linux/drivers/net/ethernet/broadcom/sb1250-mac.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 *
  18 *
  19 * This driver is designed for the Broadcom SiByte SOC built-in
  20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  21 *
  22 * Updated to the driver model and the PHY abstraction layer
  23 * by Maciej W. Rozycki.
  24 */
  25
  26#include <linux/bug.h>
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/timer.h>
  31#include <linux/errno.h>
  32#include <linux/ioport.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/bitops.h>
  39#include <linux/err.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/phy.h>
  43#include <linux/platform_device.h>
  44#include <linux/prefetch.h>
  45
  46#include <asm/cache.h>
  47#include <asm/io.h>
  48#include <asm/processor.h>      /* Processor type for cache alignment. */
  49
  50/* Operational parameters that usually are not changed. */
  51
  52#define CONFIG_SBMAC_COALESCE
  53
  54/* Time in jiffies before concluding the transmitter is hung. */
  55#define TX_TIMEOUT  (2*HZ)
  56
  57
  58MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  59MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  60
  61/* A few user-configurable values which may be modified when a driver
  62   module is loaded. */
  63
  64/* 1 normal messages, 0 quiet .. 7 verbose. */
  65static int debug = 1;
  66module_param(debug, int, S_IRUGO);
  67MODULE_PARM_DESC(debug, "Debug messages");
  68
  69#ifdef CONFIG_SBMAC_COALESCE
  70static int int_pktcnt_tx = 255;
  71module_param(int_pktcnt_tx, int, S_IRUGO);
  72MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  73
  74static int int_timeout_tx = 255;
  75module_param(int_timeout_tx, int, S_IRUGO);
  76MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  77
  78static int int_pktcnt_rx = 64;
  79module_param(int_pktcnt_rx, int, S_IRUGO);
  80MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  81
  82static int int_timeout_rx = 64;
  83module_param(int_timeout_rx, int, S_IRUGO);
  84MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  85#endif
  86
  87#include <asm/sibyte/board.h>
  88#include <asm/sibyte/sb1250.h>
  89#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  90#include <asm/sibyte/bcm1480_regs.h>
  91#include <asm/sibyte/bcm1480_int.h>
  92#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  93#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  94#include <asm/sibyte/sb1250_regs.h>
  95#include <asm/sibyte/sb1250_int.h>
  96#else
  97#error invalid SiByte MAC configuration
  98#endif
  99#include <asm/sibyte/sb1250_scd.h>
 100#include <asm/sibyte/sb1250_mac.h>
 101#include <asm/sibyte/sb1250_dma.h>
 102
 103#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 104#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
 105#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 106#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
 107#else
 108#error invalid SiByte MAC configuration
 109#endif
 110
 111#ifdef K_INT_PHY
 112#define SBMAC_PHY_INT                   K_INT_PHY
 113#else
 114#define SBMAC_PHY_INT                   PHY_POLL
 115#endif
 116
 117/**********************************************************************
 118 *  Simple types
 119 ********************************************************************* */
 120
 121enum sbmac_speed {
 122        sbmac_speed_none = 0,
 123        sbmac_speed_10 = SPEED_10,
 124        sbmac_speed_100 = SPEED_100,
 125        sbmac_speed_1000 = SPEED_1000,
 126};
 127
 128enum sbmac_duplex {
 129        sbmac_duplex_none = -1,
 130        sbmac_duplex_half = DUPLEX_HALF,
 131        sbmac_duplex_full = DUPLEX_FULL,
 132};
 133
 134enum sbmac_fc {
 135        sbmac_fc_none,
 136        sbmac_fc_disabled,
 137        sbmac_fc_frame,
 138        sbmac_fc_collision,
 139        sbmac_fc_carrier,
 140};
 141
 142enum sbmac_state {
 143        sbmac_state_uninit,
 144        sbmac_state_off,
 145        sbmac_state_on,
 146        sbmac_state_broken,
 147};
 148
 149
 150/**********************************************************************
 151 *  Macros
 152 ********************************************************************* */
 153
 154
 155#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 156                          (d)->sbdma_dscrtable : (d)->f+1)
 157
 158
 159#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 160
 161#define SBMAC_MAX_TXDESCR       256
 162#define SBMAC_MAX_RXDESCR       256
 163
 164#define ENET_PACKET_SIZE        1518
 165/*#define ENET_PACKET_SIZE      9216 */
 166
 167/**********************************************************************
 168 *  DMA Descriptor structure
 169 ********************************************************************* */
 170
 171struct sbdmadscr {
 172        uint64_t  dscr_a;
 173        uint64_t  dscr_b;
 174};
 175
 176/**********************************************************************
 177 *  DMA Controller structure
 178 ********************************************************************* */
 179
 180struct sbmacdma {
 181
 182        /*
 183         * This stuff is used to identify the channel and the registers
 184         * associated with it.
 185         */
 186        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 187                                                   MAC */
 188        int                     sbdma_channel;  /* channel number */
 189        int                     sbdma_txdir;    /* direction (1=transmit) */
 190        int                     sbdma_maxdescr; /* total # of descriptors
 191                                                   in ring */
 192#ifdef CONFIG_SBMAC_COALESCE
 193        int                     sbdma_int_pktcnt;
 194                                                /* # descriptors rx/tx
 195                                                   before interrupt */
 196        int                     sbdma_int_timeout;
 197                                                /* # usec rx/tx interrupt */
 198#endif
 199        void __iomem            *sbdma_config0; /* DMA config register 0 */
 200        void __iomem            *sbdma_config1; /* DMA config register 1 */
 201        void __iomem            *sbdma_dscrbase;
 202                                                /* descriptor base address */
 203        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 204        void __iomem            *sbdma_curdscr; /* current descriptor
 205                                                   address */
 206        void __iomem            *sbdma_oodpktlost;
 207                                                /* pkt drop (rx only) */
 208
 209        /*
 210         * This stuff is for maintenance of the ring
 211         */
 212        void                    *sbdma_dscrtable_unaligned;
 213        struct sbdmadscr        *sbdma_dscrtable;
 214                                                /* base of descriptor table */
 215        struct sbdmadscr        *sbdma_dscrtable_end;
 216                                                /* end of descriptor table */
 217        struct sk_buff          **sbdma_ctxtable;
 218                                                /* context table, one
 219                                                   per descr */
 220        dma_addr_t              sbdma_dscrtable_phys;
 221                                                /* and also the phys addr */
 222        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 223        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 224                                                   to remove */
 225};
 226
 227
 228/**********************************************************************
 229 *  Ethernet softc structure
 230 ********************************************************************* */
 231
 232struct sbmac_softc {
 233
 234        /*
 235         * Linux-specific things
 236         */
 237        struct net_device       *sbm_dev;       /* pointer to linux device */
 238        struct napi_struct      napi;
 239        struct phy_device       *phy_dev;       /* the associated PHY device */
 240        struct mii_bus          *mii_bus;       /* the MII bus */
 241        spinlock_t              sbm_lock;       /* spin lock */
 242        int                     sbm_devflags;   /* current device flags */
 243
 244        /*
 245         * Controller-specific things
 246         */
 247        void __iomem            *sbm_base;      /* MAC's base address */
 248        enum sbmac_state        sbm_state;      /* current state */
 249
 250        void __iomem            *sbm_macenable; /* MAC Enable Register */
 251        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 252        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 253        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 254        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 255        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 256        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 257        void __iomem            *sbm_mdio;      /* MDIO Register */
 258
 259        enum sbmac_speed        sbm_speed;      /* current speed */
 260        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 261        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 262        int                     sbm_pause;      /* current pause setting */
 263        int                     sbm_link;       /* current link state */
 264
 265        unsigned char           sbm_hwaddr[ETH_ALEN];
 266
 267        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 268        struct sbmacdma         sbm_rxdma;
 269        int                     rx_hw_checksum;
 270        int                     sbe_idx;
 271};
 272
 273
 274/**********************************************************************
 275 *  Externs
 276 ********************************************************************* */
 277
 278/**********************************************************************
 279 *  Prototypes
 280 ********************************************************************* */
 281
 282static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 283                          int txrx, int maxdescr);
 284static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 285static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 286                               struct sk_buff *m);
 287static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 288static void sbdma_emptyring(struct sbmacdma *d);
 289static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 290static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 291                            int work_to_do, int poll);
 292static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 293                             int poll);
 294static int sbmac_initctx(struct sbmac_softc *s);
 295static void sbmac_channel_start(struct sbmac_softc *s);
 296static void sbmac_channel_stop(struct sbmac_softc *s);
 297static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 298                                                enum sbmac_state);
 299static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 300static uint64_t sbmac_addr2reg(unsigned char *ptr);
 301static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 302static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 303static void sbmac_setmulti(struct sbmac_softc *sc);
 304static int sbmac_init(struct platform_device *pldev, long long base);
 305static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 306static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 307                            enum sbmac_fc fc);
 308
 309static int sbmac_open(struct net_device *dev);
 310static void sbmac_tx_timeout (struct net_device *dev);
 311static void sbmac_set_rx_mode(struct net_device *dev);
 312static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 313static int sbmac_close(struct net_device *dev);
 314static int sbmac_poll(struct napi_struct *napi, int budget);
 315
 316static void sbmac_mii_poll(struct net_device *dev);
 317static int sbmac_mii_probe(struct net_device *dev);
 318
 319static void sbmac_mii_sync(void __iomem *sbm_mdio);
 320static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 321                               int bitcnt);
 322static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 323static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 324                           u16 val);
 325
 326
 327/**********************************************************************
 328 *  Globals
 329 ********************************************************************* */
 330
 331static char sbmac_string[] = "sb1250-mac";
 332
 333static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 334
 335
 336/**********************************************************************
 337 *  MDIO constants
 338 ********************************************************************* */
 339
 340#define MII_COMMAND_START       0x01
 341#define MII_COMMAND_READ        0x02
 342#define MII_COMMAND_WRITE       0x01
 343#define MII_COMMAND_ACK         0x02
 344
 345#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 346
 347#define ENABLE          1
 348#define DISABLE         0
 349
 350/**********************************************************************
 351 *  SBMAC_MII_SYNC(sbm_mdio)
 352 *
 353 *  Synchronize with the MII - send a pattern of bits to the MII
 354 *  that will guarantee that it is ready to accept a command.
 355 *
 356 *  Input parameters:
 357 *         sbm_mdio - address of the MAC's MDIO register
 358 *
 359 *  Return value:
 360 *         nothing
 361 ********************************************************************* */
 362
 363static void sbmac_mii_sync(void __iomem *sbm_mdio)
 364{
 365        int cnt;
 366        uint64_t bits;
 367        int mac_mdio_genc;
 368
 369        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 370
 371        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 372
 373        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 374
 375        for (cnt = 0; cnt < 32; cnt++) {
 376                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 377                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 378        }
 379}
 380
 381/**********************************************************************
 382 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 383 *
 384 *  Send some bits to the MII.  The bits to be sent are right-
 385 *  justified in the 'data' parameter.
 386 *
 387 *  Input parameters:
 388 *         sbm_mdio - address of the MAC's MDIO register
 389 *         data     - data to send
 390 *         bitcnt   - number of bits to send
 391 ********************************************************************* */
 392
 393static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 394                               int bitcnt)
 395{
 396        int i;
 397        uint64_t bits;
 398        unsigned int curmask;
 399        int mac_mdio_genc;
 400
 401        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 402
 403        bits = M_MAC_MDIO_DIR_OUTPUT;
 404        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 405
 406        curmask = 1 << (bitcnt - 1);
 407
 408        for (i = 0; i < bitcnt; i++) {
 409                if (data & curmask)
 410                        bits |= M_MAC_MDIO_OUT;
 411                else bits &= ~M_MAC_MDIO_OUT;
 412                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 413                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 414                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 415                curmask >>= 1;
 416        }
 417}
 418
 419
 420
 421/**********************************************************************
 422 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 423 *  Read a PHY register.
 424 *
 425 *  Input parameters:
 426 *         bus     - MDIO bus handle
 427 *         phyaddr - PHY's address
 428 *         regnum  - index of register to read
 429 *
 430 *  Return value:
 431 *         value read, or 0xffff if an error occurred.
 432 ********************************************************************* */
 433
 434static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 435{
 436        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 437        void __iomem *sbm_mdio = sc->sbm_mdio;
 438        int idx;
 439        int error;
 440        int regval;
 441        int mac_mdio_genc;
 442
 443        /*
 444         * Synchronize ourselves so that the PHY knows the next
 445         * thing coming down is a command
 446         */
 447        sbmac_mii_sync(sbm_mdio);
 448
 449        /*
 450         * Send the data to the PHY.  The sequence is
 451         * a "start" command (2 bits)
 452         * a "read" command (2 bits)
 453         * the PHY addr (5 bits)
 454         * the register index (5 bits)
 455         */
 456        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 457        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 458        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 459        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 460
 461        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 462
 463        /*
 464         * Switch the port around without a clock transition.
 465         */
 466        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 467
 468        /*
 469         * Send out a clock pulse to signal we want the status
 470         */
 471        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 472                     sbm_mdio);
 473        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 474
 475        /*
 476         * If an error occurred, the PHY will signal '1' back
 477         */
 478        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 479
 480        /*
 481         * Issue an 'idle' clock pulse, but keep the direction
 482         * the same.
 483         */
 484        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 485                     sbm_mdio);
 486        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 487
 488        regval = 0;
 489
 490        for (idx = 0; idx < 16; idx++) {
 491                regval <<= 1;
 492
 493                if (error == 0) {
 494                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 495                                regval |= 1;
 496                }
 497
 498                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 499                             sbm_mdio);
 500                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 501        }
 502
 503        /* Switch back to output */
 504        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 505
 506        if (error == 0)
 507                return regval;
 508        return 0xffff;
 509}
 510
 511
 512/**********************************************************************
 513 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 514 *
 515 *  Write a value to a PHY register.
 516 *
 517 *  Input parameters:
 518 *         bus     - MDIO bus handle
 519 *         phyaddr - PHY to use
 520 *         regidx  - register within the PHY
 521 *         regval  - data to write to register
 522 *
 523 *  Return value:
 524 *         0 for success
 525 ********************************************************************* */
 526
 527static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 528                           u16 regval)
 529{
 530        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 531        void __iomem *sbm_mdio = sc->sbm_mdio;
 532        int mac_mdio_genc;
 533
 534        sbmac_mii_sync(sbm_mdio);
 535
 536        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 537        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 538        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 539        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 540        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 541        sbmac_mii_senddata(sbm_mdio, regval, 16);
 542
 543        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 544
 545        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 546
 547        return 0;
 548}
 549
 550
 551
 552/**********************************************************************
 553 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 554 *
 555 *  Initialize a DMA channel context.  Since there are potentially
 556 *  eight DMA channels per MAC, it's nice to do this in a standard
 557 *  way.
 558 *
 559 *  Input parameters:
 560 *         d - struct sbmacdma (DMA channel context)
 561 *         s - struct sbmac_softc (pointer to a MAC)
 562 *         chan - channel number (0..1 right now)
 563 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 564 *      maxdescr - number of descriptors
 565 *
 566 *  Return value:
 567 *         nothing
 568 ********************************************************************* */
 569
 570static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 571                          int txrx, int maxdescr)
 572{
 573#ifdef CONFIG_SBMAC_COALESCE
 574        int int_pktcnt, int_timeout;
 575#endif
 576
 577        /*
 578         * Save away interesting stuff in the structure
 579         */
 580
 581        d->sbdma_eth       = s;
 582        d->sbdma_channel   = chan;
 583        d->sbdma_txdir     = txrx;
 584
 585#if 0
 586        /* RMON clearing */
 587        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 588#endif
 589
 590        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 591        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 592        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 593        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 598        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 599        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 600        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 601        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 602        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 603        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 604        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 605        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 606        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 607        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 608        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 609        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 610        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 611
 612        /*
 613         * initialize register pointers
 614         */
 615
 616        d->sbdma_config0 =
 617                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 618        d->sbdma_config1 =
 619                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 620        d->sbdma_dscrbase =
 621                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 622        d->sbdma_dscrcnt =
 623                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 624        d->sbdma_curdscr =
 625                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 626        if (d->sbdma_txdir)
 627                d->sbdma_oodpktlost = NULL;
 628        else
 629                d->sbdma_oodpktlost =
 630                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 631
 632        /*
 633         * Allocate memory for the ring
 634         */
 635
 636        d->sbdma_maxdescr = maxdescr;
 637
 638        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 639                                               sizeof(*d->sbdma_dscrtable),
 640                                               GFP_KERNEL);
 641
 642        /*
 643         * The descriptor table must be aligned to at least 16 bytes or the
 644         * MAC will corrupt it.
 645         */
 646        d->sbdma_dscrtable = (struct sbdmadscr *)
 647                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 648                                   sizeof(*d->sbdma_dscrtable));
 649
 650        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 651
 652        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 653
 654        /*
 655         * And context table
 656         */
 657
 658        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 659                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 660
 661#ifdef CONFIG_SBMAC_COALESCE
 662        /*
 663         * Setup Rx/Tx DMA coalescing defaults
 664         */
 665
 666        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 667        if ( int_pktcnt ) {
 668                d->sbdma_int_pktcnt = int_pktcnt;
 669        } else {
 670                d->sbdma_int_pktcnt = 1;
 671        }
 672
 673        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 674        if ( int_timeout ) {
 675                d->sbdma_int_timeout = int_timeout;
 676        } else {
 677                d->sbdma_int_timeout = 0;
 678        }
 679#endif
 680
 681}
 682
 683/**********************************************************************
 684 *  SBDMA_CHANNEL_START(d)
 685 *
 686 *  Initialize the hardware registers for a DMA channel.
 687 *
 688 *  Input parameters:
 689 *         d - DMA channel to init (context must be previously init'd
 690 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 691 *
 692 *  Return value:
 693 *         nothing
 694 ********************************************************************* */
 695
 696static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 697{
 698        /*
 699         * Turn on the DMA channel
 700         */
 701
 702#ifdef CONFIG_SBMAC_COALESCE
 703        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 704                       0, d->sbdma_config1);
 705        __raw_writeq(M_DMA_EOP_INT_EN |
 706                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 707                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 708                       0, d->sbdma_config0);
 709#else
 710        __raw_writeq(0, d->sbdma_config1);
 711        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 712                       0, d->sbdma_config0);
 713#endif
 714
 715        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 716
 717        /*
 718         * Initialize ring pointers
 719         */
 720
 721        d->sbdma_addptr = d->sbdma_dscrtable;
 722        d->sbdma_remptr = d->sbdma_dscrtable;
 723}
 724
 725/**********************************************************************
 726 *  SBDMA_CHANNEL_STOP(d)
 727 *
 728 *  Initialize the hardware registers for a DMA channel.
 729 *
 730 *  Input parameters:
 731 *         d - DMA channel to init (context must be previously init'd
 732 *
 733 *  Return value:
 734 *         nothing
 735 ********************************************************************* */
 736
 737static void sbdma_channel_stop(struct sbmacdma *d)
 738{
 739        /*
 740         * Turn off the DMA channel
 741         */
 742
 743        __raw_writeq(0, d->sbdma_config1);
 744
 745        __raw_writeq(0, d->sbdma_dscrbase);
 746
 747        __raw_writeq(0, d->sbdma_config0);
 748
 749        /*
 750         * Zero ring pointers
 751         */
 752
 753        d->sbdma_addptr = NULL;
 754        d->sbdma_remptr = NULL;
 755}
 756
 757static inline void sbdma_align_skb(struct sk_buff *skb,
 758                                   unsigned int power2, unsigned int offset)
 759{
 760        unsigned char *addr = skb->data;
 761        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 762
 763        skb_reserve(skb, newaddr - addr + offset);
 764}
 765
 766
 767/**********************************************************************
 768 *  SBDMA_ADD_RCVBUFFER(d,sb)
 769 *
 770 *  Add a buffer to the specified DMA channel.   For receive channels,
 771 *  this queues a buffer for inbound packets.
 772 *
 773 *  Input parameters:
 774 *         sc - softc structure
 775 *          d - DMA channel descriptor
 776 *         sb - sk_buff to add, or NULL if we should allocate one
 777 *
 778 *  Return value:
 779 *         0 if buffer could not be added (ring is full)
 780 *         1 if buffer added successfully
 781 ********************************************************************* */
 782
 783
 784static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 785                               struct sk_buff *sb)
 786{
 787        struct net_device *dev = sc->sbm_dev;
 788        struct sbdmadscr *dsc;
 789        struct sbdmadscr *nextdsc;
 790        struct sk_buff *sb_new = NULL;
 791        int pktsize = ENET_PACKET_SIZE;
 792
 793        /* get pointer to our current place in the ring */
 794
 795        dsc = d->sbdma_addptr;
 796        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 797
 798        /*
 799         * figure out if the ring is full - if the next descriptor
 800         * is the same as the one that we're going to remove from
 801         * the ring, the ring is full
 802         */
 803
 804        if (nextdsc == d->sbdma_remptr) {
 805                return -ENOSPC;
 806        }
 807
 808        /*
 809         * Allocate a sk_buff if we don't already have one.
 810         * If we do have an sk_buff, reset it so that it's empty.
 811         *
 812         * Note: sk_buffs don't seem to be guaranteed to have any sort
 813         * of alignment when they are allocated.  Therefore, allocate enough
 814         * extra space to make sure that:
 815         *
 816         *    1. the data does not start in the middle of a cache line.
 817         *    2. The data does not end in the middle of a cache line
 818         *    3. The buffer can be aligned such that the IP addresses are
 819         *       naturally aligned.
 820         *
 821         *  Remember, the SOCs MAC writes whole cache lines at a time,
 822         *  without reading the old contents first.  So, if the sk_buff's
 823         *  data portion starts in the middle of a cache line, the SOC
 824         *  DMA will trash the beginning (and ending) portions.
 825         */
 826
 827        if (sb == NULL) {
 828                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 829                                               SMP_CACHE_BYTES * 2 +
 830                                               NET_IP_ALIGN);
 831                if (sb_new == NULL)
 832                        return -ENOBUFS;
 833
 834                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 835        }
 836        else {
 837                sb_new = sb;
 838                /*
 839                 * nothing special to reinit buffer, it's already aligned
 840                 * and sb->data already points to a good place.
 841                 */
 842        }
 843
 844        /*
 845         * fill in the descriptor
 846         */
 847
 848#ifdef CONFIG_SBMAC_COALESCE
 849        /*
 850         * Do not interrupt per DMA transfer.
 851         */
 852        dsc->dscr_a = virt_to_phys(sb_new->data) |
 853                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 854#else
 855        dsc->dscr_a = virt_to_phys(sb_new->data) |
 856                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 857                M_DMA_DSCRA_INTERRUPT;
 858#endif
 859
 860        /* receiving: no options */
 861        dsc->dscr_b = 0;
 862
 863        /*
 864         * fill in the context
 865         */
 866
 867        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 868
 869        /*
 870         * point at next packet
 871         */
 872
 873        d->sbdma_addptr = nextdsc;
 874
 875        /*
 876         * Give the buffer to the DMA engine.
 877         */
 878
 879        __raw_writeq(1, d->sbdma_dscrcnt);
 880
 881        return 0;                                       /* we did it */
 882}
 883
 884/**********************************************************************
 885 *  SBDMA_ADD_TXBUFFER(d,sb)
 886 *
 887 *  Add a transmit buffer to the specified DMA channel, causing a
 888 *  transmit to start.
 889 *
 890 *  Input parameters:
 891 *         d - DMA channel descriptor
 892 *         sb - sk_buff to add
 893 *
 894 *  Return value:
 895 *         0 transmit queued successfully
 896 *         otherwise error code
 897 ********************************************************************* */
 898
 899
 900static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 901{
 902        struct sbdmadscr *dsc;
 903        struct sbdmadscr *nextdsc;
 904        uint64_t phys;
 905        uint64_t ncb;
 906        int length;
 907
 908        /* get pointer to our current place in the ring */
 909
 910        dsc = d->sbdma_addptr;
 911        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 912
 913        /*
 914         * figure out if the ring is full - if the next descriptor
 915         * is the same as the one that we're going to remove from
 916         * the ring, the ring is full
 917         */
 918
 919        if (nextdsc == d->sbdma_remptr) {
 920                return -ENOSPC;
 921        }
 922
 923        /*
 924         * Under Linux, it's not necessary to copy/coalesce buffers
 925         * like it is on NetBSD.  We think they're all contiguous,
 926         * but that may not be true for GBE.
 927         */
 928
 929        length = sb->len;
 930
 931        /*
 932         * fill in the descriptor.  Note that the number of cache
 933         * blocks in the descriptor is the number of blocks
 934         * *spanned*, so we need to add in the offset (if any)
 935         * while doing the calculation.
 936         */
 937
 938        phys = virt_to_phys(sb->data);
 939        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 940
 941        dsc->dscr_a = phys |
 942                V_DMA_DSCRA_A_SIZE(ncb) |
 943#ifndef CONFIG_SBMAC_COALESCE
 944                M_DMA_DSCRA_INTERRUPT |
 945#endif
 946                M_DMA_ETHTX_SOP;
 947
 948        /* transmitting: set outbound options and length */
 949
 950        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 951                V_DMA_DSCRB_PKT_SIZE(length);
 952
 953        /*
 954         * fill in the context
 955         */
 956
 957        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 958
 959        /*
 960         * point at next packet
 961         */
 962
 963        d->sbdma_addptr = nextdsc;
 964
 965        /*
 966         * Give the buffer to the DMA engine.
 967         */
 968
 969        __raw_writeq(1, d->sbdma_dscrcnt);
 970
 971        return 0;                                       /* we did it */
 972}
 973
 974
 975
 976
 977/**********************************************************************
 978 *  SBDMA_EMPTYRING(d)
 979 *
 980 *  Free all allocated sk_buffs on the specified DMA channel;
 981 *
 982 *  Input parameters:
 983 *         d  - DMA channel
 984 *
 985 *  Return value:
 986 *         nothing
 987 ********************************************************************* */
 988
 989static void sbdma_emptyring(struct sbmacdma *d)
 990{
 991        int idx;
 992        struct sk_buff *sb;
 993
 994        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 995                sb = d->sbdma_ctxtable[idx];
 996                if (sb) {
 997                        dev_kfree_skb(sb);
 998                        d->sbdma_ctxtable[idx] = NULL;
 999                }
1000        }
1001}
1002
1003
1004/**********************************************************************
1005 *  SBDMA_FILLRING(d)
1006 *
1007 *  Fill the specified DMA channel (must be receive channel)
1008 *  with sk_buffs
1009 *
1010 *  Input parameters:
1011 *         sc - softc structure
1012 *          d - DMA channel
1013 *
1014 *  Return value:
1015 *         nothing
1016 ********************************************************************* */
1017
1018static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019{
1020        int idx;
1021
1022        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024                        break;
1025        }
1026}
1027
1028#ifdef CONFIG_NET_POLL_CONTROLLER
1029static void sbmac_netpoll(struct net_device *netdev)
1030{
1031        struct sbmac_softc *sc = netdev_priv(netdev);
1032        int irq = sc->sbm_dev->irq;
1033
1034        __raw_writeq(0, sc->sbm_imr);
1035
1036        sbmac_intr(irq, netdev);
1037
1038#ifdef CONFIG_SBMAC_COALESCE
1039        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041        sc->sbm_imr);
1042#else
1043        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045#endif
1046}
1047#endif
1048
1049/**********************************************************************
1050 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051 *
1052 *  Process "completed" receive buffers on the specified DMA channel.
1053 *
1054 *  Input parameters:
1055 *            sc - softc structure
1056 *             d - DMA channel context
1057 *    work_to_do - no. of packets to process before enabling interrupt
1058 *                 again (for NAPI)
1059 *          poll - 1: using polling (for NAPI)
1060 *
1061 *  Return value:
1062 *         nothing
1063 ********************************************************************* */
1064
1065static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066                            int work_to_do, int poll)
1067{
1068        struct net_device *dev = sc->sbm_dev;
1069        int curidx;
1070        int hwidx;
1071        struct sbdmadscr *dsc;
1072        struct sk_buff *sb;
1073        int len;
1074        int work_done = 0;
1075        int dropped = 0;
1076
1077        prefetch(d);
1078
1079again:
1080        /* Check if the HW dropped any frames */
1081        dev->stats.rx_fifo_errors
1082            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084
1085        while (work_to_do-- > 0) {
1086                /*
1087                 * figure out where we are (as an index) and where
1088                 * the hardware is (also as an index)
1089                 *
1090                 * This could be done faster if (for example) the
1091                 * descriptor table was page-aligned and contiguous in
1092                 * both virtual and physical memory -- you could then
1093                 * just compare the low-order bits of the virtual address
1094                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095                 */
1096
1097                dsc = d->sbdma_remptr;
1098                curidx = dsc - d->sbdma_dscrtable;
1099
1100                prefetch(dsc);
1101                prefetch(&d->sbdma_ctxtable[curidx]);
1102
1103                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104                         d->sbdma_dscrtable_phys) /
1105                        sizeof(*d->sbdma_dscrtable);
1106
1107                /*
1108                 * If they're the same, that means we've processed all
1109                 * of the descriptors up to (but not including) the one that
1110                 * the hardware is working on right now.
1111                 */
1112
1113                if (curidx == hwidx)
1114                        goto done;
1115
1116                /*
1117                 * Otherwise, get the packet's sk_buff ptr back
1118                 */
1119
1120                sb = d->sbdma_ctxtable[curidx];
1121                d->sbdma_ctxtable[curidx] = NULL;
1122
1123                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124
1125                /*
1126                 * Check packet status.  If good, process it.
1127                 * If not, silently drop it and put it back on the
1128                 * receive ring.
1129                 */
1130
1131                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132
1133                        /*
1134                         * Add a new buffer to replace the old one.  If we fail
1135                         * to allocate a buffer, we're going to drop this
1136                         * packet and put it right back on the receive ring.
1137                         */
1138
1139                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140                                     -ENOBUFS)) {
1141                                dev->stats.rx_dropped++;
1142                                /* Re-add old buffer */
1143                                sbdma_add_rcvbuffer(sc, d, sb);
1144                                /* No point in continuing at the moment */
1145                                printk(KERN_ERR "dropped packet (1)\n");
1146                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147                                goto done;
1148                        } else {
1149                                /*
1150                                 * Set length into the packet
1151                                 */
1152                                skb_put(sb,len);
1153
1154                                /*
1155                                 * Buffer has been replaced on the
1156                                 * receive ring.  Pass the buffer to
1157                                 * the kernel
1158                                 */
1159                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160                                /* Check hw IPv4/TCP checksum if supported */
1161                                if (sc->rx_hw_checksum == ENABLE) {
1162                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1165                                                /* don't need to set sb->csum */
1166                                        } else {
1167                                                skb_checksum_none_assert(sb);
1168                                        }
1169                                }
1170                                prefetch(sb->data);
1171                                prefetch((const void *)(((char *)sb->data)+32));
1172                                if (poll)
1173                                        dropped = netif_receive_skb(sb);
1174                                else
1175                                        dropped = netif_rx(sb);
1176
1177                                if (dropped == NET_RX_DROP) {
1178                                        dev->stats.rx_dropped++;
1179                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180                                        goto done;
1181                                }
1182                                else {
1183                                        dev->stats.rx_bytes += len;
1184                                        dev->stats.rx_packets++;
1185                                }
1186                        }
1187                } else {
1188                        /*
1189                         * Packet was mangled somehow.  Just drop it and
1190                         * put it back on the receive ring.
1191                         */
1192                        dev->stats.rx_errors++;
1193                        sbdma_add_rcvbuffer(sc, d, sb);
1194                }
1195
1196
1197                /*
1198                 * .. and advance to the next buffer.
1199                 */
1200
1201                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202                work_done++;
1203        }
1204        if (!poll) {
1205                work_to_do = 32;
1206                goto again; /* collect fifo drop statistics again */
1207        }
1208done:
1209        return work_done;
1210}
1211
1212/**********************************************************************
1213 *  SBDMA_TX_PROCESS(sc,d)
1214 *
1215 *  Process "completed" transmit buffers on the specified DMA channel.
1216 *  This is normally called within the interrupt service routine.
1217 *  Note that this isn't really ideal for priority channels, since
1218 *  it processes all of the packets on a given channel before
1219 *  returning.
1220 *
1221 *  Input parameters:
1222 *      sc - softc structure
1223 *       d - DMA channel context
1224 *    poll - 1: using polling (for NAPI)
1225 *
1226 *  Return value:
1227 *         nothing
1228 ********************************************************************* */
1229
1230static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231                             int poll)
1232{
1233        struct net_device *dev = sc->sbm_dev;
1234        int curidx;
1235        int hwidx;
1236        struct sbdmadscr *dsc;
1237        struct sk_buff *sb;
1238        unsigned long flags;
1239        int packets_handled = 0;
1240
1241        spin_lock_irqsave(&(sc->sbm_lock), flags);
1242
1243        if (d->sbdma_remptr == d->sbdma_addptr)
1244          goto end_unlock;
1245
1246        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248
1249        for (;;) {
1250                /*
1251                 * figure out where we are (as an index) and where
1252                 * the hardware is (also as an index)
1253                 *
1254                 * This could be done faster if (for example) the
1255                 * descriptor table was page-aligned and contiguous in
1256                 * both virtual and physical memory -- you could then
1257                 * just compare the low-order bits of the virtual address
1258                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259                 */
1260
1261                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262
1263                /*
1264                 * If they're the same, that means we've processed all
1265                 * of the descriptors up to (but not including) the one that
1266                 * the hardware is working on right now.
1267                 */
1268
1269                if (curidx == hwidx)
1270                        break;
1271
1272                /*
1273                 * Otherwise, get the packet's sk_buff ptr back
1274                 */
1275
1276                dsc = &(d->sbdma_dscrtable[curidx]);
1277                sb = d->sbdma_ctxtable[curidx];
1278                d->sbdma_ctxtable[curidx] = NULL;
1279
1280                /*
1281                 * Stats
1282                 */
1283
1284                dev->stats.tx_bytes += sb->len;
1285                dev->stats.tx_packets++;
1286
1287                /*
1288                 * for transmits, we just free buffers.
1289                 */
1290
1291                dev_kfree_skb_irq(sb);
1292
1293                /*
1294                 * .. and advance to the next buffer.
1295                 */
1296
1297                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298
1299                packets_handled++;
1300
1301        }
1302
1303        /*
1304         * Decide if we should wake up the protocol or not.
1305         * Other drivers seem to do this when we reach a low
1306         * watermark on the transmit queue.
1307         */
1308
1309        if (packets_handled)
1310                netif_wake_queue(d->sbdma_eth->sbm_dev);
1311
1312end_unlock:
1313        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314
1315}
1316
1317
1318
1319/**********************************************************************
1320 *  SBMAC_INITCTX(s)
1321 *
1322 *  Initialize an Ethernet context structure - this is called
1323 *  once per MAC on the 1250.  Memory is allocated here, so don't
1324 *  call it again from inside the ioctl routines that bring the
1325 *  interface up/down
1326 *
1327 *  Input parameters:
1328 *         s - sbmac context structure
1329 *
1330 *  Return value:
1331 *         0
1332 ********************************************************************* */
1333
1334static int sbmac_initctx(struct sbmac_softc *s)
1335{
1336
1337        /*
1338         * figure out the addresses of some ports
1339         */
1340
1341        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349
1350        /*
1351         * Initialize the DMA channels.  Right now, only one per MAC is used
1352         * Note: Only do this _once_, as it allocates memory from the kernel!
1353         */
1354
1355        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357
1358        /*
1359         * initial state is OFF
1360         */
1361
1362        s->sbm_state = sbmac_state_off;
1363
1364        return 0;
1365}
1366
1367
1368static void sbdma_uninitctx(struct sbmacdma *d)
1369{
1370        if (d->sbdma_dscrtable_unaligned) {
1371                kfree(d->sbdma_dscrtable_unaligned);
1372                d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1373        }
1374
1375        if (d->sbdma_ctxtable) {
1376                kfree(d->sbdma_ctxtable);
1377                d->sbdma_ctxtable = NULL;
1378        }
1379}
1380
1381
1382static void sbmac_uninitctx(struct sbmac_softc *sc)
1383{
1384        sbdma_uninitctx(&(sc->sbm_txdma));
1385        sbdma_uninitctx(&(sc->sbm_rxdma));
1386}
1387
1388
1389/**********************************************************************
1390 *  SBMAC_CHANNEL_START(s)
1391 *
1392 *  Start packet processing on this MAC.
1393 *
1394 *  Input parameters:
1395 *         s - sbmac structure
1396 *
1397 *  Return value:
1398 *         nothing
1399 ********************************************************************* */
1400
1401static void sbmac_channel_start(struct sbmac_softc *s)
1402{
1403        uint64_t reg;
1404        void __iomem *port;
1405        uint64_t cfg,fifo,framecfg;
1406        int idx, th_value;
1407
1408        /*
1409         * Don't do this if running
1410         */
1411
1412        if (s->sbm_state == sbmac_state_on)
1413                return;
1414
1415        /*
1416         * Bring the controller out of reset, but leave it off.
1417         */
1418
1419        __raw_writeq(0, s->sbm_macenable);
1420
1421        /*
1422         * Ignore all received packets
1423         */
1424
1425        __raw_writeq(0, s->sbm_rxfilter);
1426
1427        /*
1428         * Calculate values for various control registers.
1429         */
1430
1431        cfg = M_MAC_RETRY_EN |
1432                M_MAC_TX_HOLD_SOP_EN |
1433                V_MAC_TX_PAUSE_CNT_16K |
1434                M_MAC_AP_STAT_EN |
1435                M_MAC_FAST_SYNC |
1436                M_MAC_SS_EN |
1437                0;
1438
1439        /*
1440         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1441         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1442         * Use a larger RD_THRSH for gigabit
1443         */
1444        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1445                th_value = 28;
1446        else
1447                th_value = 64;
1448
1449        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1450                ((s->sbm_speed == sbmac_speed_1000)
1451                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1452                V_MAC_TX_RL_THRSH(4) |
1453                V_MAC_RX_PL_THRSH(4) |
1454                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1455                V_MAC_RX_RL_THRSH(8) |
1456                0;
1457
1458        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1459                V_MAC_MAX_FRAMESZ_DEFAULT |
1460                V_MAC_BACKOFF_SEL(1);
1461
1462        /*
1463         * Clear out the hash address map
1464         */
1465
1466        port = s->sbm_base + R_MAC_HASH_BASE;
1467        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1468                __raw_writeq(0, port);
1469                port += sizeof(uint64_t);
1470        }
1471
1472        /*
1473         * Clear out the exact-match table
1474         */
1475
1476        port = s->sbm_base + R_MAC_ADDR_BASE;
1477        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1478                __raw_writeq(0, port);
1479                port += sizeof(uint64_t);
1480        }
1481
1482        /*
1483         * Clear out the DMA Channel mapping table registers
1484         */
1485
1486        port = s->sbm_base + R_MAC_CHUP0_BASE;
1487        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1488                __raw_writeq(0, port);
1489                port += sizeof(uint64_t);
1490        }
1491
1492
1493        port = s->sbm_base + R_MAC_CHLO0_BASE;
1494        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495                __raw_writeq(0, port);
1496                port += sizeof(uint64_t);
1497        }
1498
1499        /*
1500         * Program the hardware address.  It goes into the hardware-address
1501         * register as well as the first filter register.
1502         */
1503
1504        reg = sbmac_addr2reg(s->sbm_hwaddr);
1505
1506        port = s->sbm_base + R_MAC_ADDR_BASE;
1507        __raw_writeq(reg, port);
1508        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1509
1510        __raw_writeq(reg, port);
1511
1512        /*
1513         * Set the receive filter for no packets, and write values
1514         * to the various config registers
1515         */
1516
1517        __raw_writeq(0, s->sbm_rxfilter);
1518        __raw_writeq(0, s->sbm_imr);
1519        __raw_writeq(framecfg, s->sbm_framecfg);
1520        __raw_writeq(fifo, s->sbm_fifocfg);
1521        __raw_writeq(cfg, s->sbm_maccfg);
1522
1523        /*
1524         * Initialize DMA channels (rings should be ok now)
1525         */
1526
1527        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1528        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1529
1530        /*
1531         * Configure the speed, duplex, and flow control
1532         */
1533
1534        sbmac_set_speed(s,s->sbm_speed);
1535        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1536
1537        /*
1538         * Fill the receive ring
1539         */
1540
1541        sbdma_fillring(s, &(s->sbm_rxdma));
1542
1543        /*
1544         * Turn on the rest of the bits in the enable register
1545         */
1546
1547#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1548        __raw_writeq(M_MAC_RXDMA_EN0 |
1549                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1550#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1551        __raw_writeq(M_MAC_RXDMA_EN0 |
1552                       M_MAC_TXDMA_EN0 |
1553                       M_MAC_RX_ENABLE |
1554                       M_MAC_TX_ENABLE, s->sbm_macenable);
1555#else
1556#error invalid SiByte MAC configuration
1557#endif
1558
1559#ifdef CONFIG_SBMAC_COALESCE
1560        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1561                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1562#else
1563        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1564                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1565#endif
1566
1567        /*
1568         * Enable receiving unicasts and broadcasts
1569         */
1570
1571        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1572
1573        /*
1574         * we're running now.
1575         */
1576
1577        s->sbm_state = sbmac_state_on;
1578
1579        /*
1580         * Program multicast addresses
1581         */
1582
1583        sbmac_setmulti(s);
1584
1585        /*
1586         * If channel was in promiscuous mode before, turn that on
1587         */
1588
1589        if (s->sbm_devflags & IFF_PROMISC) {
1590                sbmac_promiscuous_mode(s,1);
1591        }
1592
1593}
1594
1595
1596/**********************************************************************
1597 *  SBMAC_CHANNEL_STOP(s)
1598 *
1599 *  Stop packet processing on this MAC.
1600 *
1601 *  Input parameters:
1602 *         s - sbmac structure
1603 *
1604 *  Return value:
1605 *         nothing
1606 ********************************************************************* */
1607
1608static void sbmac_channel_stop(struct sbmac_softc *s)
1609{
1610        /* don't do this if already stopped */
1611
1612        if (s->sbm_state == sbmac_state_off)
1613                return;
1614
1615        /* don't accept any packets, disable all interrupts */
1616
1617        __raw_writeq(0, s->sbm_rxfilter);
1618        __raw_writeq(0, s->sbm_imr);
1619
1620        /* Turn off ticker */
1621
1622        /* XXX */
1623
1624        /* turn off receiver and transmitter */
1625
1626        __raw_writeq(0, s->sbm_macenable);
1627
1628        /* We're stopped now. */
1629
1630        s->sbm_state = sbmac_state_off;
1631
1632        /*
1633         * Stop DMA channels (rings should be ok now)
1634         */
1635
1636        sbdma_channel_stop(&(s->sbm_rxdma));
1637        sbdma_channel_stop(&(s->sbm_txdma));
1638
1639        /* Empty the receive and transmit rings */
1640
1641        sbdma_emptyring(&(s->sbm_rxdma));
1642        sbdma_emptyring(&(s->sbm_txdma));
1643
1644}
1645
1646/**********************************************************************
1647 *  SBMAC_SET_CHANNEL_STATE(state)
1648 *
1649 *  Set the channel's state ON or OFF
1650 *
1651 *  Input parameters:
1652 *         state - new state
1653 *
1654 *  Return value:
1655 *         old state
1656 ********************************************************************* */
1657static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1658                                                enum sbmac_state state)
1659{
1660        enum sbmac_state oldstate = sc->sbm_state;
1661
1662        /*
1663         * If same as previous state, return
1664         */
1665
1666        if (state == oldstate) {
1667                return oldstate;
1668        }
1669
1670        /*
1671         * If new state is ON, turn channel on
1672         */
1673
1674        if (state == sbmac_state_on) {
1675                sbmac_channel_start(sc);
1676        }
1677        else {
1678                sbmac_channel_stop(sc);
1679        }
1680
1681        /*
1682         * Return previous state
1683         */
1684
1685        return oldstate;
1686}
1687
1688
1689/**********************************************************************
1690 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1691 *
1692 *  Turn on or off promiscuous mode
1693 *
1694 *  Input parameters:
1695 *         sc - softc
1696 *      onoff - 1 to turn on, 0 to turn off
1697 *
1698 *  Return value:
1699 *         nothing
1700 ********************************************************************* */
1701
1702static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1703{
1704        uint64_t reg;
1705
1706        if (sc->sbm_state != sbmac_state_on)
1707                return;
1708
1709        if (onoff) {
1710                reg = __raw_readq(sc->sbm_rxfilter);
1711                reg |= M_MAC_ALLPKT_EN;
1712                __raw_writeq(reg, sc->sbm_rxfilter);
1713        }
1714        else {
1715                reg = __raw_readq(sc->sbm_rxfilter);
1716                reg &= ~M_MAC_ALLPKT_EN;
1717                __raw_writeq(reg, sc->sbm_rxfilter);
1718        }
1719}
1720
1721/**********************************************************************
1722 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1723 *
1724 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1725 *
1726 *  Input parameters:
1727 *         sc - softc
1728 *
1729 *  Return value:
1730 *         nothing
1731 ********************************************************************* */
1732
1733static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1734{
1735        uint64_t reg;
1736
1737        /* Hard code the off set to 15 for now */
1738        reg = __raw_readq(sc->sbm_rxfilter);
1739        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1740        __raw_writeq(reg, sc->sbm_rxfilter);
1741
1742        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1743           later does.  */
1744        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1745                sc->rx_hw_checksum = DISABLE;
1746        } else {
1747                sc->rx_hw_checksum = ENABLE;
1748        }
1749}
1750
1751
1752/**********************************************************************
1753 *  SBMAC_ADDR2REG(ptr)
1754 *
1755 *  Convert six bytes into the 64-bit register value that
1756 *  we typically write into the SBMAC's address/mcast registers
1757 *
1758 *  Input parameters:
1759 *         ptr - pointer to 6 bytes
1760 *
1761 *  Return value:
1762 *         register value
1763 ********************************************************************* */
1764
1765static uint64_t sbmac_addr2reg(unsigned char *ptr)
1766{
1767        uint64_t reg = 0;
1768
1769        ptr += 6;
1770
1771        reg |= (uint64_t) *(--ptr);
1772        reg <<= 8;
1773        reg |= (uint64_t) *(--ptr);
1774        reg <<= 8;
1775        reg |= (uint64_t) *(--ptr);
1776        reg <<= 8;
1777        reg |= (uint64_t) *(--ptr);
1778        reg <<= 8;
1779        reg |= (uint64_t) *(--ptr);
1780        reg <<= 8;
1781        reg |= (uint64_t) *(--ptr);
1782
1783        return reg;
1784}
1785
1786
1787/**********************************************************************
1788 *  SBMAC_SET_SPEED(s,speed)
1789 *
1790 *  Configure LAN speed for the specified MAC.
1791 *  Warning: must be called when MAC is off!
1792 *
1793 *  Input parameters:
1794 *         s - sbmac structure
1795 *         speed - speed to set MAC to (see enum sbmac_speed)
1796 *
1797 *  Return value:
1798 *         1 if successful
1799 *      0 indicates invalid parameters
1800 ********************************************************************* */
1801
1802static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1803{
1804        uint64_t cfg;
1805        uint64_t framecfg;
1806
1807        /*
1808         * Save new current values
1809         */
1810
1811        s->sbm_speed = speed;
1812
1813        if (s->sbm_state == sbmac_state_on)
1814                return 0;       /* save for next restart */
1815
1816        /*
1817         * Read current register values
1818         */
1819
1820        cfg = __raw_readq(s->sbm_maccfg);
1821        framecfg = __raw_readq(s->sbm_framecfg);
1822
1823        /*
1824         * Mask out the stuff we want to change
1825         */
1826
1827        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1828        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1829                      M_MAC_SLOT_SIZE);
1830
1831        /*
1832         * Now add in the new bits
1833         */
1834
1835        switch (speed) {
1836        case sbmac_speed_10:
1837                framecfg |= V_MAC_IFG_RX_10 |
1838                        V_MAC_IFG_TX_10 |
1839                        K_MAC_IFG_THRSH_10 |
1840                        V_MAC_SLOT_SIZE_10;
1841                cfg |= V_MAC_SPEED_SEL_10MBPS;
1842                break;
1843
1844        case sbmac_speed_100:
1845                framecfg |= V_MAC_IFG_RX_100 |
1846                        V_MAC_IFG_TX_100 |
1847                        V_MAC_IFG_THRSH_100 |
1848                        V_MAC_SLOT_SIZE_100;
1849                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1850                break;
1851
1852        case sbmac_speed_1000:
1853                framecfg |= V_MAC_IFG_RX_1000 |
1854                        V_MAC_IFG_TX_1000 |
1855                        V_MAC_IFG_THRSH_1000 |
1856                        V_MAC_SLOT_SIZE_1000;
1857                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1858                break;
1859
1860        default:
1861                return 0;
1862        }
1863
1864        /*
1865         * Send the bits back to the hardware
1866         */
1867
1868        __raw_writeq(framecfg, s->sbm_framecfg);
1869        __raw_writeq(cfg, s->sbm_maccfg);
1870
1871        return 1;
1872}
1873
1874/**********************************************************************
1875 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1876 *
1877 *  Set Ethernet duplex and flow control options for this MAC
1878 *  Warning: must be called when MAC is off!
1879 *
1880 *  Input parameters:
1881 *         s - sbmac structure
1882 *         duplex - duplex setting (see enum sbmac_duplex)
1883 *         fc - flow control setting (see enum sbmac_fc)
1884 *
1885 *  Return value:
1886 *         1 if ok
1887 *         0 if an invalid parameter combination was specified
1888 ********************************************************************* */
1889
1890static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1891                            enum sbmac_fc fc)
1892{
1893        uint64_t cfg;
1894
1895        /*
1896         * Save new current values
1897         */
1898
1899        s->sbm_duplex = duplex;
1900        s->sbm_fc = fc;
1901
1902        if (s->sbm_state == sbmac_state_on)
1903                return 0;       /* save for next restart */
1904
1905        /*
1906         * Read current register values
1907         */
1908
1909        cfg = __raw_readq(s->sbm_maccfg);
1910
1911        /*
1912         * Mask off the stuff we're about to change
1913         */
1914
1915        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1916
1917
1918        switch (duplex) {
1919        case sbmac_duplex_half:
1920                switch (fc) {
1921                case sbmac_fc_disabled:
1922                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1923                        break;
1924
1925                case sbmac_fc_collision:
1926                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1927                        break;
1928
1929                case sbmac_fc_carrier:
1930                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1931                        break;
1932
1933                case sbmac_fc_frame:            /* not valid in half duplex */
1934                default:                        /* invalid selection */
1935                        return 0;
1936                }
1937                break;
1938
1939        case sbmac_duplex_full:
1940                switch (fc) {
1941                case sbmac_fc_disabled:
1942                        cfg |= V_MAC_FC_CMD_DISABLED;
1943                        break;
1944
1945                case sbmac_fc_frame:
1946                        cfg |= V_MAC_FC_CMD_ENABLED;
1947                        break;
1948
1949                case sbmac_fc_collision:        /* not valid in full duplex */
1950                case sbmac_fc_carrier:          /* not valid in full duplex */
1951                default:
1952                        return 0;
1953                }
1954                break;
1955        default:
1956                return 0;
1957        }
1958
1959        /*
1960         * Send the bits back to the hardware
1961         */
1962
1963        __raw_writeq(cfg, s->sbm_maccfg);
1964
1965        return 1;
1966}
1967
1968
1969
1970
1971/**********************************************************************
1972 *  SBMAC_INTR()
1973 *
1974 *  Interrupt handler for MAC interrupts
1975 *
1976 *  Input parameters:
1977 *         MAC structure
1978 *
1979 *  Return value:
1980 *         nothing
1981 ********************************************************************* */
1982static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1983{
1984        struct net_device *dev = (struct net_device *) dev_instance;
1985        struct sbmac_softc *sc = netdev_priv(dev);
1986        uint64_t isr;
1987        int handled = 0;
1988
1989        /*
1990         * Read the ISR (this clears the bits in the real
1991         * register, except for counter addr)
1992         */
1993
1994        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1995
1996        if (isr == 0)
1997                return IRQ_RETVAL(0);
1998        handled = 1;
1999
2000        /*
2001         * Transmits on channel 0
2002         */
2003
2004        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2005                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2006
2007        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2008                if (napi_schedule_prep(&sc->napi)) {
2009                        __raw_writeq(0, sc->sbm_imr);
2010                        __napi_schedule(&sc->napi);
2011                        /* Depend on the exit from poll to reenable intr */
2012                }
2013                else {
2014                        /* may leave some packets behind */
2015                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
2016                                         SBMAC_MAX_RXDESCR * 2, 0);
2017                }
2018        }
2019        return IRQ_RETVAL(handled);
2020}
2021
2022/**********************************************************************
2023 *  SBMAC_START_TX(skb,dev)
2024 *
2025 *  Start output on the specified interface.  Basically, we
2026 *  queue as many buffers as we can until the ring fills up, or
2027 *  we run off the end of the queue, whichever comes first.
2028 *
2029 *  Input parameters:
2030 *
2031 *
2032 *  Return value:
2033 *         nothing
2034 ********************************************************************* */
2035static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2036{
2037        struct sbmac_softc *sc = netdev_priv(dev);
2038        unsigned long flags;
2039
2040        /* lock eth irq */
2041        spin_lock_irqsave(&sc->sbm_lock, flags);
2042
2043        /*
2044         * Put the buffer on the transmit ring.  If we
2045         * don't have room, stop the queue.
2046         */
2047
2048        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2049                /* XXX save skb that we could not send */
2050                netif_stop_queue(dev);
2051                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2052
2053                return NETDEV_TX_BUSY;
2054        }
2055
2056        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2057
2058        return NETDEV_TX_OK;
2059}
2060
2061/**********************************************************************
2062 *  SBMAC_SETMULTI(sc)
2063 *
2064 *  Reprogram the multicast table into the hardware, given
2065 *  the list of multicasts associated with the interface
2066 *  structure.
2067 *
2068 *  Input parameters:
2069 *         sc - softc
2070 *
2071 *  Return value:
2072 *         nothing
2073 ********************************************************************* */
2074
2075static void sbmac_setmulti(struct sbmac_softc *sc)
2076{
2077        uint64_t reg;
2078        void __iomem *port;
2079        int idx;
2080        struct netdev_hw_addr *ha;
2081        struct net_device *dev = sc->sbm_dev;
2082
2083        /*
2084         * Clear out entire multicast table.  We do this by nuking
2085         * the entire hash table and all the direct matches except
2086         * the first one, which is used for our station address
2087         */
2088
2089        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2090                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2091                __raw_writeq(0, port);
2092        }
2093
2094        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2095                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2096                __raw_writeq(0, port);
2097        }
2098
2099        /*
2100         * Clear the filter to say we don't want any multicasts.
2101         */
2102
2103        reg = __raw_readq(sc->sbm_rxfilter);
2104        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2105        __raw_writeq(reg, sc->sbm_rxfilter);
2106
2107        if (dev->flags & IFF_ALLMULTI) {
2108                /*
2109                 * Enable ALL multicasts.  Do this by inverting the
2110                 * multicast enable bit.
2111                 */
2112                reg = __raw_readq(sc->sbm_rxfilter);
2113                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2114                __raw_writeq(reg, sc->sbm_rxfilter);
2115                return;
2116        }
2117
2118
2119        /*
2120         * Progam new multicast entries.  For now, only use the
2121         * perfect filter.  In the future we'll need to use the
2122         * hash filter if the perfect filter overflows
2123         */
2124
2125        /* XXX only using perfect filter for now, need to use hash
2126         * XXX if the table overflows */
2127
2128        idx = 1;                /* skip station address */
2129        netdev_for_each_mc_addr(ha, dev) {
2130                if (idx == MAC_ADDR_COUNT)
2131                        break;
2132                reg = sbmac_addr2reg(ha->addr);
2133                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2134                __raw_writeq(reg, port);
2135                idx++;
2136        }
2137
2138        /*
2139         * Enable the "accept multicast bits" if we programmed at least one
2140         * multicast.
2141         */
2142
2143        if (idx > 1) {
2144                reg = __raw_readq(sc->sbm_rxfilter);
2145                reg |= M_MAC_MCAST_EN;
2146                __raw_writeq(reg, sc->sbm_rxfilter);
2147        }
2148}
2149
2150static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2151{
2152        if (new_mtu >  ENET_PACKET_SIZE)
2153                return -EINVAL;
2154        _dev->mtu = new_mtu;
2155        pr_info("changing the mtu to %d\n", new_mtu);
2156        return 0;
2157}
2158
2159static const struct net_device_ops sbmac_netdev_ops = {
2160        .ndo_open               = sbmac_open,
2161        .ndo_stop               = sbmac_close,
2162        .ndo_start_xmit         = sbmac_start_tx,
2163        .ndo_set_rx_mode        = sbmac_set_rx_mode,
2164        .ndo_tx_timeout         = sbmac_tx_timeout,
2165        .ndo_do_ioctl           = sbmac_mii_ioctl,
2166        .ndo_change_mtu         = sb1250_change_mtu,
2167        .ndo_validate_addr      = eth_validate_addr,
2168        .ndo_set_mac_address    = eth_mac_addr,
2169#ifdef CONFIG_NET_POLL_CONTROLLER
2170        .ndo_poll_controller    = sbmac_netpoll,
2171#endif
2172};
2173
2174/**********************************************************************
2175 *  SBMAC_INIT(dev)
2176 *
2177 *  Attach routine - init hardware and hook ourselves into linux
2178 *
2179 *  Input parameters:
2180 *         dev - net_device structure
2181 *
2182 *  Return value:
2183 *         status
2184 ********************************************************************* */
2185
2186static int sbmac_init(struct platform_device *pldev, long long base)
2187{
2188        struct net_device *dev = platform_get_drvdata(pldev);
2189        int idx = pldev->id;
2190        struct sbmac_softc *sc = netdev_priv(dev);
2191        unsigned char *eaddr;
2192        uint64_t ea_reg;
2193        int i;
2194        int err;
2195
2196        sc->sbm_dev = dev;
2197        sc->sbe_idx = idx;
2198
2199        eaddr = sc->sbm_hwaddr;
2200
2201        /*
2202         * Read the ethernet address.  The firmware left this programmed
2203         * for us in the ethernet address register for each mac.
2204         */
2205
2206        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2207        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2208        for (i = 0; i < 6; i++) {
2209                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2210                ea_reg >>= 8;
2211        }
2212
2213        for (i = 0; i < 6; i++) {
2214                dev->dev_addr[i] = eaddr[i];
2215        }
2216
2217        /*
2218         * Initialize context (get pointers to registers and stuff), then
2219         * allocate the memory for the descriptor tables.
2220         */
2221
2222        sbmac_initctx(sc);
2223
2224        /*
2225         * Set up Linux device callins
2226         */
2227
2228        spin_lock_init(&(sc->sbm_lock));
2229
2230        dev->netdev_ops = &sbmac_netdev_ops;
2231        dev->watchdog_timeo = TX_TIMEOUT;
2232
2233        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2234
2235        dev->irq                = UNIT_INT(idx);
2236
2237        /* This is needed for PASS2 for Rx H/W checksum feature */
2238        sbmac_set_iphdr_offset(sc);
2239
2240        sc->mii_bus = mdiobus_alloc();
2241        if (sc->mii_bus == NULL) {
2242                err = -ENOMEM;
2243                goto uninit_ctx;
2244        }
2245
2246        sc->mii_bus->name = sbmac_mdio_string;
2247        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2248                pldev->name, idx);
2249        sc->mii_bus->priv = sc;
2250        sc->mii_bus->read = sbmac_mii_read;
2251        sc->mii_bus->write = sbmac_mii_write;
2252
2253        sc->mii_bus->parent = &pldev->dev;
2254        /*
2255         * Probe PHY address
2256         */
2257        err = mdiobus_register(sc->mii_bus);
2258        if (err) {
2259                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2260                       dev->name);
2261                goto free_mdio;
2262        }
2263        platform_set_drvdata(pldev, sc->mii_bus);
2264
2265        err = register_netdev(dev);
2266        if (err) {
2267                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2268                       sbmac_string, idx);
2269                goto unreg_mdio;
2270        }
2271
2272        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2273
2274        if (sc->rx_hw_checksum == ENABLE)
2275                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2276
2277        /*
2278         * Display Ethernet address (this is called during the config
2279         * process so we need to finish off the config message that
2280         * was being displayed)
2281         */
2282        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2283               dev->name, base, eaddr);
2284
2285        return 0;
2286unreg_mdio:
2287        mdiobus_unregister(sc->mii_bus);
2288free_mdio:
2289        mdiobus_free(sc->mii_bus);
2290uninit_ctx:
2291        sbmac_uninitctx(sc);
2292        return err;
2293}
2294
2295
2296static int sbmac_open(struct net_device *dev)
2297{
2298        struct sbmac_softc *sc = netdev_priv(dev);
2299        int err;
2300
2301        if (debug > 1)
2302                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2303
2304        /*
2305         * map/route interrupt (clear status first, in case something
2306         * weird is pending; we haven't initialized the mac registers
2307         * yet)
2308         */
2309
2310        __raw_readq(sc->sbm_isr);
2311        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2312        if (err) {
2313                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2314                       dev->irq);
2315                goto out_err;
2316        }
2317
2318        sc->sbm_speed = sbmac_speed_none;
2319        sc->sbm_duplex = sbmac_duplex_none;
2320        sc->sbm_fc = sbmac_fc_none;
2321        sc->sbm_pause = -1;
2322        sc->sbm_link = 0;
2323
2324        /*
2325         * Attach to the PHY
2326         */
2327        err = sbmac_mii_probe(dev);
2328        if (err)
2329                goto out_unregister;
2330
2331        /*
2332         * Turn on the channel
2333         */
2334
2335        sbmac_set_channel_state(sc,sbmac_state_on);
2336
2337        netif_start_queue(dev);
2338
2339        sbmac_set_rx_mode(dev);
2340
2341        phy_start(sc->phy_dev);
2342
2343        napi_enable(&sc->napi);
2344
2345        return 0;
2346
2347out_unregister:
2348        free_irq(dev->irq, dev);
2349out_err:
2350        return err;
2351}
2352
2353static int sbmac_mii_probe(struct net_device *dev)
2354{
2355        struct sbmac_softc *sc = netdev_priv(dev);
2356        struct phy_device *phy_dev;
2357
2358        phy_dev = phy_find_first(sc->mii_bus);
2359        if (!phy_dev) {
2360                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2361                return -ENXIO;
2362        }
2363
2364        phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2365                              &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2366        if (IS_ERR(phy_dev)) {
2367                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2368                return PTR_ERR(phy_dev);
2369        }
2370
2371        /* Remove any features not supported by the controller */
2372        phy_dev->supported &= SUPPORTED_10baseT_Half |
2373                              SUPPORTED_10baseT_Full |
2374                              SUPPORTED_100baseT_Half |
2375                              SUPPORTED_100baseT_Full |
2376                              SUPPORTED_1000baseT_Half |
2377                              SUPPORTED_1000baseT_Full |
2378                              SUPPORTED_Autoneg |
2379                              SUPPORTED_MII |
2380                              SUPPORTED_Pause |
2381                              SUPPORTED_Asym_Pause;
2382
2383        phy_attached_info(phy_dev);
2384
2385        phy_dev->advertising = phy_dev->supported;
2386
2387        sc->phy_dev = phy_dev;
2388
2389        return 0;
2390}
2391
2392
2393static void sbmac_mii_poll(struct net_device *dev)
2394{
2395        struct sbmac_softc *sc = netdev_priv(dev);
2396        struct phy_device *phy_dev = sc->phy_dev;
2397        unsigned long flags;
2398        enum sbmac_fc fc;
2399        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2400
2401        link_chg = (sc->sbm_link != phy_dev->link);
2402        speed_chg = (sc->sbm_speed != phy_dev->speed);
2403        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2404        pause_chg = (sc->sbm_pause != phy_dev->pause);
2405
2406        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2407                return;                                 /* Hmmm... */
2408
2409        if (!phy_dev->link) {
2410                if (link_chg) {
2411                        sc->sbm_link = phy_dev->link;
2412                        sc->sbm_speed = sbmac_speed_none;
2413                        sc->sbm_duplex = sbmac_duplex_none;
2414                        sc->sbm_fc = sbmac_fc_disabled;
2415                        sc->sbm_pause = -1;
2416                        pr_info("%s: link unavailable\n", dev->name);
2417                }
2418                return;
2419        }
2420
2421        if (phy_dev->duplex == DUPLEX_FULL) {
2422                if (phy_dev->pause)
2423                        fc = sbmac_fc_frame;
2424                else
2425                        fc = sbmac_fc_disabled;
2426        } else
2427                fc = sbmac_fc_collision;
2428        fc_chg = (sc->sbm_fc != fc);
2429
2430        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2431                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2432
2433        spin_lock_irqsave(&sc->sbm_lock, flags);
2434
2435        sc->sbm_speed = phy_dev->speed;
2436        sc->sbm_duplex = phy_dev->duplex;
2437        sc->sbm_fc = fc;
2438        sc->sbm_pause = phy_dev->pause;
2439        sc->sbm_link = phy_dev->link;
2440
2441        if ((speed_chg || duplex_chg || fc_chg) &&
2442            sc->sbm_state != sbmac_state_off) {
2443                /*
2444                 * something changed, restart the channel
2445                 */
2446                if (debug > 1)
2447                        pr_debug("%s: restarting channel "
2448                                 "because PHY state changed\n", dev->name);
2449                sbmac_channel_stop(sc);
2450                sbmac_channel_start(sc);
2451        }
2452
2453        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2454}
2455
2456
2457static void sbmac_tx_timeout (struct net_device *dev)
2458{
2459        struct sbmac_softc *sc = netdev_priv(dev);
2460        unsigned long flags;
2461
2462        spin_lock_irqsave(&sc->sbm_lock, flags);
2463
2464
2465        netif_trans_update(dev); /* prevent tx timeout */
2466        dev->stats.tx_errors++;
2467
2468        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2469
2470        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2471}
2472
2473
2474
2475
2476static void sbmac_set_rx_mode(struct net_device *dev)
2477{
2478        unsigned long flags;
2479        struct sbmac_softc *sc = netdev_priv(dev);
2480
2481        spin_lock_irqsave(&sc->sbm_lock, flags);
2482        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2483                /*
2484                 * Promiscuous changed.
2485                 */
2486
2487                if (dev->flags & IFF_PROMISC) {
2488                        sbmac_promiscuous_mode(sc,1);
2489                }
2490                else {
2491                        sbmac_promiscuous_mode(sc,0);
2492                }
2493        }
2494        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2495
2496        /*
2497         * Program the multicasts.  Do this every time.
2498         */
2499
2500        sbmac_setmulti(sc);
2501
2502}
2503
2504static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2505{
2506        struct sbmac_softc *sc = netdev_priv(dev);
2507
2508        if (!netif_running(dev) || !sc->phy_dev)
2509                return -EINVAL;
2510
2511        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2512}
2513
2514static int sbmac_close(struct net_device *dev)
2515{
2516        struct sbmac_softc *sc = netdev_priv(dev);
2517
2518        napi_disable(&sc->napi);
2519
2520        phy_stop(sc->phy_dev);
2521
2522        sbmac_set_channel_state(sc, sbmac_state_off);
2523
2524        netif_stop_queue(dev);
2525
2526        if (debug > 1)
2527                pr_debug("%s: Shutting down ethercard\n", dev->name);
2528
2529        phy_disconnect(sc->phy_dev);
2530        sc->phy_dev = NULL;
2531        free_irq(dev->irq, dev);
2532
2533        sbdma_emptyring(&(sc->sbm_txdma));
2534        sbdma_emptyring(&(sc->sbm_rxdma));
2535
2536        return 0;
2537}
2538
2539static int sbmac_poll(struct napi_struct *napi, int budget)
2540{
2541        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2542        int work_done;
2543
2544        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2545        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2546
2547        if (work_done < budget) {
2548                napi_complete(napi);
2549
2550#ifdef CONFIG_SBMAC_COALESCE
2551                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2552                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2553                             sc->sbm_imr);
2554#else
2555                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2556                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2557#endif
2558        }
2559
2560        return work_done;
2561}
2562
2563
2564static int sbmac_probe(struct platform_device *pldev)
2565{
2566        struct net_device *dev;
2567        struct sbmac_softc *sc;
2568        void __iomem *sbm_base;
2569        struct resource *res;
2570        u64 sbmac_orig_hwaddr;
2571        int err;
2572
2573        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2574        BUG_ON(!res);
2575        sbm_base = ioremap_nocache(res->start, resource_size(res));
2576        if (!sbm_base) {
2577                printk(KERN_ERR "%s: unable to map device registers\n",
2578                       dev_name(&pldev->dev));
2579                err = -ENOMEM;
2580                goto out_out;
2581        }
2582
2583        /*
2584         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2585         * value for us by the firmware if we're going to use this MAC.
2586         * If we find a zero, skip this MAC.
2587         */
2588        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2589        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2590                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2591        if (sbmac_orig_hwaddr == 0) {
2592                err = 0;
2593                goto out_unmap;
2594        }
2595
2596        /*
2597         * Okay, cool.  Initialize this MAC.
2598         */
2599        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2600        if (!dev) {
2601                err = -ENOMEM;
2602                goto out_unmap;
2603        }
2604
2605        platform_set_drvdata(pldev, dev);
2606        SET_NETDEV_DEV(dev, &pldev->dev);
2607
2608        sc = netdev_priv(dev);
2609        sc->sbm_base = sbm_base;
2610
2611        err = sbmac_init(pldev, res->start);
2612        if (err)
2613                goto out_kfree;
2614
2615        return 0;
2616
2617out_kfree:
2618        free_netdev(dev);
2619        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2620
2621out_unmap:
2622        iounmap(sbm_base);
2623
2624out_out:
2625        return err;
2626}
2627
2628static int __exit sbmac_remove(struct platform_device *pldev)
2629{
2630        struct net_device *dev = platform_get_drvdata(pldev);
2631        struct sbmac_softc *sc = netdev_priv(dev);
2632
2633        unregister_netdev(dev);
2634        sbmac_uninitctx(sc);
2635        mdiobus_unregister(sc->mii_bus);
2636        mdiobus_free(sc->mii_bus);
2637        iounmap(sc->sbm_base);
2638        free_netdev(dev);
2639
2640        return 0;
2641}
2642
2643static struct platform_driver sbmac_driver = {
2644        .probe = sbmac_probe,
2645        .remove = __exit_p(sbmac_remove),
2646        .driver = {
2647                .name = sbmac_string,
2648        },
2649};
2650
2651module_platform_driver(sbmac_driver);
2652