1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/of_device.h>
61#include <linux/pagemap.h>
62#include <linux/platform_device.h>
63#include <linux/pm_qos.h>
64#include <linux/pm_runtime.h>
65#include <linux/sh_dma.h>
66#include <linux/spinlock.h>
67#include <linux/module.h>
68
69#define DRIVER_NAME "sh_mmcif"
70#define DRIVER_VERSION "2010-04-28"
71
72
73#define CMD_MASK 0x3f000000
74#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22))
76#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22))
77#define CMD_SET_RBSY (1 << 21)
78#define CMD_SET_CCSEN (1 << 20)
79#define CMD_SET_WDAT (1 << 19)
80#define CMD_SET_DWEN (1 << 18)
81#define CMD_SET_CMLTE (1 << 17)
82#define CMD_SET_CMD12EN (1 << 16)
83#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14))
84#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14))
85#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14))
86#define CMD_SET_CRC7C ((0 << 13) | (0 << 12))
87#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12))
88#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12))
89#define CMD_SET_CRC16C (1 << 10)
90#define CMD_SET_CRCSTE (1 << 8)
91#define CMD_SET_TBIT (1 << 7)
92#define CMD_SET_OPDM (1 << 6)
93#define CMD_SET_CCSH (1 << 5)
94#define CMD_SET_DARS (1 << 2)
95#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0))
96#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0))
97#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0))
98
99
100#define CMD_CTRL_BREAK (1 << 0)
101
102
103#define BLOCK_SIZE_MASK 0x0000ffff
104
105
106#define INT_CCSDE (1 << 29)
107#define INT_CMD12DRE (1 << 26)
108#define INT_CMD12RBE (1 << 25)
109#define INT_CMD12CRE (1 << 24)
110#define INT_DTRANE (1 << 23)
111#define INT_BUFRE (1 << 22)
112#define INT_BUFWEN (1 << 21)
113#define INT_BUFREN (1 << 20)
114#define INT_CCSRCV (1 << 19)
115#define INT_RBSYE (1 << 17)
116#define INT_CRSPE (1 << 16)
117#define INT_CMDVIO (1 << 15)
118#define INT_BUFVIO (1 << 14)
119#define INT_WDATERR (1 << 11)
120#define INT_RDATERR (1 << 10)
121#define INT_RIDXERR (1 << 9)
122#define INT_RSPERR (1 << 8)
123#define INT_CCSTO (1 << 5)
124#define INT_CRCSTO (1 << 4)
125#define INT_WDATTO (1 << 3)
126#define INT_RDATTO (1 << 2)
127#define INT_RBSYTO (1 << 1)
128#define INT_RSPTO (1 << 0)
129#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140
141#define MASK_ALL 0x00000000
142#define MASK_MCCSDE (1 << 29)
143#define MASK_MCMD12DRE (1 << 26)
144#define MASK_MCMD12RBE (1 << 25)
145#define MASK_MCMD12CRE (1 << 24)
146#define MASK_MDTRANE (1 << 23)
147#define MASK_MBUFRE (1 << 22)
148#define MASK_MBUFWEN (1 << 21)
149#define MASK_MBUFREN (1 << 20)
150#define MASK_MCCSRCV (1 << 19)
151#define MASK_MRBSYE (1 << 17)
152#define MASK_MCRSPE (1 << 16)
153#define MASK_MCMDVIO (1 << 15)
154#define MASK_MBUFVIO (1 << 14)
155#define MASK_MWDATERR (1 << 11)
156#define MASK_MRDATERR (1 << 10)
157#define MASK_MRIDXERR (1 << 9)
158#define MASK_MRSPERR (1 << 8)
159#define MASK_MCCSTO (1 << 5)
160#define MASK_MCRCSTO (1 << 4)
161#define MASK_MWDATTO (1 << 3)
162#define MASK_MRDATTO (1 << 2)
163#define MASK_MRBSYTO (1 << 1)
164#define MASK_MRSPTO (1 << 0)
165
166#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176
177#define STS1_CMDSEQ (1 << 31)
178
179
180#define STS2_CRCSTE (1 << 31)
181#define STS2_CRC16E (1 << 30)
182#define STS2_AC12CRCE (1 << 29)
183#define STS2_RSPCRC7E (1 << 28)
184#define STS2_CRCSTEBE (1 << 27)
185#define STS2_RDATEBE (1 << 26)
186#define STS2_AC12REBE (1 << 25)
187#define STS2_RSPEBE (1 << 24)
188#define STS2_AC12IDXE (1 << 23)
189#define STS2_RSPIDXE (1 << 22)
190#define STS2_CCSTO (1 << 15)
191#define STS2_RDATTO (1 << 14)
192#define STS2_DATBSYTO (1 << 13)
193#define STS2_CRCSTTO (1 << 12)
194#define STS2_AC12BSYTO (1 << 11)
195#define STS2_RSPBSYTO (1 << 10)
196#define STS2_AC12RSPTO (1 << 9)
197#define STS2_RSPTO (1 << 8)
198#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205#define CLKDEV_EMMC_DATA 52000000
206#define CLKDEV_MMC_DATA 20000000
207#define CLKDEV_INIT 400000
208
209enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214};
215
216enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226};
227
228
229
230
231struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock;
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool ccs_enable;
252 bool clk_ctrl2_enable;
253 struct mutex thread_lock;
254 u32 clkdiv_map;
255
256
257 struct dma_chan *chan_rx;
258 struct dma_chan *chan_tx;
259 struct completion dma_complete;
260 bool dma_active;
261};
262
263static const struct of_device_id sh_mmcif_of_match[] = {
264 { .compatible = "renesas,sh-mmcif" },
265 { }
266};
267MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
268
269#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
270
271static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
272 unsigned int reg, u32 val)
273{
274 writel(val | readl(host->addr + reg), host->addr + reg);
275}
276
277static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
278 unsigned int reg, u32 val)
279{
280 writel(~val & readl(host->addr + reg), host->addr + reg);
281}
282
283static void sh_mmcif_dma_complete(void *arg)
284{
285 struct sh_mmcif_host *host = arg;
286 struct mmc_request *mrq = host->mrq;
287 struct device *dev = sh_mmcif_host_to_dev(host);
288
289 dev_dbg(dev, "Command completed\n");
290
291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
292 dev_name(dev)))
293 return;
294
295 complete(&host->dma_complete);
296}
297
298static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
299{
300 struct mmc_data *data = host->mrq->data;
301 struct scatterlist *sg = data->sg;
302 struct dma_async_tx_descriptor *desc = NULL;
303 struct dma_chan *chan = host->chan_rx;
304 struct device *dev = sh_mmcif_host_to_dev(host);
305 dma_cookie_t cookie = -EINVAL;
306 int ret;
307
308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
309 DMA_FROM_DEVICE);
310 if (ret > 0) {
311 host->dma_active = true;
312 desc = dmaengine_prep_slave_sg(chan, sg, ret,
313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
314 }
315
316 if (desc) {
317 desc->callback = sh_mmcif_dma_complete;
318 desc->callback_param = host;
319 cookie = dmaengine_submit(desc);
320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
321 dma_async_issue_pending(chan);
322 }
323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
324 __func__, data->sg_len, ret, cookie);
325
326 if (!desc) {
327
328 if (ret >= 0)
329 ret = -EIO;
330 host->chan_rx = NULL;
331 host->dma_active = false;
332 dma_release_channel(chan);
333
334 chan = host->chan_tx;
335 if (chan) {
336 host->chan_tx = NULL;
337 dma_release_channel(chan);
338 }
339 dev_warn(dev,
340 "DMA failed: %d, falling back to PIO\n", ret);
341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
342 }
343
344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
345 desc, cookie, data->sg_len);
346}
347
348static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
349{
350 struct mmc_data *data = host->mrq->data;
351 struct scatterlist *sg = data->sg;
352 struct dma_async_tx_descriptor *desc = NULL;
353 struct dma_chan *chan = host->chan_tx;
354 struct device *dev = sh_mmcif_host_to_dev(host);
355 dma_cookie_t cookie = -EINVAL;
356 int ret;
357
358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
359 DMA_TO_DEVICE);
360 if (ret > 0) {
361 host->dma_active = true;
362 desc = dmaengine_prep_slave_sg(chan, sg, ret,
363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
364 }
365
366 if (desc) {
367 desc->callback = sh_mmcif_dma_complete;
368 desc->callback_param = host;
369 cookie = dmaengine_submit(desc);
370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
371 dma_async_issue_pending(chan);
372 }
373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
374 __func__, data->sg_len, ret, cookie);
375
376 if (!desc) {
377
378 if (ret >= 0)
379 ret = -EIO;
380 host->chan_tx = NULL;
381 host->dma_active = false;
382 dma_release_channel(chan);
383
384 chan = host->chan_rx;
385 if (chan) {
386 host->chan_rx = NULL;
387 dma_release_channel(chan);
388 }
389 dev_warn(dev,
390 "DMA failed: %d, falling back to PIO\n", ret);
391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
392 }
393
394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
395 desc, cookie);
396}
397
398static struct dma_chan *
399sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
400{
401 dma_cap_mask_t mask;
402
403 dma_cap_zero(mask);
404 dma_cap_set(DMA_SLAVE, mask);
405 if (slave_id <= 0)
406 return NULL;
407
408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
409}
410
411static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
412 struct dma_chan *chan,
413 enum dma_transfer_direction direction)
414{
415 struct resource *res;
416 struct dma_slave_config cfg = { 0, };
417
418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
419 cfg.direction = direction;
420
421 if (direction == DMA_DEV_TO_MEM) {
422 cfg.src_addr = res->start + MMCIF_CE_DATA;
423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 } else {
425 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 }
428
429 return dmaengine_slave_config(chan, &cfg);
430}
431
432static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
433{
434 struct device *dev = sh_mmcif_host_to_dev(host);
435 host->dma_active = false;
436
437
438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
439 struct sh_mmcif_plat_data *pdata = dev->platform_data;
440
441 host->chan_tx = sh_mmcif_request_dma_pdata(host,
442 pdata->slave_id_tx);
443 host->chan_rx = sh_mmcif_request_dma_pdata(host,
444 pdata->slave_id_rx);
445 } else {
446 host->chan_tx = dma_request_slave_channel(dev, "tx");
447 host->chan_rx = dma_request_slave_channel(dev, "rx");
448 }
449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
450 host->chan_rx);
451
452 if (!host->chan_tx || !host->chan_rx ||
453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
455 goto error;
456
457 return;
458
459error:
460 if (host->chan_tx)
461 dma_release_channel(host->chan_tx);
462 if (host->chan_rx)
463 dma_release_channel(host->chan_rx);
464 host->chan_tx = host->chan_rx = NULL;
465}
466
467static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
468{
469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
470
471 if (host->chan_tx) {
472 struct dma_chan *chan = host->chan_tx;
473 host->chan_tx = NULL;
474 dma_release_channel(chan);
475 }
476 if (host->chan_rx) {
477 struct dma_chan *chan = host->chan_rx;
478 host->chan_rx = NULL;
479 dma_release_channel(chan);
480 }
481
482 host->dma_active = false;
483}
484
485static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
486{
487 struct device *dev = sh_mmcif_host_to_dev(host);
488 struct sh_mmcif_plat_data *p = dev->platform_data;
489 bool sup_pclk = p ? p->sup_pclk : false;
490 unsigned int current_clk = clk_get_rate(host->clk);
491 unsigned int clkdiv;
492
493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
495
496 if (!clk)
497 return;
498
499 if (host->clkdiv_map) {
500 unsigned int freq, best_freq, myclk, div, diff_min, diff;
501 int i;
502
503 clkdiv = 0;
504 diff_min = ~0;
505 best_freq = 0;
506 for (i = 31; i >= 0; i--) {
507 if (!((1 << i) & host->clkdiv_map))
508 continue;
509
510
511
512
513
514
515 div = 1 << (i + 1);
516 freq = clk_round_rate(host->clk, clk * div);
517 myclk = freq / div;
518 diff = (myclk > clk) ? myclk - clk : clk - myclk;
519
520 if (diff <= diff_min) {
521 best_freq = freq;
522 clkdiv = i;
523 diff_min = diff;
524 }
525 }
526
527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
528 (best_freq / (1 << (clkdiv + 1))), clk,
529 best_freq, clkdiv);
530
531 clk_set_rate(host->clk, best_freq);
532 clkdiv = clkdiv << 16;
533 } else if (sup_pclk && clk == current_clk) {
534 clkdiv = CLK_SUP_PCLK;
535 } else {
536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
537 }
538
539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
541}
542
543static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
544{
545 u32 tmp;
546
547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
548
549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
551 if (host->ccs_enable)
552 tmp |= SCCSTO_29;
553 if (host->clk_ctrl2_enable)
554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
557
558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
559}
560
561static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
562{
563 struct device *dev = sh_mmcif_host_to_dev(host);
564 u32 state1, state2;
565 int ret, timeout;
566
567 host->sd_error = false;
568
569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
573
574 if (state1 & STS1_CMDSEQ) {
575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
577 for (timeout = 10000; timeout; timeout--) {
578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
579 & STS1_CMDSEQ))
580 break;
581 mdelay(1);
582 }
583 if (!timeout) {
584 dev_err(dev,
585 "Forced end of command sequence timeout err\n");
586 return -EIO;
587 }
588 sh_mmcif_sync_reset(host);
589 dev_dbg(dev, "Forced end of command sequence\n");
590 return -EIO;
591 }
592
593 if (state2 & STS2_CRC_ERR) {
594 dev_err(dev, " CRC error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
597 } else if (state2 & STS2_TIMEOUT_ERR) {
598 dev_err(dev, " Timeout: state %u, wait %u\n",
599 host->state, host->wait_for);
600 ret = -ETIMEDOUT;
601 } else {
602 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
603 host->state, host->wait_for);
604 ret = -EIO;
605 }
606 return ret;
607}
608
609static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
610{
611 struct mmc_data *data = host->mrq->data;
612
613 host->sg_blkidx += host->blocksize;
614
615
616 BUG_ON(host->sg_blkidx > data->sg->length);
617
618 if (host->sg_blkidx == data->sg->length) {
619 host->sg_blkidx = 0;
620 if (++host->sg_idx < data->sg_len)
621 host->pio_ptr = sg_virt(++data->sg);
622 } else {
623 host->pio_ptr = p;
624 }
625
626 return host->sg_idx != data->sg_len;
627}
628
629static void sh_mmcif_single_read(struct sh_mmcif_host *host,
630 struct mmc_request *mrq)
631{
632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
633 BLOCK_SIZE_MASK) + 3;
634
635 host->wait_for = MMCIF_WAIT_FOR_READ;
636
637
638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
639}
640
641static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
642{
643 struct device *dev = sh_mmcif_host_to_dev(host);
644 struct mmc_data *data = host->mrq->data;
645 u32 *p = sg_virt(data->sg);
646 int i;
647
648 if (host->sd_error) {
649 data->error = sh_mmcif_error_manage(host);
650 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
651 return false;
652 }
653
654 for (i = 0; i < host->blocksize / 4; i++)
655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
656
657
658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
659 host->wait_for = MMCIF_WAIT_FOR_READ_END;
660
661 return true;
662}
663
664static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
665 struct mmc_request *mrq)
666{
667 struct mmc_data *data = mrq->data;
668
669 if (!data->sg_len || !data->sg->length)
670 return;
671
672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
673 BLOCK_SIZE_MASK;
674
675 host->wait_for = MMCIF_WAIT_FOR_MREAD;
676 host->sg_idx = 0;
677 host->sg_blkidx = 0;
678 host->pio_ptr = sg_virt(data->sg);
679
680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
681}
682
683static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
684{
685 struct device *dev = sh_mmcif_host_to_dev(host);
686 struct mmc_data *data = host->mrq->data;
687 u32 *p = host->pio_ptr;
688 int i;
689
690 if (host->sd_error) {
691 data->error = sh_mmcif_error_manage(host);
692 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
693 return false;
694 }
695
696 BUG_ON(!data->sg->length);
697
698 for (i = 0; i < host->blocksize / 4; i++)
699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
700
701 if (!sh_mmcif_next_block(host, p))
702 return false;
703
704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
705
706 return true;
707}
708
709static void sh_mmcif_single_write(struct sh_mmcif_host *host,
710 struct mmc_request *mrq)
711{
712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
713 BLOCK_SIZE_MASK) + 3;
714
715 host->wait_for = MMCIF_WAIT_FOR_WRITE;
716
717
718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
719}
720
721static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
722{
723 struct device *dev = sh_mmcif_host_to_dev(host);
724 struct mmc_data *data = host->mrq->data;
725 u32 *p = sg_virt(data->sg);
726 int i;
727
728 if (host->sd_error) {
729 data->error = sh_mmcif_error_manage(host);
730 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
731 return false;
732 }
733
734 for (i = 0; i < host->blocksize / 4; i++)
735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
736
737
738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
740
741 return true;
742}
743
744static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
745 struct mmc_request *mrq)
746{
747 struct mmc_data *data = mrq->data;
748
749 if (!data->sg_len || !data->sg->length)
750 return;
751
752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
753 BLOCK_SIZE_MASK;
754
755 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
756 host->sg_idx = 0;
757 host->sg_blkidx = 0;
758 host->pio_ptr = sg_virt(data->sg);
759
760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
761}
762
763static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
764{
765 struct device *dev = sh_mmcif_host_to_dev(host);
766 struct mmc_data *data = host->mrq->data;
767 u32 *p = host->pio_ptr;
768 int i;
769
770 if (host->sd_error) {
771 data->error = sh_mmcif_error_manage(host);
772 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
773 return false;
774 }
775
776 BUG_ON(!data->sg->length);
777
778 for (i = 0; i < host->blocksize / 4; i++)
779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
780
781 if (!sh_mmcif_next_block(host, p))
782 return false;
783
784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
785
786 return true;
787}
788
789static void sh_mmcif_get_response(struct sh_mmcif_host *host,
790 struct mmc_command *cmd)
791{
792 if (cmd->flags & MMC_RSP_136) {
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
797 } else
798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
799}
800
801static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
802 struct mmc_command *cmd)
803{
804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
805}
806
807static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
808 struct mmc_request *mrq)
809{
810 struct device *dev = sh_mmcif_host_to_dev(host);
811 struct mmc_data *data = mrq->data;
812 struct mmc_command *cmd = mrq->cmd;
813 u32 opc = cmd->opcode;
814 u32 tmp = 0;
815
816
817 switch (mmc_resp_type(cmd)) {
818 case MMC_RSP_NONE:
819 tmp |= CMD_SET_RTYP_NO;
820 break;
821 case MMC_RSP_R1:
822 case MMC_RSP_R3:
823 tmp |= CMD_SET_RTYP_6B;
824 break;
825 case MMC_RSP_R1B:
826 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
827 break;
828 case MMC_RSP_R2:
829 tmp |= CMD_SET_RTYP_17B;
830 break;
831 default:
832 dev_err(dev, "Unsupported response type.\n");
833 break;
834 }
835
836
837 if (data) {
838 tmp |= CMD_SET_WDAT;
839 switch (host->bus_width) {
840 case MMC_BUS_WIDTH_1:
841 tmp |= CMD_SET_DATW_1;
842 break;
843 case MMC_BUS_WIDTH_4:
844 tmp |= CMD_SET_DATW_4;
845 break;
846 case MMC_BUS_WIDTH_8:
847 tmp |= CMD_SET_DATW_8;
848 break;
849 default:
850 dev_err(dev, "Unsupported bus width.\n");
851 break;
852 }
853 switch (host->timing) {
854 case MMC_TIMING_MMC_DDR52:
855
856
857
858
859
860
861
862 tmp |= CMD_SET_DARS;
863 break;
864 }
865 }
866
867 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
868 tmp |= CMD_SET_DWEN;
869
870 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
871 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
872 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
873 data->blocks << 16);
874 }
875
876 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878 tmp |= CMD_SET_RIDXC_BITS;
879
880 if (opc == MMC_SEND_OP_COND)
881 tmp |= CMD_SET_CRC7C_BITS;
882
883 if (opc == MMC_ALL_SEND_CID ||
884 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
885 tmp |= CMD_SET_CRC7C_INTERNAL;
886
887 return (opc << 24) | tmp;
888}
889
890static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
891 struct mmc_request *mrq, u32 opc)
892{
893 struct device *dev = sh_mmcif_host_to_dev(host);
894
895 switch (opc) {
896 case MMC_READ_MULTIPLE_BLOCK:
897 sh_mmcif_multi_read(host, mrq);
898 return 0;
899 case MMC_WRITE_MULTIPLE_BLOCK:
900 sh_mmcif_multi_write(host, mrq);
901 return 0;
902 case MMC_WRITE_BLOCK:
903 sh_mmcif_single_write(host, mrq);
904 return 0;
905 case MMC_READ_SINGLE_BLOCK:
906 case MMC_SEND_EXT_CSD:
907 sh_mmcif_single_read(host, mrq);
908 return 0;
909 default:
910 dev_err(dev, "Unsupported CMD%d\n", opc);
911 return -EINVAL;
912 }
913}
914
915static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
916 struct mmc_request *mrq)
917{
918 struct mmc_command *cmd = mrq->cmd;
919 u32 opc = cmd->opcode;
920 u32 mask = 0;
921 unsigned long flags;
922
923 if (cmd->flags & MMC_RSP_BUSY)
924 mask = MASK_START_CMD | MASK_MRBSYE;
925 else
926 mask = MASK_START_CMD | MASK_MCRSPE;
927
928 if (host->ccs_enable)
929 mask |= MASK_MCCSTO;
930
931 if (mrq->data) {
932 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
933 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
934 mrq->data->blksz);
935 }
936 opc = sh_mmcif_set_cmd(host, mrq);
937
938 if (host->ccs_enable)
939 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
940 else
941 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
942 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
943
944 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
945
946 spin_lock_irqsave(&host->lock, flags);
947 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
948
949 host->wait_for = MMCIF_WAIT_FOR_CMD;
950 schedule_delayed_work(&host->timeout_work, host->timeout);
951 spin_unlock_irqrestore(&host->lock, flags);
952}
953
954static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
955 struct mmc_request *mrq)
956{
957 struct device *dev = sh_mmcif_host_to_dev(host);
958
959 switch (mrq->cmd->opcode) {
960 case MMC_READ_MULTIPLE_BLOCK:
961 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
962 break;
963 case MMC_WRITE_MULTIPLE_BLOCK:
964 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
965 break;
966 default:
967 dev_err(dev, "unsupported stop cmd\n");
968 mrq->stop->error = sh_mmcif_error_manage(host);
969 return;
970 }
971
972 host->wait_for = MMCIF_WAIT_FOR_STOP;
973}
974
975static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
976{
977 struct sh_mmcif_host *host = mmc_priv(mmc);
978 struct device *dev = sh_mmcif_host_to_dev(host);
979 unsigned long flags;
980
981 spin_lock_irqsave(&host->lock, flags);
982 if (host->state != STATE_IDLE) {
983 dev_dbg(dev, "%s() rejected, state %u\n",
984 __func__, host->state);
985 spin_unlock_irqrestore(&host->lock, flags);
986 mrq->cmd->error = -EAGAIN;
987 mmc_request_done(mmc, mrq);
988 return;
989 }
990
991 host->state = STATE_REQUEST;
992 spin_unlock_irqrestore(&host->lock, flags);
993
994 host->mrq = mrq;
995
996 sh_mmcif_start_cmd(host, mrq);
997}
998
999static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1000{
1001 struct device *dev = sh_mmcif_host_to_dev(host);
1002
1003 if (host->mmc->f_max) {
1004 unsigned int f_max, f_min = 0, f_min_old;
1005
1006 f_max = host->mmc->f_max;
1007 for (f_min_old = f_max; f_min_old > 2;) {
1008 f_min = clk_round_rate(host->clk, f_min_old / 2);
1009 if (f_min == f_min_old)
1010 break;
1011 f_min_old = f_min;
1012 }
1013
1014
1015
1016
1017 host->clkdiv_map = 0x3ff;
1018
1019 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1020 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1021 } else {
1022 unsigned int clk = clk_get_rate(host->clk);
1023
1024 host->mmc->f_max = clk / 2;
1025 host->mmc->f_min = clk / 512;
1026 }
1027
1028 dev_dbg(dev, "clk max/min = %d/%d\n",
1029 host->mmc->f_max, host->mmc->f_min);
1030}
1031
1032static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1033{
1034 struct sh_mmcif_host *host = mmc_priv(mmc);
1035 struct device *dev = sh_mmcif_host_to_dev(host);
1036 unsigned long flags;
1037
1038 spin_lock_irqsave(&host->lock, flags);
1039 if (host->state != STATE_IDLE) {
1040 dev_dbg(dev, "%s() rejected, state %u\n",
1041 __func__, host->state);
1042 spin_unlock_irqrestore(&host->lock, flags);
1043 return;
1044 }
1045
1046 host->state = STATE_IOS;
1047 spin_unlock_irqrestore(&host->lock, flags);
1048
1049 switch (ios->power_mode) {
1050 case MMC_POWER_UP:
1051 if (!IS_ERR(mmc->supply.vmmc))
1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1053 if (!host->power) {
1054 clk_prepare_enable(host->clk);
1055 pm_runtime_get_sync(dev);
1056 sh_mmcif_sync_reset(host);
1057 sh_mmcif_request_dma(host);
1058 host->power = true;
1059 }
1060 break;
1061 case MMC_POWER_OFF:
1062 if (!IS_ERR(mmc->supply.vmmc))
1063 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1064 if (host->power) {
1065 sh_mmcif_clock_control(host, 0);
1066 sh_mmcif_release_dma(host);
1067 pm_runtime_put(dev);
1068 clk_disable_unprepare(host->clk);
1069 host->power = false;
1070 }
1071 break;
1072 case MMC_POWER_ON:
1073 sh_mmcif_clock_control(host, ios->clock);
1074 break;
1075 }
1076
1077 host->timing = ios->timing;
1078 host->bus_width = ios->bus_width;
1079 host->state = STATE_IDLE;
1080}
1081
1082static int sh_mmcif_get_cd(struct mmc_host *mmc)
1083{
1084 struct sh_mmcif_host *host = mmc_priv(mmc);
1085 struct device *dev = sh_mmcif_host_to_dev(host);
1086 struct sh_mmcif_plat_data *p = dev->platform_data;
1087 int ret = mmc_gpio_get_cd(mmc);
1088
1089 if (ret >= 0)
1090 return ret;
1091
1092 if (!p || !p->get_cd)
1093 return -ENOSYS;
1094 else
1095 return p->get_cd(host->pd);
1096}
1097
1098static struct mmc_host_ops sh_mmcif_ops = {
1099 .request = sh_mmcif_request,
1100 .set_ios = sh_mmcif_set_ios,
1101 .get_cd = sh_mmcif_get_cd,
1102};
1103
1104static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1105{
1106 struct mmc_command *cmd = host->mrq->cmd;
1107 struct mmc_data *data = host->mrq->data;
1108 struct device *dev = sh_mmcif_host_to_dev(host);
1109 long time;
1110
1111 if (host->sd_error) {
1112 switch (cmd->opcode) {
1113 case MMC_ALL_SEND_CID:
1114 case MMC_SELECT_CARD:
1115 case MMC_APP_CMD:
1116 cmd->error = -ETIMEDOUT;
1117 break;
1118 default:
1119 cmd->error = sh_mmcif_error_manage(host);
1120 break;
1121 }
1122 dev_dbg(dev, "CMD%d error %d\n",
1123 cmd->opcode, cmd->error);
1124 host->sd_error = false;
1125 return false;
1126 }
1127 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1128 cmd->error = 0;
1129 return false;
1130 }
1131
1132 sh_mmcif_get_response(host, cmd);
1133
1134 if (!data)
1135 return false;
1136
1137
1138
1139
1140
1141 init_completion(&host->dma_complete);
1142
1143 if (data->flags & MMC_DATA_READ) {
1144 if (host->chan_rx)
1145 sh_mmcif_start_dma_rx(host);
1146 } else {
1147 if (host->chan_tx)
1148 sh_mmcif_start_dma_tx(host);
1149 }
1150
1151 if (!host->dma_active) {
1152 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1153 return !data->error;
1154 }
1155
1156
1157 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1158 host->timeout);
1159
1160 if (data->flags & MMC_DATA_READ)
1161 dma_unmap_sg(host->chan_rx->device->dev,
1162 data->sg, data->sg_len,
1163 DMA_FROM_DEVICE);
1164 else
1165 dma_unmap_sg(host->chan_tx->device->dev,
1166 data->sg, data->sg_len,
1167 DMA_TO_DEVICE);
1168
1169 if (host->sd_error) {
1170 dev_err(host->mmc->parent,
1171 "Error IRQ while waiting for DMA completion!\n");
1172
1173 data->error = sh_mmcif_error_manage(host);
1174 } else if (!time) {
1175 dev_err(host->mmc->parent, "DMA timeout!\n");
1176 data->error = -ETIMEDOUT;
1177 } else if (time < 0) {
1178 dev_err(host->mmc->parent,
1179 "wait_for_completion_...() error %ld!\n", time);
1180 data->error = time;
1181 }
1182 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1183 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1184 host->dma_active = false;
1185
1186 if (data->error) {
1187 data->bytes_xfered = 0;
1188
1189 if (data->flags & MMC_DATA_READ)
1190 dmaengine_terminate_all(host->chan_rx);
1191 else
1192 dmaengine_terminate_all(host->chan_tx);
1193 }
1194
1195 return false;
1196}
1197
1198static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1199{
1200 struct sh_mmcif_host *host = dev_id;
1201 struct mmc_request *mrq;
1202 struct device *dev = sh_mmcif_host_to_dev(host);
1203 bool wait = false;
1204 unsigned long flags;
1205 int wait_work;
1206
1207 spin_lock_irqsave(&host->lock, flags);
1208 wait_work = host->wait_for;
1209 spin_unlock_irqrestore(&host->lock, flags);
1210
1211 cancel_delayed_work_sync(&host->timeout_work);
1212
1213 mutex_lock(&host->thread_lock);
1214
1215 mrq = host->mrq;
1216 if (!mrq) {
1217 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1218 host->state, host->wait_for);
1219 mutex_unlock(&host->thread_lock);
1220 return IRQ_HANDLED;
1221 }
1222
1223
1224
1225
1226
1227 switch (wait_work) {
1228 case MMCIF_WAIT_FOR_REQUEST:
1229
1230 mutex_unlock(&host->thread_lock);
1231 return IRQ_HANDLED;
1232 case MMCIF_WAIT_FOR_CMD:
1233
1234 wait = sh_mmcif_end_cmd(host);
1235 break;
1236 case MMCIF_WAIT_FOR_MREAD:
1237
1238 wait = sh_mmcif_mread_block(host);
1239 break;
1240 case MMCIF_WAIT_FOR_READ:
1241
1242 wait = sh_mmcif_read_block(host);
1243 break;
1244 case MMCIF_WAIT_FOR_MWRITE:
1245
1246 wait = sh_mmcif_mwrite_block(host);
1247 break;
1248 case MMCIF_WAIT_FOR_WRITE:
1249
1250 wait = sh_mmcif_write_block(host);
1251 break;
1252 case MMCIF_WAIT_FOR_STOP:
1253 if (host->sd_error) {
1254 mrq->stop->error = sh_mmcif_error_manage(host);
1255 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1256 break;
1257 }
1258 sh_mmcif_get_cmd12response(host, mrq->stop);
1259 mrq->stop->error = 0;
1260 break;
1261 case MMCIF_WAIT_FOR_READ_END:
1262 case MMCIF_WAIT_FOR_WRITE_END:
1263 if (host->sd_error) {
1264 mrq->data->error = sh_mmcif_error_manage(host);
1265 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1266 }
1267 break;
1268 default:
1269 BUG();
1270 }
1271
1272 if (wait) {
1273 schedule_delayed_work(&host->timeout_work, host->timeout);
1274
1275 mutex_unlock(&host->thread_lock);
1276 return IRQ_HANDLED;
1277 }
1278
1279 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1280 struct mmc_data *data = mrq->data;
1281 if (!mrq->cmd->error && data && !data->error)
1282 data->bytes_xfered =
1283 data->blocks * data->blksz;
1284
1285 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1286 sh_mmcif_stop_cmd(host, mrq);
1287 if (!mrq->stop->error) {
1288 schedule_delayed_work(&host->timeout_work, host->timeout);
1289 mutex_unlock(&host->thread_lock);
1290 return IRQ_HANDLED;
1291 }
1292 }
1293 }
1294
1295 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1296 host->state = STATE_IDLE;
1297 host->mrq = NULL;
1298 mmc_request_done(host->mmc, mrq);
1299
1300 mutex_unlock(&host->thread_lock);
1301
1302 return IRQ_HANDLED;
1303}
1304
1305static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1306{
1307 struct sh_mmcif_host *host = dev_id;
1308 struct device *dev = sh_mmcif_host_to_dev(host);
1309 u32 state, mask;
1310
1311 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1312 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1313 if (host->ccs_enable)
1314 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1315 else
1316 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1317 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1318
1319 if (state & ~MASK_CLEAN)
1320 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1321 state);
1322
1323 if (state & INT_ERR_STS || state & ~INT_ALL) {
1324 host->sd_error = true;
1325 dev_dbg(dev, "int err state = 0x%08x\n", state);
1326 }
1327 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1328 if (!host->mrq)
1329 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1330 if (!host->dma_active)
1331 return IRQ_WAKE_THREAD;
1332 else if (host->sd_error)
1333 sh_mmcif_dma_complete(host);
1334 } else {
1335 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1336 }
1337
1338 return IRQ_HANDLED;
1339}
1340
1341static void sh_mmcif_timeout_work(struct work_struct *work)
1342{
1343 struct delayed_work *d = to_delayed_work(work);
1344 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1345 struct mmc_request *mrq = host->mrq;
1346 struct device *dev = sh_mmcif_host_to_dev(host);
1347 unsigned long flags;
1348
1349 if (host->dying)
1350
1351 return;
1352
1353 spin_lock_irqsave(&host->lock, flags);
1354 if (host->state == STATE_IDLE) {
1355 spin_unlock_irqrestore(&host->lock, flags);
1356 return;
1357 }
1358
1359 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1360 host->wait_for, mrq->cmd->opcode);
1361
1362 host->state = STATE_TIMEOUT;
1363 spin_unlock_irqrestore(&host->lock, flags);
1364
1365
1366
1367
1368
1369 switch (host->wait_for) {
1370 case MMCIF_WAIT_FOR_CMD:
1371 mrq->cmd->error = sh_mmcif_error_manage(host);
1372 break;
1373 case MMCIF_WAIT_FOR_STOP:
1374 mrq->stop->error = sh_mmcif_error_manage(host);
1375 break;
1376 case MMCIF_WAIT_FOR_MREAD:
1377 case MMCIF_WAIT_FOR_MWRITE:
1378 case MMCIF_WAIT_FOR_READ:
1379 case MMCIF_WAIT_FOR_WRITE:
1380 case MMCIF_WAIT_FOR_READ_END:
1381 case MMCIF_WAIT_FOR_WRITE_END:
1382 mrq->data->error = sh_mmcif_error_manage(host);
1383 break;
1384 default:
1385 BUG();
1386 }
1387
1388 host->state = STATE_IDLE;
1389 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1390 host->mrq = NULL;
1391 mmc_request_done(host->mmc, mrq);
1392}
1393
1394static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1395{
1396 struct device *dev = sh_mmcif_host_to_dev(host);
1397 struct sh_mmcif_plat_data *pd = dev->platform_data;
1398 struct mmc_host *mmc = host->mmc;
1399
1400 mmc_regulator_get_supply(mmc);
1401
1402 if (!pd)
1403 return;
1404
1405 if (!mmc->ocr_avail)
1406 mmc->ocr_avail = pd->ocr;
1407 else if (pd->ocr)
1408 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1409}
1410
1411static int sh_mmcif_probe(struct platform_device *pdev)
1412{
1413 int ret = 0, irq[2];
1414 struct mmc_host *mmc;
1415 struct sh_mmcif_host *host;
1416 struct device *dev = &pdev->dev;
1417 struct sh_mmcif_plat_data *pd = dev->platform_data;
1418 struct resource *res;
1419 void __iomem *reg;
1420 const char *name;
1421
1422 irq[0] = platform_get_irq(pdev, 0);
1423 irq[1] = platform_get_irq(pdev, 1);
1424 if (irq[0] < 0) {
1425 dev_err(dev, "Get irq error\n");
1426 return -ENXIO;
1427 }
1428
1429 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1430 reg = devm_ioremap_resource(dev, res);
1431 if (IS_ERR(reg))
1432 return PTR_ERR(reg);
1433
1434 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1435 if (!mmc)
1436 return -ENOMEM;
1437
1438 ret = mmc_of_parse(mmc);
1439 if (ret < 0)
1440 goto err_host;
1441
1442 host = mmc_priv(mmc);
1443 host->mmc = mmc;
1444 host->addr = reg;
1445 host->timeout = msecs_to_jiffies(10000);
1446 host->ccs_enable = !pd || !pd->ccs_unsupported;
1447 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1448
1449 host->pd = pdev;
1450
1451 spin_lock_init(&host->lock);
1452
1453 mmc->ops = &sh_mmcif_ops;
1454 sh_mmcif_init_ocr(host);
1455
1456 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1457 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1458 mmc->max_busy_timeout = 10000;
1459
1460 if (pd && pd->caps)
1461 mmc->caps |= pd->caps;
1462 mmc->max_segs = 32;
1463 mmc->max_blk_size = 512;
1464 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1465 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1466 mmc->max_seg_size = mmc->max_req_size;
1467
1468 platform_set_drvdata(pdev, host);
1469
1470 host->clk = devm_clk_get(dev, NULL);
1471 if (IS_ERR(host->clk)) {
1472 ret = PTR_ERR(host->clk);
1473 dev_err(dev, "cannot get clock: %d\n", ret);
1474 goto err_host;
1475 }
1476
1477 ret = clk_prepare_enable(host->clk);
1478 if (ret < 0)
1479 goto err_host;
1480
1481 sh_mmcif_clk_setup(host);
1482
1483 pm_runtime_enable(dev);
1484 host->power = false;
1485
1486 ret = pm_runtime_get_sync(dev);
1487 if (ret < 0)
1488 goto err_clk;
1489
1490 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1491
1492 sh_mmcif_sync_reset(host);
1493 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1494
1495 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1496 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1497 sh_mmcif_irqt, 0, name, host);
1498 if (ret) {
1499 dev_err(dev, "request_irq error (%s)\n", name);
1500 goto err_clk;
1501 }
1502 if (irq[1] >= 0) {
1503 ret = devm_request_threaded_irq(dev, irq[1],
1504 sh_mmcif_intr, sh_mmcif_irqt,
1505 0, "sh_mmc:int", host);
1506 if (ret) {
1507 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1508 goto err_clk;
1509 }
1510 }
1511
1512 if (pd && pd->use_cd_gpio) {
1513 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1514 if (ret < 0)
1515 goto err_clk;
1516 }
1517
1518 mutex_init(&host->thread_lock);
1519
1520 ret = mmc_add_host(mmc);
1521 if (ret < 0)
1522 goto err_clk;
1523
1524 dev_pm_qos_expose_latency_limit(dev, 100);
1525
1526 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1527 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1528 clk_get_rate(host->clk) / 1000000UL);
1529
1530 pm_runtime_put(dev);
1531 clk_disable_unprepare(host->clk);
1532 return ret;
1533
1534err_clk:
1535 clk_disable_unprepare(host->clk);
1536 pm_runtime_put_sync(dev);
1537 pm_runtime_disable(dev);
1538err_host:
1539 mmc_free_host(mmc);
1540 return ret;
1541}
1542
1543static int sh_mmcif_remove(struct platform_device *pdev)
1544{
1545 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1546
1547 host->dying = true;
1548 clk_prepare_enable(host->clk);
1549 pm_runtime_get_sync(&pdev->dev);
1550
1551 dev_pm_qos_hide_latency_limit(&pdev->dev);
1552
1553 mmc_remove_host(host->mmc);
1554 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1555
1556
1557
1558
1559
1560
1561 cancel_delayed_work_sync(&host->timeout_work);
1562
1563 clk_disable_unprepare(host->clk);
1564 mmc_free_host(host->mmc);
1565 pm_runtime_put_sync(&pdev->dev);
1566 pm_runtime_disable(&pdev->dev);
1567
1568 return 0;
1569}
1570
1571#ifdef CONFIG_PM_SLEEP
1572static int sh_mmcif_suspend(struct device *dev)
1573{
1574 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1575
1576 pm_runtime_get_sync(dev);
1577 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1578 pm_runtime_put(dev);
1579
1580 return 0;
1581}
1582
1583static int sh_mmcif_resume(struct device *dev)
1584{
1585 return 0;
1586}
1587#endif
1588
1589static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1590 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1591};
1592
1593static struct platform_driver sh_mmcif_driver = {
1594 .probe = sh_mmcif_probe,
1595 .remove = sh_mmcif_remove,
1596 .driver = {
1597 .name = DRIVER_NAME,
1598 .pm = &sh_mmcif_dev_pm_ops,
1599 .of_match_table = sh_mmcif_of_match,
1600 },
1601};
1602
1603module_platform_driver(sh_mmcif_driver);
1604
1605MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1606MODULE_LICENSE("GPL");
1607MODULE_ALIAS("platform:" DRIVER_NAME);
1608MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1609