linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31#include <crypto/skcipher.h>
  32
  33#include <linux/device-mapper.h>
  34
  35#define DM_MSG_PREFIX "crypt"
  36
  37/*
  38 * context holding the current state of a multi-part conversion
  39 */
  40struct convert_context {
  41        struct completion restart;
  42        struct bio *bio_in;
  43        struct bio *bio_out;
  44        struct bvec_iter iter_in;
  45        struct bvec_iter iter_out;
  46        sector_t cc_sector;
  47        atomic_t cc_pending;
  48        struct skcipher_request *req;
  49};
  50
  51/*
  52 * per bio private data
  53 */
  54struct dm_crypt_io {
  55        struct crypt_config *cc;
  56        struct bio *base_bio;
  57        struct work_struct work;
  58
  59        struct convert_context ctx;
  60
  61        atomic_t io_pending;
  62        int error;
  63        sector_t sector;
  64
  65        struct rb_node rb_node;
  66} CRYPTO_MINALIGN_ATTR;
  67
  68struct dm_crypt_request {
  69        struct convert_context *ctx;
  70        struct scatterlist sg_in;
  71        struct scatterlist sg_out;
  72        sector_t iv_sector;
  73};
  74
  75struct crypt_config;
  76
  77struct crypt_iv_operations {
  78        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  79                   const char *opts);
  80        void (*dtr)(struct crypt_config *cc);
  81        int (*init)(struct crypt_config *cc);
  82        int (*wipe)(struct crypt_config *cc);
  83        int (*generator)(struct crypt_config *cc, u8 *iv,
  84                         struct dm_crypt_request *dmreq);
  85        int (*post)(struct crypt_config *cc, u8 *iv,
  86                    struct dm_crypt_request *dmreq);
  87};
  88
  89struct iv_essiv_private {
  90        struct crypto_ahash *hash_tfm;
  91        u8 *salt;
  92};
  93
  94struct iv_benbi_private {
  95        int shift;
  96};
  97
  98#define LMK_SEED_SIZE 64 /* hash + 0 */
  99struct iv_lmk_private {
 100        struct crypto_shash *hash_tfm;
 101        u8 *seed;
 102};
 103
 104#define TCW_WHITENING_SIZE 16
 105struct iv_tcw_private {
 106        struct crypto_shash *crc32_tfm;
 107        u8 *iv_seed;
 108        u8 *whitening;
 109};
 110
 111/*
 112 * Crypt: maps a linear range of a block device
 113 * and encrypts / decrypts at the same time.
 114 */
 115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 116             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 117
 118/*
 119 * The fields in here must be read only after initialization.
 120 */
 121struct crypt_config {
 122        struct dm_dev *dev;
 123        sector_t start;
 124
 125        /*
 126         * pool for per bio private data, crypto requests and
 127         * encryption requeusts/buffer pages
 128         */
 129        mempool_t *req_pool;
 130        mempool_t *page_pool;
 131        struct bio_set *bs;
 132        struct mutex bio_alloc_lock;
 133
 134        struct workqueue_struct *io_queue;
 135        struct workqueue_struct *crypt_queue;
 136
 137        struct task_struct *write_thread;
 138        wait_queue_head_t write_thread_wait;
 139        struct rb_root write_tree;
 140
 141        char *cipher;
 142        char *cipher_string;
 143
 144        struct crypt_iv_operations *iv_gen_ops;
 145        union {
 146                struct iv_essiv_private essiv;
 147                struct iv_benbi_private benbi;
 148                struct iv_lmk_private lmk;
 149                struct iv_tcw_private tcw;
 150        } iv_gen_private;
 151        sector_t iv_offset;
 152        unsigned int iv_size;
 153
 154        /* ESSIV: struct crypto_cipher *essiv_tfm */
 155        void *iv_private;
 156        struct crypto_skcipher **tfms;
 157        unsigned tfms_count;
 158
 159        /*
 160         * Layout of each crypto request:
 161         *
 162         *   struct skcipher_request
 163         *      context
 164         *      padding
 165         *   struct dm_crypt_request
 166         *      padding
 167         *   IV
 168         *
 169         * The padding is added so that dm_crypt_request and the IV are
 170         * correctly aligned.
 171         */
 172        unsigned int dmreq_start;
 173
 174        unsigned int per_bio_data_size;
 175
 176        unsigned long flags;
 177        unsigned int key_size;
 178        unsigned int key_parts;      /* independent parts in key buffer */
 179        unsigned int key_extra_size; /* additional keys length */
 180        u8 key[0];
 181};
 182
 183#define MIN_IOS        64
 184
 185static void clone_init(struct dm_crypt_io *, struct bio *);
 186static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 187static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 188
 189/*
 190 * Use this to access cipher attributes that are the same for each CPU.
 191 */
 192static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 193{
 194        return cc->tfms[0];
 195}
 196
 197/*
 198 * Different IV generation algorithms:
 199 *
 200 * plain: the initial vector is the 32-bit little-endian version of the sector
 201 *        number, padded with zeros if necessary.
 202 *
 203 * plain64: the initial vector is the 64-bit little-endian version of the sector
 204 *        number, padded with zeros if necessary.
 205 *
 206 * essiv: "encrypted sector|salt initial vector", the sector number is
 207 *        encrypted with the bulk cipher using a salt as key. The salt
 208 *        should be derived from the bulk cipher's key via hashing.
 209 *
 210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 211 *        (needed for LRW-32-AES and possible other narrow block modes)
 212 *
 213 * null: the initial vector is always zero.  Provides compatibility with
 214 *       obsolete loop_fish2 devices.  Do not use for new devices.
 215 *
 216 * lmk:  Compatible implementation of the block chaining mode used
 217 *       by the Loop-AES block device encryption system
 218 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 219 *       It operates on full 512 byte sectors and uses CBC
 220 *       with an IV derived from the sector number, the data and
 221 *       optionally extra IV seed.
 222 *       This means that after decryption the first block
 223 *       of sector must be tweaked according to decrypted data.
 224 *       Loop-AES can use three encryption schemes:
 225 *         version 1: is plain aes-cbc mode
 226 *         version 2: uses 64 multikey scheme with lmk IV generator
 227 *         version 3: the same as version 2 with additional IV seed
 228 *                   (it uses 65 keys, last key is used as IV seed)
 229 *
 230 * tcw:  Compatible implementation of the block chaining mode used
 231 *       by the TrueCrypt device encryption system (prior to version 4.1).
 232 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 233 *       It operates on full 512 byte sectors and uses CBC
 234 *       with an IV derived from initial key and the sector number.
 235 *       In addition, whitening value is applied on every sector, whitening
 236 *       is calculated from initial key, sector number and mixed using CRC32.
 237 *       Note that this encryption scheme is vulnerable to watermarking attacks
 238 *       and should be used for old compatible containers access only.
 239 *
 240 * plumb: unimplemented, see:
 241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 242 */
 243
 244static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 245                              struct dm_crypt_request *dmreq)
 246{
 247        memset(iv, 0, cc->iv_size);
 248        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 249
 250        return 0;
 251}
 252
 253static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 254                                struct dm_crypt_request *dmreq)
 255{
 256        memset(iv, 0, cc->iv_size);
 257        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 258
 259        return 0;
 260}
 261
 262/* Initialise ESSIV - compute salt but no local memory allocations */
 263static int crypt_iv_essiv_init(struct crypt_config *cc)
 264{
 265        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 266        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 267        struct scatterlist sg;
 268        struct crypto_cipher *essiv_tfm;
 269        int err;
 270
 271        sg_init_one(&sg, cc->key, cc->key_size);
 272        ahash_request_set_tfm(req, essiv->hash_tfm);
 273        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 274        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 275
 276        err = crypto_ahash_digest(req);
 277        ahash_request_zero(req);
 278        if (err)
 279                return err;
 280
 281        essiv_tfm = cc->iv_private;
 282
 283        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 284                            crypto_ahash_digestsize(essiv->hash_tfm));
 285        if (err)
 286                return err;
 287
 288        return 0;
 289}
 290
 291/* Wipe salt and reset key derived from volume key */
 292static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 293{
 294        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 295        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 296        struct crypto_cipher *essiv_tfm;
 297        int r, err = 0;
 298
 299        memset(essiv->salt, 0, salt_size);
 300
 301        essiv_tfm = cc->iv_private;
 302        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 303        if (r)
 304                err = r;
 305
 306        return err;
 307}
 308
 309/* Set up per cpu cipher state */
 310static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 311                                             struct dm_target *ti,
 312                                             u8 *salt, unsigned saltsize)
 313{
 314        struct crypto_cipher *essiv_tfm;
 315        int err;
 316
 317        /* Setup the essiv_tfm with the given salt */
 318        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 319        if (IS_ERR(essiv_tfm)) {
 320                ti->error = "Error allocating crypto tfm for ESSIV";
 321                return essiv_tfm;
 322        }
 323
 324        if (crypto_cipher_blocksize(essiv_tfm) !=
 325            crypto_skcipher_ivsize(any_tfm(cc))) {
 326                ti->error = "Block size of ESSIV cipher does "
 327                            "not match IV size of block cipher";
 328                crypto_free_cipher(essiv_tfm);
 329                return ERR_PTR(-EINVAL);
 330        }
 331
 332        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 333        if (err) {
 334                ti->error = "Failed to set key for ESSIV cipher";
 335                crypto_free_cipher(essiv_tfm);
 336                return ERR_PTR(err);
 337        }
 338
 339        return essiv_tfm;
 340}
 341
 342static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 343{
 344        struct crypto_cipher *essiv_tfm;
 345        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 346
 347        crypto_free_ahash(essiv->hash_tfm);
 348        essiv->hash_tfm = NULL;
 349
 350        kzfree(essiv->salt);
 351        essiv->salt = NULL;
 352
 353        essiv_tfm = cc->iv_private;
 354
 355        if (essiv_tfm)
 356                crypto_free_cipher(essiv_tfm);
 357
 358        cc->iv_private = NULL;
 359}
 360
 361static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 362                              const char *opts)
 363{
 364        struct crypto_cipher *essiv_tfm = NULL;
 365        struct crypto_ahash *hash_tfm = NULL;
 366        u8 *salt = NULL;
 367        int err;
 368
 369        if (!opts) {
 370                ti->error = "Digest algorithm missing for ESSIV mode";
 371                return -EINVAL;
 372        }
 373
 374        /* Allocate hash algorithm */
 375        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 376        if (IS_ERR(hash_tfm)) {
 377                ti->error = "Error initializing ESSIV hash";
 378                err = PTR_ERR(hash_tfm);
 379                goto bad;
 380        }
 381
 382        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 383        if (!salt) {
 384                ti->error = "Error kmallocing salt storage in ESSIV";
 385                err = -ENOMEM;
 386                goto bad;
 387        }
 388
 389        cc->iv_gen_private.essiv.salt = salt;
 390        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 391
 392        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 393                                crypto_ahash_digestsize(hash_tfm));
 394        if (IS_ERR(essiv_tfm)) {
 395                crypt_iv_essiv_dtr(cc);
 396                return PTR_ERR(essiv_tfm);
 397        }
 398        cc->iv_private = essiv_tfm;
 399
 400        return 0;
 401
 402bad:
 403        if (hash_tfm && !IS_ERR(hash_tfm))
 404                crypto_free_ahash(hash_tfm);
 405        kfree(salt);
 406        return err;
 407}
 408
 409static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 410                              struct dm_crypt_request *dmreq)
 411{
 412        struct crypto_cipher *essiv_tfm = cc->iv_private;
 413
 414        memset(iv, 0, cc->iv_size);
 415        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 416        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 417
 418        return 0;
 419}
 420
 421static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 422                              const char *opts)
 423{
 424        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 425        int log = ilog2(bs);
 426
 427        /* we need to calculate how far we must shift the sector count
 428         * to get the cipher block count, we use this shift in _gen */
 429
 430        if (1 << log != bs) {
 431                ti->error = "cypher blocksize is not a power of 2";
 432                return -EINVAL;
 433        }
 434
 435        if (log > 9) {
 436                ti->error = "cypher blocksize is > 512";
 437                return -EINVAL;
 438        }
 439
 440        cc->iv_gen_private.benbi.shift = 9 - log;
 441
 442        return 0;
 443}
 444
 445static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 446{
 447}
 448
 449static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 450                              struct dm_crypt_request *dmreq)
 451{
 452        __be64 val;
 453
 454        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 455
 456        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 457        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 458
 459        return 0;
 460}
 461
 462static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 463                             struct dm_crypt_request *dmreq)
 464{
 465        memset(iv, 0, cc->iv_size);
 466
 467        return 0;
 468}
 469
 470static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 471{
 472        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 473
 474        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 475                crypto_free_shash(lmk->hash_tfm);
 476        lmk->hash_tfm = NULL;
 477
 478        kzfree(lmk->seed);
 479        lmk->seed = NULL;
 480}
 481
 482static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 483                            const char *opts)
 484{
 485        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 486
 487        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 488        if (IS_ERR(lmk->hash_tfm)) {
 489                ti->error = "Error initializing LMK hash";
 490                return PTR_ERR(lmk->hash_tfm);
 491        }
 492
 493        /* No seed in LMK version 2 */
 494        if (cc->key_parts == cc->tfms_count) {
 495                lmk->seed = NULL;
 496                return 0;
 497        }
 498
 499        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 500        if (!lmk->seed) {
 501                crypt_iv_lmk_dtr(cc);
 502                ti->error = "Error kmallocing seed storage in LMK";
 503                return -ENOMEM;
 504        }
 505
 506        return 0;
 507}
 508
 509static int crypt_iv_lmk_init(struct crypt_config *cc)
 510{
 511        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 512        int subkey_size = cc->key_size / cc->key_parts;
 513
 514        /* LMK seed is on the position of LMK_KEYS + 1 key */
 515        if (lmk->seed)
 516                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 517                       crypto_shash_digestsize(lmk->hash_tfm));
 518
 519        return 0;
 520}
 521
 522static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 523{
 524        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 525
 526        if (lmk->seed)
 527                memset(lmk->seed, 0, LMK_SEED_SIZE);
 528
 529        return 0;
 530}
 531
 532static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 533                            struct dm_crypt_request *dmreq,
 534                            u8 *data)
 535{
 536        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 537        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 538        struct md5_state md5state;
 539        __le32 buf[4];
 540        int i, r;
 541
 542        desc->tfm = lmk->hash_tfm;
 543        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 544
 545        r = crypto_shash_init(desc);
 546        if (r)
 547                return r;
 548
 549        if (lmk->seed) {
 550                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 551                if (r)
 552                        return r;
 553        }
 554
 555        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 556        r = crypto_shash_update(desc, data + 16, 16 * 31);
 557        if (r)
 558                return r;
 559
 560        /* Sector is cropped to 56 bits here */
 561        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 562        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 563        buf[2] = cpu_to_le32(4024);
 564        buf[3] = 0;
 565        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 566        if (r)
 567                return r;
 568
 569        /* No MD5 padding here */
 570        r = crypto_shash_export(desc, &md5state);
 571        if (r)
 572                return r;
 573
 574        for (i = 0; i < MD5_HASH_WORDS; i++)
 575                __cpu_to_le32s(&md5state.hash[i]);
 576        memcpy(iv, &md5state.hash, cc->iv_size);
 577
 578        return 0;
 579}
 580
 581static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 582                            struct dm_crypt_request *dmreq)
 583{
 584        u8 *src;
 585        int r = 0;
 586
 587        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 588                src = kmap_atomic(sg_page(&dmreq->sg_in));
 589                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 590                kunmap_atomic(src);
 591        } else
 592                memset(iv, 0, cc->iv_size);
 593
 594        return r;
 595}
 596
 597static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 598                             struct dm_crypt_request *dmreq)
 599{
 600        u8 *dst;
 601        int r;
 602
 603        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 604                return 0;
 605
 606        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 607        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 608
 609        /* Tweak the first block of plaintext sector */
 610        if (!r)
 611                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 612
 613        kunmap_atomic(dst);
 614        return r;
 615}
 616
 617static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 618{
 619        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 620
 621        kzfree(tcw->iv_seed);
 622        tcw->iv_seed = NULL;
 623        kzfree(tcw->whitening);
 624        tcw->whitening = NULL;
 625
 626        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 627                crypto_free_shash(tcw->crc32_tfm);
 628        tcw->crc32_tfm = NULL;
 629}
 630
 631static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 632                            const char *opts)
 633{
 634        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 635
 636        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 637                ti->error = "Wrong key size for TCW";
 638                return -EINVAL;
 639        }
 640
 641        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 642        if (IS_ERR(tcw->crc32_tfm)) {
 643                ti->error = "Error initializing CRC32 in TCW";
 644                return PTR_ERR(tcw->crc32_tfm);
 645        }
 646
 647        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 648        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 649        if (!tcw->iv_seed || !tcw->whitening) {
 650                crypt_iv_tcw_dtr(cc);
 651                ti->error = "Error allocating seed storage in TCW";
 652                return -ENOMEM;
 653        }
 654
 655        return 0;
 656}
 657
 658static int crypt_iv_tcw_init(struct crypt_config *cc)
 659{
 660        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 661        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 662
 663        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 664        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 665               TCW_WHITENING_SIZE);
 666
 667        return 0;
 668}
 669
 670static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 671{
 672        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 673
 674        memset(tcw->iv_seed, 0, cc->iv_size);
 675        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 676
 677        return 0;
 678}
 679
 680static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 681                                  struct dm_crypt_request *dmreq,
 682                                  u8 *data)
 683{
 684        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 685        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 686        u8 buf[TCW_WHITENING_SIZE];
 687        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 688        int i, r;
 689
 690        /* xor whitening with sector number */
 691        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 692        crypto_xor(buf, (u8 *)&sector, 8);
 693        crypto_xor(&buf[8], (u8 *)&sector, 8);
 694
 695        /* calculate crc32 for every 32bit part and xor it */
 696        desc->tfm = tcw->crc32_tfm;
 697        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 698        for (i = 0; i < 4; i++) {
 699                r = crypto_shash_init(desc);
 700                if (r)
 701                        goto out;
 702                r = crypto_shash_update(desc, &buf[i * 4], 4);
 703                if (r)
 704                        goto out;
 705                r = crypto_shash_final(desc, &buf[i * 4]);
 706                if (r)
 707                        goto out;
 708        }
 709        crypto_xor(&buf[0], &buf[12], 4);
 710        crypto_xor(&buf[4], &buf[8], 4);
 711
 712        /* apply whitening (8 bytes) to whole sector */
 713        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 714                crypto_xor(data + i * 8, buf, 8);
 715out:
 716        memzero_explicit(buf, sizeof(buf));
 717        return r;
 718}
 719
 720static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 721                            struct dm_crypt_request *dmreq)
 722{
 723        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 724        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 725        u8 *src;
 726        int r = 0;
 727
 728        /* Remove whitening from ciphertext */
 729        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 730                src = kmap_atomic(sg_page(&dmreq->sg_in));
 731                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 732                kunmap_atomic(src);
 733        }
 734
 735        /* Calculate IV */
 736        memcpy(iv, tcw->iv_seed, cc->iv_size);
 737        crypto_xor(iv, (u8 *)&sector, 8);
 738        if (cc->iv_size > 8)
 739                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 740
 741        return r;
 742}
 743
 744static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 745                             struct dm_crypt_request *dmreq)
 746{
 747        u8 *dst;
 748        int r;
 749
 750        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 751                return 0;
 752
 753        /* Apply whitening on ciphertext */
 754        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 755        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 756        kunmap_atomic(dst);
 757
 758        return r;
 759}
 760
 761static struct crypt_iv_operations crypt_iv_plain_ops = {
 762        .generator = crypt_iv_plain_gen
 763};
 764
 765static struct crypt_iv_operations crypt_iv_plain64_ops = {
 766        .generator = crypt_iv_plain64_gen
 767};
 768
 769static struct crypt_iv_operations crypt_iv_essiv_ops = {
 770        .ctr       = crypt_iv_essiv_ctr,
 771        .dtr       = crypt_iv_essiv_dtr,
 772        .init      = crypt_iv_essiv_init,
 773        .wipe      = crypt_iv_essiv_wipe,
 774        .generator = crypt_iv_essiv_gen
 775};
 776
 777static struct crypt_iv_operations crypt_iv_benbi_ops = {
 778        .ctr       = crypt_iv_benbi_ctr,
 779        .dtr       = crypt_iv_benbi_dtr,
 780        .generator = crypt_iv_benbi_gen
 781};
 782
 783static struct crypt_iv_operations crypt_iv_null_ops = {
 784        .generator = crypt_iv_null_gen
 785};
 786
 787static struct crypt_iv_operations crypt_iv_lmk_ops = {
 788        .ctr       = crypt_iv_lmk_ctr,
 789        .dtr       = crypt_iv_lmk_dtr,
 790        .init      = crypt_iv_lmk_init,
 791        .wipe      = crypt_iv_lmk_wipe,
 792        .generator = crypt_iv_lmk_gen,
 793        .post      = crypt_iv_lmk_post
 794};
 795
 796static struct crypt_iv_operations crypt_iv_tcw_ops = {
 797        .ctr       = crypt_iv_tcw_ctr,
 798        .dtr       = crypt_iv_tcw_dtr,
 799        .init      = crypt_iv_tcw_init,
 800        .wipe      = crypt_iv_tcw_wipe,
 801        .generator = crypt_iv_tcw_gen,
 802        .post      = crypt_iv_tcw_post
 803};
 804
 805static void crypt_convert_init(struct crypt_config *cc,
 806                               struct convert_context *ctx,
 807                               struct bio *bio_out, struct bio *bio_in,
 808                               sector_t sector)
 809{
 810        ctx->bio_in = bio_in;
 811        ctx->bio_out = bio_out;
 812        if (bio_in)
 813                ctx->iter_in = bio_in->bi_iter;
 814        if (bio_out)
 815                ctx->iter_out = bio_out->bi_iter;
 816        ctx->cc_sector = sector + cc->iv_offset;
 817        init_completion(&ctx->restart);
 818}
 819
 820static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 821                                             struct skcipher_request *req)
 822{
 823        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 824}
 825
 826static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 827                                               struct dm_crypt_request *dmreq)
 828{
 829        return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 830}
 831
 832static u8 *iv_of_dmreq(struct crypt_config *cc,
 833                       struct dm_crypt_request *dmreq)
 834{
 835        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 836                crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 837}
 838
 839static int crypt_convert_block(struct crypt_config *cc,
 840                               struct convert_context *ctx,
 841                               struct skcipher_request *req)
 842{
 843        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 844        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 845        struct dm_crypt_request *dmreq;
 846        u8 *iv;
 847        int r;
 848
 849        dmreq = dmreq_of_req(cc, req);
 850        iv = iv_of_dmreq(cc, dmreq);
 851
 852        dmreq->iv_sector = ctx->cc_sector;
 853        dmreq->ctx = ctx;
 854        sg_init_table(&dmreq->sg_in, 1);
 855        sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 856                    bv_in.bv_offset);
 857
 858        sg_init_table(&dmreq->sg_out, 1);
 859        sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 860                    bv_out.bv_offset);
 861
 862        bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 863        bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 864
 865        if (cc->iv_gen_ops) {
 866                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 867                if (r < 0)
 868                        return r;
 869        }
 870
 871        skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 872                                   1 << SECTOR_SHIFT, iv);
 873
 874        if (bio_data_dir(ctx->bio_in) == WRITE)
 875                r = crypto_skcipher_encrypt(req);
 876        else
 877                r = crypto_skcipher_decrypt(req);
 878
 879        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 880                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 881
 882        return r;
 883}
 884
 885static void kcryptd_async_done(struct crypto_async_request *async_req,
 886                               int error);
 887
 888static void crypt_alloc_req(struct crypt_config *cc,
 889                            struct convert_context *ctx)
 890{
 891        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 892
 893        if (!ctx->req)
 894                ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 895
 896        skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 897
 898        /*
 899         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 900         * requests if driver request queue is full.
 901         */
 902        skcipher_request_set_callback(ctx->req,
 903            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 904            kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 905}
 906
 907static void crypt_free_req(struct crypt_config *cc,
 908                           struct skcipher_request *req, struct bio *base_bio)
 909{
 910        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 911
 912        if ((struct skcipher_request *)(io + 1) != req)
 913                mempool_free(req, cc->req_pool);
 914}
 915
 916/*
 917 * Encrypt / decrypt data from one bio to another one (can be the same one)
 918 */
 919static int crypt_convert(struct crypt_config *cc,
 920                         struct convert_context *ctx)
 921{
 922        int r;
 923
 924        atomic_set(&ctx->cc_pending, 1);
 925
 926        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 927
 928                crypt_alloc_req(cc, ctx);
 929
 930                atomic_inc(&ctx->cc_pending);
 931
 932                r = crypt_convert_block(cc, ctx, ctx->req);
 933
 934                switch (r) {
 935                /*
 936                 * The request was queued by a crypto driver
 937                 * but the driver request queue is full, let's wait.
 938                 */
 939                case -EBUSY:
 940                        wait_for_completion(&ctx->restart);
 941                        reinit_completion(&ctx->restart);
 942                        /* fall through */
 943                /*
 944                 * The request is queued and processed asynchronously,
 945                 * completion function kcryptd_async_done() will be called.
 946                 */
 947                case -EINPROGRESS:
 948                        ctx->req = NULL;
 949                        ctx->cc_sector++;
 950                        continue;
 951                /*
 952                 * The request was already processed (synchronously).
 953                 */
 954                case 0:
 955                        atomic_dec(&ctx->cc_pending);
 956                        ctx->cc_sector++;
 957                        cond_resched();
 958                        continue;
 959
 960                /* There was an error while processing the request. */
 961                default:
 962                        atomic_dec(&ctx->cc_pending);
 963                        return r;
 964                }
 965        }
 966
 967        return 0;
 968}
 969
 970static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 971
 972/*
 973 * Generate a new unfragmented bio with the given size
 974 * This should never violate the device limitations (but only because
 975 * max_segment_size is being constrained to PAGE_SIZE).
 976 *
 977 * This function may be called concurrently. If we allocate from the mempool
 978 * concurrently, there is a possibility of deadlock. For example, if we have
 979 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 980 * the mempool concurrently, it may deadlock in a situation where both processes
 981 * have allocated 128 pages and the mempool is exhausted.
 982 *
 983 * In order to avoid this scenario we allocate the pages under a mutex.
 984 *
 985 * In order to not degrade performance with excessive locking, we try
 986 * non-blocking allocations without a mutex first but on failure we fallback
 987 * to blocking allocations with a mutex.
 988 */
 989static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 990{
 991        struct crypt_config *cc = io->cc;
 992        struct bio *clone;
 993        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 994        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 995        unsigned i, len, remaining_size;
 996        struct page *page;
 997        struct bio_vec *bvec;
 998
 999retry:
1000        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1001                mutex_lock(&cc->bio_alloc_lock);
1002
1003        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1004        if (!clone)
1005                goto return_clone;
1006
1007        clone_init(io, clone);
1008
1009        remaining_size = size;
1010
1011        for (i = 0; i < nr_iovecs; i++) {
1012                page = mempool_alloc(cc->page_pool, gfp_mask);
1013                if (!page) {
1014                        crypt_free_buffer_pages(cc, clone);
1015                        bio_put(clone);
1016                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1017                        goto retry;
1018                }
1019
1020                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1021
1022                bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1023                bvec->bv_page = page;
1024                bvec->bv_len = len;
1025                bvec->bv_offset = 0;
1026
1027                clone->bi_iter.bi_size += len;
1028
1029                remaining_size -= len;
1030        }
1031
1032return_clone:
1033        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1034                mutex_unlock(&cc->bio_alloc_lock);
1035
1036        return clone;
1037}
1038
1039static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1040{
1041        unsigned int i;
1042        struct bio_vec *bv;
1043
1044        bio_for_each_segment_all(bv, clone, i) {
1045                BUG_ON(!bv->bv_page);
1046                mempool_free(bv->bv_page, cc->page_pool);
1047                bv->bv_page = NULL;
1048        }
1049}
1050
1051static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1052                          struct bio *bio, sector_t sector)
1053{
1054        io->cc = cc;
1055        io->base_bio = bio;
1056        io->sector = sector;
1057        io->error = 0;
1058        io->ctx.req = NULL;
1059        atomic_set(&io->io_pending, 0);
1060}
1061
1062static void crypt_inc_pending(struct dm_crypt_io *io)
1063{
1064        atomic_inc(&io->io_pending);
1065}
1066
1067/*
1068 * One of the bios was finished. Check for completion of
1069 * the whole request and correctly clean up the buffer.
1070 */
1071static void crypt_dec_pending(struct dm_crypt_io *io)
1072{
1073        struct crypt_config *cc = io->cc;
1074        struct bio *base_bio = io->base_bio;
1075        int error = io->error;
1076
1077        if (!atomic_dec_and_test(&io->io_pending))
1078                return;
1079
1080        if (io->ctx.req)
1081                crypt_free_req(cc, io->ctx.req, base_bio);
1082
1083        base_bio->bi_error = error;
1084        bio_endio(base_bio);
1085}
1086
1087/*
1088 * kcryptd/kcryptd_io:
1089 *
1090 * Needed because it would be very unwise to do decryption in an
1091 * interrupt context.
1092 *
1093 * kcryptd performs the actual encryption or decryption.
1094 *
1095 * kcryptd_io performs the IO submission.
1096 *
1097 * They must be separated as otherwise the final stages could be
1098 * starved by new requests which can block in the first stages due
1099 * to memory allocation.
1100 *
1101 * The work is done per CPU global for all dm-crypt instances.
1102 * They should not depend on each other and do not block.
1103 */
1104static void crypt_endio(struct bio *clone)
1105{
1106        struct dm_crypt_io *io = clone->bi_private;
1107        struct crypt_config *cc = io->cc;
1108        unsigned rw = bio_data_dir(clone);
1109        int error;
1110
1111        /*
1112         * free the processed pages
1113         */
1114        if (rw == WRITE)
1115                crypt_free_buffer_pages(cc, clone);
1116
1117        error = clone->bi_error;
1118        bio_put(clone);
1119
1120        if (rw == READ && !error) {
1121                kcryptd_queue_crypt(io);
1122                return;
1123        }
1124
1125        if (unlikely(error))
1126                io->error = error;
1127
1128        crypt_dec_pending(io);
1129}
1130
1131static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1132{
1133        struct crypt_config *cc = io->cc;
1134
1135        clone->bi_private = io;
1136        clone->bi_end_io  = crypt_endio;
1137        clone->bi_bdev    = cc->dev->bdev;
1138        bio_set_op_attrs(clone, bio_op(io->base_bio), bio_flags(io->base_bio));
1139}
1140
1141static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1142{
1143        struct crypt_config *cc = io->cc;
1144        struct bio *clone;
1145
1146        /*
1147         * We need the original biovec array in order to decrypt
1148         * the whole bio data *afterwards* -- thanks to immutable
1149         * biovecs we don't need to worry about the block layer
1150         * modifying the biovec array; so leverage bio_clone_fast().
1151         */
1152        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1153        if (!clone)
1154                return 1;
1155
1156        crypt_inc_pending(io);
1157
1158        clone_init(io, clone);
1159        clone->bi_iter.bi_sector = cc->start + io->sector;
1160
1161        generic_make_request(clone);
1162        return 0;
1163}
1164
1165static void kcryptd_io_read_work(struct work_struct *work)
1166{
1167        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1168
1169        crypt_inc_pending(io);
1170        if (kcryptd_io_read(io, GFP_NOIO))
1171                io->error = -ENOMEM;
1172        crypt_dec_pending(io);
1173}
1174
1175static void kcryptd_queue_read(struct dm_crypt_io *io)
1176{
1177        struct crypt_config *cc = io->cc;
1178
1179        INIT_WORK(&io->work, kcryptd_io_read_work);
1180        queue_work(cc->io_queue, &io->work);
1181}
1182
1183static void kcryptd_io_write(struct dm_crypt_io *io)
1184{
1185        struct bio *clone = io->ctx.bio_out;
1186
1187        generic_make_request(clone);
1188}
1189
1190#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1191
1192static int dmcrypt_write(void *data)
1193{
1194        struct crypt_config *cc = data;
1195        struct dm_crypt_io *io;
1196
1197        while (1) {
1198                struct rb_root write_tree;
1199                struct blk_plug plug;
1200
1201                DECLARE_WAITQUEUE(wait, current);
1202
1203                spin_lock_irq(&cc->write_thread_wait.lock);
1204continue_locked:
1205
1206                if (!RB_EMPTY_ROOT(&cc->write_tree))
1207                        goto pop_from_list;
1208
1209                set_current_state(TASK_INTERRUPTIBLE);
1210                __add_wait_queue(&cc->write_thread_wait, &wait);
1211
1212                spin_unlock_irq(&cc->write_thread_wait.lock);
1213
1214                if (unlikely(kthread_should_stop())) {
1215                        set_task_state(current, TASK_RUNNING);
1216                        remove_wait_queue(&cc->write_thread_wait, &wait);
1217                        break;
1218                }
1219
1220                schedule();
1221
1222                set_task_state(current, TASK_RUNNING);
1223                spin_lock_irq(&cc->write_thread_wait.lock);
1224                __remove_wait_queue(&cc->write_thread_wait, &wait);
1225                goto continue_locked;
1226
1227pop_from_list:
1228                write_tree = cc->write_tree;
1229                cc->write_tree = RB_ROOT;
1230                spin_unlock_irq(&cc->write_thread_wait.lock);
1231
1232                BUG_ON(rb_parent(write_tree.rb_node));
1233
1234                /*
1235                 * Note: we cannot walk the tree here with rb_next because
1236                 * the structures may be freed when kcryptd_io_write is called.
1237                 */
1238                blk_start_plug(&plug);
1239                do {
1240                        io = crypt_io_from_node(rb_first(&write_tree));
1241                        rb_erase(&io->rb_node, &write_tree);
1242                        kcryptd_io_write(io);
1243                } while (!RB_EMPTY_ROOT(&write_tree));
1244                blk_finish_plug(&plug);
1245        }
1246        return 0;
1247}
1248
1249static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1250{
1251        struct bio *clone = io->ctx.bio_out;
1252        struct crypt_config *cc = io->cc;
1253        unsigned long flags;
1254        sector_t sector;
1255        struct rb_node **rbp, *parent;
1256
1257        if (unlikely(io->error < 0)) {
1258                crypt_free_buffer_pages(cc, clone);
1259                bio_put(clone);
1260                crypt_dec_pending(io);
1261                return;
1262        }
1263
1264        /* crypt_convert should have filled the clone bio */
1265        BUG_ON(io->ctx.iter_out.bi_size);
1266
1267        clone->bi_iter.bi_sector = cc->start + io->sector;
1268
1269        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1270                generic_make_request(clone);
1271                return;
1272        }
1273
1274        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1275        rbp = &cc->write_tree.rb_node;
1276        parent = NULL;
1277        sector = io->sector;
1278        while (*rbp) {
1279                parent = *rbp;
1280                if (sector < crypt_io_from_node(parent)->sector)
1281                        rbp = &(*rbp)->rb_left;
1282                else
1283                        rbp = &(*rbp)->rb_right;
1284        }
1285        rb_link_node(&io->rb_node, parent, rbp);
1286        rb_insert_color(&io->rb_node, &cc->write_tree);
1287
1288        wake_up_locked(&cc->write_thread_wait);
1289        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1290}
1291
1292static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1293{
1294        struct crypt_config *cc = io->cc;
1295        struct bio *clone;
1296        int crypt_finished;
1297        sector_t sector = io->sector;
1298        int r;
1299
1300        /*
1301         * Prevent io from disappearing until this function completes.
1302         */
1303        crypt_inc_pending(io);
1304        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1305
1306        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1307        if (unlikely(!clone)) {
1308                io->error = -EIO;
1309                goto dec;
1310        }
1311
1312        io->ctx.bio_out = clone;
1313        io->ctx.iter_out = clone->bi_iter;
1314
1315        sector += bio_sectors(clone);
1316
1317        crypt_inc_pending(io);
1318        r = crypt_convert(cc, &io->ctx);
1319        if (r)
1320                io->error = -EIO;
1321        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1322
1323        /* Encryption was already finished, submit io now */
1324        if (crypt_finished) {
1325                kcryptd_crypt_write_io_submit(io, 0);
1326                io->sector = sector;
1327        }
1328
1329dec:
1330        crypt_dec_pending(io);
1331}
1332
1333static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1334{
1335        crypt_dec_pending(io);
1336}
1337
1338static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1339{
1340        struct crypt_config *cc = io->cc;
1341        int r = 0;
1342
1343        crypt_inc_pending(io);
1344
1345        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1346                           io->sector);
1347
1348        r = crypt_convert(cc, &io->ctx);
1349        if (r < 0)
1350                io->error = -EIO;
1351
1352        if (atomic_dec_and_test(&io->ctx.cc_pending))
1353                kcryptd_crypt_read_done(io);
1354
1355        crypt_dec_pending(io);
1356}
1357
1358static void kcryptd_async_done(struct crypto_async_request *async_req,
1359                               int error)
1360{
1361        struct dm_crypt_request *dmreq = async_req->data;
1362        struct convert_context *ctx = dmreq->ctx;
1363        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1364        struct crypt_config *cc = io->cc;
1365
1366        /*
1367         * A request from crypto driver backlog is going to be processed now,
1368         * finish the completion and continue in crypt_convert().
1369         * (Callback will be called for the second time for this request.)
1370         */
1371        if (error == -EINPROGRESS) {
1372                complete(&ctx->restart);
1373                return;
1374        }
1375
1376        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1377                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1378
1379        if (error < 0)
1380                io->error = -EIO;
1381
1382        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1383
1384        if (!atomic_dec_and_test(&ctx->cc_pending))
1385                return;
1386
1387        if (bio_data_dir(io->base_bio) == READ)
1388                kcryptd_crypt_read_done(io);
1389        else
1390                kcryptd_crypt_write_io_submit(io, 1);
1391}
1392
1393static void kcryptd_crypt(struct work_struct *work)
1394{
1395        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1396
1397        if (bio_data_dir(io->base_bio) == READ)
1398                kcryptd_crypt_read_convert(io);
1399        else
1400                kcryptd_crypt_write_convert(io);
1401}
1402
1403static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1404{
1405        struct crypt_config *cc = io->cc;
1406
1407        INIT_WORK(&io->work, kcryptd_crypt);
1408        queue_work(cc->crypt_queue, &io->work);
1409}
1410
1411/*
1412 * Decode key from its hex representation
1413 */
1414static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1415{
1416        char buffer[3];
1417        unsigned int i;
1418
1419        buffer[2] = '\0';
1420
1421        for (i = 0; i < size; i++) {
1422                buffer[0] = *hex++;
1423                buffer[1] = *hex++;
1424
1425                if (kstrtou8(buffer, 16, &key[i]))
1426                        return -EINVAL;
1427        }
1428
1429        if (*hex != '\0')
1430                return -EINVAL;
1431
1432        return 0;
1433}
1434
1435static void crypt_free_tfms(struct crypt_config *cc)
1436{
1437        unsigned i;
1438
1439        if (!cc->tfms)
1440                return;
1441
1442        for (i = 0; i < cc->tfms_count; i++)
1443                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1444                        crypto_free_skcipher(cc->tfms[i]);
1445                        cc->tfms[i] = NULL;
1446                }
1447
1448        kfree(cc->tfms);
1449        cc->tfms = NULL;
1450}
1451
1452static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1453{
1454        unsigned i;
1455        int err;
1456
1457        cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1458                           GFP_KERNEL);
1459        if (!cc->tfms)
1460                return -ENOMEM;
1461
1462        for (i = 0; i < cc->tfms_count; i++) {
1463                cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1464                if (IS_ERR(cc->tfms[i])) {
1465                        err = PTR_ERR(cc->tfms[i]);
1466                        crypt_free_tfms(cc);
1467                        return err;
1468                }
1469        }
1470
1471        return 0;
1472}
1473
1474static int crypt_setkey_allcpus(struct crypt_config *cc)
1475{
1476        unsigned subkey_size;
1477        int err = 0, i, r;
1478
1479        /* Ignore extra keys (which are used for IV etc) */
1480        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1481
1482        for (i = 0; i < cc->tfms_count; i++) {
1483                r = crypto_skcipher_setkey(cc->tfms[i],
1484                                           cc->key + (i * subkey_size),
1485                                           subkey_size);
1486                if (r)
1487                        err = r;
1488        }
1489
1490        return err;
1491}
1492
1493static int crypt_set_key(struct crypt_config *cc, char *key)
1494{
1495        int r = -EINVAL;
1496        int key_string_len = strlen(key);
1497
1498        /* The key size may not be changed. */
1499        if (cc->key_size != (key_string_len >> 1))
1500                goto out;
1501
1502        /* Hyphen (which gives a key_size of zero) means there is no key. */
1503        if (!cc->key_size && strcmp(key, "-"))
1504                goto out;
1505
1506        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1507                goto out;
1508
1509        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1510
1511        r = crypt_setkey_allcpus(cc);
1512
1513out:
1514        /* Hex key string not needed after here, so wipe it. */
1515        memset(key, '0', key_string_len);
1516
1517        return r;
1518}
1519
1520static int crypt_wipe_key(struct crypt_config *cc)
1521{
1522        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1523        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1524
1525        return crypt_setkey_allcpus(cc);
1526}
1527
1528static void crypt_dtr(struct dm_target *ti)
1529{
1530        struct crypt_config *cc = ti->private;
1531
1532        ti->private = NULL;
1533
1534        if (!cc)
1535                return;
1536
1537        if (cc->write_thread)
1538                kthread_stop(cc->write_thread);
1539
1540        if (cc->io_queue)
1541                destroy_workqueue(cc->io_queue);
1542        if (cc->crypt_queue)
1543                destroy_workqueue(cc->crypt_queue);
1544
1545        crypt_free_tfms(cc);
1546
1547        if (cc->bs)
1548                bioset_free(cc->bs);
1549
1550        mempool_destroy(cc->page_pool);
1551        mempool_destroy(cc->req_pool);
1552
1553        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1554                cc->iv_gen_ops->dtr(cc);
1555
1556        if (cc->dev)
1557                dm_put_device(ti, cc->dev);
1558
1559        kzfree(cc->cipher);
1560        kzfree(cc->cipher_string);
1561
1562        /* Must zero key material before freeing */
1563        kzfree(cc);
1564}
1565
1566static int crypt_ctr_cipher(struct dm_target *ti,
1567                            char *cipher_in, char *key)
1568{
1569        struct crypt_config *cc = ti->private;
1570        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1571        char *cipher_api = NULL;
1572        int ret = -EINVAL;
1573        char dummy;
1574
1575        /* Convert to crypto api definition? */
1576        if (strchr(cipher_in, '(')) {
1577                ti->error = "Bad cipher specification";
1578                return -EINVAL;
1579        }
1580
1581        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1582        if (!cc->cipher_string)
1583                goto bad_mem;
1584
1585        /*
1586         * Legacy dm-crypt cipher specification
1587         * cipher[:keycount]-mode-iv:ivopts
1588         */
1589        tmp = cipher_in;
1590        keycount = strsep(&tmp, "-");
1591        cipher = strsep(&keycount, ":");
1592
1593        if (!keycount)
1594                cc->tfms_count = 1;
1595        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1596                 !is_power_of_2(cc->tfms_count)) {
1597                ti->error = "Bad cipher key count specification";
1598                return -EINVAL;
1599        }
1600        cc->key_parts = cc->tfms_count;
1601        cc->key_extra_size = 0;
1602
1603        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1604        if (!cc->cipher)
1605                goto bad_mem;
1606
1607        chainmode = strsep(&tmp, "-");
1608        ivopts = strsep(&tmp, "-");
1609        ivmode = strsep(&ivopts, ":");
1610
1611        if (tmp)
1612                DMWARN("Ignoring unexpected additional cipher options");
1613
1614        /*
1615         * For compatibility with the original dm-crypt mapping format, if
1616         * only the cipher name is supplied, use cbc-plain.
1617         */
1618        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1619                chainmode = "cbc";
1620                ivmode = "plain";
1621        }
1622
1623        if (strcmp(chainmode, "ecb") && !ivmode) {
1624                ti->error = "IV mechanism required";
1625                return -EINVAL;
1626        }
1627
1628        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1629        if (!cipher_api)
1630                goto bad_mem;
1631
1632        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1633                       "%s(%s)", chainmode, cipher);
1634        if (ret < 0) {
1635                kfree(cipher_api);
1636                goto bad_mem;
1637        }
1638
1639        /* Allocate cipher */
1640        ret = crypt_alloc_tfms(cc, cipher_api);
1641        if (ret < 0) {
1642                ti->error = "Error allocating crypto tfm";
1643                goto bad;
1644        }
1645
1646        /* Initialize IV */
1647        cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1648        if (cc->iv_size)
1649                /* at least a 64 bit sector number should fit in our buffer */
1650                cc->iv_size = max(cc->iv_size,
1651                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1652        else if (ivmode) {
1653                DMWARN("Selected cipher does not support IVs");
1654                ivmode = NULL;
1655        }
1656
1657        /* Choose ivmode, see comments at iv code. */
1658        if (ivmode == NULL)
1659                cc->iv_gen_ops = NULL;
1660        else if (strcmp(ivmode, "plain") == 0)
1661                cc->iv_gen_ops = &crypt_iv_plain_ops;
1662        else if (strcmp(ivmode, "plain64") == 0)
1663                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1664        else if (strcmp(ivmode, "essiv") == 0)
1665                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1666        else if (strcmp(ivmode, "benbi") == 0)
1667                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1668        else if (strcmp(ivmode, "null") == 0)
1669                cc->iv_gen_ops = &crypt_iv_null_ops;
1670        else if (strcmp(ivmode, "lmk") == 0) {
1671                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1672                /*
1673                 * Version 2 and 3 is recognised according
1674                 * to length of provided multi-key string.
1675                 * If present (version 3), last key is used as IV seed.
1676                 * All keys (including IV seed) are always the same size.
1677                 */
1678                if (cc->key_size % cc->key_parts) {
1679                        cc->key_parts++;
1680                        cc->key_extra_size = cc->key_size / cc->key_parts;
1681                }
1682        } else if (strcmp(ivmode, "tcw") == 0) {
1683                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1684                cc->key_parts += 2; /* IV + whitening */
1685                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1686        } else {
1687                ret = -EINVAL;
1688                ti->error = "Invalid IV mode";
1689                goto bad;
1690        }
1691
1692        /* Initialize and set key */
1693        ret = crypt_set_key(cc, key);
1694        if (ret < 0) {
1695                ti->error = "Error decoding and setting key";
1696                goto bad;
1697        }
1698
1699        /* Allocate IV */
1700        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1701                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1702                if (ret < 0) {
1703                        ti->error = "Error creating IV";
1704                        goto bad;
1705                }
1706        }
1707
1708        /* Initialize IV (set keys for ESSIV etc) */
1709        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1710                ret = cc->iv_gen_ops->init(cc);
1711                if (ret < 0) {
1712                        ti->error = "Error initialising IV";
1713                        goto bad;
1714                }
1715        }
1716
1717        ret = 0;
1718bad:
1719        kfree(cipher_api);
1720        return ret;
1721
1722bad_mem:
1723        ti->error = "Cannot allocate cipher strings";
1724        return -ENOMEM;
1725}
1726
1727/*
1728 * Construct an encryption mapping:
1729 * <cipher> <key> <iv_offset> <dev_path> <start>
1730 */
1731static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1732{
1733        struct crypt_config *cc;
1734        unsigned int key_size, opt_params;
1735        unsigned long long tmpll;
1736        int ret;
1737        size_t iv_size_padding;
1738        struct dm_arg_set as;
1739        const char *opt_string;
1740        char dummy;
1741
1742        static struct dm_arg _args[] = {
1743                {0, 3, "Invalid number of feature args"},
1744        };
1745
1746        if (argc < 5) {
1747                ti->error = "Not enough arguments";
1748                return -EINVAL;
1749        }
1750
1751        key_size = strlen(argv[1]) >> 1;
1752
1753        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1754        if (!cc) {
1755                ti->error = "Cannot allocate encryption context";
1756                return -ENOMEM;
1757        }
1758        cc->key_size = key_size;
1759
1760        ti->private = cc;
1761        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1762        if (ret < 0)
1763                goto bad;
1764
1765        cc->dmreq_start = sizeof(struct skcipher_request);
1766        cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1767        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1768
1769        if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1770                /* Allocate the padding exactly */
1771                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1772                                & crypto_skcipher_alignmask(any_tfm(cc));
1773        } else {
1774                /*
1775                 * If the cipher requires greater alignment than kmalloc
1776                 * alignment, we don't know the exact position of the
1777                 * initialization vector. We must assume worst case.
1778                 */
1779                iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1780        }
1781
1782        ret = -ENOMEM;
1783        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1784                        sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1785        if (!cc->req_pool) {
1786                ti->error = "Cannot allocate crypt request mempool";
1787                goto bad;
1788        }
1789
1790        cc->per_bio_data_size = ti->per_io_data_size =
1791                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1792                      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1793                      ARCH_KMALLOC_MINALIGN);
1794
1795        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1796        if (!cc->page_pool) {
1797                ti->error = "Cannot allocate page mempool";
1798                goto bad;
1799        }
1800
1801        cc->bs = bioset_create(MIN_IOS, 0);
1802        if (!cc->bs) {
1803                ti->error = "Cannot allocate crypt bioset";
1804                goto bad;
1805        }
1806
1807        mutex_init(&cc->bio_alloc_lock);
1808
1809        ret = -EINVAL;
1810        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1811                ti->error = "Invalid iv_offset sector";
1812                goto bad;
1813        }
1814        cc->iv_offset = tmpll;
1815
1816        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1817        if (ret) {
1818                ti->error = "Device lookup failed";
1819                goto bad;
1820        }
1821
1822        ret = -EINVAL;
1823        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1824                ti->error = "Invalid device sector";
1825                goto bad;
1826        }
1827        cc->start = tmpll;
1828
1829        argv += 5;
1830        argc -= 5;
1831
1832        /* Optional parameters */
1833        if (argc) {
1834                as.argc = argc;
1835                as.argv = argv;
1836
1837                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1838                if (ret)
1839                        goto bad;
1840
1841                ret = -EINVAL;
1842                while (opt_params--) {
1843                        opt_string = dm_shift_arg(&as);
1844                        if (!opt_string) {
1845                                ti->error = "Not enough feature arguments";
1846                                goto bad;
1847                        }
1848
1849                        if (!strcasecmp(opt_string, "allow_discards"))
1850                                ti->num_discard_bios = 1;
1851
1852                        else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1853                                set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1854
1855                        else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1856                                set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1857
1858                        else {
1859                                ti->error = "Invalid feature arguments";
1860                                goto bad;
1861                        }
1862                }
1863        }
1864
1865        ret = -ENOMEM;
1866        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1867        if (!cc->io_queue) {
1868                ti->error = "Couldn't create kcryptd io queue";
1869                goto bad;
1870        }
1871
1872        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1873                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1874        else
1875                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1876                                                  num_online_cpus());
1877        if (!cc->crypt_queue) {
1878                ti->error = "Couldn't create kcryptd queue";
1879                goto bad;
1880        }
1881
1882        init_waitqueue_head(&cc->write_thread_wait);
1883        cc->write_tree = RB_ROOT;
1884
1885        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1886        if (IS_ERR(cc->write_thread)) {
1887                ret = PTR_ERR(cc->write_thread);
1888                cc->write_thread = NULL;
1889                ti->error = "Couldn't spawn write thread";
1890                goto bad;
1891        }
1892        wake_up_process(cc->write_thread);
1893
1894        ti->num_flush_bios = 1;
1895        ti->discard_zeroes_data_unsupported = true;
1896
1897        return 0;
1898
1899bad:
1900        crypt_dtr(ti);
1901        return ret;
1902}
1903
1904static int crypt_map(struct dm_target *ti, struct bio *bio)
1905{
1906        struct dm_crypt_io *io;
1907        struct crypt_config *cc = ti->private;
1908
1909        /*
1910         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
1911         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
1912         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
1913         */
1914        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
1915            bio_op(bio) == REQ_OP_DISCARD)) {
1916                bio->bi_bdev = cc->dev->bdev;
1917                if (bio_sectors(bio))
1918                        bio->bi_iter.bi_sector = cc->start +
1919                                dm_target_offset(ti, bio->bi_iter.bi_sector);
1920                return DM_MAPIO_REMAPPED;
1921        }
1922
1923        /*
1924         * Check if bio is too large, split as needed.
1925         */
1926        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
1927            bio_data_dir(bio) == WRITE)
1928                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
1929
1930        io = dm_per_bio_data(bio, cc->per_bio_data_size);
1931        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1932        io->ctx.req = (struct skcipher_request *)(io + 1);
1933
1934        if (bio_data_dir(io->base_bio) == READ) {
1935                if (kcryptd_io_read(io, GFP_NOWAIT))
1936                        kcryptd_queue_read(io);
1937        } else
1938                kcryptd_queue_crypt(io);
1939
1940        return DM_MAPIO_SUBMITTED;
1941}
1942
1943static void crypt_status(struct dm_target *ti, status_type_t type,
1944                         unsigned status_flags, char *result, unsigned maxlen)
1945{
1946        struct crypt_config *cc = ti->private;
1947        unsigned i, sz = 0;
1948        int num_feature_args = 0;
1949
1950        switch (type) {
1951        case STATUSTYPE_INFO:
1952                result[0] = '\0';
1953                break;
1954
1955        case STATUSTYPE_TABLE:
1956                DMEMIT("%s ", cc->cipher_string);
1957
1958                if (cc->key_size > 0)
1959                        for (i = 0; i < cc->key_size; i++)
1960                                DMEMIT("%02x", cc->key[i]);
1961                else
1962                        DMEMIT("-");
1963
1964                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1965                                cc->dev->name, (unsigned long long)cc->start);
1966
1967                num_feature_args += !!ti->num_discard_bios;
1968                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1969                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1970                if (num_feature_args) {
1971                        DMEMIT(" %d", num_feature_args);
1972                        if (ti->num_discard_bios)
1973                                DMEMIT(" allow_discards");
1974                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1975                                DMEMIT(" same_cpu_crypt");
1976                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1977                                DMEMIT(" submit_from_crypt_cpus");
1978                }
1979
1980                break;
1981        }
1982}
1983
1984static void crypt_postsuspend(struct dm_target *ti)
1985{
1986        struct crypt_config *cc = ti->private;
1987
1988        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1989}
1990
1991static int crypt_preresume(struct dm_target *ti)
1992{
1993        struct crypt_config *cc = ti->private;
1994
1995        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1996                DMERR("aborting resume - crypt key is not set.");
1997                return -EAGAIN;
1998        }
1999
2000        return 0;
2001}
2002
2003static void crypt_resume(struct dm_target *ti)
2004{
2005        struct crypt_config *cc = ti->private;
2006
2007        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2008}
2009
2010/* Message interface
2011 *      key set <key>
2012 *      key wipe
2013 */
2014static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2015{
2016        struct crypt_config *cc = ti->private;
2017        int ret = -EINVAL;
2018
2019        if (argc < 2)
2020                goto error;
2021
2022        if (!strcasecmp(argv[0], "key")) {
2023                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2024                        DMWARN("not suspended during key manipulation.");
2025                        return -EINVAL;
2026                }
2027                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2028                        ret = crypt_set_key(cc, argv[2]);
2029                        if (ret)
2030                                return ret;
2031                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2032                                ret = cc->iv_gen_ops->init(cc);
2033                        return ret;
2034                }
2035                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2036                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2037                                ret = cc->iv_gen_ops->wipe(cc);
2038                                if (ret)
2039                                        return ret;
2040                        }
2041                        return crypt_wipe_key(cc);
2042                }
2043        }
2044
2045error:
2046        DMWARN("unrecognised message received.");
2047        return -EINVAL;
2048}
2049
2050static int crypt_iterate_devices(struct dm_target *ti,
2051                                 iterate_devices_callout_fn fn, void *data)
2052{
2053        struct crypt_config *cc = ti->private;
2054
2055        return fn(ti, cc->dev, cc->start, ti->len, data);
2056}
2057
2058static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2059{
2060        /*
2061         * Unfortunate constraint that is required to avoid the potential
2062         * for exceeding underlying device's max_segments limits -- due to
2063         * crypt_alloc_buffer() possibly allocating pages for the encryption
2064         * bio that are not as physically contiguous as the original bio.
2065         */
2066        limits->max_segment_size = PAGE_SIZE;
2067}
2068
2069static struct target_type crypt_target = {
2070        .name   = "crypt",
2071        .version = {1, 14, 1},
2072        .module = THIS_MODULE,
2073        .ctr    = crypt_ctr,
2074        .dtr    = crypt_dtr,
2075        .map    = crypt_map,
2076        .status = crypt_status,
2077        .postsuspend = crypt_postsuspend,
2078        .preresume = crypt_preresume,
2079        .resume = crypt_resume,
2080        .message = crypt_message,
2081        .iterate_devices = crypt_iterate_devices,
2082        .io_hints = crypt_io_hints,
2083};
2084
2085static int __init dm_crypt_init(void)
2086{
2087        int r;
2088
2089        r = dm_register_target(&crypt_target);
2090        if (r < 0)
2091                DMERR("register failed %d", r);
2092
2093        return r;
2094}
2095
2096static void __exit dm_crypt_exit(void)
2097{
2098        dm_unregister_target(&crypt_target);
2099}
2100
2101module_init(dm_crypt_init);
2102module_exit(dm_crypt_exit);
2103
2104MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2105MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2106MODULE_LICENSE("GPL");
2107