linux/drivers/mmc/host/sh_mmcif.c
<<
>>
Prefs
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
  19/*
  20 * The MMCIF driver is now processing MMC requests asynchronously, according
  21 * to the Linux MMC API requirement.
  22 *
  23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  24 * data, and optional stop. To achieve asynchronous processing each of these
  25 * stages is split into two halves: a top and a bottom half. The top half
  26 * initialises the hardware, installs a timeout handler to handle completion
  27 * timeouts, and returns. In case of the command stage this immediately returns
  28 * control to the caller, leaving all further processing to run asynchronously.
  29 * All further request processing is performed by the bottom halves.
  30 *
  31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  33 * request- and stage-specific handler methods.
  34 *
  35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  36 * invocation, or a timeout work run. In case of an error or a successful
  37 * processing completion, the MMC core is informed and the request processing is
  38 * finished. In case processing has to continue, i.e., if data has to be read
  39 * from or written to the card, or if a stop command has to be sent, the next
  40 * top half is called, which performs the necessary hardware handling and
  41 * reschedules the timeout work. This returns the driver state machine into the
  42 * bottom half waiting state.
  43 */
  44
  45#include <linux/bitops.h>
  46#include <linux/clk.h>
  47#include <linux/completion.h>
  48#include <linux/delay.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/dmaengine.h>
  51#include <linux/mmc/card.h>
  52#include <linux/mmc/core.h>
  53#include <linux/mmc/host.h>
  54#include <linux/mmc/mmc.h>
  55#include <linux/mmc/sdio.h>
  56#include <linux/mmc/sh_mmcif.h>
  57#include <linux/mmc/slot-gpio.h>
  58#include <linux/mod_devicetable.h>
  59#include <linux/mutex.h>
  60#include <linux/of_device.h>
  61#include <linux/pagemap.h>
  62#include <linux/platform_device.h>
  63#include <linux/pm_qos.h>
  64#include <linux/pm_runtime.h>
  65#include <linux/sh_dma.h>
  66#include <linux/spinlock.h>
  67#include <linux/module.h>
  68
  69#define DRIVER_NAME     "sh_mmcif"
  70#define DRIVER_VERSION  "2010-04-28"
  71
  72/* CE_CMD_SET */
  73#define CMD_MASK                0x3f000000
  74#define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
  75#define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  76#define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
  77#define CMD_SET_RBSY            (1 << 21) /* R1b */
  78#define CMD_SET_CCSEN           (1 << 20)
  79#define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
  80#define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
  81#define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
  82#define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
  83#define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
  84#define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
  85#define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
  86#define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
  87#define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
  88#define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  89#define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
  90#define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
  91#define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
  92#define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
  93#define CMD_SET_CCSH            (1 << 5)
  94#define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
  95#define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
  96#define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
  97#define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
  98
  99/* CE_CMD_CTRL */
 100#define CMD_CTRL_BREAK          (1 << 0)
 101
 102/* CE_BLOCK_SET */
 103#define BLOCK_SIZE_MASK         0x0000ffff
 104
 105/* CE_INT */
 106#define INT_CCSDE               (1 << 29)
 107#define INT_CMD12DRE            (1 << 26)
 108#define INT_CMD12RBE            (1 << 25)
 109#define INT_CMD12CRE            (1 << 24)
 110#define INT_DTRANE              (1 << 23)
 111#define INT_BUFRE               (1 << 22)
 112#define INT_BUFWEN              (1 << 21)
 113#define INT_BUFREN              (1 << 20)
 114#define INT_CCSRCV              (1 << 19)
 115#define INT_RBSYE               (1 << 17)
 116#define INT_CRSPE               (1 << 16)
 117#define INT_CMDVIO              (1 << 15)
 118#define INT_BUFVIO              (1 << 14)
 119#define INT_WDATERR             (1 << 11)
 120#define INT_RDATERR             (1 << 10)
 121#define INT_RIDXERR             (1 << 9)
 122#define INT_RSPERR              (1 << 8)
 123#define INT_CCSTO               (1 << 5)
 124#define INT_CRCSTO              (1 << 4)
 125#define INT_WDATTO              (1 << 3)
 126#define INT_RDATTO              (1 << 2)
 127#define INT_RBSYTO              (1 << 1)
 128#define INT_RSPTO               (1 << 0)
 129#define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 130                                 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 131                                 INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
 132                                 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 133
 134#define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
 135                                 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 136                                 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 137
 138#define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 139
 140/* CE_INT_MASK */
 141#define MASK_ALL                0x00000000
 142#define MASK_MCCSDE             (1 << 29)
 143#define MASK_MCMD12DRE          (1 << 26)
 144#define MASK_MCMD12RBE          (1 << 25)
 145#define MASK_MCMD12CRE          (1 << 24)
 146#define MASK_MDTRANE            (1 << 23)
 147#define MASK_MBUFRE             (1 << 22)
 148#define MASK_MBUFWEN            (1 << 21)
 149#define MASK_MBUFREN            (1 << 20)
 150#define MASK_MCCSRCV            (1 << 19)
 151#define MASK_MRBSYE             (1 << 17)
 152#define MASK_MCRSPE             (1 << 16)
 153#define MASK_MCMDVIO            (1 << 15)
 154#define MASK_MBUFVIO            (1 << 14)
 155#define MASK_MWDATERR           (1 << 11)
 156#define MASK_MRDATERR           (1 << 10)
 157#define MASK_MRIDXERR           (1 << 9)
 158#define MASK_MRSPERR            (1 << 8)
 159#define MASK_MCCSTO             (1 << 5)
 160#define MASK_MCRCSTO            (1 << 4)
 161#define MASK_MWDATTO            (1 << 3)
 162#define MASK_MRDATTO            (1 << 2)
 163#define MASK_MRBSYTO            (1 << 1)
 164#define MASK_MRSPTO             (1 << 0)
 165
 166#define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 167                                 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 168                                 MASK_MCRCSTO | MASK_MWDATTO | \
 169                                 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 170
 171#define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
 172                                 MASK_MBUFREN | MASK_MBUFWEN |                  \
 173                                 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
 174                                 MASK_MCMD12RBE | MASK_MCMD12CRE)
 175
 176/* CE_HOST_STS1 */
 177#define STS1_CMDSEQ             (1 << 31)
 178
 179/* CE_HOST_STS2 */
 180#define STS2_CRCSTE             (1 << 31)
 181#define STS2_CRC16E             (1 << 30)
 182#define STS2_AC12CRCE           (1 << 29)
 183#define STS2_RSPCRC7E           (1 << 28)
 184#define STS2_CRCSTEBE           (1 << 27)
 185#define STS2_RDATEBE            (1 << 26)
 186#define STS2_AC12REBE           (1 << 25)
 187#define STS2_RSPEBE             (1 << 24)
 188#define STS2_AC12IDXE           (1 << 23)
 189#define STS2_RSPIDXE            (1 << 22)
 190#define STS2_CCSTO              (1 << 15)
 191#define STS2_RDATTO             (1 << 14)
 192#define STS2_DATBSYTO           (1 << 13)
 193#define STS2_CRCSTTO            (1 << 12)
 194#define STS2_AC12BSYTO          (1 << 11)
 195#define STS2_RSPBSYTO           (1 << 10)
 196#define STS2_AC12RSPTO          (1 << 9)
 197#define STS2_RSPTO              (1 << 8)
 198#define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
 199                                 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 200#define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
 201                                 STS2_DATBSYTO | STS2_CRCSTTO |         \
 202                                 STS2_AC12BSYTO | STS2_RSPBSYTO |       \
 203                                 STS2_AC12RSPTO | STS2_RSPTO)
 204
 205#define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
 206#define CLKDEV_MMC_DATA         20000000 /* 20MHz */
 207#define CLKDEV_INIT             400000   /* 400 KHz */
 208
 209enum sh_mmcif_state {
 210        STATE_IDLE,
 211        STATE_REQUEST,
 212        STATE_IOS,
 213        STATE_TIMEOUT,
 214};
 215
 216enum sh_mmcif_wait_for {
 217        MMCIF_WAIT_FOR_REQUEST,
 218        MMCIF_WAIT_FOR_CMD,
 219        MMCIF_WAIT_FOR_MREAD,
 220        MMCIF_WAIT_FOR_MWRITE,
 221        MMCIF_WAIT_FOR_READ,
 222        MMCIF_WAIT_FOR_WRITE,
 223        MMCIF_WAIT_FOR_READ_END,
 224        MMCIF_WAIT_FOR_WRITE_END,
 225        MMCIF_WAIT_FOR_STOP,
 226};
 227
 228/*
 229 * difference for each SoC
 230 */
 231struct sh_mmcif_host {
 232        struct mmc_host *mmc;
 233        struct mmc_request *mrq;
 234        struct platform_device *pd;
 235        struct clk *clk;
 236        int bus_width;
 237        unsigned char timing;
 238        bool sd_error;
 239        bool dying;
 240        long timeout;
 241        void __iomem *addr;
 242        u32 *pio_ptr;
 243        spinlock_t lock;                /* protect sh_mmcif_host::state */
 244        enum sh_mmcif_state state;
 245        enum sh_mmcif_wait_for wait_for;
 246        struct delayed_work timeout_work;
 247        size_t blocksize;
 248        int sg_idx;
 249        int sg_blkidx;
 250        bool power;
 251        bool ccs_enable;                /* Command Completion Signal support */
 252        bool clk_ctrl2_enable;
 253        struct mutex thread_lock;
 254        u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 255
 256        /* DMA support */
 257        struct dma_chan         *chan_rx;
 258        struct dma_chan         *chan_tx;
 259        struct completion       dma_complete;
 260        bool                    dma_active;
 261};
 262
 263static const struct of_device_id sh_mmcif_of_match[] = {
 264        { .compatible = "renesas,sh-mmcif" },
 265        { }
 266};
 267MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 268
 269#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 270
 271static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 272                                        unsigned int reg, u32 val)
 273{
 274        writel(val | readl(host->addr + reg), host->addr + reg);
 275}
 276
 277static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 278                                        unsigned int reg, u32 val)
 279{
 280        writel(~val & readl(host->addr + reg), host->addr + reg);
 281}
 282
 283static void sh_mmcif_dma_complete(void *arg)
 284{
 285        struct sh_mmcif_host *host = arg;
 286        struct mmc_request *mrq = host->mrq;
 287        struct device *dev = sh_mmcif_host_to_dev(host);
 288
 289        dev_dbg(dev, "Command completed\n");
 290
 291        if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 292                 dev_name(dev)))
 293                return;
 294
 295        complete(&host->dma_complete);
 296}
 297
 298static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 299{
 300        struct mmc_data *data = host->mrq->data;
 301        struct scatterlist *sg = data->sg;
 302        struct dma_async_tx_descriptor *desc = NULL;
 303        struct dma_chan *chan = host->chan_rx;
 304        struct device *dev = sh_mmcif_host_to_dev(host);
 305        dma_cookie_t cookie = -EINVAL;
 306        int ret;
 307
 308        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 309                         DMA_FROM_DEVICE);
 310        if (ret > 0) {
 311                host->dma_active = true;
 312                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 313                        DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 314        }
 315
 316        if (desc) {
 317                desc->callback = sh_mmcif_dma_complete;
 318                desc->callback_param = host;
 319                cookie = dmaengine_submit(desc);
 320                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 321                dma_async_issue_pending(chan);
 322        }
 323        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 324                __func__, data->sg_len, ret, cookie);
 325
 326        if (!desc) {
 327                /* DMA failed, fall back to PIO */
 328                if (ret >= 0)
 329                        ret = -EIO;
 330                host->chan_rx = NULL;
 331                host->dma_active = false;
 332                dma_release_channel(chan);
 333                /* Free the Tx channel too */
 334                chan = host->chan_tx;
 335                if (chan) {
 336                        host->chan_tx = NULL;
 337                        dma_release_channel(chan);
 338                }
 339                dev_warn(dev,
 340                         "DMA failed: %d, falling back to PIO\n", ret);
 341                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 342        }
 343
 344        dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 345                desc, cookie, data->sg_len);
 346}
 347
 348static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 349{
 350        struct mmc_data *data = host->mrq->data;
 351        struct scatterlist *sg = data->sg;
 352        struct dma_async_tx_descriptor *desc = NULL;
 353        struct dma_chan *chan = host->chan_tx;
 354        struct device *dev = sh_mmcif_host_to_dev(host);
 355        dma_cookie_t cookie = -EINVAL;
 356        int ret;
 357
 358        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 359                         DMA_TO_DEVICE);
 360        if (ret > 0) {
 361                host->dma_active = true;
 362                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 363                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 364        }
 365
 366        if (desc) {
 367                desc->callback = sh_mmcif_dma_complete;
 368                desc->callback_param = host;
 369                cookie = dmaengine_submit(desc);
 370                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 371                dma_async_issue_pending(chan);
 372        }
 373        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 374                __func__, data->sg_len, ret, cookie);
 375
 376        if (!desc) {
 377                /* DMA failed, fall back to PIO */
 378                if (ret >= 0)
 379                        ret = -EIO;
 380                host->chan_tx = NULL;
 381                host->dma_active = false;
 382                dma_release_channel(chan);
 383                /* Free the Rx channel too */
 384                chan = host->chan_rx;
 385                if (chan) {
 386                        host->chan_rx = NULL;
 387                        dma_release_channel(chan);
 388                }
 389                dev_warn(dev,
 390                         "DMA failed: %d, falling back to PIO\n", ret);
 391                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 392        }
 393
 394        dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 395                desc, cookie);
 396}
 397
 398static struct dma_chan *
 399sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 400{
 401        dma_cap_mask_t mask;
 402
 403        dma_cap_zero(mask);
 404        dma_cap_set(DMA_SLAVE, mask);
 405        if (slave_id <= 0)
 406                return NULL;
 407
 408        return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 409}
 410
 411static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 412                                     struct dma_chan *chan,
 413                                     enum dma_transfer_direction direction)
 414{
 415        struct resource *res;
 416        struct dma_slave_config cfg = { 0, };
 417
 418        res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 419        cfg.direction = direction;
 420
 421        if (direction == DMA_DEV_TO_MEM) {
 422                cfg.src_addr = res->start + MMCIF_CE_DATA;
 423                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 424        } else {
 425                cfg.dst_addr = res->start + MMCIF_CE_DATA;
 426                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 427        }
 428
 429        return dmaengine_slave_config(chan, &cfg);
 430}
 431
 432static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 433{
 434        struct device *dev = sh_mmcif_host_to_dev(host);
 435        host->dma_active = false;
 436
 437        /* We can only either use DMA for both Tx and Rx or not use it at all */
 438        if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 439                struct sh_mmcif_plat_data *pdata = dev->platform_data;
 440
 441                host->chan_tx = sh_mmcif_request_dma_pdata(host,
 442                                                        pdata->slave_id_tx);
 443                host->chan_rx = sh_mmcif_request_dma_pdata(host,
 444                                                        pdata->slave_id_rx);
 445        } else {
 446                host->chan_tx = dma_request_slave_channel(dev, "tx");
 447                host->chan_rx = dma_request_slave_channel(dev, "rx");
 448        }
 449        dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 450                host->chan_rx);
 451
 452        if (!host->chan_tx || !host->chan_rx ||
 453            sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 454            sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 455                goto error;
 456
 457        return;
 458
 459error:
 460        if (host->chan_tx)
 461                dma_release_channel(host->chan_tx);
 462        if (host->chan_rx)
 463                dma_release_channel(host->chan_rx);
 464        host->chan_tx = host->chan_rx = NULL;
 465}
 466
 467static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 468{
 469        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 470        /* Descriptors are freed automatically */
 471        if (host->chan_tx) {
 472                struct dma_chan *chan = host->chan_tx;
 473                host->chan_tx = NULL;
 474                dma_release_channel(chan);
 475        }
 476        if (host->chan_rx) {
 477                struct dma_chan *chan = host->chan_rx;
 478                host->chan_rx = NULL;
 479                dma_release_channel(chan);
 480        }
 481
 482        host->dma_active = false;
 483}
 484
 485static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 486{
 487        struct device *dev = sh_mmcif_host_to_dev(host);
 488        struct sh_mmcif_plat_data *p = dev->platform_data;
 489        bool sup_pclk = p ? p->sup_pclk : false;
 490        unsigned int current_clk = clk_get_rate(host->clk);
 491        unsigned int clkdiv;
 492
 493        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 494        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 495
 496        if (!clk)
 497                return;
 498
 499        if (host->clkdiv_map) {
 500                unsigned int freq, best_freq, myclk, div, diff_min, diff;
 501                int i;
 502
 503                clkdiv = 0;
 504                diff_min = ~0;
 505                best_freq = 0;
 506                for (i = 31; i >= 0; i--) {
 507                        if (!((1 << i) & host->clkdiv_map))
 508                                continue;
 509
 510                        /*
 511                         * clk = parent_freq / div
 512                         * -> parent_freq = clk x div
 513                         */
 514
 515                        div = 1 << (i + 1);
 516                        freq = clk_round_rate(host->clk, clk * div);
 517                        myclk = freq / div;
 518                        diff = (myclk > clk) ? myclk - clk : clk - myclk;
 519
 520                        if (diff <= diff_min) {
 521                                best_freq = freq;
 522                                clkdiv = i;
 523                                diff_min = diff;
 524                        }
 525                }
 526
 527                dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 528                        (best_freq / (1 << (clkdiv + 1))), clk,
 529                        best_freq, clkdiv);
 530
 531                clk_set_rate(host->clk, best_freq);
 532                clkdiv = clkdiv << 16;
 533        } else if (sup_pclk && clk == current_clk) {
 534                clkdiv = CLK_SUP_PCLK;
 535        } else {
 536                clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 537        }
 538
 539        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 540        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 541}
 542
 543static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 544{
 545        u32 tmp;
 546
 547        tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 548
 549        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 550        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 551        if (host->ccs_enable)
 552                tmp |= SCCSTO_29;
 553        if (host->clk_ctrl2_enable)
 554                sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 555        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 556                SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 557        /* byte swap on */
 558        sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 559}
 560
 561static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 562{
 563        struct device *dev = sh_mmcif_host_to_dev(host);
 564        u32 state1, state2;
 565        int ret, timeout;
 566
 567        host->sd_error = false;
 568
 569        state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 570        state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 571        dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 572        dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 573
 574        if (state1 & STS1_CMDSEQ) {
 575                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 576                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 577                for (timeout = 10000; timeout; timeout--) {
 578                        if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 579                              & STS1_CMDSEQ))
 580                                break;
 581                        mdelay(1);
 582                }
 583                if (!timeout) {
 584                        dev_err(dev,
 585                                "Forced end of command sequence timeout err\n");
 586                        return -EIO;
 587                }
 588                sh_mmcif_sync_reset(host);
 589                dev_dbg(dev, "Forced end of command sequence\n");
 590                return -EIO;
 591        }
 592
 593        if (state2 & STS2_CRC_ERR) {
 594                dev_err(dev, " CRC error: state %u, wait %u\n",
 595                        host->state, host->wait_for);
 596                ret = -EIO;
 597        } else if (state2 & STS2_TIMEOUT_ERR) {
 598                dev_err(dev, " Timeout: state %u, wait %u\n",
 599                        host->state, host->wait_for);
 600                ret = -ETIMEDOUT;
 601        } else {
 602                dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 603                        host->state, host->wait_for);
 604                ret = -EIO;
 605        }
 606        return ret;
 607}
 608
 609static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 610{
 611        struct mmc_data *data = host->mrq->data;
 612
 613        host->sg_blkidx += host->blocksize;
 614
 615        /* data->sg->length must be a multiple of host->blocksize? */
 616        BUG_ON(host->sg_blkidx > data->sg->length);
 617
 618        if (host->sg_blkidx == data->sg->length) {
 619                host->sg_blkidx = 0;
 620                if (++host->sg_idx < data->sg_len)
 621                        host->pio_ptr = sg_virt(++data->sg);
 622        } else {
 623                host->pio_ptr = p;
 624        }
 625
 626        return host->sg_idx != data->sg_len;
 627}
 628
 629static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 630                                 struct mmc_request *mrq)
 631{
 632        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 633                           BLOCK_SIZE_MASK) + 3;
 634
 635        host->wait_for = MMCIF_WAIT_FOR_READ;
 636
 637        /* buf read enable */
 638        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 639}
 640
 641static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 642{
 643        struct device *dev = sh_mmcif_host_to_dev(host);
 644        struct mmc_data *data = host->mrq->data;
 645        u32 *p = sg_virt(data->sg);
 646        int i;
 647
 648        if (host->sd_error) {
 649                data->error = sh_mmcif_error_manage(host);
 650                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 651                return false;
 652        }
 653
 654        for (i = 0; i < host->blocksize / 4; i++)
 655                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 656
 657        /* buffer read end */
 658        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 659        host->wait_for = MMCIF_WAIT_FOR_READ_END;
 660
 661        return true;
 662}
 663
 664static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 665                                struct mmc_request *mrq)
 666{
 667        struct mmc_data *data = mrq->data;
 668
 669        if (!data->sg_len || !data->sg->length)
 670                return;
 671
 672        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 673                BLOCK_SIZE_MASK;
 674
 675        host->wait_for = MMCIF_WAIT_FOR_MREAD;
 676        host->sg_idx = 0;
 677        host->sg_blkidx = 0;
 678        host->pio_ptr = sg_virt(data->sg);
 679
 680        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 681}
 682
 683static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 684{
 685        struct device *dev = sh_mmcif_host_to_dev(host);
 686        struct mmc_data *data = host->mrq->data;
 687        u32 *p = host->pio_ptr;
 688        int i;
 689
 690        if (host->sd_error) {
 691                data->error = sh_mmcif_error_manage(host);
 692                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 693                return false;
 694        }
 695
 696        BUG_ON(!data->sg->length);
 697
 698        for (i = 0; i < host->blocksize / 4; i++)
 699                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 700
 701        if (!sh_mmcif_next_block(host, p))
 702                return false;
 703
 704        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 705
 706        return true;
 707}
 708
 709static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 710                                        struct mmc_request *mrq)
 711{
 712        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 713                           BLOCK_SIZE_MASK) + 3;
 714
 715        host->wait_for = MMCIF_WAIT_FOR_WRITE;
 716
 717        /* buf write enable */
 718        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 719}
 720
 721static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 722{
 723        struct device *dev = sh_mmcif_host_to_dev(host);
 724        struct mmc_data *data = host->mrq->data;
 725        u32 *p = sg_virt(data->sg);
 726        int i;
 727
 728        if (host->sd_error) {
 729                data->error = sh_mmcif_error_manage(host);
 730                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 731                return false;
 732        }
 733
 734        for (i = 0; i < host->blocksize / 4; i++)
 735                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 736
 737        /* buffer write end */
 738        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 739        host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 740
 741        return true;
 742}
 743
 744static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 745                                struct mmc_request *mrq)
 746{
 747        struct mmc_data *data = mrq->data;
 748
 749        if (!data->sg_len || !data->sg->length)
 750                return;
 751
 752        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 753                BLOCK_SIZE_MASK;
 754
 755        host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 756        host->sg_idx = 0;
 757        host->sg_blkidx = 0;
 758        host->pio_ptr = sg_virt(data->sg);
 759
 760        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 761}
 762
 763static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 764{
 765        struct device *dev = sh_mmcif_host_to_dev(host);
 766        struct mmc_data *data = host->mrq->data;
 767        u32 *p = host->pio_ptr;
 768        int i;
 769
 770        if (host->sd_error) {
 771                data->error = sh_mmcif_error_manage(host);
 772                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 773                return false;
 774        }
 775
 776        BUG_ON(!data->sg->length);
 777
 778        for (i = 0; i < host->blocksize / 4; i++)
 779                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 780
 781        if (!sh_mmcif_next_block(host, p))
 782                return false;
 783
 784        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 785
 786        return true;
 787}
 788
 789static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 790                                                struct mmc_command *cmd)
 791{
 792        if (cmd->flags & MMC_RSP_136) {
 793                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 794                cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 795                cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 796                cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 797        } else
 798                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 799}
 800
 801static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 802                                                struct mmc_command *cmd)
 803{
 804        cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 805}
 806
 807static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 808                            struct mmc_request *mrq)
 809{
 810        struct device *dev = sh_mmcif_host_to_dev(host);
 811        struct mmc_data *data = mrq->data;
 812        struct mmc_command *cmd = mrq->cmd;
 813        u32 opc = cmd->opcode;
 814        u32 tmp = 0;
 815
 816        /* Response Type check */
 817        switch (mmc_resp_type(cmd)) {
 818        case MMC_RSP_NONE:
 819                tmp |= CMD_SET_RTYP_NO;
 820                break;
 821        case MMC_RSP_R1:
 822        case MMC_RSP_R3:
 823                tmp |= CMD_SET_RTYP_6B;
 824                break;
 825        case MMC_RSP_R1B:
 826                tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 827                break;
 828        case MMC_RSP_R2:
 829                tmp |= CMD_SET_RTYP_17B;
 830                break;
 831        default:
 832                dev_err(dev, "Unsupported response type.\n");
 833                break;
 834        }
 835
 836        /* WDAT / DATW */
 837        if (data) {
 838                tmp |= CMD_SET_WDAT;
 839                switch (host->bus_width) {
 840                case MMC_BUS_WIDTH_1:
 841                        tmp |= CMD_SET_DATW_1;
 842                        break;
 843                case MMC_BUS_WIDTH_4:
 844                        tmp |= CMD_SET_DATW_4;
 845                        break;
 846                case MMC_BUS_WIDTH_8:
 847                        tmp |= CMD_SET_DATW_8;
 848                        break;
 849                default:
 850                        dev_err(dev, "Unsupported bus width.\n");
 851                        break;
 852                }
 853                switch (host->timing) {
 854                case MMC_TIMING_MMC_DDR52:
 855                        /*
 856                         * MMC core will only set this timing, if the host
 857                         * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 858                         * capability. MMCIF implementations with this
 859                         * capability, e.g. sh73a0, will have to set it
 860                         * in their platform data.
 861                         */
 862                        tmp |= CMD_SET_DARS;
 863                        break;
 864                }
 865        }
 866        /* DWEN */
 867        if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 868                tmp |= CMD_SET_DWEN;
 869        /* CMLTE/CMD12EN */
 870        if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 871                tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 872                sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 873                                data->blocks << 16);
 874        }
 875        /* RIDXC[1:0] check bits */
 876        if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 877            opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 878                tmp |= CMD_SET_RIDXC_BITS;
 879        /* RCRC7C[1:0] check bits */
 880        if (opc == MMC_SEND_OP_COND)
 881                tmp |= CMD_SET_CRC7C_BITS;
 882        /* RCRC7C[1:0] internal CRC7 */
 883        if (opc == MMC_ALL_SEND_CID ||
 884                opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 885                tmp |= CMD_SET_CRC7C_INTERNAL;
 886
 887        return (opc << 24) | tmp;
 888}
 889
 890static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 891                               struct mmc_request *mrq, u32 opc)
 892{
 893        struct device *dev = sh_mmcif_host_to_dev(host);
 894
 895        switch (opc) {
 896        case MMC_READ_MULTIPLE_BLOCK:
 897                sh_mmcif_multi_read(host, mrq);
 898                return 0;
 899        case MMC_WRITE_MULTIPLE_BLOCK:
 900                sh_mmcif_multi_write(host, mrq);
 901                return 0;
 902        case MMC_WRITE_BLOCK:
 903                sh_mmcif_single_write(host, mrq);
 904                return 0;
 905        case MMC_READ_SINGLE_BLOCK:
 906        case MMC_SEND_EXT_CSD:
 907                sh_mmcif_single_read(host, mrq);
 908                return 0;
 909        default:
 910                dev_err(dev, "Unsupported CMD%d\n", opc);
 911                return -EINVAL;
 912        }
 913}
 914
 915static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 916                               struct mmc_request *mrq)
 917{
 918        struct mmc_command *cmd = mrq->cmd;
 919        u32 opc = cmd->opcode;
 920        u32 mask = 0;
 921        unsigned long flags;
 922
 923        if (cmd->flags & MMC_RSP_BUSY)
 924                mask = MASK_START_CMD | MASK_MRBSYE;
 925        else
 926                mask = MASK_START_CMD | MASK_MCRSPE;
 927
 928        if (host->ccs_enable)
 929                mask |= MASK_MCCSTO;
 930
 931        if (mrq->data) {
 932                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 933                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 934                                mrq->data->blksz);
 935        }
 936        opc = sh_mmcif_set_cmd(host, mrq);
 937
 938        if (host->ccs_enable)
 939                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 940        else
 941                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 942        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 943        /* set arg */
 944        sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 945        /* set cmd */
 946        spin_lock_irqsave(&host->lock, flags);
 947        sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 948
 949        host->wait_for = MMCIF_WAIT_FOR_CMD;
 950        schedule_delayed_work(&host->timeout_work, host->timeout);
 951        spin_unlock_irqrestore(&host->lock, flags);
 952}
 953
 954static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 955                              struct mmc_request *mrq)
 956{
 957        struct device *dev = sh_mmcif_host_to_dev(host);
 958
 959        switch (mrq->cmd->opcode) {
 960        case MMC_READ_MULTIPLE_BLOCK:
 961                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 962                break;
 963        case MMC_WRITE_MULTIPLE_BLOCK:
 964                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 965                break;
 966        default:
 967                dev_err(dev, "unsupported stop cmd\n");
 968                mrq->stop->error = sh_mmcif_error_manage(host);
 969                return;
 970        }
 971
 972        host->wait_for = MMCIF_WAIT_FOR_STOP;
 973}
 974
 975static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 976{
 977        struct sh_mmcif_host *host = mmc_priv(mmc);
 978        struct device *dev = sh_mmcif_host_to_dev(host);
 979        unsigned long flags;
 980
 981        spin_lock_irqsave(&host->lock, flags);
 982        if (host->state != STATE_IDLE) {
 983                dev_dbg(dev, "%s() rejected, state %u\n",
 984                        __func__, host->state);
 985                spin_unlock_irqrestore(&host->lock, flags);
 986                mrq->cmd->error = -EAGAIN;
 987                mmc_request_done(mmc, mrq);
 988                return;
 989        }
 990
 991        host->state = STATE_REQUEST;
 992        spin_unlock_irqrestore(&host->lock, flags);
 993
 994        host->mrq = mrq;
 995
 996        sh_mmcif_start_cmd(host, mrq);
 997}
 998
 999static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1000{
1001        struct device *dev = sh_mmcif_host_to_dev(host);
1002
1003        if (host->mmc->f_max) {
1004                unsigned int f_max, f_min = 0, f_min_old;
1005
1006                f_max = host->mmc->f_max;
1007                for (f_min_old = f_max; f_min_old > 2;) {
1008                        f_min = clk_round_rate(host->clk, f_min_old / 2);
1009                        if (f_min == f_min_old)
1010                                break;
1011                        f_min_old = f_min;
1012                }
1013
1014                /*
1015                 * This driver assumes this SoC is R-Car Gen2 or later
1016                 */
1017                host->clkdiv_map = 0x3ff;
1018
1019                host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1020                host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1021        } else {
1022                unsigned int clk = clk_get_rate(host->clk);
1023
1024                host->mmc->f_max = clk / 2;
1025                host->mmc->f_min = clk / 512;
1026        }
1027
1028        dev_dbg(dev, "clk max/min = %d/%d\n",
1029                host->mmc->f_max, host->mmc->f_min);
1030}
1031
1032static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1033{
1034        struct sh_mmcif_host *host = mmc_priv(mmc);
1035        struct device *dev = sh_mmcif_host_to_dev(host);
1036        unsigned long flags;
1037
1038        spin_lock_irqsave(&host->lock, flags);
1039        if (host->state != STATE_IDLE) {
1040                dev_dbg(dev, "%s() rejected, state %u\n",
1041                        __func__, host->state);
1042                spin_unlock_irqrestore(&host->lock, flags);
1043                return;
1044        }
1045
1046        host->state = STATE_IOS;
1047        spin_unlock_irqrestore(&host->lock, flags);
1048
1049        switch (ios->power_mode) {
1050        case MMC_POWER_UP:
1051                if (!IS_ERR(mmc->supply.vmmc))
1052                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1053                if (!host->power) {
1054                        clk_prepare_enable(host->clk);
1055                        pm_runtime_get_sync(dev);
1056                        sh_mmcif_sync_reset(host);
1057                        sh_mmcif_request_dma(host);
1058                        host->power = true;
1059                }
1060                break;
1061        case MMC_POWER_OFF:
1062                if (!IS_ERR(mmc->supply.vmmc))
1063                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1064                if (host->power) {
1065                        sh_mmcif_clock_control(host, 0);
1066                        sh_mmcif_release_dma(host);
1067                        pm_runtime_put(dev);
1068                        clk_disable_unprepare(host->clk);
1069                        host->power = false;
1070                }
1071                break;
1072        case MMC_POWER_ON:
1073                sh_mmcif_clock_control(host, ios->clock);
1074                break;
1075        }
1076
1077        host->timing = ios->timing;
1078        host->bus_width = ios->bus_width;
1079        host->state = STATE_IDLE;
1080}
1081
1082static int sh_mmcif_get_cd(struct mmc_host *mmc)
1083{
1084        struct sh_mmcif_host *host = mmc_priv(mmc);
1085        struct device *dev = sh_mmcif_host_to_dev(host);
1086        struct sh_mmcif_plat_data *p = dev->platform_data;
1087        int ret = mmc_gpio_get_cd(mmc);
1088
1089        if (ret >= 0)
1090                return ret;
1091
1092        if (!p || !p->get_cd)
1093                return -ENOSYS;
1094        else
1095                return p->get_cd(host->pd);
1096}
1097
1098static struct mmc_host_ops sh_mmcif_ops = {
1099        .request        = sh_mmcif_request,
1100        .set_ios        = sh_mmcif_set_ios,
1101        .get_cd         = sh_mmcif_get_cd,
1102};
1103
1104static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1105{
1106        struct mmc_command *cmd = host->mrq->cmd;
1107        struct mmc_data *data = host->mrq->data;
1108        struct device *dev = sh_mmcif_host_to_dev(host);
1109        long time;
1110
1111        if (host->sd_error) {
1112                switch (cmd->opcode) {
1113                case MMC_ALL_SEND_CID:
1114                case MMC_SELECT_CARD:
1115                case MMC_APP_CMD:
1116                        cmd->error = -ETIMEDOUT;
1117                        break;
1118                default:
1119                        cmd->error = sh_mmcif_error_manage(host);
1120                        break;
1121                }
1122                dev_dbg(dev, "CMD%d error %d\n",
1123                        cmd->opcode, cmd->error);
1124                host->sd_error = false;
1125                return false;
1126        }
1127        if (!(cmd->flags & MMC_RSP_PRESENT)) {
1128                cmd->error = 0;
1129                return false;
1130        }
1131
1132        sh_mmcif_get_response(host, cmd);
1133
1134        if (!data)
1135                return false;
1136
1137        /*
1138         * Completion can be signalled from DMA callback and error, so, have to
1139         * reset here, before setting .dma_active
1140         */
1141        init_completion(&host->dma_complete);
1142
1143        if (data->flags & MMC_DATA_READ) {
1144                if (host->chan_rx)
1145                        sh_mmcif_start_dma_rx(host);
1146        } else {
1147                if (host->chan_tx)
1148                        sh_mmcif_start_dma_tx(host);
1149        }
1150
1151        if (!host->dma_active) {
1152                data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1153                return !data->error;
1154        }
1155
1156        /* Running in the IRQ thread, can sleep */
1157        time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1158                                                         host->timeout);
1159
1160        if (data->flags & MMC_DATA_READ)
1161                dma_unmap_sg(host->chan_rx->device->dev,
1162                             data->sg, data->sg_len,
1163                             DMA_FROM_DEVICE);
1164        else
1165                dma_unmap_sg(host->chan_tx->device->dev,
1166                             data->sg, data->sg_len,
1167                             DMA_TO_DEVICE);
1168
1169        if (host->sd_error) {
1170                dev_err(host->mmc->parent,
1171                        "Error IRQ while waiting for DMA completion!\n");
1172                /* Woken up by an error IRQ: abort DMA */
1173                data->error = sh_mmcif_error_manage(host);
1174        } else if (!time) {
1175                dev_err(host->mmc->parent, "DMA timeout!\n");
1176                data->error = -ETIMEDOUT;
1177        } else if (time < 0) {
1178                dev_err(host->mmc->parent,
1179                        "wait_for_completion_...() error %ld!\n", time);
1180                data->error = time;
1181        }
1182        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1183                        BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1184        host->dma_active = false;
1185
1186        if (data->error) {
1187                data->bytes_xfered = 0;
1188                /* Abort DMA */
1189                if (data->flags & MMC_DATA_READ)
1190                        dmaengine_terminate_all(host->chan_rx);
1191                else
1192                        dmaengine_terminate_all(host->chan_tx);
1193        }
1194
1195        return false;
1196}
1197
1198static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1199{
1200        struct sh_mmcif_host *host = dev_id;
1201        struct mmc_request *mrq;
1202        struct device *dev = sh_mmcif_host_to_dev(host);
1203        bool wait = false;
1204        unsigned long flags;
1205        int wait_work;
1206
1207        spin_lock_irqsave(&host->lock, flags);
1208        wait_work = host->wait_for;
1209        spin_unlock_irqrestore(&host->lock, flags);
1210
1211        cancel_delayed_work_sync(&host->timeout_work);
1212
1213        mutex_lock(&host->thread_lock);
1214
1215        mrq = host->mrq;
1216        if (!mrq) {
1217                dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1218                        host->state, host->wait_for);
1219                mutex_unlock(&host->thread_lock);
1220                return IRQ_HANDLED;
1221        }
1222
1223        /*
1224         * All handlers return true, if processing continues, and false, if the
1225         * request has to be completed - successfully or not
1226         */
1227        switch (wait_work) {
1228        case MMCIF_WAIT_FOR_REQUEST:
1229                /* We're too late, the timeout has already kicked in */
1230                mutex_unlock(&host->thread_lock);
1231                return IRQ_HANDLED;
1232        case MMCIF_WAIT_FOR_CMD:
1233                /* Wait for data? */
1234                wait = sh_mmcif_end_cmd(host);
1235                break;
1236        case MMCIF_WAIT_FOR_MREAD:
1237                /* Wait for more data? */
1238                wait = sh_mmcif_mread_block(host);
1239                break;
1240        case MMCIF_WAIT_FOR_READ:
1241                /* Wait for data end? */
1242                wait = sh_mmcif_read_block(host);
1243                break;
1244        case MMCIF_WAIT_FOR_MWRITE:
1245                /* Wait data to write? */
1246                wait = sh_mmcif_mwrite_block(host);
1247                break;
1248        case MMCIF_WAIT_FOR_WRITE:
1249                /* Wait for data end? */
1250                wait = sh_mmcif_write_block(host);
1251                break;
1252        case MMCIF_WAIT_FOR_STOP:
1253                if (host->sd_error) {
1254                        mrq->stop->error = sh_mmcif_error_manage(host);
1255                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1256                        break;
1257                }
1258                sh_mmcif_get_cmd12response(host, mrq->stop);
1259                mrq->stop->error = 0;
1260                break;
1261        case MMCIF_WAIT_FOR_READ_END:
1262        case MMCIF_WAIT_FOR_WRITE_END:
1263                if (host->sd_error) {
1264                        mrq->data->error = sh_mmcif_error_manage(host);
1265                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1266                }
1267                break;
1268        default:
1269                BUG();
1270        }
1271
1272        if (wait) {
1273                schedule_delayed_work(&host->timeout_work, host->timeout);
1274                /* Wait for more data */
1275                mutex_unlock(&host->thread_lock);
1276                return IRQ_HANDLED;
1277        }
1278
1279        if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1280                struct mmc_data *data = mrq->data;
1281                if (!mrq->cmd->error && data && !data->error)
1282                        data->bytes_xfered =
1283                                data->blocks * data->blksz;
1284
1285                if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1286                        sh_mmcif_stop_cmd(host, mrq);
1287                        if (!mrq->stop->error) {
1288                                schedule_delayed_work(&host->timeout_work, host->timeout);
1289                                mutex_unlock(&host->thread_lock);
1290                                return IRQ_HANDLED;
1291                        }
1292                }
1293        }
1294
1295        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1296        host->state = STATE_IDLE;
1297        host->mrq = NULL;
1298        mmc_request_done(host->mmc, mrq);
1299
1300        mutex_unlock(&host->thread_lock);
1301
1302        return IRQ_HANDLED;
1303}
1304
1305static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1306{
1307        struct sh_mmcif_host *host = dev_id;
1308        struct device *dev = sh_mmcif_host_to_dev(host);
1309        u32 state, mask;
1310
1311        state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1312        mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1313        if (host->ccs_enable)
1314                sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1315        else
1316                sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1317        sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1318
1319        if (state & ~MASK_CLEAN)
1320                dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1321                        state);
1322
1323        if (state & INT_ERR_STS || state & ~INT_ALL) {
1324                host->sd_error = true;
1325                dev_dbg(dev, "int err state = 0x%08x\n", state);
1326        }
1327        if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1328                if (!host->mrq)
1329                        dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1330                if (!host->dma_active)
1331                        return IRQ_WAKE_THREAD;
1332                else if (host->sd_error)
1333                        sh_mmcif_dma_complete(host);
1334        } else {
1335                dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1336        }
1337
1338        return IRQ_HANDLED;
1339}
1340
1341static void sh_mmcif_timeout_work(struct work_struct *work)
1342{
1343        struct delayed_work *d = to_delayed_work(work);
1344        struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1345        struct mmc_request *mrq = host->mrq;
1346        struct device *dev = sh_mmcif_host_to_dev(host);
1347        unsigned long flags;
1348
1349        if (host->dying)
1350                /* Don't run after mmc_remove_host() */
1351                return;
1352
1353        spin_lock_irqsave(&host->lock, flags);
1354        if (host->state == STATE_IDLE) {
1355                spin_unlock_irqrestore(&host->lock, flags);
1356                return;
1357        }
1358
1359        dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1360                host->wait_for, mrq->cmd->opcode);
1361
1362        host->state = STATE_TIMEOUT;
1363        spin_unlock_irqrestore(&host->lock, flags);
1364
1365        /*
1366         * Handle races with cancel_delayed_work(), unless
1367         * cancel_delayed_work_sync() is used
1368         */
1369        switch (host->wait_for) {
1370        case MMCIF_WAIT_FOR_CMD:
1371                mrq->cmd->error = sh_mmcif_error_manage(host);
1372                break;
1373        case MMCIF_WAIT_FOR_STOP:
1374                mrq->stop->error = sh_mmcif_error_manage(host);
1375                break;
1376        case MMCIF_WAIT_FOR_MREAD:
1377        case MMCIF_WAIT_FOR_MWRITE:
1378        case MMCIF_WAIT_FOR_READ:
1379        case MMCIF_WAIT_FOR_WRITE:
1380        case MMCIF_WAIT_FOR_READ_END:
1381        case MMCIF_WAIT_FOR_WRITE_END:
1382                mrq->data->error = sh_mmcif_error_manage(host);
1383                break;
1384        default:
1385                BUG();
1386        }
1387
1388        host->state = STATE_IDLE;
1389        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1390        host->mrq = NULL;
1391        mmc_request_done(host->mmc, mrq);
1392}
1393
1394static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1395{
1396        struct device *dev = sh_mmcif_host_to_dev(host);
1397        struct sh_mmcif_plat_data *pd = dev->platform_data;
1398        struct mmc_host *mmc = host->mmc;
1399
1400        mmc_regulator_get_supply(mmc);
1401
1402        if (!pd)
1403                return;
1404
1405        if (!mmc->ocr_avail)
1406                mmc->ocr_avail = pd->ocr;
1407        else if (pd->ocr)
1408                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1409}
1410
1411static int sh_mmcif_probe(struct platform_device *pdev)
1412{
1413        int ret = 0, irq[2];
1414        struct mmc_host *mmc;
1415        struct sh_mmcif_host *host;
1416        struct device *dev = &pdev->dev;
1417        struct sh_mmcif_plat_data *pd = dev->platform_data;
1418        struct resource *res;
1419        void __iomem *reg;
1420        const char *name;
1421
1422        irq[0] = platform_get_irq(pdev, 0);
1423        irq[1] = platform_get_irq(pdev, 1);
1424        if (irq[0] < 0) {
1425                dev_err(dev, "Get irq error\n");
1426                return -ENXIO;
1427        }
1428
1429        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1430        reg = devm_ioremap_resource(dev, res);
1431        if (IS_ERR(reg))
1432                return PTR_ERR(reg);
1433
1434        mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1435        if (!mmc)
1436                return -ENOMEM;
1437
1438        ret = mmc_of_parse(mmc);
1439        if (ret < 0)
1440                goto err_host;
1441
1442        host            = mmc_priv(mmc);
1443        host->mmc       = mmc;
1444        host->addr      = reg;
1445        host->timeout   = msecs_to_jiffies(10000);
1446        host->ccs_enable = !pd || !pd->ccs_unsupported;
1447        host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1448
1449        host->pd = pdev;
1450
1451        spin_lock_init(&host->lock);
1452
1453        mmc->ops = &sh_mmcif_ops;
1454        sh_mmcif_init_ocr(host);
1455
1456        mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1457        mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1458        mmc->max_busy_timeout = 10000;
1459
1460        if (pd && pd->caps)
1461                mmc->caps |= pd->caps;
1462        mmc->max_segs = 32;
1463        mmc->max_blk_size = 512;
1464        mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1465        mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1466        mmc->max_seg_size = mmc->max_req_size;
1467
1468        platform_set_drvdata(pdev, host);
1469
1470        host->clk = devm_clk_get(dev, NULL);
1471        if (IS_ERR(host->clk)) {
1472                ret = PTR_ERR(host->clk);
1473                dev_err(dev, "cannot get clock: %d\n", ret);
1474                goto err_host;
1475        }
1476
1477        ret = clk_prepare_enable(host->clk);
1478        if (ret < 0)
1479                goto err_host;
1480
1481        sh_mmcif_clk_setup(host);
1482
1483        pm_runtime_enable(dev);
1484        host->power = false;
1485
1486        ret = pm_runtime_get_sync(dev);
1487        if (ret < 0)
1488                goto err_clk;
1489
1490        INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1491
1492        sh_mmcif_sync_reset(host);
1493        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1494
1495        name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1496        ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1497                                        sh_mmcif_irqt, 0, name, host);
1498        if (ret) {
1499                dev_err(dev, "request_irq error (%s)\n", name);
1500                goto err_clk;
1501        }
1502        if (irq[1] >= 0) {
1503                ret = devm_request_threaded_irq(dev, irq[1],
1504                                                sh_mmcif_intr, sh_mmcif_irqt,
1505                                                0, "sh_mmc:int", host);
1506                if (ret) {
1507                        dev_err(dev, "request_irq error (sh_mmc:int)\n");
1508                        goto err_clk;
1509                }
1510        }
1511
1512        if (pd && pd->use_cd_gpio) {
1513                ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1514                if (ret < 0)
1515                        goto err_clk;
1516        }
1517
1518        mutex_init(&host->thread_lock);
1519
1520        ret = mmc_add_host(mmc);
1521        if (ret < 0)
1522                goto err_clk;
1523
1524        dev_pm_qos_expose_latency_limit(dev, 100);
1525
1526        dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1527                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1528                 clk_get_rate(host->clk) / 1000000UL);
1529
1530        pm_runtime_put(dev);
1531        clk_disable_unprepare(host->clk);
1532        return ret;
1533
1534err_clk:
1535        clk_disable_unprepare(host->clk);
1536        pm_runtime_put_sync(dev);
1537        pm_runtime_disable(dev);
1538err_host:
1539        mmc_free_host(mmc);
1540        return ret;
1541}
1542
1543static int sh_mmcif_remove(struct platform_device *pdev)
1544{
1545        struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1546
1547        host->dying = true;
1548        clk_prepare_enable(host->clk);
1549        pm_runtime_get_sync(&pdev->dev);
1550
1551        dev_pm_qos_hide_latency_limit(&pdev->dev);
1552
1553        mmc_remove_host(host->mmc);
1554        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1555
1556        /*
1557         * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1558         * mmc_remove_host() call above. But swapping order doesn't help either
1559         * (a query on the linux-mmc mailing list didn't bring any replies).
1560         */
1561        cancel_delayed_work_sync(&host->timeout_work);
1562
1563        clk_disable_unprepare(host->clk);
1564        mmc_free_host(host->mmc);
1565        pm_runtime_put_sync(&pdev->dev);
1566        pm_runtime_disable(&pdev->dev);
1567
1568        return 0;
1569}
1570
1571#ifdef CONFIG_PM_SLEEP
1572static int sh_mmcif_suspend(struct device *dev)
1573{
1574        struct sh_mmcif_host *host = dev_get_drvdata(dev);
1575
1576        pm_runtime_get_sync(dev);
1577        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1578        pm_runtime_put(dev);
1579
1580        return 0;
1581}
1582
1583static int sh_mmcif_resume(struct device *dev)
1584{
1585        return 0;
1586}
1587#endif
1588
1589static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1590        SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1591};
1592
1593static struct platform_driver sh_mmcif_driver = {
1594        .probe          = sh_mmcif_probe,
1595        .remove         = sh_mmcif_remove,
1596        .driver         = {
1597                .name   = DRIVER_NAME,
1598                .pm     = &sh_mmcif_dev_pm_ops,
1599                .of_match_table = sh_mmcif_of_match,
1600        },
1601};
1602
1603module_platform_driver(sh_mmcif_driver);
1604
1605MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1606MODULE_LICENSE("GPL");
1607MODULE_ALIAS("platform:" DRIVER_NAME);
1608MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1609