linux/drivers/mfd/db8500-prcmu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
  27#include <linux/of.h>
  28#include <linux/of_irq.h>
  29#include <linux/platform_device.h>
  30#include <linux/uaccess.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/dbx500-prcmu.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/regulator/db8500-prcmu.h>
  35#include <linux/regulator/machine.h>
  36#include <linux/cpufreq.h>
  37#include <linux/platform_data/ux500_wdt.h>
  38#include <linux/platform_data/db8500_thermal.h>
  39#include "dbx500-prcmu-regs.h"
  40
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE           0x2FC
  43#define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE                0
  58#define PRCM_AVS_VOLTAGE_MASK           0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP          6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE           7
  62#define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS        0xFFF
  65#define PRCM_ROMCODE_A2P        0xFFE
  66#define PRCM_ROMCODE_P2A        0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS          0
  98#define MB0H_CONFIG_WAKEUPS_EXE         1
  99#define MB0H_READ_WAKEUP_ACK            3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP       4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF    0x1
 135#define PLL_SOC0_ON     0x2
 136#define PLL_SOC1_OFF    0x4
 137#define PLL_SOC1_ON     0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS        0x0
 147#define MB2H_AUTO_PWR   0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC        0x0
 167#define MB3H_SIDETONE   0x1
 168#define MB3H_SYSCLK     0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT   0x0
 181#define MB4H_MEM_ST     0x1
 182#define MB4H_HOTDOG     0x12
 183#define MB4H_HOTMON     0x13
 184#define MB4H_HOT_PERIOD 0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW                       BIT(0)
 201#define HOTMON_CONFIG_HIGH                      BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN                      BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS                     0
 208#define A9WDOG_ID_MASK                          0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 217#define PRCMU_I2C_STOP_EN               BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264        bool valid;
 265        struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307        IRQ_ENTRY(RTC),
 308        IRQ_ENTRY(RTT0),
 309        IRQ_ENTRY(RTT1),
 310        IRQ_ENTRY(HSI0),
 311        IRQ_ENTRY(HSI1),
 312        IRQ_ENTRY(CA_WAKE),
 313        IRQ_ENTRY(USB),
 314        IRQ_ENTRY(ABB),
 315        IRQ_ENTRY(ABB_FIFO),
 316        IRQ_ENTRY(CA_SLEEP),
 317        IRQ_ENTRY(ARM),
 318        IRQ_ENTRY(HOTMON_LOW),
 319        IRQ_ENTRY(HOTMON_HIGH),
 320        IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321        IRQ_ENTRY(GPIO0),
 322        IRQ_ENTRY(GPIO1),
 323        IRQ_ENTRY(GPIO2),
 324        IRQ_ENTRY(GPIO3),
 325        IRQ_ENTRY(GPIO4),
 326        IRQ_ENTRY(GPIO5),
 327        IRQ_ENTRY(GPIO6),
 328        IRQ_ENTRY(GPIO7),
 329        IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335        WAKEUP_ENTRY(RTC),
 336        WAKEUP_ENTRY(RTT0),
 337        WAKEUP_ENTRY(RTT1),
 338        WAKEUP_ENTRY(HSI0),
 339        WAKEUP_ENTRY(HSI1),
 340        WAKEUP_ENTRY(USB),
 341        WAKEUP_ENTRY(ABB),
 342        WAKEUP_ENTRY(ABB_FIFO),
 343        WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:               The transaction lock.
 349 * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
 350 *                      the request data.
 351 * @mask_work:          Work structure used for (un)masking wakeup interrupts.
 352 * @req:                Request data that need to persist between requests.
 353 */
 354static struct {
 355        spinlock_t lock;
 356        spinlock_t dbb_irqs_lock;
 357        struct work_struct mask_work;
 358        struct mutex ac_wake_lock;
 359        struct completion ac_wake_work;
 360        struct {
 361                u32 dbb_irqs;
 362                u32 dbb_wakeups;
 363                u32 abb_events;
 364        } req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:       The transaction lock.
 370 * @work:       The transaction completion structure.
 371 * @ape_opp:    The current APE OPP.
 372 * @ack:        Reply ("acknowledge") data.
 373 */
 374static struct {
 375        struct mutex lock;
 376        struct completion work;
 377        u8 ape_opp;
 378        struct {
 379                u8 header;
 380                u8 arm_opp;
 381                u8 ape_opp;
 382                u8 ape_voltage_status;
 383        } ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396        struct mutex lock;
 397        struct completion work;
 398        spinlock_t auto_pm_lock;
 399        bool auto_pm_enabled;
 400        struct {
 401                u8 status;
 402        } ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:               The request lock.
 408 * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:        Work structure used for sysclk requests.
 410 */
 411static struct {
 412        spinlock_t lock;
 413        struct mutex sysclk_lock;
 414        struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:       The transaction lock.
 420 * @work:       The transaction completion structure.
 421 */
 422static struct {
 423        struct mutex lock;
 424        struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:       The transaction lock.
 430 * @work:       The transaction completion structure.
 431 * @ack:        Reply ("acknowledge") data.
 432 */
 433static struct {
 434        struct mutex lock;
 435        struct completion work;
 436        struct {
 437                u8 status;
 438                u8 value;
 439        } ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453        u32 offset;
 454        u32 pllsw;
 455        int branch;
 456        bool clk38div;
 457};
 458
 459enum {
 460        PLL_RAW,
 461        PLL_FIX,
 462        PLL_DIV
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468        { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470        CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471        CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472        CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473        CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474        CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475        CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476        CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477        CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478        CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479        CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480        CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481        CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482        CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483        CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484        CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485        CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486        CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487        CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488        CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489        CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490        CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491        CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492        CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493        CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494        CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495        CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496        CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497        CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498        CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502        u32 divsel_mask;
 503        u32 divsel_shift;
 504        u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508        {
 509                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512        },
 513        {
 514                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517        }
 518};
 519
 520struct dsiescclk {
 521        u32 en;
 522        u32 div_mask;
 523        u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527        {
 528                .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529                .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530                .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531        },
 532        {
 533                .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534                .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535                .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536        },
 537        {
 538                .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539                .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540                .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 541        }
 542};
 543
 544
 545/*
 546* Used by MCDE to setup all necessary PRCMU registers
 547*/
 548#define PRCMU_RESET_DSIPLL              0x00004000
 549#define PRCMU_UNCLAMP_DSIPLL            0x00400800
 550
 551#define PRCMU_CLK_PLL_DIV_SHIFT         0
 552#define PRCMU_CLK_PLL_SW_SHIFT          5
 553#define PRCMU_CLK_38                    (1 << 9)
 554#define PRCMU_CLK_38_SRC                (1 << 10)
 555#define PRCMU_CLK_38_DIV                (1 << 11)
 556
 557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 558#define PRCMU_DSI_CLOCK_SETTING         0x0000008C
 559
 560/* DPI 50000000 Hz */
 561#define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 562                                          (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 563#define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
 564
 565/* D=101, N=1, R=4, SELDIV2=0 */
 566#define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
 567
 568#define PRCMU_ENABLE_PLLDSI             0x00000001
 569#define PRCMU_DISABLE_PLLDSI            0x00000000
 570#define PRCMU_RELEASE_RESET_DSS         0x0000400C
 571#define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
 572/* ESC clk, div0=1, div1=1, div2=3 */
 573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
 574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
 575#define PRCMU_DSI_RESET_SW              0x00000007
 576
 577#define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
 578
 579int db8500_prcmu_enable_dsipll(void)
 580{
 581        int i;
 582
 583        /* Clear DSIPLL_RESETN */
 584        writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
 585        /* Unclamp DSIPLL in/out */
 586        writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
 587
 588        /* Set DSI PLL FREQ */
 589        writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
 590        writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
 591        /* Enable Escape clocks */
 592        writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 593
 594        /* Start DSI PLL */
 595        writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 596        /* Reset DSI PLL */
 597        writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
 598        for (i = 0; i < 10; i++) {
 599                if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
 600                                        == PRCMU_PLLDSI_LOCKP_LOCKED)
 601                        break;
 602                udelay(100);
 603        }
 604        /* Set DSIPLL_RESETN */
 605        writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
 606        return 0;
 607}
 608
 609int db8500_prcmu_disable_dsipll(void)
 610{
 611        /* Disable dsi pll */
 612        writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 613        /* Disable  escapeclock */
 614        writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 615        return 0;
 616}
 617
 618int db8500_prcmu_set_display_clocks(void)
 619{
 620        unsigned long flags;
 621
 622        spin_lock_irqsave(&clk_mgt_lock, flags);
 623
 624        /* Grab the HW semaphore. */
 625        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 626                cpu_relax();
 627
 628        writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
 629        writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
 630        writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
 631
 632        /* Release the HW semaphore. */
 633        writel(0, PRCM_SEM);
 634
 635        spin_unlock_irqrestore(&clk_mgt_lock, flags);
 636
 637        return 0;
 638}
 639
 640u32 db8500_prcmu_read(unsigned int reg)
 641{
 642        return readl(prcmu_base + reg);
 643}
 644
 645void db8500_prcmu_write(unsigned int reg, u32 value)
 646{
 647        unsigned long flags;
 648
 649        spin_lock_irqsave(&prcmu_lock, flags);
 650        writel(value, (prcmu_base + reg));
 651        spin_unlock_irqrestore(&prcmu_lock, flags);
 652}
 653
 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 655{
 656        u32 val;
 657        unsigned long flags;
 658
 659        spin_lock_irqsave(&prcmu_lock, flags);
 660        val = readl(prcmu_base + reg);
 661        val = ((val & ~mask) | (value & mask));
 662        writel(val, (prcmu_base + reg));
 663        spin_unlock_irqrestore(&prcmu_lock, flags);
 664}
 665
 666struct prcmu_fw_version *prcmu_get_fw_version(void)
 667{
 668        return fw_info.valid ? &fw_info.version : NULL;
 669}
 670
 671bool prcmu_has_arm_maxopp(void)
 672{
 673        return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 674                PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 675}
 676
 677/**
 678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 679 * @val: Value to be set, i.e. transition requested
 680 * Returns: 0 on success, -EINVAL on invalid argument
 681 *
 682 * This function is used to run the following power state sequences -
 683 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 684 */
 685int prcmu_set_rc_a2p(enum romcode_write val)
 686{
 687        if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 688                return -EINVAL;
 689        writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 690        return 0;
 691}
 692
 693/**
 694 * prcmu_get_rc_p2a - This function is used to get power state sequences
 695 * Returns: the power transition that has last happened
 696 *
 697 * This function can return the following transitions-
 698 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 699 */
 700enum romcode_read prcmu_get_rc_p2a(void)
 701{
 702        return readb(tcdm_base + PRCM_ROMCODE_P2A);
 703}
 704
 705/**
 706 * prcmu_get_current_mode - Return the current XP70 power mode
 707 * Returns: Returns the current AP(ARM) power mode: init,
 708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 709 */
 710enum ap_pwrst prcmu_get_xp70_current_state(void)
 711{
 712        return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 713}
 714
 715/**
 716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 717 * @clkout:     The CLKOUT number (0 or 1).
 718 * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
 719 * @div:        The divider to be applied.
 720 *
 721 * Configures one of the programmable clock outputs (CLKOUTs).
 722 * @div should be in the range [1,63] to request a configuration, or 0 to
 723 * inform that the configuration is no longer requested.
 724 */
 725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 726{
 727        static int requests[2];
 728        int r = 0;
 729        unsigned long flags;
 730        u32 val;
 731        u32 bits;
 732        u32 mask;
 733        u32 div_mask;
 734
 735        BUG_ON(clkout > 1);
 736        BUG_ON(div > 63);
 737        BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 738
 739        if (!div && !requests[clkout])
 740                return -EINVAL;
 741
 742        if (clkout == 0) {
 743                div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 744                mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 745                bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 746                        (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 747        } else {
 748                div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 749                mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 750                        PRCM_CLKOCR_CLK1TYPE);
 751                bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 752                        (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 753        }
 754        bits &= mask;
 755
 756        spin_lock_irqsave(&clkout_lock, flags);
 757
 758        val = readl(PRCM_CLKOCR);
 759        if (val & div_mask) {
 760                if (div) {
 761                        if ((val & mask) != bits) {
 762                                r = -EBUSY;
 763                                goto unlock_and_return;
 764                        }
 765                } else {
 766                        if ((val & mask & ~div_mask) != bits) {
 767                                r = -EINVAL;
 768                                goto unlock_and_return;
 769                        }
 770                }
 771        }
 772        writel((bits | (val & ~mask)), PRCM_CLKOCR);
 773        requests[clkout] += (div ? 1 : -1);
 774
 775unlock_and_return:
 776        spin_unlock_irqrestore(&clkout_lock, flags);
 777
 778        return r;
 779}
 780
 781int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 782{
 783        unsigned long flags;
 784
 785        BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 786
 787        spin_lock_irqsave(&mb0_transfer.lock, flags);
 788
 789        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 790                cpu_relax();
 791
 792        writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 793        writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 794        writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 795        writeb((keep_ulp_clk ? 1 : 0),
 796                (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 797        writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 798        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 799
 800        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 801
 802        return 0;
 803}
 804
 805u8 db8500_prcmu_get_power_state_result(void)
 806{
 807        return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 808}
 809
 810/* This function should only be called while mb0_transfer.lock is held. */
 811static void config_wakeups(void)
 812{
 813        const u8 header[2] = {
 814                MB0H_CONFIG_WAKEUPS_EXE,
 815                MB0H_CONFIG_WAKEUPS_SLEEP
 816        };
 817        static u32 last_dbb_events;
 818        static u32 last_abb_events;
 819        u32 dbb_events;
 820        u32 abb_events;
 821        unsigned int i;
 822
 823        dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 824        dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 825
 826        abb_events = mb0_transfer.req.abb_events;
 827
 828        if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 829                return;
 830
 831        for (i = 0; i < 2; i++) {
 832                while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 833                        cpu_relax();
 834                writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 835                writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 836                writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 837                writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 838        }
 839        last_dbb_events = dbb_events;
 840        last_abb_events = abb_events;
 841}
 842
 843void db8500_prcmu_enable_wakeups(u32 wakeups)
 844{
 845        unsigned long flags;
 846        u32 bits;
 847        int i;
 848
 849        BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 850
 851        for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 852                if (wakeups & BIT(i))
 853                        bits |= prcmu_wakeup_bit[i];
 854        }
 855
 856        spin_lock_irqsave(&mb0_transfer.lock, flags);
 857
 858        mb0_transfer.req.dbb_wakeups = bits;
 859        config_wakeups();
 860
 861        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 862}
 863
 864void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 865{
 866        unsigned long flags;
 867
 868        spin_lock_irqsave(&mb0_transfer.lock, flags);
 869
 870        mb0_transfer.req.abb_events = abb_events;
 871        config_wakeups();
 872
 873        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 874}
 875
 876void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 877{
 878        if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 879                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 880        else
 881                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 882}
 883
 884/**
 885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 886 * @opp: The new ARM operating point to which transition is to be made
 887 * Returns: 0 on success, non-zero on failure
 888 *
 889 * This function sets the the operating point of the ARM.
 890 */
 891int db8500_prcmu_set_arm_opp(u8 opp)
 892{
 893        int r;
 894
 895        if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 896                return -EINVAL;
 897
 898        r = 0;
 899
 900        mutex_lock(&mb1_transfer.lock);
 901
 902        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 903                cpu_relax();
 904
 905        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 906        writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 907        writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 908
 909        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 910        wait_for_completion(&mb1_transfer.work);
 911
 912        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 913                (mb1_transfer.ack.arm_opp != opp))
 914                r = -EIO;
 915
 916        mutex_unlock(&mb1_transfer.lock);
 917
 918        return r;
 919}
 920
 921/**
 922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 923 *
 924 * Returns: the current ARM OPP
 925 */
 926int db8500_prcmu_get_arm_opp(void)
 927{
 928        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 929}
 930
 931/**
 932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 933 *
 934 * Returns: the current DDR OPP
 935 */
 936int db8500_prcmu_get_ddr_opp(void)
 937{
 938        return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 939}
 940
 941/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 942static void request_even_slower_clocks(bool enable)
 943{
 944        u32 clock_reg[] = {
 945                PRCM_ACLK_MGT,
 946                PRCM_DMACLK_MGT
 947        };
 948        unsigned long flags;
 949        unsigned int i;
 950
 951        spin_lock_irqsave(&clk_mgt_lock, flags);
 952
 953        /* Grab the HW semaphore. */
 954        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 955                cpu_relax();
 956
 957        for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 958                u32 val;
 959                u32 div;
 960
 961                val = readl(prcmu_base + clock_reg[i]);
 962                div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 963                if (enable) {
 964                        if ((div <= 1) || (div > 15)) {
 965                                pr_err("prcmu: Bad clock divider %d in %s\n",
 966                                        div, __func__);
 967                                goto unlock_and_return;
 968                        }
 969                        div <<= 1;
 970                } else {
 971                        if (div <= 2)
 972                                goto unlock_and_return;
 973                        div >>= 1;
 974                }
 975                val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 976                        (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 977                writel(val, prcmu_base + clock_reg[i]);
 978        }
 979
 980unlock_and_return:
 981        /* Release the HW semaphore. */
 982        writel(0, PRCM_SEM);
 983
 984        spin_unlock_irqrestore(&clk_mgt_lock, flags);
 985}
 986
 987/**
 988 * db8500_set_ape_opp - set the appropriate APE OPP
 989 * @opp: The new APE operating point to which transition is to be made
 990 * Returns: 0 on success, non-zero on failure
 991 *
 992 * This function sets the operating point of the APE.
 993 */
 994int db8500_prcmu_set_ape_opp(u8 opp)
 995{
 996        int r = 0;
 997
 998        if (opp == mb1_transfer.ape_opp)
 999                return 0;
1000
1001        mutex_lock(&mb1_transfer.lock);
1002
1003        if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004                request_even_slower_clocks(false);
1005
1006        if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007                goto skip_message;
1008
1009        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010                cpu_relax();
1011
1012        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013        writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014        writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015                (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018        wait_for_completion(&mb1_transfer.work);
1019
1020        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021                (mb1_transfer.ack.ape_opp != opp))
1022                r = -EIO;
1023
1024skip_message:
1025        if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026                (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027                request_even_slower_clocks(true);
1028        if (!r)
1029                mb1_transfer.ape_opp = opp;
1030
1031        mutex_unlock(&mb1_transfer.lock);
1032
1033        return r;
1034}
1035
1036/**
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 *
1039 * Returns: the current APE OPP
1040 */
1041int db8500_prcmu_get_ape_opp(void)
1042{
1043        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044}
1045
1046/**
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1049 *
1050 * Calls to this function to enable and disable requests must be balanced.
1051 */
1052int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053{
1054        int r = 0;
1055        u8 header;
1056        static unsigned int requests;
1057
1058        mutex_lock(&mb1_transfer.lock);
1059
1060        if (enable) {
1061                if (0 != requests++)
1062                        goto unlock_and_return;
1063                header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064        } else {
1065                if (requests == 0) {
1066                        r = -EIO;
1067                        goto unlock_and_return;
1068                } else if (1 != requests--) {
1069                        goto unlock_and_return;
1070                }
1071                header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072        }
1073
1074        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075                cpu_relax();
1076
1077        writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080        wait_for_completion(&mb1_transfer.work);
1081
1082        if ((mb1_transfer.ack.header != header) ||
1083                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084                r = -EIO;
1085
1086unlock_and_return:
1087        mutex_unlock(&mb1_transfer.lock);
1088
1089        return r;
1090}
1091
1092/**
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 *
1095 * This function releases the power state requirements of a USB wakeup.
1096 */
1097int prcmu_release_usb_wakeup_state(void)
1098{
1099        int r = 0;
1100
1101        mutex_lock(&mb1_transfer.lock);
1102
1103        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104                cpu_relax();
1105
1106        writeb(MB1H_RELEASE_USB_WAKEUP,
1107                (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110        wait_for_completion(&mb1_transfer.work);
1111
1112        if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114                r = -EIO;
1115
1116        mutex_unlock(&mb1_transfer.lock);
1117
1118        return r;
1119}
1120
1121static int request_pll(u8 clock, bool enable)
1122{
1123        int r = 0;
1124
1125        if (clock == PRCMU_PLLSOC0)
1126                clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127        else if (clock == PRCMU_PLLSOC1)
1128                clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129        else
1130                return -EINVAL;
1131
1132        mutex_lock(&mb1_transfer.lock);
1133
1134        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135                cpu_relax();
1136
1137        writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138        writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141        wait_for_completion(&mb1_transfer.work);
1142
1143        if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144                r = -EIO;
1145
1146        mutex_unlock(&mb1_transfer.lock);
1147
1148        return r;
1149}
1150
1151/**
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1155 *
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1158 */
1159int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160{
1161        int r = 0;
1162        bool ram_retention = false;
1163        int i;
1164
1165        /* check argument */
1166        BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168        /* set flag if retention is possible */
1169        switch (epod_id) {
1170        case EPOD_ID_SVAMMDSP:
1171        case EPOD_ID_SIAMMDSP:
1172        case EPOD_ID_ESRAM12:
1173        case EPOD_ID_ESRAM34:
1174                ram_retention = true;
1175                break;
1176        }
1177
1178        /* check argument */
1179        BUG_ON(epod_state > EPOD_STATE_ON);
1180        BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182        /* get lock */
1183        mutex_lock(&mb2_transfer.lock);
1184
1185        /* wait for mailbox */
1186        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187                cpu_relax();
1188
1189        /* fill in mailbox */
1190        for (i = 0; i < NUM_EPOD_ID; i++)
1191                writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192        writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194        writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196        writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198        /*
1199         * The current firmware version does not handle errors correctly,
1200         * and we cannot recover if there is an error.
1201         * This is expected to change when the firmware is updated.
1202         */
1203        if (!wait_for_completion_timeout(&mb2_transfer.work,
1204                        msecs_to_jiffies(20000))) {
1205                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206                        __func__);
1207                r = -EIO;
1208                goto unlock_and_return;
1209        }
1210
1211        if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212                r = -EIO;
1213
1214unlock_and_return:
1215        mutex_unlock(&mb2_transfer.lock);
1216        return r;
1217}
1218
1219/**
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle:  Configuration for ApIdle.
1223 */
1224void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225        struct prcmu_auto_pm_config *idle)
1226{
1227        u32 sleep_cfg;
1228        u32 idle_cfg;
1229        unsigned long flags;
1230
1231        BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233        sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235        sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236        sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237        sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240        idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241        idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242        idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243        idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244        idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245        idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247        spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249        /*
1250         * The autonomous power management configuration is done through
1251         * fields in mailbox 2, but these fields are only used as shared
1252         * variables - i.e. there is no need to send a message.
1253         */
1254        writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255        writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257        mb2_transfer.auto_pm_enabled =
1258                ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259                 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260                 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261                 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263        spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264}
1265EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267bool prcmu_is_auto_pm_enabled(void)
1268{
1269        return mb2_transfer.auto_pm_enabled;
1270}
1271
1272static int request_sysclk(bool enable)
1273{
1274        int r;
1275        unsigned long flags;
1276
1277        r = 0;
1278
1279        mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281        spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284                cpu_relax();
1285
1286        writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288        writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289        writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291        spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293        /*
1294         * The firmware only sends an ACK if we want to enable the
1295         * SysClk, and it succeeds.
1296         */
1297        if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298                        msecs_to_jiffies(20000))) {
1299                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300                        __func__);
1301                r = -EIO;
1302        }
1303
1304        mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306        return r;
1307}
1308
1309static int request_timclk(bool enable)
1310{
1311        u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312
1313        if (!enable)
1314                val |= PRCM_TCR_STOP_TIMERS;
1315        writel(val, PRCM_TCR);
1316
1317        return 0;
1318}
1319
1320static int request_clock(u8 clock, bool enable)
1321{
1322        u32 val;
1323        unsigned long flags;
1324
1325        spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327        /* Grab the HW semaphore. */
1328        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329                cpu_relax();
1330
1331        val = readl(prcmu_base + clk_mgt[clock].offset);
1332        if (enable) {
1333                val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334        } else {
1335                clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336                val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337        }
1338        writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340        /* Release the HW semaphore. */
1341        writel(0, PRCM_SEM);
1342
1343        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345        return 0;
1346}
1347
1348static int request_sga_clock(u8 clock, bool enable)
1349{
1350        u32 val;
1351        int ret;
1352
1353        if (enable) {
1354                val = readl(PRCM_CGATING_BYPASS);
1355                writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356        }
1357
1358        ret = request_clock(clock, enable);
1359
1360        if (!ret && !enable) {
1361                val = readl(PRCM_CGATING_BYPASS);
1362                writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363        }
1364
1365        return ret;
1366}
1367
1368static inline bool plldsi_locked(void)
1369{
1370        return (readl(PRCM_PLLDSI_LOCKP) &
1371                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375}
1376
1377static int request_plldsi(bool enable)
1378{
1379        int r = 0;
1380        u32 val;
1381
1382        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384                PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386        val = readl(PRCM_PLLDSI_ENABLE);
1387        if (enable)
1388                val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389        else
1390                val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391        writel(val, PRCM_PLLDSI_ENABLE);
1392
1393        if (enable) {
1394                unsigned int i;
1395                bool locked = plldsi_locked();
1396
1397                for (i = 10; !locked && (i > 0); --i) {
1398                        udelay(100);
1399                        locked = plldsi_locked();
1400                }
1401                if (locked) {
1402                        writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403                                PRCM_APE_RESETN_SET);
1404                } else {
1405                        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406                                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407                                PRCM_MMIP_LS_CLAMP_SET);
1408                        val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409                        writel(val, PRCM_PLLDSI_ENABLE);
1410                        r = -EAGAIN;
1411                }
1412        } else {
1413                writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414        }
1415        return r;
1416}
1417
1418static int request_dsiclk(u8 n, bool enable)
1419{
1420        u32 val;
1421
1422        val = readl(PRCM_DSI_PLLOUT_SEL);
1423        val &= ~dsiclk[n].divsel_mask;
1424        val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425                dsiclk[n].divsel_shift);
1426        writel(val, PRCM_DSI_PLLOUT_SEL);
1427        return 0;
1428}
1429
1430static int request_dsiescclk(u8 n, bool enable)
1431{
1432        u32 val;
1433
1434        val = readl(PRCM_DSITVCLK_DIV);
1435        enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436        writel(val, PRCM_DSITVCLK_DIV);
1437        return 0;
1438}
1439
1440/**
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock:      The clock for which the request is made.
1443 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1444 *
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1447 */
1448int db8500_prcmu_request_clock(u8 clock, bool enable)
1449{
1450        if (clock == PRCMU_SGACLK)
1451                return request_sga_clock(clock, enable);
1452        else if (clock < PRCMU_NUM_REG_CLOCKS)
1453                return request_clock(clock, enable);
1454        else if (clock == PRCMU_TIMCLK)
1455                return request_timclk(enable);
1456        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457                return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459                return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460        else if (clock == PRCMU_PLLDSI)
1461                return request_plldsi(enable);
1462        else if (clock == PRCMU_SYSCLK)
1463                return request_sysclk(enable);
1464        else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465                return request_pll(clock, enable);
1466        else
1467                return -EINVAL;
1468}
1469
1470static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471        int branch)
1472{
1473        u64 rate;
1474        u32 val;
1475        u32 d;
1476        u32 div = 1;
1477
1478        val = readl(reg);
1479
1480        rate = src_rate;
1481        rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483        d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484        if (d > 1)
1485                div *= d;
1486
1487        d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488        if (d > 1)
1489                div *= d;
1490
1491        if (val & PRCM_PLL_FREQ_SELDIV2)
1492                div *= 2;
1493
1494        if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495                (val & PRCM_PLL_FREQ_DIV2EN) &&
1496                ((reg == PRCM_PLLSOC0_FREQ) ||
1497                 (reg == PRCM_PLLARM_FREQ) ||
1498                 (reg == PRCM_PLLDDR_FREQ))))
1499                div *= 2;
1500
1501        (void)do_div(rate, div);
1502
1503        return (unsigned long)rate;
1504}
1505
1506#define ROOT_CLOCK_RATE 38400000
1507
1508static unsigned long clock_rate(u8 clock)
1509{
1510        u32 val;
1511        u32 pllsw;
1512        unsigned long rate = ROOT_CLOCK_RATE;
1513
1514        val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516        if (val & PRCM_CLK_MGT_CLK38) {
1517                if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518                        rate /= 2;
1519                return rate;
1520        }
1521
1522        val |= clk_mgt[clock].pllsw;
1523        pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525        if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526                rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528                rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530                rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531        else
1532                return 0;
1533
1534        if ((clock == PRCMU_SGACLK) &&
1535                (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536                u64 r = (rate * 10);
1537
1538                (void)do_div(r, 25);
1539                return (unsigned long)r;
1540        }
1541        val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542        if (val)
1543                return rate / val;
1544        else
1545                return 0;
1546}
1547
1548static unsigned long armss_rate(void)
1549{
1550        u32 r;
1551        unsigned long rate;
1552
1553        r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555        if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556                /* External ARMCLKFIX clock */
1557
1558                rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560                /* Check PRCM_ARM_CHGCLKREQ divider */
1561                if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562                        rate /= 2;
1563
1564                /* Check PRCM_ARMCLKFIX_MGT divider */
1565                r = readl(PRCM_ARMCLKFIX_MGT);
1566                r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567                rate /= r;
1568
1569        } else {/* ARM PLL */
1570                rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571        }
1572
1573        return rate;
1574}
1575
1576static unsigned long dsiclk_rate(u8 n)
1577{
1578        u32 divsel;
1579        u32 div = 1;
1580
1581        divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582        divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584        if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585                divsel = dsiclk[n].divsel;
1586        else
1587                dsiclk[n].divsel = divsel;
1588
1589        switch (divsel) {
1590        case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591                div *= 2;
1592        case PRCM_DSI_PLLOUT_SEL_PHI_2:
1593                div *= 2;
1594        case PRCM_DSI_PLLOUT_SEL_PHI:
1595                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1596                        PLL_RAW) / div;
1597        default:
1598                return 0;
1599        }
1600}
1601
1602static unsigned long dsiescclk_rate(u8 n)
1603{
1604        u32 div;
1605
1606        div = readl(PRCM_DSITVCLK_DIV);
1607        div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1608        return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1609}
1610
1611unsigned long prcmu_clock_rate(u8 clock)
1612{
1613        if (clock < PRCMU_NUM_REG_CLOCKS)
1614                return clock_rate(clock);
1615        else if (clock == PRCMU_TIMCLK)
1616                return ROOT_CLOCK_RATE / 16;
1617        else if (clock == PRCMU_SYSCLK)
1618                return ROOT_CLOCK_RATE;
1619        else if (clock == PRCMU_PLLSOC0)
1620                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1621        else if (clock == PRCMU_PLLSOC1)
1622                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623        else if (clock == PRCMU_ARMSS)
1624                return armss_rate();
1625        else if (clock == PRCMU_PLLDDR)
1626                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1627        else if (clock == PRCMU_PLLDSI)
1628                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1629                        PLL_RAW);
1630        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1631                return dsiclk_rate(clock - PRCMU_DSI0CLK);
1632        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1633                return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1634        else
1635                return 0;
1636}
1637
1638static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1639{
1640        if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1641                return ROOT_CLOCK_RATE;
1642        clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1643        if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1645        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1647        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1649        else
1650                return 0;
1651}
1652
1653static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1654{
1655        u32 div;
1656
1657        div = (src_rate / rate);
1658        if (div == 0)
1659                return 1;
1660        if (rate < (src_rate / div))
1661                div++;
1662        return div;
1663}
1664
1665static long round_clock_rate(u8 clock, unsigned long rate)
1666{
1667        u32 val;
1668        u32 div;
1669        unsigned long src_rate;
1670        long rounded_rate;
1671
1672        val = readl(prcmu_base + clk_mgt[clock].offset);
1673        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1674                clk_mgt[clock].branch);
1675        div = clock_divider(src_rate, rate);
1676        if (val & PRCM_CLK_MGT_CLK38) {
1677                if (clk_mgt[clock].clk38div) {
1678                        if (div > 2)
1679                                div = 2;
1680                } else {
1681                        div = 1;
1682                }
1683        } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1684                u64 r = (src_rate * 10);
1685
1686                (void)do_div(r, 25);
1687                if (r <= rate)
1688                        return (unsigned long)r;
1689        }
1690        rounded_rate = (src_rate / min(div, (u32)31));
1691
1692        return rounded_rate;
1693}
1694
1695/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1696static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1697        { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1698        { .frequency = 400000, .driver_data = ARM_50_OPP,},
1699        { .frequency = 800000, .driver_data = ARM_100_OPP,},
1700        { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1701        { .frequency = CPUFREQ_TABLE_END,},
1702};
1703
1704static long round_armss_rate(unsigned long rate)
1705{
1706        struct cpufreq_frequency_table *pos;
1707        long freq = 0;
1708
1709        /* cpufreq table frequencies is in KHz. */
1710        rate = rate / 1000;
1711
1712        /* Find the corresponding arm opp from the cpufreq table. */
1713        cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1714                freq = pos->frequency;
1715                if (freq == rate)
1716                        break;
1717        }
1718
1719        /* Return the last valid value, even if a match was not found. */
1720        return freq * 1000;
1721}
1722
1723#define MIN_PLL_VCO_RATE 600000000ULL
1724#define MAX_PLL_VCO_RATE 1680640000ULL
1725
1726static long round_plldsi_rate(unsigned long rate)
1727{
1728        long rounded_rate = 0;
1729        unsigned long src_rate;
1730        unsigned long rem;
1731        u32 r;
1732
1733        src_rate = clock_rate(PRCMU_HDMICLK);
1734        rem = rate;
1735
1736        for (r = 7; (rem > 0) && (r > 0); r--) {
1737                u64 d;
1738
1739                d = (r * rate);
1740                (void)do_div(d, src_rate);
1741                if (d < 6)
1742                        d = 6;
1743                else if (d > 255)
1744                        d = 255;
1745                d *= src_rate;
1746                if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1747                        ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1748                        continue;
1749                (void)do_div(d, r);
1750                if (rate < d) {
1751                        if (rounded_rate == 0)
1752                                rounded_rate = (long)d;
1753                        break;
1754                }
1755                if ((rate - d) < rem) {
1756                        rem = (rate - d);
1757                        rounded_rate = (long)d;
1758                }
1759        }
1760        return rounded_rate;
1761}
1762
1763static long round_dsiclk_rate(unsigned long rate)
1764{
1765        u32 div;
1766        unsigned long src_rate;
1767        long rounded_rate;
1768
1769        src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1770                PLL_RAW);
1771        div = clock_divider(src_rate, rate);
1772        rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1773
1774        return rounded_rate;
1775}
1776
1777static long round_dsiescclk_rate(unsigned long rate)
1778{
1779        u32 div;
1780        unsigned long src_rate;
1781        long rounded_rate;
1782
1783        src_rate = clock_rate(PRCMU_TVCLK);
1784        div = clock_divider(src_rate, rate);
1785        rounded_rate = (src_rate / min(div, (u32)255));
1786
1787        return rounded_rate;
1788}
1789
1790long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1791{
1792        if (clock < PRCMU_NUM_REG_CLOCKS)
1793                return round_clock_rate(clock, rate);
1794        else if (clock == PRCMU_ARMSS)
1795                return round_armss_rate(rate);
1796        else if (clock == PRCMU_PLLDSI)
1797                return round_plldsi_rate(rate);
1798        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1799                return round_dsiclk_rate(rate);
1800        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1801                return round_dsiescclk_rate(rate);
1802        else
1803                return (long)prcmu_clock_rate(clock);
1804}
1805
1806static void set_clock_rate(u8 clock, unsigned long rate)
1807{
1808        u32 val;
1809        u32 div;
1810        unsigned long src_rate;
1811        unsigned long flags;
1812
1813        spin_lock_irqsave(&clk_mgt_lock, flags);
1814
1815        /* Grab the HW semaphore. */
1816        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1817                cpu_relax();
1818
1819        val = readl(prcmu_base + clk_mgt[clock].offset);
1820        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1821                clk_mgt[clock].branch);
1822        div = clock_divider(src_rate, rate);
1823        if (val & PRCM_CLK_MGT_CLK38) {
1824                if (clk_mgt[clock].clk38div) {
1825                        if (div > 1)
1826                                val |= PRCM_CLK_MGT_CLK38DIV;
1827                        else
1828                                val &= ~PRCM_CLK_MGT_CLK38DIV;
1829                }
1830        } else if (clock == PRCMU_SGACLK) {
1831                val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1832                        PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1833                if (div == 3) {
1834                        u64 r = (src_rate * 10);
1835
1836                        (void)do_div(r, 25);
1837                        if (r <= rate) {
1838                                val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1839                                div = 0;
1840                        }
1841                }
1842                val |= min(div, (u32)31);
1843        } else {
1844                val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1845                val |= min(div, (u32)31);
1846        }
1847        writel(val, prcmu_base + clk_mgt[clock].offset);
1848
1849        /* Release the HW semaphore. */
1850        writel(0, PRCM_SEM);
1851
1852        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1853}
1854
1855static int set_armss_rate(unsigned long rate)
1856{
1857        struct cpufreq_frequency_table *pos;
1858
1859        /* cpufreq table frequencies is in KHz. */
1860        rate = rate / 1000;
1861
1862        /* Find the corresponding arm opp from the cpufreq table. */
1863        cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1864                if (pos->frequency == rate)
1865                        break;
1866
1867        if (pos->frequency != rate)
1868                return -EINVAL;
1869
1870        /* Set the new arm opp. */
1871        return db8500_prcmu_set_arm_opp(pos->driver_data);
1872}
1873
1874static int set_plldsi_rate(unsigned long rate)
1875{
1876        unsigned long src_rate;
1877        unsigned long rem;
1878        u32 pll_freq = 0;
1879        u32 r;
1880
1881        src_rate = clock_rate(PRCMU_HDMICLK);
1882        rem = rate;
1883
1884        for (r = 7; (rem > 0) && (r > 0); r--) {
1885                u64 d;
1886                u64 hwrate;
1887
1888                d = (r * rate);
1889                (void)do_div(d, src_rate);
1890                if (d < 6)
1891                        d = 6;
1892                else if (d > 255)
1893                        d = 255;
1894                hwrate = (d * src_rate);
1895                if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896                        ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897                        continue;
1898                (void)do_div(hwrate, r);
1899                if (rate < hwrate) {
1900                        if (pll_freq == 0)
1901                                pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902                                        (r << PRCM_PLL_FREQ_R_SHIFT));
1903                        break;
1904                }
1905                if ((rate - hwrate) < rem) {
1906                        rem = (rate - hwrate);
1907                        pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908                                (r << PRCM_PLL_FREQ_R_SHIFT));
1909                }
1910        }
1911        if (pll_freq == 0)
1912                return -EINVAL;
1913
1914        pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915        writel(pll_freq, PRCM_PLLDSI_FREQ);
1916
1917        return 0;
1918}
1919
1920static void set_dsiclk_rate(u8 n, unsigned long rate)
1921{
1922        u32 val;
1923        u32 div;
1924
1925        div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926                        clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927
1928        dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929                           (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930                           /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1931
1932        val = readl(PRCM_DSI_PLLOUT_SEL);
1933        val &= ~dsiclk[n].divsel_mask;
1934        val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935        writel(val, PRCM_DSI_PLLOUT_SEL);
1936}
1937
1938static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939{
1940        u32 val;
1941        u32 div;
1942
1943        div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944        val = readl(PRCM_DSITVCLK_DIV);
1945        val &= ~dsiescclk[n].div_mask;
1946        val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947        writel(val, PRCM_DSITVCLK_DIV);
1948}
1949
1950int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951{
1952        if (clock < PRCMU_NUM_REG_CLOCKS)
1953                set_clock_rate(clock, rate);
1954        else if (clock == PRCMU_ARMSS)
1955                return set_armss_rate(rate);
1956        else if (clock == PRCMU_PLLDSI)
1957                return set_plldsi_rate(rate);
1958        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959                set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961                set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962        return 0;
1963}
1964
1965int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1966{
1967        if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968            (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969                return -EINVAL;
1970
1971        mutex_lock(&mb4_transfer.lock);
1972
1973        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1974                cpu_relax();
1975
1976        writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977        writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979        writeb(DDR_PWR_STATE_ON,
1980               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981        writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982
1983        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1984        wait_for_completion(&mb4_transfer.work);
1985
1986        mutex_unlock(&mb4_transfer.lock);
1987
1988        return 0;
1989}
1990
1991int db8500_prcmu_config_hotdog(u8 threshold)
1992{
1993        mutex_lock(&mb4_transfer.lock);
1994
1995        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996                cpu_relax();
1997
1998        writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999        writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000
2001        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2002        wait_for_completion(&mb4_transfer.work);
2003
2004        mutex_unlock(&mb4_transfer.lock);
2005
2006        return 0;
2007}
2008
2009int db8500_prcmu_config_hotmon(u8 low, u8 high)
2010{
2011        mutex_lock(&mb4_transfer.lock);
2012
2013        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2014                cpu_relax();
2015
2016        writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017        writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018        writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019                (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020        writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021
2022        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2023        wait_for_completion(&mb4_transfer.work);
2024
2025        mutex_unlock(&mb4_transfer.lock);
2026
2027        return 0;
2028}
2029EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2030
2031static int config_hot_period(u16 val)
2032{
2033        mutex_lock(&mb4_transfer.lock);
2034
2035        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036                cpu_relax();
2037
2038        writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039        writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
2041        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042        wait_for_completion(&mb4_transfer.work);
2043
2044        mutex_unlock(&mb4_transfer.lock);
2045
2046        return 0;
2047}
2048
2049int db8500_prcmu_start_temp_sense(u16 cycles32k)
2050{
2051        if (cycles32k == 0xFFFF)
2052                return -EINVAL;
2053
2054        return config_hot_period(cycles32k);
2055}
2056EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2057
2058int db8500_prcmu_stop_temp_sense(void)
2059{
2060        return config_hot_period(0xFFFF);
2061}
2062EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2063
2064static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065{
2066
2067        mutex_lock(&mb4_transfer.lock);
2068
2069        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070                cpu_relax();
2071
2072        writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073        writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074        writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075        writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076
2077        writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
2079        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080        wait_for_completion(&mb4_transfer.work);
2081
2082        mutex_unlock(&mb4_transfer.lock);
2083
2084        return 0;
2085
2086}
2087
2088int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2089{
2090        BUG_ON(num == 0 || num > 0xf);
2091        return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092                            sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093                            A9WDOG_AUTO_OFF_DIS);
2094}
2095EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2096
2097int db8500_prcmu_enable_a9wdog(u8 id)
2098{
2099        return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100}
2101EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2102
2103int db8500_prcmu_disable_a9wdog(u8 id)
2104{
2105        return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106}
2107EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2108
2109int db8500_prcmu_kick_a9wdog(u8 id)
2110{
2111        return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112}
2113EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2114
2115/*
2116 * timeout is 28 bit, in ms.
2117 */
2118int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119{
2120        return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121                            (id & A9WDOG_ID_MASK) |
2122                            /*
2123                             * Put the lowest 28 bits of timeout at
2124                             * offset 4. Four first bits are used for id.
2125                             */
2126                            (u8)((timeout << 4) & 0xf0),
2127                            (u8)((timeout >> 4) & 0xff),
2128                            (u8)((timeout >> 12) & 0xff),
2129                            (u8)((timeout >> 20) & 0xff));
2130}
2131EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2132
2133/**
2134 * prcmu_abb_read() - Read register value(s) from the ABB.
2135 * @slave:      The I2C slave address.
2136 * @reg:        The (start) register address.
2137 * @value:      The read out value(s).
2138 * @size:       The number of registers to read.
2139 *
2140 * Reads register value(s) from the ABB.
2141 * @size has to be 1 for the current firmware version.
2142 */
2143int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144{
2145        int r;
2146
2147        if (size != 1)
2148                return -EINVAL;
2149
2150        mutex_lock(&mb5_transfer.lock);
2151
2152        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2153                cpu_relax();
2154
2155        writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2156        writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159        writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160
2161        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2162
2163        if (!wait_for_completion_timeout(&mb5_transfer.work,
2164                                msecs_to_jiffies(20000))) {
2165                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166                        __func__);
2167                r = -EIO;
2168        } else {
2169                r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2170        }
2171
2172        if (!r)
2173                *value = mb5_transfer.ack.value;
2174
2175        mutex_unlock(&mb5_transfer.lock);
2176
2177        return r;
2178}
2179
2180/**
2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2182 * @slave:      The I2C slave address.
2183 * @reg:        The (start) register address.
2184 * @value:      The value(s) to write.
2185 * @mask:       The mask(s) to use.
2186 * @size:       The number of registers to write.
2187 *
2188 * Writes masked register value(s) to the ABB.
2189 * For each @value, only the bits set to 1 in the corresponding @mask
2190 * will be written. The other bits are not changed.
2191 * @size has to be 1 for the current firmware version.
2192 */
2193int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2194{
2195        int r;
2196
2197        if (size != 1)
2198                return -EINVAL;
2199
2200        mutex_lock(&mb5_transfer.lock);
2201
2202        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2203                cpu_relax();
2204
2205        writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2206        writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209        writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210
2211        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2212
2213        if (!wait_for_completion_timeout(&mb5_transfer.work,
2214                                msecs_to_jiffies(20000))) {
2215                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216                        __func__);
2217                r = -EIO;
2218        } else {
2219                r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2220        }
2221
2222        mutex_unlock(&mb5_transfer.lock);
2223
2224        return r;
2225}
2226
2227/**
2228 * prcmu_abb_write() - Write register value(s) to the ABB.
2229 * @slave:      The I2C slave address.
2230 * @reg:        The (start) register address.
2231 * @value:      The value(s) to write.
2232 * @size:       The number of registers to write.
2233 *
2234 * Writes register value(s) to the ABB.
2235 * @size has to be 1 for the current firmware version.
2236 */
2237int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238{
2239        u8 mask = ~0;
2240
2241        return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242}
2243
2244/**
2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246 */
2247int prcmu_ac_wake_req(void)
2248{
2249        u32 val;
2250        int ret = 0;
2251
2252        mutex_lock(&mb0_transfer.ac_wake_lock);
2253
2254        val = readl(PRCM_HOSTACCESS_REQ);
2255        if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256                goto unlock_and_return;
2257
2258        atomic_set(&ac_wake_req_state, 1);
2259
2260        /*
2261         * Force Modem Wake-up before hostaccess_req ping-pong.
2262         * It prevents Modem to enter in Sleep while acking the hostaccess
2263         * request. The 31us delay has been calculated by HWI.
2264         */
2265        val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266        writel(val, PRCM_HOSTACCESS_REQ);
2267
2268        udelay(31);
2269
2270        val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271        writel(val, PRCM_HOSTACCESS_REQ);
2272
2273        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2274                        msecs_to_jiffies(5000))) {
2275                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2276                        __func__);
2277                ret = -EFAULT;
2278        }
2279
2280unlock_and_return:
2281        mutex_unlock(&mb0_transfer.ac_wake_lock);
2282        return ret;
2283}
2284
2285/**
2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2287 */
2288void prcmu_ac_sleep_req(void)
2289{
2290        u32 val;
2291
2292        mutex_lock(&mb0_transfer.ac_wake_lock);
2293
2294        val = readl(PRCM_HOSTACCESS_REQ);
2295        if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296                goto unlock_and_return;
2297
2298        writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2299                PRCM_HOSTACCESS_REQ);
2300
2301        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302                        msecs_to_jiffies(5000))) {
2303                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2304                        __func__);
2305        }
2306
2307        atomic_set(&ac_wake_req_state, 0);
2308
2309unlock_and_return:
2310        mutex_unlock(&mb0_transfer.ac_wake_lock);
2311}
2312
2313bool db8500_prcmu_is_ac_wake_requested(void)
2314{
2315        return (atomic_read(&ac_wake_req_state) != 0);
2316}
2317
2318/**
2319 * db8500_prcmu_system_reset - System reset
2320 *
2321 * Saves the reset reason code and then sets the APE_SOFTRST register which
2322 * fires interrupt to fw
2323 */
2324void db8500_prcmu_system_reset(u16 reset_code)
2325{
2326        writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2327        writel(1, PRCM_APE_SOFTRST);
2328}
2329
2330/**
2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332 *
2333 * Retrieves the reset reason code stored by prcmu_system_reset() before
2334 * last restart.
2335 */
2336u16 db8500_prcmu_get_reset_code(void)
2337{
2338        return readw(tcdm_base + PRCM_SW_RST_REASON);
2339}
2340
2341/**
2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2343 */
2344void db8500_prcmu_modem_reset(void)
2345{
2346        mutex_lock(&mb1_transfer.lock);
2347
2348        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2349                cpu_relax();
2350
2351        writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2352        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2353        wait_for_completion(&mb1_transfer.work);
2354
2355        /*
2356         * No need to check return from PRCMU as modem should go in reset state
2357         * This state is already managed by upper layer
2358         */
2359
2360        mutex_unlock(&mb1_transfer.lock);
2361}
2362
2363static void ack_dbb_wakeup(void)
2364{
2365        unsigned long flags;
2366
2367        spin_lock_irqsave(&mb0_transfer.lock, flags);
2368
2369        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2370                cpu_relax();
2371
2372        writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2373        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2374
2375        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2376}
2377
2378static inline void print_unknown_header_warning(u8 n, u8 header)
2379{
2380        pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2381                header, n);
2382}
2383
2384static bool read_mailbox_0(void)
2385{
2386        bool r;
2387        u32 ev;
2388        unsigned int n;
2389        u8 header;
2390
2391        header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392        switch (header) {
2393        case MB0H_WAKEUP_EXE:
2394        case MB0H_WAKEUP_SLEEP:
2395                if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397                else
2398                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399
2400                if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401                        complete(&mb0_transfer.ac_wake_work);
2402                if (ev & WAKEUP_BIT_SYSCLK_OK)
2403                        complete(&mb3_transfer.sysclk_work);
2404
2405                ev &= mb0_transfer.req.dbb_irqs;
2406
2407                for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408                        if (ev & prcmu_irq_bit[n])
2409                                generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2410                }
2411                r = true;
2412                break;
2413        default:
2414                print_unknown_header_warning(0, header);
2415                r = false;
2416                break;
2417        }
2418        writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2419        return r;
2420}
2421
2422static bool read_mailbox_1(void)
2423{
2424        mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425        mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426                PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427        mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428                PRCM_ACK_MB1_CURRENT_APE_OPP);
2429        mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430                PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2431        writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2432        complete(&mb1_transfer.work);
2433        return false;
2434}
2435
2436static bool read_mailbox_2(void)
2437{
2438        mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2439        writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2440        complete(&mb2_transfer.work);
2441        return false;
2442}
2443
2444static bool read_mailbox_3(void)
2445{
2446        writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2447        return false;
2448}
2449
2450static bool read_mailbox_4(void)
2451{
2452        u8 header;
2453        bool do_complete = true;
2454
2455        header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456        switch (header) {
2457        case MB4H_MEM_ST:
2458        case MB4H_HOTDOG:
2459        case MB4H_HOTMON:
2460        case MB4H_HOT_PERIOD:
2461        case MB4H_A9WDOG_CONF:
2462        case MB4H_A9WDOG_EN:
2463        case MB4H_A9WDOG_DIS:
2464        case MB4H_A9WDOG_LOAD:
2465        case MB4H_A9WDOG_KICK:
2466                break;
2467        default:
2468                print_unknown_header_warning(4, header);
2469                do_complete = false;
2470                break;
2471        }
2472
2473        writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2474
2475        if (do_complete)
2476                complete(&mb4_transfer.work);
2477
2478        return false;
2479}
2480
2481static bool read_mailbox_5(void)
2482{
2483        mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484        mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2485        writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2486        complete(&mb5_transfer.work);
2487        return false;
2488}
2489
2490static bool read_mailbox_6(void)
2491{
2492        writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2493        return false;
2494}
2495
2496static bool read_mailbox_7(void)
2497{
2498        writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2499        return false;
2500}
2501
2502static bool (* const read_mailbox[NUM_MB])(void) = {
2503        read_mailbox_0,
2504        read_mailbox_1,
2505        read_mailbox_2,
2506        read_mailbox_3,
2507        read_mailbox_4,
2508        read_mailbox_5,
2509        read_mailbox_6,
2510        read_mailbox_7
2511};
2512
2513static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514{
2515        u32 bits;
2516        u8 n;
2517        irqreturn_t r;
2518
2519        bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2520        if (unlikely(!bits))
2521                return IRQ_NONE;
2522
2523        r = IRQ_HANDLED;
2524        for (n = 0; bits; n++) {
2525                if (bits & MBOX_BIT(n)) {
2526                        bits -= MBOX_BIT(n);
2527                        if (read_mailbox[n]())
2528                                r = IRQ_WAKE_THREAD;
2529                }
2530        }
2531        return r;
2532}
2533
2534static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535{
2536        ack_dbb_wakeup();
2537        return IRQ_HANDLED;
2538}
2539
2540static void prcmu_mask_work(struct work_struct *work)
2541{
2542        unsigned long flags;
2543
2544        spin_lock_irqsave(&mb0_transfer.lock, flags);
2545
2546        config_wakeups();
2547
2548        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549}
2550
2551static void prcmu_irq_mask(struct irq_data *d)
2552{
2553        unsigned long flags;
2554
2555        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557        mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2558
2559        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560
2561        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562                schedule_work(&mb0_transfer.mask_work);
2563}
2564
2565static void prcmu_irq_unmask(struct irq_data *d)
2566{
2567        unsigned long flags;
2568
2569        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571        mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2572
2573        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574
2575        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576                schedule_work(&mb0_transfer.mask_work);
2577}
2578
2579static void noop(struct irq_data *d)
2580{
2581}
2582
2583static struct irq_chip prcmu_irq_chip = {
2584        .name           = "prcmu",
2585        .irq_disable    = prcmu_irq_mask,
2586        .irq_ack        = noop,
2587        .irq_mask       = prcmu_irq_mask,
2588        .irq_unmask     = prcmu_irq_unmask,
2589};
2590
2591static __init char *fw_project_name(u32 project)
2592{
2593        switch (project) {
2594        case PRCMU_FW_PROJECT_U8500:
2595                return "U8500";
2596        case PRCMU_FW_PROJECT_U8400:
2597                return "U8400";
2598        case PRCMU_FW_PROJECT_U9500:
2599                return "U9500";
2600        case PRCMU_FW_PROJECT_U8500_MBB:
2601                return "U8500 MBB";
2602        case PRCMU_FW_PROJECT_U8500_C1:
2603                return "U8500 C1";
2604        case PRCMU_FW_PROJECT_U8500_C2:
2605                return "U8500 C2";
2606        case PRCMU_FW_PROJECT_U8500_C3:
2607                return "U8500 C3";
2608        case PRCMU_FW_PROJECT_U8500_C4:
2609                return "U8500 C4";
2610        case PRCMU_FW_PROJECT_U9500_MBL:
2611                return "U9500 MBL";
2612        case PRCMU_FW_PROJECT_U8500_MBL:
2613                return "U8500 MBL";
2614        case PRCMU_FW_PROJECT_U8500_MBL2:
2615                return "U8500 MBL2";
2616        case PRCMU_FW_PROJECT_U8520:
2617                return "U8520 MBL";
2618        case PRCMU_FW_PROJECT_U8420:
2619                return "U8420";
2620        case PRCMU_FW_PROJECT_U9540:
2621                return "U9540";
2622        case PRCMU_FW_PROJECT_A9420:
2623                return "A9420";
2624        case PRCMU_FW_PROJECT_L8540:
2625                return "L8540";
2626        case PRCMU_FW_PROJECT_L8580:
2627                return "L8580";
2628        default:
2629                return "Unknown";
2630        }
2631}
2632
2633static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634                                irq_hw_number_t hwirq)
2635{
2636        irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637                                handle_simple_irq);
2638
2639        return 0;
2640}
2641
2642static const struct irq_domain_ops db8500_irq_ops = {
2643        .map    = db8500_irq_map,
2644        .xlate  = irq_domain_xlate_twocell,
2645};
2646
2647static int db8500_irq_init(struct device_node *np)
2648{
2649        int i;
2650
2651        db8500_irq_domain = irq_domain_add_simple(
2652                np, NUM_PRCMU_WAKEUPS, 0,
2653                &db8500_irq_ops, NULL);
2654
2655        if (!db8500_irq_domain) {
2656                pr_err("Failed to create irqdomain\n");
2657                return -ENOSYS;
2658        }
2659
2660        /* All wakeups will be used, so create mappings for all */
2661        for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662                irq_create_mapping(db8500_irq_domain, i);
2663
2664        return 0;
2665}
2666
2667static void dbx500_fw_version_init(struct platform_device *pdev,
2668                            u32 version_offset)
2669{
2670        struct resource *res;
2671        void __iomem *tcpm_base;
2672        u32 version;
2673
2674        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675                                           "prcmu-tcpm");
2676        if (!res) {
2677                dev_err(&pdev->dev,
2678                        "Error: no prcmu tcpm memory region provided\n");
2679                return;
2680        }
2681        tcpm_base = ioremap(res->start, resource_size(res));
2682        if (!tcpm_base) {
2683                dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684                return;
2685        }
2686
2687        version = readl(tcpm_base + version_offset);
2688        fw_info.version.project = (version & 0xFF);
2689        fw_info.version.api_version = (version >> 8) & 0xFF;
2690        fw_info.version.func_version = (version >> 16) & 0xFF;
2691        fw_info.version.errata = (version >> 24) & 0xFF;
2692        strncpy(fw_info.version.project_name,
2693                fw_project_name(fw_info.version.project),
2694                PRCMU_FW_PROJECT_NAME_LEN);
2695        fw_info.valid = true;
2696        pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697                fw_info.version.project_name,
2698                fw_info.version.project,
2699                fw_info.version.api_version,
2700                fw_info.version.func_version,
2701                fw_info.version.errata);
2702        iounmap(tcpm_base);
2703}
2704
2705void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2706{
2707        /*
2708         * This is a temporary remap to bring up the clocks. It is
2709         * subsequently replaces with a real remap. After the merge of
2710         * the mailbox subsystem all of this early code goes away, and the
2711         * clock driver can probe independently. An early initcall will
2712         * still be needed, but it can be diverted into drivers/clk/ux500.
2713         */
2714        prcmu_base = ioremap(phy_base, size);
2715        if (!prcmu_base)
2716                pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2717
2718        spin_lock_init(&mb0_transfer.lock);
2719        spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720        mutex_init(&mb0_transfer.ac_wake_lock);
2721        init_completion(&mb0_transfer.ac_wake_work);
2722        mutex_init(&mb1_transfer.lock);
2723        init_completion(&mb1_transfer.work);
2724        mb1_transfer.ape_opp = APE_NO_CHANGE;
2725        mutex_init(&mb2_transfer.lock);
2726        init_completion(&mb2_transfer.work);
2727        spin_lock_init(&mb2_transfer.auto_pm_lock);
2728        spin_lock_init(&mb3_transfer.lock);
2729        mutex_init(&mb3_transfer.sysclk_lock);
2730        init_completion(&mb3_transfer.sysclk_work);
2731        mutex_init(&mb4_transfer.lock);
2732        init_completion(&mb4_transfer.work);
2733        mutex_init(&mb5_transfer.lock);
2734        init_completion(&mb5_transfer.work);
2735
2736        INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2737}
2738
2739static void __init init_prcm_registers(void)
2740{
2741        u32 val;
2742
2743        val = readl(PRCM_A9PL_FORCE_CLKEN);
2744        val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745                PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746        writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747}
2748
2749/*
2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751 */
2752static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753        REGULATOR_SUPPLY("v-ape", NULL),
2754        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2758        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2759        /* "v-mmc" changed to "vcore" in the mainline kernel */
2760        REGULATOR_SUPPLY("vcore", "sdi0"),
2761        REGULATOR_SUPPLY("vcore", "sdi1"),
2762        REGULATOR_SUPPLY("vcore", "sdi2"),
2763        REGULATOR_SUPPLY("vcore", "sdi3"),
2764        REGULATOR_SUPPLY("vcore", "sdi4"),
2765        REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766        REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767        /* "v-uart" changed to "vcore" in the mainline kernel */
2768        REGULATOR_SUPPLY("vcore", "uart0"),
2769        REGULATOR_SUPPLY("vcore", "uart1"),
2770        REGULATOR_SUPPLY("vcore", "uart2"),
2771        REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2772        REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2773        REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2774};
2775
2776static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2777        REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778        /* AV8100 regulator */
2779        REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780};
2781
2782static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2783        REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2784        REGULATOR_SUPPLY("vsupply", "mcde"),
2785};
2786
2787/* SVA MMDSP regulator switch */
2788static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789        REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790};
2791
2792/* SVA pipe regulator switch */
2793static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794        REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795};
2796
2797/* SIA MMDSP regulator switch */
2798static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799        REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800};
2801
2802/* SIA pipe regulator switch */
2803static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804        REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805};
2806
2807static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808        REGULATOR_SUPPLY("v-mali", NULL),
2809};
2810
2811/* ESRAM1 and 2 regulator switch */
2812static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813        REGULATOR_SUPPLY("esram12", "cm_control"),
2814};
2815
2816/* ESRAM3 and 4 regulator switch */
2817static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818        REGULATOR_SUPPLY("v-esram34", "mcde"),
2819        REGULATOR_SUPPLY("esram34", "cm_control"),
2820        REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2821};
2822
2823static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824        [DB8500_REGULATOR_VAPE] = {
2825                .constraints = {
2826                        .name = "db8500-vape",
2827                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828                        .always_on = true,
2829                },
2830                .consumer_supplies = db8500_vape_consumers,
2831                .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832        },
2833        [DB8500_REGULATOR_VARM] = {
2834                .constraints = {
2835                        .name = "db8500-varm",
2836                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837                },
2838        },
2839        [DB8500_REGULATOR_VMODEM] = {
2840                .constraints = {
2841                        .name = "db8500-vmodem",
2842                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843                },
2844        },
2845        [DB8500_REGULATOR_VPLL] = {
2846                .constraints = {
2847                        .name = "db8500-vpll",
2848                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849                },
2850        },
2851        [DB8500_REGULATOR_VSMPS1] = {
2852                .constraints = {
2853                        .name = "db8500-vsmps1",
2854                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855                },
2856        },
2857        [DB8500_REGULATOR_VSMPS2] = {
2858                .constraints = {
2859                        .name = "db8500-vsmps2",
2860                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861                },
2862                .consumer_supplies = db8500_vsmps2_consumers,
2863                .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864        },
2865        [DB8500_REGULATOR_VSMPS3] = {
2866                .constraints = {
2867                        .name = "db8500-vsmps3",
2868                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869                },
2870        },
2871        [DB8500_REGULATOR_VRF1] = {
2872                .constraints = {
2873                        .name = "db8500-vrf1",
2874                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875                },
2876        },
2877        [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2878                /* dependency to u8500-vape is handled outside regulator framework */
2879                .constraints = {
2880                        .name = "db8500-sva-mmdsp",
2881                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882                },
2883                .consumer_supplies = db8500_svammdsp_consumers,
2884                .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2885        },
2886        [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887                .constraints = {
2888                        /* "ret" means "retention" */
2889                        .name = "db8500-sva-mmdsp-ret",
2890                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891                },
2892        },
2893        [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2894                /* dependency to u8500-vape is handled outside regulator framework */
2895                .constraints = {
2896                        .name = "db8500-sva-pipe",
2897                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898                },
2899                .consumer_supplies = db8500_svapipe_consumers,
2900                .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2901        },
2902        [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2903                /* dependency to u8500-vape is handled outside regulator framework */
2904                .constraints = {
2905                        .name = "db8500-sia-mmdsp",
2906                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907                },
2908                .consumer_supplies = db8500_siammdsp_consumers,
2909                .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2910        },
2911        [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912                .constraints = {
2913                        .name = "db8500-sia-mmdsp-ret",
2914                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915                },
2916        },
2917        [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2918                /* dependency to u8500-vape is handled outside regulator framework */
2919                .constraints = {
2920                        .name = "db8500-sia-pipe",
2921                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922                },
2923                .consumer_supplies = db8500_siapipe_consumers,
2924                .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2925        },
2926        [DB8500_REGULATOR_SWITCH_SGA] = {
2927                .supply_regulator = "db8500-vape",
2928                .constraints = {
2929                        .name = "db8500-sga",
2930                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931                },
2932                .consumer_supplies = db8500_sga_consumers,
2933                .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
2935        },
2936        [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937                .supply_regulator = "db8500-vape",
2938                .constraints = {
2939                        .name = "db8500-b2r2-mcde",
2940                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941                },
2942                .consumer_supplies = db8500_b2r2_mcde_consumers,
2943                .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944        },
2945        [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2946                /*
2947                 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948                 * no need to hold Vape
2949                 */
2950                .constraints = {
2951                        .name = "db8500-esram12",
2952                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953                },
2954                .consumer_supplies = db8500_esram12_consumers,
2955                .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2956        },
2957        [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958                .constraints = {
2959                        .name = "db8500-esram12-ret",
2960                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961                },
2962        },
2963        [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2964                /*
2965                 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966                 * no need to hold Vape
2967                 */
2968                .constraints = {
2969                        .name = "db8500-esram34",
2970                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971                },
2972                .consumer_supplies = db8500_esram34_consumers,
2973                .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2974        },
2975        [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976                .constraints = {
2977                        .name = "db8500-esram34-ret",
2978                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979                },
2980        },
2981};
2982
2983static struct ux500_wdt_data db8500_wdt_pdata = {
2984        .timeout = 600, /* 10 minutes */
2985        .has_28_bits_resolution = true,
2986};
2987/*
2988 * Thermal Sensor
2989 */
2990
2991static struct resource db8500_thsens_resources[] = {
2992        {
2993                .name = "IRQ_HOTMON_LOW",
2994                .start  = IRQ_PRCMU_HOTMON_LOW,
2995                .end    = IRQ_PRCMU_HOTMON_LOW,
2996                .flags  = IORESOURCE_IRQ,
2997        },
2998        {
2999                .name = "IRQ_HOTMON_HIGH",
3000                .start  = IRQ_PRCMU_HOTMON_HIGH,
3001                .end    = IRQ_PRCMU_HOTMON_HIGH,
3002                .flags  = IORESOURCE_IRQ,
3003        },
3004};
3005
3006static struct db8500_thsens_platform_data db8500_thsens_data = {
3007        .trip_points[0] = {
3008                .temp = 70000,
3009                .type = THERMAL_TRIP_ACTIVE,
3010                .cdev_name = {
3011                        [0] = "thermal-cpufreq-0",
3012                },
3013        },
3014        .trip_points[1] = {
3015                .temp = 75000,
3016                .type = THERMAL_TRIP_ACTIVE,
3017                .cdev_name = {
3018                        [0] = "thermal-cpufreq-0",
3019                },
3020        },
3021        .trip_points[2] = {
3022                .temp = 80000,
3023                .type = THERMAL_TRIP_ACTIVE,
3024                .cdev_name = {
3025                        [0] = "thermal-cpufreq-0",
3026                },
3027        },
3028        .trip_points[3] = {
3029                .temp = 85000,
3030                .type = THERMAL_TRIP_CRITICAL,
3031        },
3032        .num_trips = 4,
3033};
3034
3035static const struct mfd_cell common_prcmu_devs[] = {
3036        {
3037                .name = "ux500_wdt",
3038                .platform_data = &db8500_wdt_pdata,
3039                .pdata_size = sizeof(db8500_wdt_pdata),
3040                .id = -1,
3041        },
3042};
3043
3044static const struct mfd_cell db8500_prcmu_devs[] = {
3045        {
3046                .name = "db8500-prcmu-regulators",
3047                .of_compatible = "stericsson,db8500-prcmu-regulator",
3048                .platform_data = &db8500_regulators,
3049                .pdata_size = sizeof(db8500_regulators),
3050        },
3051        {
3052                .name = "cpufreq-ux500",
3053                .of_compatible = "stericsson,cpufreq-ux500",
3054                .platform_data = &db8500_cpufreq_table,
3055                .pdata_size = sizeof(db8500_cpufreq_table),
3056        },
3057        {
3058                .name = "cpuidle-dbx500",
3059                .of_compatible = "stericsson,cpuidle-dbx500",
3060        },
3061        {
3062                .name = "db8500-thermal",
3063                .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3064                .resources = db8500_thsens_resources,
3065                .platform_data = &db8500_thsens_data,
3066                .pdata_size = sizeof(db8500_thsens_data),
3067        },
3068};
3069
3070static void db8500_prcmu_update_cpufreq(void)
3071{
3072        if (prcmu_has_arm_maxopp()) {
3073                db8500_cpufreq_table[3].frequency = 1000000;
3074                db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3075        }
3076}
3077
3078static int db8500_prcmu_register_ab8500(struct device *parent)
3079{
3080        struct device_node *np;
3081        struct resource ab8500_resource;
3082        const struct mfd_cell ab8500_cell = {
3083                .name = "ab8500-core",
3084                .of_compatible = "stericsson,ab8500",
3085                .id = AB8500_VERSION_AB8500,
3086                .resources = &ab8500_resource,
3087                .num_resources = 1,
3088        };
3089
3090        if (!parent->of_node)
3091                return -ENODEV;
3092
3093        /* Look up the device node, sneak the IRQ out of it */
3094        for_each_child_of_node(parent->of_node, np) {
3095                if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3096                        break;
3097        }
3098        if (!np) {
3099                dev_info(parent, "could not find AB8500 node in the device tree\n");
3100                return -ENODEV;
3101        }
3102        of_irq_to_resource_table(np, &ab8500_resource, 1);
3103
3104        return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3105}
3106
3107/**
3108 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3109 *
3110 */
3111static int db8500_prcmu_probe(struct platform_device *pdev)
3112{
3113        struct device_node *np = pdev->dev.of_node;
3114        int irq = 0, err = 0;
3115        struct resource *res;
3116
3117        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3118        if (!res) {
3119                dev_err(&pdev->dev, "no prcmu memory region provided\n");
3120                return -EINVAL;
3121        }
3122        prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3123        if (!prcmu_base) {
3124                dev_err(&pdev->dev,
3125                        "failed to ioremap prcmu register memory\n");
3126                return -ENOMEM;
3127        }
3128        init_prcm_registers();
3129        dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3130        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3131        if (!res) {
3132                dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3133                return -EINVAL;
3134        }
3135        tcdm_base = devm_ioremap(&pdev->dev, res->start,
3136                        resource_size(res));
3137        if (!tcdm_base) {
3138                dev_err(&pdev->dev,
3139                        "failed to ioremap prcmu-tcdm register memory\n");
3140                return -ENOMEM;
3141        }
3142
3143        /* Clean up the mailbox interrupts after pre-kernel code. */
3144        writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3145
3146        irq = platform_get_irq(pdev, 0);
3147        if (irq <= 0) {
3148                dev_err(&pdev->dev, "no prcmu irq provided\n");
3149                return irq;
3150        }
3151
3152        err = request_threaded_irq(irq, prcmu_irq_handler,
3153                prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3154        if (err < 0) {
3155                pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3156                return err;
3157        }
3158
3159        db8500_irq_init(np);
3160
3161        prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3162
3163        db8500_prcmu_update_cpufreq();
3164
3165        err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3166                              ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3167        if (err) {
3168                pr_err("prcmu: Failed to add subdevices\n");
3169                return err;
3170        }
3171
3172        /* TODO: Remove restriction when clk definitions are available. */
3173        if (!of_machine_is_compatible("st-ericsson,u8540")) {
3174                err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3175                                      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3176                                      db8500_irq_domain);
3177                if (err) {
3178                        mfd_remove_devices(&pdev->dev);
3179                        pr_err("prcmu: Failed to add subdevices\n");
3180                        return err;
3181                }
3182        }
3183
3184        err = db8500_prcmu_register_ab8500(&pdev->dev);
3185        if (err) {
3186                mfd_remove_devices(&pdev->dev);
3187                pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188                return err;
3189        }
3190
3191        pr_info("DB8500 PRCMU initialized\n");
3192        return err;
3193}
3194static const struct of_device_id db8500_prcmu_match[] = {
3195        { .compatible = "stericsson,db8500-prcmu"},
3196        { },
3197};
3198
3199static struct platform_driver db8500_prcmu_driver = {
3200        .driver = {
3201                .name = "db8500-prcmu",
3202                .of_match_table = db8500_prcmu_match,
3203        },
3204        .probe = db8500_prcmu_probe,
3205};
3206
3207static int __init db8500_prcmu_init(void)
3208{
3209        return platform_driver_register(&db8500_prcmu_driver);
3210}
3211
3212core_initcall(db8500_prcmu_init);
3213
3214MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3215MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3216MODULE_LICENSE("GPL v2");
3217