalloc.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "device.h"
  60#include "trace.h"
  61#include "qp.h"
  62#include "verbs_txreq.h"
  63
  64static unsigned int hfi1_lkey_table_size = 16;
  65module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  66                   S_IRUGO);
  67MODULE_PARM_DESC(lkey_table_size,
  68                 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  69
  70static unsigned int hfi1_max_pds = 0xFFFF;
  71module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  72MODULE_PARM_DESC(max_pds,
  73                 "Maximum number of protection domains to support");
  74
  75static unsigned int hfi1_max_ahs = 0xFFFF;
  76module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  77MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  78
  79unsigned int hfi1_max_cqes = 0x2FFFFF;
  80module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  81MODULE_PARM_DESC(max_cqes,
  82                 "Maximum number of completion queue entries to support");
  83
  84unsigned int hfi1_max_cqs = 0x1FFFF;
  85module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  86MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  87
  88unsigned int hfi1_max_qp_wrs = 0x3FFF;
  89module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  90MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  91
  92unsigned int hfi1_max_qps = 32768;
  93module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
  94MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  95
  96unsigned int hfi1_max_sges = 0x60;
  97module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
  98MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
  99
 100unsigned int hfi1_max_mcast_grps = 16384;
 101module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 102MODULE_PARM_DESC(max_mcast_grps,
 103                 "Maximum number of multicast groups to support");
 104
 105unsigned int hfi1_max_mcast_qp_attached = 16;
 106module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 107                   uint, S_IRUGO);
 108MODULE_PARM_DESC(max_mcast_qp_attached,
 109                 "Maximum number of attached QPs to support");
 110
 111unsigned int hfi1_max_srqs = 1024;
 112module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 113MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 114
 115unsigned int hfi1_max_srq_sges = 128;
 116module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 117MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 118
 119unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 120module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 121MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 122
 123unsigned short piothreshold = 256;
 124module_param(piothreshold, ushort, S_IRUGO);
 125MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 126
 127#define COPY_CACHELESS 1
 128#define COPY_ADAPTIVE  2
 129static unsigned int sge_copy_mode;
 130module_param(sge_copy_mode, uint, S_IRUGO);
 131MODULE_PARM_DESC(sge_copy_mode,
 132                 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 133
 134static void verbs_sdma_complete(
 135        struct sdma_txreq *cookie,
 136        int status);
 137
 138static int pio_wait(struct rvt_qp *qp,
 139                    struct send_context *sc,
 140                    struct hfi1_pkt_state *ps,
 141                    u32 flag);
 142
 143/* Length of buffer to create verbs txreq cache name */
 144#define TXREQ_NAME_LEN 24
 145
 146static uint wss_threshold;
 147module_param(wss_threshold, uint, S_IRUGO);
 148MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 149static uint wss_clean_period = 256;
 150module_param(wss_clean_period, uint, S_IRUGO);
 151MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 152
 153/* memory working set size */
 154struct hfi1_wss {
 155        unsigned long *entries;
 156        atomic_t total_count;
 157        atomic_t clean_counter;
 158        atomic_t clean_entry;
 159
 160        int threshold;
 161        int num_entries;
 162        long pages_mask;
 163};
 164
 165static struct hfi1_wss wss;
 166
 167int hfi1_wss_init(void)
 168{
 169        long llc_size;
 170        long llc_bits;
 171        long table_size;
 172        long table_bits;
 173
 174        /* check for a valid percent range - default to 80 if none or invalid */
 175        if (wss_threshold < 1 || wss_threshold > 100)
 176                wss_threshold = 80;
 177        /* reject a wildly large period */
 178        if (wss_clean_period > 1000000)
 179                wss_clean_period = 256;
 180        /* reject a zero period */
 181        if (wss_clean_period == 0)
 182                wss_clean_period = 1;
 183
 184        /*
 185         * Calculate the table size - the next power of 2 larger than the
 186         * LLC size.  LLC size is in KiB.
 187         */
 188        llc_size = wss_llc_size() * 1024;
 189        table_size = roundup_pow_of_two(llc_size);
 190
 191        /* one bit per page in rounded up table */
 192        llc_bits = llc_size / PAGE_SIZE;
 193        table_bits = table_size / PAGE_SIZE;
 194        wss.pages_mask = table_bits - 1;
 195        wss.num_entries = table_bits / BITS_PER_LONG;
 196
 197        wss.threshold = (llc_bits * wss_threshold) / 100;
 198        if (wss.threshold == 0)
 199                wss.threshold = 1;
 200
 201        atomic_set(&wss.clean_counter, wss_clean_period);
 202
 203        wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
 204                              GFP_KERNEL);
 205        if (!wss.entries) {
 206                hfi1_wss_exit();
 207                return -ENOMEM;
 208        }
 209
 210        return 0;
 211}
 212
 213void hfi1_wss_exit(void)
 214{
 215        /* coded to handle partially initialized and repeat callers */
 216        kfree(wss.entries);
 217        wss.entries = NULL;
 218}
 219
 220/*
 221 * Advance the clean counter.  When the clean period has expired,
 222 * clean an entry.
 223 *
 224 * This is implemented in atomics to avoid locking.  Because multiple
 225 * variables are involved, it can be racy which can lead to slightly
 226 * inaccurate information.  Since this is only a heuristic, this is
 227 * OK.  Any innaccuracies will clean themselves out as the counter
 228 * advances.  That said, it is unlikely the entry clean operation will
 229 * race - the next possible racer will not start until the next clean
 230 * period.
 231 *
 232 * The clean counter is implemented as a decrement to zero.  When zero
 233 * is reached an entry is cleaned.
 234 */
 235static void wss_advance_clean_counter(void)
 236{
 237        int entry;
 238        int weight;
 239        unsigned long bits;
 240
 241        /* become the cleaner if we decrement the counter to zero */
 242        if (atomic_dec_and_test(&wss.clean_counter)) {
 243                /*
 244                 * Set, not add, the clean period.  This avoids an issue
 245                 * where the counter could decrement below the clean period.
 246                 * Doing a set can result in lost decrements, slowing the
 247                 * clean advance.  Since this a heuristic, this possible
 248                 * slowdown is OK.
 249                 *
 250                 * An alternative is to loop, advancing the counter by a
 251                 * clean period until the result is > 0. However, this could
 252                 * lead to several threads keeping another in the clean loop.
 253                 * This could be mitigated by limiting the number of times
 254                 * we stay in the loop.
 255                 */
 256                atomic_set(&wss.clean_counter, wss_clean_period);
 257
 258                /*
 259                 * Uniquely grab the entry to clean and move to next.
 260                 * The current entry is always the lower bits of
 261                 * wss.clean_entry.  The table size, wss.num_entries,
 262                 * is always a power-of-2.
 263                 */
 264                entry = (atomic_inc_return(&wss.clean_entry) - 1)
 265                        & (wss.num_entries - 1);
 266
 267                /* clear the entry and count the bits */
 268                bits = xchg(&wss.entries[entry], 0);
 269                weight = hweight64((u64)bits);
 270                /* only adjust the contended total count if needed */
 271                if (weight)
 272                        atomic_sub(weight, &wss.total_count);
 273        }
 274}
 275
 276/*
 277 * Insert the given address into the working set array.
 278 */
 279static void wss_insert(void *address)
 280{
 281        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
 282        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 283        u32 nr = page & (BITS_PER_LONG - 1);
 284
 285        if (!test_and_set_bit(nr, &wss.entries[entry]))
 286                atomic_inc(&wss.total_count);
 287
 288        wss_advance_clean_counter();
 289}
 290
 291/*
 292 * Is the working set larger than the threshold?
 293 */
 294static inline int wss_exceeds_threshold(void)
 295{
 296        return atomic_read(&wss.total_count) >= wss.threshold;
 297}
 298
 299/*
 300 * Translate ib_wr_opcode into ib_wc_opcode.
 301 */
 302const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
 303        [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 304        [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
 305        [IB_WR_SEND] = IB_WC_SEND,
 306        [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
 307        [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
 308        [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
 309        [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
 310        [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
 311        [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
 312        [IB_WR_REG_MR] = IB_WC_REG_MR
 313};
 314
 315/*
 316 * Length of header by opcode, 0 --> not supported
 317 */
 318const u8 hdr_len_by_opcode[256] = {
 319        /* RC */
 320        [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 321        [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 322        [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 323        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 324        [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 325        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 326        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 327        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 328        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 329        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 330        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 331        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 332        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 333        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 334        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 335        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 336        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 337        [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 338        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 339        [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 340        [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 341        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 342        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 343        /* UC */
 344        [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 345        [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 346        [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 347        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 348        [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 349        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 350        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 351        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 352        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 353        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 354        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 355        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 356        /* UD */
 357        [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 358        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 359};
 360
 361static const opcode_handler opcode_handler_tbl[256] = {
 362        /* RC */
 363        [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 364        [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 365        [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 366        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 367        [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 368        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 369        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 370        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 371        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 372        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 373        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 374        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 375        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 376        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 377        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 378        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 379        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 380        [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 381        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 382        [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 383        [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 384        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 385        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 386        /* UC */
 387        [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 388        [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 389        [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 390        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 391        [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 392        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 393        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 394        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 395        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 396        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 397        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 398        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 399        /* UD */
 400        [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 401        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 402        /* CNP */
 403        [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
 404};
 405
 406#define OPMASK 0x1f
 407
 408static const u32 pio_opmask[BIT(3)] = {
 409        /* RC */
 410        [IB_OPCODE_RC >> 5] =
 411                BIT(RC_OP(SEND_ONLY) & OPMASK) |
 412                BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 413                BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 414                BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 415                BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 416                BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 417                BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 418                BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 419                BIT(RC_OP(FETCH_ADD) & OPMASK),
 420        /* UC */
 421        [IB_OPCODE_UC >> 5] =
 422                BIT(UC_OP(SEND_ONLY) & OPMASK) |
 423                BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 424                BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 425                BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 426};
 427
 428/*
 429 * System image GUID.
 430 */
 431__be64 ib_hfi1_sys_image_guid;
 432
 433/**
 434 * hfi1_copy_sge - copy data to SGE memory
 435 * @ss: the SGE state
 436 * @data: the data to copy
 437 * @length: the length of the data
 438 * @copy_last: do a separate copy of the last 8 bytes
 439 */
 440void hfi1_copy_sge(
 441        struct rvt_sge_state *ss,
 442        void *data, u32 length,
 443        int release,
 444        int copy_last)
 445{
 446        struct rvt_sge *sge = &ss->sge;
 447        int in_last = 0;
 448        int i;
 449        int cacheless_copy = 0;
 450
 451        if (sge_copy_mode == COPY_CACHELESS) {
 452                cacheless_copy = length >= PAGE_SIZE;
 453        } else if (sge_copy_mode == COPY_ADAPTIVE) {
 454                if (length >= PAGE_SIZE) {
 455                        /*
 456                         * NOTE: this *assumes*:
 457                         * o The first vaddr is the dest.
 458                         * o If multiple pages, then vaddr is sequential.
 459                         */
 460                        wss_insert(sge->vaddr);
 461                        if (length >= (2 * PAGE_SIZE))
 462                                wss_insert(sge->vaddr + PAGE_SIZE);
 463
 464                        cacheless_copy = wss_exceeds_threshold();
 465                } else {
 466                        wss_advance_clean_counter();
 467                }
 468        }
 469        if (copy_last) {
 470                if (length > 8) {
 471                        length -= 8;
 472                } else {
 473                        copy_last = 0;
 474                        in_last = 1;
 475                }
 476        }
 477
 478again:
 479        while (length) {
 480                u32 len = sge->length;
 481
 482                if (len > length)
 483                        len = length;
 484                if (len > sge->sge_length)
 485                        len = sge->sge_length;
 486                WARN_ON_ONCE(len == 0);
 487                if (unlikely(in_last)) {
 488                        /* enforce byte transfer ordering */
 489                        for (i = 0; i < len; i++)
 490                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
 491                } else if (cacheless_copy) {
 492                        cacheless_memcpy(sge->vaddr, data, len);
 493                } else {
 494                        memcpy(sge->vaddr, data, len);
 495                }
 496                sge->vaddr += len;
 497                sge->length -= len;
 498                sge->sge_length -= len;
 499                if (sge->sge_length == 0) {
 500                        if (release)
 501                                rvt_put_mr(sge->mr);
 502                        if (--ss->num_sge)
 503                                *sge = *ss->sg_list++;
 504                } else if (sge->length == 0 && sge->mr->lkey) {
 505                        if (++sge->n >= RVT_SEGSZ) {
 506                                if (++sge->m >= sge->mr->mapsz)
 507                                        break;
 508                                sge->n = 0;
 509                        }
 510                        sge->vaddr =
 511                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 512                        sge->length =
 513                                sge->mr->map[sge->m]->segs[sge->n].length;
 514                }
 515                data += len;
 516                length -= len;
 517        }
 518
 519        if (copy_last) {
 520                copy_last = 0;
 521                in_last = 1;
 522                length = 8;
 523                goto again;
 524        }
 525}
 526
 527/**
 528 * hfi1_skip_sge - skip over SGE memory
 529 * @ss: the SGE state
 530 * @length: the number of bytes to skip
 531 */
 532void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
 533{
 534        struct rvt_sge *sge = &ss->sge;
 535
 536        while (length) {
 537                u32 len = sge->length;
 538
 539                if (len > length)
 540                        len = length;
 541                if (len > sge->sge_length)
 542                        len = sge->sge_length;
 543                WARN_ON_ONCE(len == 0);
 544                sge->vaddr += len;
 545                sge->length -= len;
 546                sge->sge_length -= len;
 547                if (sge->sge_length == 0) {
 548                        if (release)
 549                                rvt_put_mr(sge->mr);
 550                        if (--ss->num_sge)
 551                                *sge = *ss->sg_list++;
 552                } else if (sge->length == 0 && sge->mr->lkey) {
 553                        if (++sge->n >= RVT_SEGSZ) {
 554                                if (++sge->m >= sge->mr->mapsz)
 555                                        break;
 556                                sge->n = 0;
 557                        }
 558                        sge->vaddr =
 559                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 560                        sge->length =
 561                                sge->mr->map[sge->m]->segs[sge->n].length;
 562                }
 563                length -= len;
 564        }
 565}
 566
 567/*
 568 * Make sure the QP is ready and able to accept the given opcode.
 569 */
 570static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
 571{
 572        if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 573                return NULL;
 574        if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
 575            (opcode == IB_OPCODE_CNP))
 576                return opcode_handler_tbl[opcode];
 577
 578        return NULL;
 579}
 580
 581/**
 582 * hfi1_ib_rcv - process an incoming packet
 583 * @packet: data packet information
 584 *
 585 * This is called to process an incoming packet at interrupt level.
 586 *
 587 * Tlen is the length of the header + data + CRC in bytes.
 588 */
 589void hfi1_ib_rcv(struct hfi1_packet *packet)
 590{
 591        struct hfi1_ctxtdata *rcd = packet->rcd;
 592        struct ib_header *hdr = packet->hdr;
 593        u32 tlen = packet->tlen;
 594        struct hfi1_pportdata *ppd = rcd->ppd;
 595        struct hfi1_ibport *ibp = &ppd->ibport_data;
 596        struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 597        opcode_handler packet_handler;
 598        unsigned long flags;
 599        u32 qp_num;
 600        int lnh;
 601        u8 opcode;
 602        u16 lid;
 603
 604        /* Check for GRH */
 605        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 606        if (lnh == HFI1_LRH_BTH) {
 607                packet->ohdr = &hdr->u.oth;
 608        } else if (lnh == HFI1_LRH_GRH) {
 609                u32 vtf;
 610
 611                packet->ohdr = &hdr->u.l.oth;
 612                if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
 613                        goto drop;
 614                vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
 615                if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 616                        goto drop;
 617                packet->rcv_flags |= HFI1_HAS_GRH;
 618        } else {
 619                goto drop;
 620        }
 621
 622        trace_input_ibhdr(rcd->dd, hdr);
 623
 624        opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 625        inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 626
 627        /* Get the destination QP number. */
 628        qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
 629        lid = be16_to_cpu(hdr->lrh[1]);
 630        if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 631                     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
 632                struct rvt_mcast *mcast;
 633                struct rvt_mcast_qp *p;
 634
 635                if (lnh != HFI1_LRH_GRH)
 636                        goto drop;
 637                mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
 638                if (!mcast)
 639                        goto drop;
 640                list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 641                        packet->qp = p->qp;
 642                        spin_lock_irqsave(&packet->qp->r_lock, flags);
 643                        packet_handler = qp_ok(opcode, packet);
 644                        if (likely(packet_handler))
 645                                packet_handler(packet);
 646                        else
 647                                ibp->rvp.n_pkt_drops++;
 648                        spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 649                }
 650                /*
 651                 * Notify rvt_multicast_detach() if it is waiting for us
 652                 * to finish.
 653                 */
 654                if (atomic_dec_return(&mcast->refcount) <= 1)
 655                        wake_up(&mcast->wait);
 656        } else {
 657                rcu_read_lock();
 658                packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 659                if (!packet->qp) {
 660                        rcu_read_unlock();
 661                        goto drop;
 662                }
 663                spin_lock_irqsave(&packet->qp->r_lock, flags);
 664                packet_handler = qp_ok(opcode, packet);
 665                if (likely(packet_handler))
 666                        packet_handler(packet);
 667                else
 668                        ibp->rvp.n_pkt_drops++;
 669                spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 670                rcu_read_unlock();
 671        }
 672        return;
 673
 674drop:
 675        ibp->rvp.n_pkt_drops++;
 676}
 677
 678/*
 679 * This is called from a timer to check for QPs
 680 * which need kernel memory in order to send a packet.
 681 */
 682static void mem_timer(unsigned long data)
 683{
 684        struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
 685        struct list_head *list = &dev->memwait;
 686        struct rvt_qp *qp = NULL;
 687        struct iowait *wait;
 688        unsigned long flags;
 689        struct hfi1_qp_priv *priv;
 690
 691        write_seqlock_irqsave(&dev->iowait_lock, flags);
 692        if (!list_empty(list)) {
 693                wait = list_first_entry(list, struct iowait, list);
 694                qp = iowait_to_qp(wait);
 695                priv = qp->priv;
 696                list_del_init(&priv->s_iowait.list);
 697                /* refcount held until actual wake up */
 698                if (!list_empty(list))
 699                        mod_timer(&dev->mem_timer, jiffies + 1);
 700        }
 701        write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 702
 703        if (qp)
 704                hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 705}
 706
 707void update_sge(struct rvt_sge_state *ss, u32 length)
 708{
 709        struct rvt_sge *sge = &ss->sge;
 710
 711        sge->vaddr += length;
 712        sge->length -= length;
 713        sge->sge_length -= length;
 714        if (sge->sge_length == 0) {
 715                if (--ss->num_sge)
 716                        *sge = *ss->sg_list++;
 717        } else if (sge->length == 0 && sge->mr->lkey) {
 718                if (++sge->n >= RVT_SEGSZ) {
 719                        if (++sge->m >= sge->mr->mapsz)
 720                                return;
 721                        sge->n = 0;
 722                }
 723                sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
 724                sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
 725        }
 726}
 727
 728/*
 729 * This is called with progress side lock held.
 730 */
 731/* New API */
 732static void verbs_sdma_complete(
 733        struct sdma_txreq *cookie,
 734        int status)
 735{
 736        struct verbs_txreq *tx =
 737                container_of(cookie, struct verbs_txreq, txreq);
 738        struct rvt_qp *qp = tx->qp;
 739
 740        spin_lock(&qp->s_lock);
 741        if (tx->wqe) {
 742                hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 743        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
 744                struct ib_header *hdr;
 745
 746                hdr = &tx->phdr.hdr;
 747                hfi1_rc_send_complete(qp, hdr);
 748        }
 749        spin_unlock(&qp->s_lock);
 750
 751        hfi1_put_txreq(tx);
 752}
 753
 754static int wait_kmem(struct hfi1_ibdev *dev,
 755                     struct rvt_qp *qp,
 756                     struct hfi1_pkt_state *ps)
 757{
 758        struct hfi1_qp_priv *priv = qp->priv;
 759        unsigned long flags;
 760        int ret = 0;
 761
 762        spin_lock_irqsave(&qp->s_lock, flags);
 763        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 764                write_seqlock(&dev->iowait_lock);
 765                list_add_tail(&ps->s_txreq->txreq.list,
 766                              &priv->s_iowait.tx_head);
 767                if (list_empty(&priv->s_iowait.list)) {
 768                        if (list_empty(&dev->memwait))
 769                                mod_timer(&dev->mem_timer, jiffies + 1);
 770                        qp->s_flags |= RVT_S_WAIT_KMEM;
 771                        list_add_tail(&priv->s_iowait.list, &dev->memwait);
 772                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 773                        rvt_get_qp(qp);
 774                }
 775                write_sequnlock(&dev->iowait_lock);
 776                qp->s_flags &= ~RVT_S_BUSY;
 777                ret = -EBUSY;
 778        }
 779        spin_unlock_irqrestore(&qp->s_lock, flags);
 780
 781        return ret;
 782}
 783
 784/*
 785 * This routine calls txadds for each sg entry.
 786 *
 787 * Add failures will revert the sge cursor
 788 */
 789static noinline int build_verbs_ulp_payload(
 790        struct sdma_engine *sde,
 791        struct rvt_sge_state *ss,
 792        u32 length,
 793        struct verbs_txreq *tx)
 794{
 795        struct rvt_sge *sg_list = ss->sg_list;
 796        struct rvt_sge sge = ss->sge;
 797        u8 num_sge = ss->num_sge;
 798        u32 len;
 799        int ret = 0;
 800
 801        while (length) {
 802                len = ss->sge.length;
 803                if (len > length)
 804                        len = length;
 805                if (len > ss->sge.sge_length)
 806                        len = ss->sge.sge_length;
 807                WARN_ON_ONCE(len == 0);
 808                ret = sdma_txadd_kvaddr(
 809                        sde->dd,
 810                        &tx->txreq,
 811                        ss->sge.vaddr,
 812                        len);
 813                if (ret)
 814                        goto bail_txadd;
 815                update_sge(ss, len);
 816                length -= len;
 817        }
 818        return ret;
 819bail_txadd:
 820        /* unwind cursor */
 821        ss->sge = sge;
 822        ss->num_sge = num_sge;
 823        ss->sg_list = sg_list;
 824        return ret;
 825}
 826
 827/*
 828 * Build the number of DMA descriptors needed to send length bytes of data.
 829 *
 830 * NOTE: DMA mapping is held in the tx until completed in the ring or
 831 *       the tx desc is freed without having been submitted to the ring
 832 *
 833 * This routine ensures all the helper routine calls succeed.
 834 */
 835/* New API */
 836static int build_verbs_tx_desc(
 837        struct sdma_engine *sde,
 838        struct rvt_sge_state *ss,
 839        u32 length,
 840        struct verbs_txreq *tx,
 841        struct hfi1_ahg_info *ahg_info,
 842        u64 pbc)
 843{
 844        int ret = 0;
 845        struct hfi1_sdma_header *phdr = &tx->phdr;
 846        u16 hdrbytes = tx->hdr_dwords << 2;
 847
 848        if (!ahg_info->ahgcount) {
 849                ret = sdma_txinit_ahg(
 850                        &tx->txreq,
 851                        ahg_info->tx_flags,
 852                        hdrbytes + length,
 853                        ahg_info->ahgidx,
 854                        0,
 855                        NULL,
 856                        0,
 857                        verbs_sdma_complete);
 858                if (ret)
 859                        goto bail_txadd;
 860                phdr->pbc = cpu_to_le64(pbc);
 861                ret = sdma_txadd_kvaddr(
 862                        sde->dd,
 863                        &tx->txreq,
 864                        phdr,
 865                        hdrbytes);
 866                if (ret)
 867                        goto bail_txadd;
 868        } else {
 869                ret = sdma_txinit_ahg(
 870                        &tx->txreq,
 871                        ahg_info->tx_flags,
 872                        length,
 873                        ahg_info->ahgidx,
 874                        ahg_info->ahgcount,
 875                        ahg_info->ahgdesc,
 876                        hdrbytes,
 877                        verbs_sdma_complete);
 878                if (ret)
 879                        goto bail_txadd;
 880        }
 881
 882        /* add the ulp payload - if any.  ss can be NULL for acks */
 883        if (ss)
 884                ret = build_verbs_ulp_payload(sde, ss, length, tx);
 885bail_txadd:
 886        return ret;
 887}
 888
 889int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 890                        u64 pbc)
 891{
 892        struct hfi1_qp_priv *priv = qp->priv;
 893        struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 894        u32 hdrwords = qp->s_hdrwords;
 895        struct rvt_sge_state *ss = qp->s_cur_sge;
 896        u32 len = qp->s_cur_size;
 897        u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
 898        struct hfi1_ibdev *dev = ps->dev;
 899        struct hfi1_pportdata *ppd = ps->ppd;
 900        struct verbs_txreq *tx;
 901        u64 pbc_flags = 0;
 902        u8 sc5 = priv->s_sc;
 903
 904        int ret;
 905
 906        tx = ps->s_txreq;
 907        if (!sdma_txreq_built(&tx->txreq)) {
 908                if (likely(pbc == 0)) {
 909                        u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 910                        /* No vl15 here */
 911                        /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
 912                        pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
 913
 914                        pbc = create_pbc(ppd,
 915                                         pbc_flags,
 916                                         qp->srate_mbps,
 917                                         vl,
 918                                         plen);
 919                }
 920                tx->wqe = qp->s_wqe;
 921                ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
 922                if (unlikely(ret))
 923                        goto bail_build;
 924        }
 925        ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
 926        if (unlikely(ret < 0)) {
 927                if (ret == -ECOMM)
 928                        goto bail_ecomm;
 929                return ret;
 930        }
 931        trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 932                                &ps->s_txreq->phdr.hdr);
 933        return ret;
 934
 935bail_ecomm:
 936        /* The current one got "sent" */
 937        return 0;
 938bail_build:
 939        ret = wait_kmem(dev, qp, ps);
 940        if (!ret) {
 941                /* free txreq - bad state */
 942                hfi1_put_txreq(ps->s_txreq);
 943                ps->s_txreq = NULL;
 944        }
 945        return ret;
 946}
 947
 948/*
 949 * If we are now in the error state, return zero to flush the
 950 * send work request.
 951 */
 952static int pio_wait(struct rvt_qp *qp,
 953                    struct send_context *sc,
 954                    struct hfi1_pkt_state *ps,
 955                    u32 flag)
 956{
 957        struct hfi1_qp_priv *priv = qp->priv;
 958        struct hfi1_devdata *dd = sc->dd;
 959        struct hfi1_ibdev *dev = &dd->verbs_dev;
 960        unsigned long flags;
 961        int ret = 0;
 962
 963        /*
 964         * Note that as soon as want_buffer() is called and
 965         * possibly before it returns, sc_piobufavail()
 966         * could be called. Therefore, put QP on the I/O wait list before
 967         * enabling the PIO avail interrupt.
 968         */
 969        spin_lock_irqsave(&qp->s_lock, flags);
 970        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 971                write_seqlock(&dev->iowait_lock);
 972                list_add_tail(&ps->s_txreq->txreq.list,
 973                              &priv->s_iowait.tx_head);
 974                if (list_empty(&priv->s_iowait.list)) {
 975                        struct hfi1_ibdev *dev = &dd->verbs_dev;
 976                        int was_empty;
 977
 978                        dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 979                        dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
 980                        qp->s_flags |= flag;
 981                        was_empty = list_empty(&sc->piowait);
 982                        list_add_tail(&priv->s_iowait.list, &sc->piowait);
 983                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 984                        rvt_get_qp(qp);
 985                        /* counting: only call wantpiobuf_intr if first user */
 986                        if (was_empty)
 987                                hfi1_sc_wantpiobuf_intr(sc, 1);
 988                }
 989                write_sequnlock(&dev->iowait_lock);
 990                qp->s_flags &= ~RVT_S_BUSY;
 991                ret = -EBUSY;
 992        }
 993        spin_unlock_irqrestore(&qp->s_lock, flags);
 994        return ret;
 995}
 996
 997static void verbs_pio_complete(void *arg, int code)
 998{
 999        struct rvt_qp *qp = (struct rvt_qp *)arg;
1000        struct hfi1_qp_priv *priv = qp->priv;
1001
1002        if (iowait_pio_dec(&priv->s_iowait))
1003                iowait_drain_wakeup(&priv->s_iowait);
1004}
1005
1006int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1007                        u64 pbc)
1008{
1009        struct hfi1_qp_priv *priv = qp->priv;
1010        u32 hdrwords = qp->s_hdrwords;
1011        struct rvt_sge_state *ss = qp->s_cur_sge;
1012        u32 len = qp->s_cur_size;
1013        u32 dwords = (len + 3) >> 2;
1014        u32 plen = hdrwords + dwords + 2; /* includes pbc */
1015        struct hfi1_pportdata *ppd = ps->ppd;
1016        u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
1017        u64 pbc_flags = 0;
1018        u8 sc5;
1019        unsigned long flags = 0;
1020        struct send_context *sc;
1021        struct pio_buf *pbuf;
1022        int wc_status = IB_WC_SUCCESS;
1023        int ret = 0;
1024        pio_release_cb cb = NULL;
1025
1026        /* only RC/UC use complete */
1027        switch (qp->ibqp.qp_type) {
1028        case IB_QPT_RC:
1029        case IB_QPT_UC:
1030                cb = verbs_pio_complete;
1031                break;
1032        default:
1033                break;
1034        }
1035
1036        /* vl15 special case taken care of in ud.c */
1037        sc5 = priv->s_sc;
1038        sc = ps->s_txreq->psc;
1039
1040        if (likely(pbc == 0)) {
1041                u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1042                /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1043                pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1044                pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1045        }
1046        if (cb)
1047                iowait_pio_inc(&priv->s_iowait);
1048        pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1049        if (unlikely(!pbuf)) {
1050                if (cb)
1051                        verbs_pio_complete(qp, 0);
1052                if (ppd->host_link_state != HLS_UP_ACTIVE) {
1053                        /*
1054                         * If we have filled the PIO buffers to capacity and are
1055                         * not in an active state this request is not going to
1056                         * go out to so just complete it with an error or else a
1057                         * ULP or the core may be stuck waiting.
1058                         */
1059                        hfi1_cdbg(
1060                                PIO,
1061                                "alloc failed. state not active, completing");
1062                        wc_status = IB_WC_GENERAL_ERR;
1063                        goto pio_bail;
1064                } else {
1065                        /*
1066                         * This is a normal occurrence. The PIO buffs are full
1067                         * up but we are still happily sending, well we could be
1068                         * so lets continue to queue the request.
1069                         */
1070                        hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1071                        ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1072                        if (!ret)
1073                                /* txreq not queued - free */
1074                                goto bail;
1075                        /* tx consumed in wait */
1076                        return ret;
1077                }
1078        }
1079
1080        if (len == 0) {
1081                pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1082        } else {
1083                if (ss) {
1084                        seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1085                        while (len) {
1086                                void *addr = ss->sge.vaddr;
1087                                u32 slen = ss->sge.length;
1088
1089                                if (slen > len)
1090                                        slen = len;
1091                                update_sge(ss, slen);
1092                                seg_pio_copy_mid(pbuf, addr, slen);
1093                                len -= slen;
1094                        }
1095                        seg_pio_copy_end(pbuf);
1096                }
1097        }
1098
1099        trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100                               &ps->s_txreq->phdr.hdr);
1101
1102pio_bail:
1103        if (qp->s_wqe) {
1104                spin_lock_irqsave(&qp->s_lock, flags);
1105                hfi1_send_complete(qp, qp->s_wqe, wc_status);
1106                spin_unlock_irqrestore(&qp->s_lock, flags);
1107        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1108                spin_lock_irqsave(&qp->s_lock, flags);
1109                hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110                spin_unlock_irqrestore(&qp->s_lock, flags);
1111        }
1112
1113        ret = 0;
1114
1115bail:
1116        hfi1_put_txreq(ps->s_txreq);
1117        return ret;
1118}
1119
1120/*
1121 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122 * being an entry from the partition key table), return 0
1123 * otherwise. Use the matching criteria for egress partition keys
1124 * specified in the OPAv1 spec., section 9.1l.7.
1125 */
1126static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127{
1128        u16 mkey = pkey & PKEY_LOW_15_MASK;
1129        u16 mentry = ent & PKEY_LOW_15_MASK;
1130
1131        if (mkey == mentry) {
1132                /*
1133                 * If pkey[15] is set (full partition member),
1134                 * is bit 15 in the corresponding table element
1135                 * clear (limited member)?
1136                 */
1137                if (pkey & PKEY_MEMBER_MASK)
1138                        return !!(ent & PKEY_MEMBER_MASK);
1139                return 1;
1140        }
1141        return 0;
1142}
1143
1144/**
1145 * egress_pkey_check - check P_KEY of a packet
1146 * @ppd:    Physical IB port data
1147 * @lrh: Local route header
1148 * @bth: Base transport header
1149 * @sc5:    SC for packet
1150 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151 * only. If it is negative value, then it means user contexts is calling this
1152 * function.
1153 *
1154 * It checks if hdr's pkey is valid.
1155 *
1156 * Return: 0 on success, otherwise, 1
1157 */
1158int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1159                      u8 sc5, int8_t s_pkey_index)
1160{
1161        struct hfi1_devdata *dd;
1162        int i;
1163        u16 pkey;
1164        int is_user_ctxt_mechanism = (s_pkey_index < 0);
1165
1166        if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1167                return 0;
1168
1169        pkey = (u16)be32_to_cpu(bth[0]);
1170
1171        /* If SC15, pkey[0:14] must be 0x7fff */
1172        if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1173                goto bad;
1174
1175        /* Is the pkey = 0x0, or 0x8000? */
1176        if ((pkey & PKEY_LOW_15_MASK) == 0)
1177                goto bad;
1178
1179        /*
1180         * For the kernel contexts only, if a qp is passed into the function,
1181         * the most likely matching pkey has index qp->s_pkey_index
1182         */
1183        if (!is_user_ctxt_mechanism &&
1184            egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1185                return 0;
1186        }
1187
1188        for (i = 0; i < MAX_PKEY_VALUES; i++) {
1189                if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1190                        return 0;
1191        }
1192bad:
1193        /*
1194         * For the user-context mechanism, the P_KEY check would only happen
1195         * once per SDMA request, not once per packet.  Therefore, there's no
1196         * need to increment the counter for the user-context mechanism.
1197         */
1198        if (!is_user_ctxt_mechanism) {
1199                incr_cntr64(&ppd->port_xmit_constraint_errors);
1200                dd = ppd->dd;
1201                if (!(dd->err_info_xmit_constraint.status &
1202                      OPA_EI_STATUS_SMASK)) {
1203                        u16 slid = be16_to_cpu(lrh[3]);
1204
1205                        dd->err_info_xmit_constraint.status |=
1206                                OPA_EI_STATUS_SMASK;
1207                        dd->err_info_xmit_constraint.slid = slid;
1208                        dd->err_info_xmit_constraint.pkey = pkey;
1209                }
1210        }
1211        return 1;
1212}
1213
1214/**
1215 * get_send_routine - choose an egress routine
1216 *
1217 * Choose an egress routine based on QP type
1218 * and size
1219 */
1220static inline send_routine get_send_routine(struct rvt_qp *qp,
1221                                            struct verbs_txreq *tx)
1222{
1223        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1224        struct hfi1_qp_priv *priv = qp->priv;
1225        struct ib_header *h = &tx->phdr.hdr;
1226
1227        if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1228                return dd->process_pio_send;
1229        switch (qp->ibqp.qp_type) {
1230        case IB_QPT_SMI:
1231                return dd->process_pio_send;
1232        case IB_QPT_GSI:
1233        case IB_QPT_UD:
1234                break;
1235        case IB_QPT_UC:
1236        case IB_QPT_RC: {
1237                u8 op = get_opcode(h);
1238
1239                if (piothreshold &&
1240                    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1241                    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1242                    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1243                    !sdma_txreq_built(&tx->txreq))
1244                        return dd->process_pio_send;
1245                break;
1246        }
1247        default:
1248                break;
1249        }
1250        return dd->process_dma_send;
1251}
1252
1253/**
1254 * hfi1_verbs_send - send a packet
1255 * @qp: the QP to send on
1256 * @ps: the state of the packet to send
1257 *
1258 * Return zero if packet is sent or queued OK.
1259 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1260 */
1261int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1262{
1263        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1264        struct hfi1_qp_priv *priv = qp->priv;
1265        struct ib_other_headers *ohdr;
1266        struct ib_header *hdr;
1267        send_routine sr;
1268        int ret;
1269        u8 lnh;
1270
1271        hdr = &ps->s_txreq->phdr.hdr;
1272        /* locate the pkey within the headers */
1273        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1274        if (lnh == HFI1_LRH_GRH)
1275                ohdr = &hdr->u.l.oth;
1276        else
1277                ohdr = &hdr->u.oth;
1278
1279        sr = get_send_routine(qp, ps->s_txreq);
1280        ret = egress_pkey_check(dd->pport,
1281                                hdr->lrh,
1282                                ohdr->bth,
1283                                priv->s_sc,
1284                                qp->s_pkey_index);
1285        if (unlikely(ret)) {
1286                /*
1287                 * The value we are returning here does not get propagated to
1288                 * the verbs caller. Thus we need to complete the request with
1289                 * error otherwise the caller could be sitting waiting on the
1290                 * completion event. Only do this for PIO. SDMA has its own
1291                 * mechanism for handling the errors. So for SDMA we can just
1292                 * return.
1293                 */
1294                if (sr == dd->process_pio_send) {
1295                        unsigned long flags;
1296
1297                        hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1298                                  __func__);
1299                        spin_lock_irqsave(&qp->s_lock, flags);
1300                        hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1301                        spin_unlock_irqrestore(&qp->s_lock, flags);
1302                }
1303                return -EINVAL;
1304        }
1305        if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1306                return pio_wait(qp,
1307                                ps->s_txreq->psc,
1308                                ps,
1309                                RVT_S_WAIT_PIO_DRAIN);
1310        return sr(qp, ps, 0);
1311}
1312
1313/**
1314 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1315 * @dd: the device data structure
1316 */
1317static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1318{
1319        struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1320        u16 ver = dd->dc8051_ver;
1321
1322        memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1323
1324        rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1325                                    (u64)dc8051_ver_min(ver);
1326        rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1327                        IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1328                        IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1329                        IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1330                        IB_DEVICE_MEM_MGT_EXTENSIONS;
1331        rdi->dparms.props.page_size_cap = PAGE_SIZE;
1332        rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1333        rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1334        rdi->dparms.props.hw_ver = dd->minrev;
1335        rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1336        rdi->dparms.props.max_mr_size = U64_MAX;
1337        rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1338        rdi->dparms.props.max_qp = hfi1_max_qps;
1339        rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1340        rdi->dparms.props.max_sge = hfi1_max_sges;
1341        rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1342        rdi->dparms.props.max_cq = hfi1_max_cqs;
1343        rdi->dparms.props.max_ah = hfi1_max_ahs;
1344        rdi->dparms.props.max_cqe = hfi1_max_cqes;
1345        rdi->dparms.props.max_mr = rdi->lkey_table.max;
1346        rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1347        rdi->dparms.props.max_map_per_fmr = 32767;
1348        rdi->dparms.props.max_pd = hfi1_max_pds;
1349        rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1350        rdi->dparms.props.max_qp_init_rd_atom = 255;
1351        rdi->dparms.props.max_srq = hfi1_max_srqs;
1352        rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1353        rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1354        rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1355        rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1356        rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1357        rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1358        rdi->dparms.props.max_total_mcast_qp_attach =
1359                                        rdi->dparms.props.max_mcast_qp_attach *
1360                                        rdi->dparms.props.max_mcast_grp;
1361}
1362
1363static inline u16 opa_speed_to_ib(u16 in)
1364{
1365        u16 out = 0;
1366
1367        if (in & OPA_LINK_SPEED_25G)
1368                out |= IB_SPEED_EDR;
1369        if (in & OPA_LINK_SPEED_12_5G)
1370                out |= IB_SPEED_FDR;
1371
1372        return out;
1373}
1374
1375/*
1376 * Convert a single OPA link width (no multiple flags) to an IB value.
1377 * A zero OPA link width means link down, which means the IB width value
1378 * is a don't care.
1379 */
1380static inline u16 opa_width_to_ib(u16 in)
1381{
1382        switch (in) {
1383        case OPA_LINK_WIDTH_1X:
1384        /* map 2x and 3x to 1x as they don't exist in IB */
1385        case OPA_LINK_WIDTH_2X:
1386        case OPA_LINK_WIDTH_3X:
1387                return IB_WIDTH_1X;
1388        default: /* link down or unknown, return our largest width */
1389        case OPA_LINK_WIDTH_4X:
1390                return IB_WIDTH_4X;
1391        }
1392}
1393
1394static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1395                      struct ib_port_attr *props)
1396{
1397        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1398        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1399        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1400        u16 lid = ppd->lid;
1401
1402        props->lid = lid ? lid : 0;
1403        props->lmc = ppd->lmc;
1404        /* OPA logical states match IB logical states */
1405        props->state = driver_lstate(ppd);
1406        props->phys_state = hfi1_ibphys_portstate(ppd);
1407        props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1408        props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1409        /* see rate_show() in ib core/sysfs.c */
1410        props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1411        props->max_vl_num = ppd->vls_supported;
1412
1413        /* Once we are a "first class" citizen and have added the OPA MTUs to
1414         * the core we can advertise the larger MTU enum to the ULPs, for now
1415         * advertise only 4K.
1416         *
1417         * Those applications which are either OPA aware or pass the MTU enum
1418         * from the Path Records to us will get the new 8k MTU.  Those that
1419         * attempt to process the MTU enum may fail in various ways.
1420         */
1421        props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1422                                      4096 : hfi1_max_mtu), IB_MTU_4096);
1423        props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1424                mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1425
1426        return 0;
1427}
1428
1429static int modify_device(struct ib_device *device,
1430                         int device_modify_mask,
1431                         struct ib_device_modify *device_modify)
1432{
1433        struct hfi1_devdata *dd = dd_from_ibdev(device);
1434        unsigned i;
1435        int ret;
1436
1437        if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1438                                   IB_DEVICE_MODIFY_NODE_DESC)) {
1439                ret = -EOPNOTSUPP;
1440                goto bail;
1441        }
1442
1443        if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1444                memcpy(device->node_desc, device_modify->node_desc,
1445                       IB_DEVICE_NODE_DESC_MAX);
1446                for (i = 0; i < dd->num_pports; i++) {
1447                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1448
1449                        hfi1_node_desc_chg(ibp);
1450                }
1451        }
1452
1453        if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1454                ib_hfi1_sys_image_guid =
1455                        cpu_to_be64(device_modify->sys_image_guid);
1456                for (i = 0; i < dd->num_pports; i++) {
1457                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1458
1459                        hfi1_sys_guid_chg(ibp);
1460                }
1461        }
1462
1463        ret = 0;
1464
1465bail:
1466        return ret;
1467}
1468
1469static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1470{
1471        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1472        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1473        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1474        int ret;
1475
1476        set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1477                             OPA_LINKDOWN_REASON_UNKNOWN);
1478        ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1479        return ret;
1480}
1481
1482static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1483                            int guid_index, __be64 *guid)
1484{
1485        struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1486        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1487
1488        if (guid_index == 0)
1489                *guid = cpu_to_be64(ppd->guid);
1490        else if (guid_index < HFI1_GUIDS_PER_PORT)
1491                *guid = ibp->guids[guid_index - 1];
1492        else
1493                return -EINVAL;
1494
1495        return 0;
1496}
1497
1498/*
1499 * convert ah port,sl to sc
1500 */
1501u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1502{
1503        struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1504
1505        return ibp->sl_to_sc[ah->sl];
1506}
1507
1508static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1509{
1510        struct hfi1_ibport *ibp;
1511        struct hfi1_pportdata *ppd;
1512        struct hfi1_devdata *dd;
1513        u8 sc5;
1514
1515        /* test the mapping for validity */
1516        ibp = to_iport(ibdev, ah_attr->port_num);
1517        ppd = ppd_from_ibp(ibp);
1518        sc5 = ibp->sl_to_sc[ah_attr->sl];
1519        dd = dd_from_ppd(ppd);
1520        if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1521                return -EINVAL;
1522        return 0;
1523}
1524
1525static void hfi1_notify_new_ah(struct ib_device *ibdev,
1526                               struct ib_ah_attr *ah_attr,
1527                               struct rvt_ah *ah)
1528{
1529        struct hfi1_ibport *ibp;
1530        struct hfi1_pportdata *ppd;
1531        struct hfi1_devdata *dd;
1532        u8 sc5;
1533
1534        /*
1535         * Do not trust reading anything from rvt_ah at this point as it is not
1536         * done being setup. We can however modify things which we need to set.
1537         */
1538
1539        ibp = to_iport(ibdev, ah_attr->port_num);
1540        ppd = ppd_from_ibp(ibp);
1541        sc5 = ibp->sl_to_sc[ah->attr.sl];
1542        dd = dd_from_ppd(ppd);
1543        ah->vl = sc_to_vlt(dd, sc5);
1544        if (ah->vl < num_vls || ah->vl == 15)
1545                ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1546}
1547
1548struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1549{
1550        struct ib_ah_attr attr;
1551        struct ib_ah *ah = ERR_PTR(-EINVAL);
1552        struct rvt_qp *qp0;
1553
1554        memset(&attr, 0, sizeof(attr));
1555        attr.dlid = dlid;
1556        attr.port_num = ppd_from_ibp(ibp)->port;
1557        rcu_read_lock();
1558        qp0 = rcu_dereference(ibp->rvp.qp[0]);
1559        if (qp0)
1560                ah = ib_create_ah(qp0->ibqp.pd, &attr);
1561        rcu_read_unlock();
1562        return ah;
1563}
1564
1565/**
1566 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1567 * @dd: the hfi1_ib device
1568 */
1569unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1570{
1571        return ARRAY_SIZE(dd->pport[0].pkeys);
1572}
1573
1574static void init_ibport(struct hfi1_pportdata *ppd)
1575{
1576        struct hfi1_ibport *ibp = &ppd->ibport_data;
1577        size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1578        int i;
1579
1580        for (i = 0; i < sz; i++) {
1581                ibp->sl_to_sc[i] = i;
1582                ibp->sc_to_sl[i] = i;
1583        }
1584
1585        spin_lock_init(&ibp->rvp.lock);
1586        /* Set the prefix to the default value (see ch. 4.1.1) */
1587        ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1588        ibp->rvp.sm_lid = 0;
1589        /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1590        ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1591                IB_PORT_CAP_MASK_NOTICE_SUP;
1592        ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1593        ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1594        ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1595        ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1596        ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1597
1598        RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1599        RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1600}
1601
1602static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1603                                size_t str_len)
1604{
1605        struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1606        struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1607        u16 ver = dd_from_dev(dev)->dc8051_ver;
1608
1609        snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1610                 dc8051_ver_min(ver));
1611}
1612
1613/**
1614 * hfi1_register_ib_device - register our device with the infiniband core
1615 * @dd: the device data structure
1616 * Return 0 if successful, errno if unsuccessful.
1617 */
1618int hfi1_register_ib_device(struct hfi1_devdata *dd)
1619{
1620        struct hfi1_ibdev *dev = &dd->verbs_dev;
1621        struct ib_device *ibdev = &dev->rdi.ibdev;
1622        struct hfi1_pportdata *ppd = dd->pport;
1623        unsigned i;
1624        int ret;
1625        size_t lcpysz = IB_DEVICE_NAME_MAX;
1626
1627        for (i = 0; i < dd->num_pports; i++)
1628                init_ibport(ppd + i);
1629
1630        /* Only need to initialize non-zero fields. */
1631
1632        setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1633
1634        seqlock_init(&dev->iowait_lock);
1635        INIT_LIST_HEAD(&dev->txwait);
1636        INIT_LIST_HEAD(&dev->memwait);
1637
1638        ret = verbs_txreq_init(dev);
1639        if (ret)
1640                goto err_verbs_txreq;
1641
1642        /*
1643         * The system image GUID is supposed to be the same for all
1644         * HFIs in a single system but since there can be other
1645         * device types in the system, we can't be sure this is unique.
1646         */
1647        if (!ib_hfi1_sys_image_guid)
1648                ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1649        lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1650        strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1651        ibdev->owner = THIS_MODULE;
1652        ibdev->node_guid = cpu_to_be64(ppd->guid);
1653        ibdev->phys_port_cnt = dd->num_pports;
1654        ibdev->dma_device = &dd->pcidev->dev;
1655        ibdev->modify_device = modify_device;
1656
1657        /* keep process mad in the driver */
1658        ibdev->process_mad = hfi1_process_mad;
1659        ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1660
1661        strncpy(ibdev->node_desc, init_utsname()->nodename,
1662                sizeof(ibdev->node_desc));
1663
1664        /*
1665         * Fill in rvt info object.
1666         */
1667        dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1668        dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1669        dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1670        dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1671        dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1672        dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1673        dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1674        dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1675        dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1676        /*
1677         * Fill in rvt info device attributes.
1678         */
1679        hfi1_fill_device_attr(dd);
1680
1681        /* queue pair */
1682        dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1683        dd->verbs_dev.rdi.dparms.qpn_start = 0;
1684        dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1685        dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1686        dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1687        dd->verbs_dev.rdi.dparms.qpn_res_end =
1688        dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1689        dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1690        dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1691        dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1692        dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1693        dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1694        dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1695
1696        dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1697        dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1698        dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1699        dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1700        dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1701        dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1702        dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1703        dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1704        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1705        dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1706        dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1707        dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1708        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1709        dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1710        dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1711        dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1712        dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1713        dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1714
1715        /* completeion queue */
1716        snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1717                 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1718                 "hfi1_cq%d", dd->unit);
1719        dd->verbs_dev.rdi.dparms.node = dd->node;
1720
1721        /* misc settings */
1722        dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1723        dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1724        dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1725        dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1726
1727        /* post send table */
1728        dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1729
1730        ppd = dd->pport;
1731        for (i = 0; i < dd->num_pports; i++, ppd++)
1732                rvt_init_port(&dd->verbs_dev.rdi,
1733                              &ppd->ibport_data.rvp,
1734                              i,
1735                              ppd->pkeys);
1736
1737        ret = rvt_register_device(&dd->verbs_dev.rdi);
1738        if (ret)
1739                goto err_verbs_txreq;
1740
1741        ret = hfi1_verbs_register_sysfs(dd);
1742        if (ret)
1743                goto err_class;
1744
1745        return ret;
1746
1747err_class:
1748        rvt_unregister_device(&dd->verbs_dev.rdi);
1749err_verbs_txreq:
1750        verbs_txreq_exit(dev);
1751        dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1752        return ret;
1753}
1754
1755void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1756{
1757        struct hfi1_ibdev *dev = &dd->verbs_dev;
1758
1759        hfi1_verbs_unregister_sysfs(dd);
1760
1761        rvt_unregister_device(&dd->verbs_dev.rdi);
1762
1763        if (!list_empty(&dev->txwait))
1764                dd_dev_err(dd, "txwait list not empty!\n");
1765        if (!list_empty(&dev->memwait))
1766                dd_dev_err(dd, "memwait list not empty!\n");
1767
1768        del_timer_sync(&dev->mem_timer);
1769        verbs_txreq_exit(dev);
1770}
1771
1772void hfi1_cnp_rcv(struct hfi1_packet *packet)
1773{
1774        struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1775        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1776        struct ib_header *hdr = packet->hdr;
1777        struct rvt_qp *qp = packet->qp;
1778        u32 lqpn, rqpn = 0;
1779        u16 rlid = 0;
1780        u8 sl, sc5, svc_type;
1781
1782        switch (packet->qp->ibqp.qp_type) {
1783        case IB_QPT_UC:
1784                rlid = qp->remote_ah_attr.dlid;
1785                rqpn = qp->remote_qpn;
1786                svc_type = IB_CC_SVCTYPE_UC;
1787                break;
1788        case IB_QPT_RC:
1789                rlid = qp->remote_ah_attr.dlid;
1790                rqpn = qp->remote_qpn;
1791                svc_type = IB_CC_SVCTYPE_RC;
1792                break;
1793        case IB_QPT_SMI:
1794        case IB_QPT_GSI:
1795        case IB_QPT_UD:
1796                svc_type = IB_CC_SVCTYPE_UD;
1797                break;
1798        default:
1799                ibp->rvp.n_pkt_drops++;
1800                return;
1801        }
1802
1803        sc5 = hdr2sc(hdr, packet->rhf);
1804        sl = ibp->sc_to_sl[sc5];
1805        lqpn = qp->ibqp.qp_num;
1806
1807        process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1808}
1809