linux/drivers/net/ethernet/intel/fm10k/fm10k_pf.c
<<
>>
Prefs
   1/* Intel(R) Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2016 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include "fm10k_pf.h"
  22#include "fm10k_vf.h"
  23
  24/**
  25 *  fm10k_reset_hw_pf - PF hardware reset
  26 *  @hw: pointer to hardware structure
  27 *
  28 *  This function should return the hardware to a state similar to the
  29 *  one it is in after being powered on.
  30 **/
  31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
  32{
  33        s32 err;
  34        u32 reg;
  35        u16 i;
  36
  37        /* Disable interrupts */
  38        fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
  39
  40        /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
  41        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
  42        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
  43
  44        /* We assume here Tx and Rx queue 0 are owned by the PF */
  45
  46        /* Shut off VF access to their queues forcing them to queue 0 */
  47        for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
  48                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
  49                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
  50        }
  51
  52        /* shut down all rings */
  53        err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
  54        if (err == FM10K_ERR_REQUESTS_PENDING) {
  55                hw->mac.reset_while_pending++;
  56                goto force_reset;
  57        } else if (err) {
  58                return err;
  59        }
  60
  61        /* Verify that DMA is no longer active */
  62        reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
  63        if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
  64                return FM10K_ERR_DMA_PENDING;
  65
  66force_reset:
  67        /* Inititate data path reset */
  68        reg = FM10K_DMA_CTRL_DATAPATH_RESET;
  69        fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
  70
  71        /* Flush write and allow 100us for reset to complete */
  72        fm10k_write_flush(hw);
  73        udelay(FM10K_RESET_TIMEOUT);
  74
  75        /* Reset mailbox global interrupts */
  76        reg = FM10K_MBX_GLOBAL_REQ_INTERRUPT | FM10K_MBX_GLOBAL_ACK_INTERRUPT;
  77        fm10k_write_reg(hw, FM10K_GMBX, reg);
  78
  79        /* Verify we made it out of reset */
  80        reg = fm10k_read_reg(hw, FM10K_IP);
  81        if (!(reg & FM10K_IP_NOTINRESET))
  82                return FM10K_ERR_RESET_FAILED;
  83
  84        return 0;
  85}
  86
  87/**
  88 *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
  89 *  @hw: pointer to hardware structure
  90 *
  91 *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
  92 **/
  93static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
  94{
  95        u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
  96
  97        return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
  98}
  99
 100/**
 101 *  fm10k_init_hw_pf - PF hardware initialization
 102 *  @hw: pointer to hardware structure
 103 *
 104 **/
 105static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
 106{
 107        u32 dma_ctrl, txqctl;
 108        u16 i;
 109
 110        /* Establish default VSI as valid */
 111        fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
 112        fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
 113                        FM10K_DGLORTMAP_ANY);
 114
 115        /* Invalidate all other GLORT entries */
 116        for (i = 1; i < FM10K_DGLORT_COUNT; i++)
 117                fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
 118
 119        /* reset ITR2(0) to point to itself */
 120        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
 121
 122        /* reset VF ITR2(0) to point to 0 avoid PF registers */
 123        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
 124
 125        /* loop through all PF ITR2 registers pointing them to the previous */
 126        for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
 127                fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 128
 129        /* Enable interrupt moderator if not already enabled */
 130        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 131
 132        /* compute the default txqctl configuration */
 133        txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
 134                 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
 135
 136        for (i = 0; i < FM10K_MAX_QUEUES; i++) {
 137                /* configure rings for 256 Queue / 32 Descriptor cache mode */
 138                fm10k_write_reg(hw, FM10K_TQDLOC(i),
 139                                (i * FM10K_TQDLOC_BASE_32_DESC) |
 140                                FM10K_TQDLOC_SIZE_32_DESC);
 141                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
 142
 143                /* configure rings to provide TPH processing hints */
 144                fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
 145                                FM10K_TPH_TXCTRL_DESC_TPHEN |
 146                                FM10K_TPH_TXCTRL_DESC_RROEN |
 147                                FM10K_TPH_TXCTRL_DESC_WROEN |
 148                                FM10K_TPH_TXCTRL_DATA_RROEN);
 149                fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
 150                                FM10K_TPH_RXCTRL_DESC_TPHEN |
 151                                FM10K_TPH_RXCTRL_DESC_RROEN |
 152                                FM10K_TPH_RXCTRL_DATA_WROEN |
 153                                FM10K_TPH_RXCTRL_HDR_WROEN);
 154        }
 155
 156        /* set max hold interval to align with 1.024 usec in all modes and
 157         * store ITR scale
 158         */
 159        switch (hw->bus.speed) {
 160        case fm10k_bus_speed_2500:
 161                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
 162                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
 163                break;
 164        case fm10k_bus_speed_5000:
 165                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
 166                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
 167                break;
 168        case fm10k_bus_speed_8000:
 169                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
 170                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
 171                break;
 172        default:
 173                dma_ctrl = 0;
 174                /* just in case, assume Gen3 ITR scale */
 175                hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
 176                break;
 177        }
 178
 179        /* Configure TSO flags */
 180        fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
 181        fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
 182
 183        /* Enable DMA engine
 184         * Set Rx Descriptor size to 32
 185         * Set Minimum MSS to 64
 186         * Set Maximum number of Rx queues to 256 / 32 Descriptor
 187         */
 188        dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
 189                    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
 190                    FM10K_DMA_CTRL_32_DESC;
 191
 192        fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
 193
 194        /* record maximum queue count, we limit ourselves to 128 */
 195        hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
 196
 197        /* We support either 64 VFs or 7 VFs depending on if we have ARI */
 198        hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
 199
 200        return 0;
 201}
 202
 203/**
 204 *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
 205 *  @hw: pointer to hardware structure
 206 *  @vid: VLAN ID to add to table
 207 *  @vsi: Index indicating VF ID or PF ID in table
 208 *  @set: Indicates if this is a set or clear operation
 209 *
 210 *  This function adds or removes the corresponding VLAN ID from the VLAN
 211 *  filter table for the corresponding function.  In addition to the
 212 *  standard set/clear that supports one bit a multi-bit write is
 213 *  supported to set 64 bits at a time.
 214 **/
 215static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
 216{
 217        u32 vlan_table, reg, mask, bit, len;
 218
 219        /* verify the VSI index is valid */
 220        if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
 221                return FM10K_ERR_PARAM;
 222
 223        /* VLAN multi-bit write:
 224         * The multi-bit write has several parts to it.
 225         *               24              16               8               0
 226         *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 227         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 228         * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
 229         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 230         *
 231         * VLAN ID: Vlan Starting value
 232         * RSVD0: Reserved section, must be 0
 233         * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
 234         * Length: Number of times to repeat the bit being set
 235         */
 236        len = vid >> 16;
 237        vid = (vid << 17) >> 17;
 238
 239        /* verify the reserved 0 fields are 0 */
 240        if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
 241                return FM10K_ERR_PARAM;
 242
 243        /* Loop through the table updating all required VLANs */
 244        for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
 245             len < FM10K_VLAN_TABLE_VID_MAX;
 246             len -= 32 - bit, reg++, bit = 0) {
 247                /* record the initial state of the register */
 248                vlan_table = fm10k_read_reg(hw, reg);
 249
 250                /* truncate mask if we are at the start or end of the run */
 251                mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
 252
 253                /* make necessary modifications to the register */
 254                mask &= set ? ~vlan_table : vlan_table;
 255                if (mask)
 256                        fm10k_write_reg(hw, reg, vlan_table ^ mask);
 257        }
 258
 259        return 0;
 260}
 261
 262/**
 263 *  fm10k_read_mac_addr_pf - Read device MAC address
 264 *  @hw: pointer to the HW structure
 265 *
 266 *  Reads the device MAC address from the SM_AREA and stores the value.
 267 **/
 268static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
 269{
 270        u8 perm_addr[ETH_ALEN];
 271        u32 serial_num;
 272
 273        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
 274
 275        /* last byte should be all 1's */
 276        if ((~serial_num) << 24)
 277                return  FM10K_ERR_INVALID_MAC_ADDR;
 278
 279        perm_addr[0] = (u8)(serial_num >> 24);
 280        perm_addr[1] = (u8)(serial_num >> 16);
 281        perm_addr[2] = (u8)(serial_num >> 8);
 282
 283        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
 284
 285        /* first byte should be all 1's */
 286        if ((~serial_num) >> 24)
 287                return  FM10K_ERR_INVALID_MAC_ADDR;
 288
 289        perm_addr[3] = (u8)(serial_num >> 16);
 290        perm_addr[4] = (u8)(serial_num >> 8);
 291        perm_addr[5] = (u8)(serial_num);
 292
 293        ether_addr_copy(hw->mac.perm_addr, perm_addr);
 294        ether_addr_copy(hw->mac.addr, perm_addr);
 295
 296        return 0;
 297}
 298
 299/**
 300 *  fm10k_glort_valid_pf - Validate that the provided glort is valid
 301 *  @hw: pointer to the HW structure
 302 *  @glort: base glort to be validated
 303 *
 304 *  This function will return an error if the provided glort is invalid
 305 **/
 306bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
 307{
 308        glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
 309
 310        return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
 311}
 312
 313/**
 314 *  fm10k_update_xc_addr_pf - Update device addresses
 315 *  @hw: pointer to the HW structure
 316 *  @glort: base resource tag for this request
 317 *  @mac: MAC address to add/remove from table
 318 *  @vid: VLAN ID to add/remove from table
 319 *  @add: Indicates if this is an add or remove operation
 320 *  @flags: flags field to indicate add and secure
 321 *
 322 *  This function generates a message to the Switch API requesting
 323 *  that the given logical port add/remove the given L2 MAC/VLAN address.
 324 **/
 325static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
 326                                   const u8 *mac, u16 vid, bool add, u8 flags)
 327{
 328        struct fm10k_mbx_info *mbx = &hw->mbx;
 329        struct fm10k_mac_update mac_update;
 330        u32 msg[5];
 331
 332        /* clear set bit from VLAN ID */
 333        vid &= ~FM10K_VLAN_CLEAR;
 334
 335        /* if glort or VLAN are not valid return error */
 336        if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
 337                return FM10K_ERR_PARAM;
 338
 339        /* record fields */
 340        mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
 341                                                 ((u32)mac[3] << 16) |
 342                                                 ((u32)mac[4] << 8) |
 343                                                 ((u32)mac[5]));
 344        mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
 345                                           ((u16)mac[1]));
 346        mac_update.vlan = cpu_to_le16(vid);
 347        mac_update.glort = cpu_to_le16(glort);
 348        mac_update.action = add ? 0 : 1;
 349        mac_update.flags = flags;
 350
 351        /* populate mac_update fields */
 352        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
 353        fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
 354                                     &mac_update, sizeof(mac_update));
 355
 356        /* load onto outgoing mailbox */
 357        return mbx->ops.enqueue_tx(hw, mbx, msg);
 358}
 359
 360/**
 361 *  fm10k_update_uc_addr_pf - Update device unicast addresses
 362 *  @hw: pointer to the HW structure
 363 *  @glort: base resource tag for this request
 364 *  @mac: MAC address to add/remove from table
 365 *  @vid: VLAN ID to add/remove from table
 366 *  @add: Indicates if this is an add or remove operation
 367 *  @flags: flags field to indicate add and secure
 368 *
 369 *  This function is used to add or remove unicast addresses for
 370 *  the PF.
 371 **/
 372static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
 373                                   const u8 *mac, u16 vid, bool add, u8 flags)
 374{
 375        /* verify MAC address is valid */
 376        if (!is_valid_ether_addr(mac))
 377                return FM10K_ERR_PARAM;
 378
 379        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
 380}
 381
 382/**
 383 *  fm10k_update_mc_addr_pf - Update device multicast addresses
 384 *  @hw: pointer to the HW structure
 385 *  @glort: base resource tag for this request
 386 *  @mac: MAC address to add/remove from table
 387 *  @vid: VLAN ID to add/remove from table
 388 *  @add: Indicates if this is an add or remove operation
 389 *
 390 *  This function is used to add or remove multicast MAC addresses for
 391 *  the PF.
 392 **/
 393static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
 394                                   const u8 *mac, u16 vid, bool add)
 395{
 396        /* verify multicast address is valid */
 397        if (!is_multicast_ether_addr(mac))
 398                return FM10K_ERR_PARAM;
 399
 400        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
 401}
 402
 403/**
 404 *  fm10k_update_xcast_mode_pf - Request update of multicast mode
 405 *  @hw: pointer to hardware structure
 406 *  @glort: base resource tag for this request
 407 *  @mode: integer value indicating mode being requested
 408 *
 409 *  This function will attempt to request a higher mode for the port
 410 *  so that it can enable either multicast, multicast promiscuous, or
 411 *  promiscuous mode of operation.
 412 **/
 413static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
 414{
 415        struct fm10k_mbx_info *mbx = &hw->mbx;
 416        u32 msg[3], xcast_mode;
 417
 418        if (mode > FM10K_XCAST_MODE_NONE)
 419                return FM10K_ERR_PARAM;
 420
 421        /* if glort is not valid return error */
 422        if (!fm10k_glort_valid_pf(hw, glort))
 423                return FM10K_ERR_PARAM;
 424
 425        /* write xcast mode as a single u32 value,
 426         * lower 16 bits: glort
 427         * upper 16 bits: mode
 428         */
 429        xcast_mode = ((u32)mode << 16) | glort;
 430
 431        /* generate message requesting to change xcast mode */
 432        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
 433        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
 434
 435        /* load onto outgoing mailbox */
 436        return mbx->ops.enqueue_tx(hw, mbx, msg);
 437}
 438
 439/**
 440 *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
 441 *  @hw: pointer to hardware structure
 442 *
 443 *  This function walks through the MSI-X vector table to determine the
 444 *  number of active interrupts and based on that information updates the
 445 *  interrupt moderator linked list.
 446 **/
 447static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
 448{
 449        u32 i;
 450
 451        /* Disable interrupt moderator */
 452        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
 453
 454        /* loop through PF from last to first looking enabled vectors */
 455        for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
 456                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 457                        break;
 458        }
 459
 460        /* always reset VFITR2[0] to point to last enabled PF vector */
 461        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
 462
 463        /* reset ITR2[0] to point to last enabled PF vector */
 464        if (!hw->iov.num_vfs)
 465                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 466
 467        /* Enable interrupt moderator */
 468        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 469}
 470
 471/**
 472 *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
 473 *  @hw: pointer to the HW structure
 474 *  @glort: base resource tag for this request
 475 *  @count: number of logical ports being updated
 476 *  @enable: boolean value indicating enable or disable
 477 *
 478 *  This function is used to add/remove a logical port from the switch.
 479 **/
 480static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
 481                                       u16 count, bool enable)
 482{
 483        struct fm10k_mbx_info *mbx = &hw->mbx;
 484        u32 msg[3], lport_msg;
 485
 486        /* do nothing if we are being asked to create or destroy 0 ports */
 487        if (!count)
 488                return 0;
 489
 490        /* if glort is not valid return error */
 491        if (!fm10k_glort_valid_pf(hw, glort))
 492                return FM10K_ERR_PARAM;
 493
 494        /* reset multicast mode if deleting lport */
 495        if (!enable)
 496                fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
 497
 498        /* construct the lport message from the 2 pieces of data we have */
 499        lport_msg = ((u32)count << 16) | glort;
 500
 501        /* generate lport create/delete message */
 502        fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
 503                                         FM10K_PF_MSG_ID_LPORT_DELETE);
 504        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
 505
 506        /* load onto outgoing mailbox */
 507        return mbx->ops.enqueue_tx(hw, mbx, msg);
 508}
 509
 510/**
 511 *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
 512 *  @hw: pointer to hardware structure
 513 *  @dglort: pointer to dglort configuration structure
 514 *
 515 *  Reads the configuration structure contained in dglort_cfg and uses
 516 *  that information to then populate a DGLORTMAP/DEC entry and the queues
 517 *  to which it has been assigned.
 518 **/
 519static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
 520                                         struct fm10k_dglort_cfg *dglort)
 521{
 522        u16 glort, queue_count, vsi_count, pc_count;
 523        u16 vsi, queue, pc, q_idx;
 524        u32 txqctl, dglortdec, dglortmap;
 525
 526        /* verify the dglort pointer */
 527        if (!dglort)
 528                return FM10K_ERR_PARAM;
 529
 530        /* verify the dglort values */
 531        if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
 532            (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
 533            (dglort->queue_l > 8) || (dglort->queue_b >= 256))
 534                return FM10K_ERR_PARAM;
 535
 536        /* determine count of VSIs and queues */
 537        queue_count = BIT(dglort->rss_l + dglort->pc_l);
 538        vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
 539        glort = dglort->glort;
 540        q_idx = dglort->queue_b;
 541
 542        /* configure SGLORT for queues */
 543        for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
 544                for (queue = 0; queue < queue_count; queue++, q_idx++) {
 545                        if (q_idx >= FM10K_MAX_QUEUES)
 546                                break;
 547
 548                        fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
 549                        fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
 550                }
 551        }
 552
 553        /* determine count of PCs and queues */
 554        queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
 555        pc_count = BIT(dglort->pc_l);
 556
 557        /* configure PC for Tx queues */
 558        for (pc = 0; pc < pc_count; pc++) {
 559                q_idx = pc + dglort->queue_b;
 560                for (queue = 0; queue < queue_count; queue++) {
 561                        if (q_idx >= FM10K_MAX_QUEUES)
 562                                break;
 563
 564                        txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
 565                        txqctl &= ~FM10K_TXQCTL_PC_MASK;
 566                        txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
 567                        fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
 568
 569                        q_idx += pc_count;
 570                }
 571        }
 572
 573        /* configure DGLORTDEC */
 574        dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
 575                    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
 576                    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
 577                    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
 578                    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
 579                    ((u32)(dglort->queue_l));
 580        if (dglort->inner_rss)
 581                dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
 582
 583        /* configure DGLORTMAP */
 584        dglortmap = (dglort->idx == fm10k_dglort_default) ?
 585                        FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
 586        dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
 587        dglortmap |= dglort->glort;
 588
 589        /* write values to hardware */
 590        fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
 591        fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
 592
 593        return 0;
 594}
 595
 596u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
 597{
 598        u16 num_pools = hw->iov.num_pools;
 599
 600        return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
 601               8 : FM10K_MAX_QUEUES_POOL;
 602}
 603
 604u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
 605{
 606        u16 num_vfs = hw->iov.num_vfs;
 607        u16 vf_q_idx = FM10K_MAX_QUEUES;
 608
 609        vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
 610
 611        return vf_q_idx;
 612}
 613
 614static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
 615{
 616        u16 num_pools = hw->iov.num_pools;
 617
 618        return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
 619               FM10K_MAX_VECTORS_POOL;
 620}
 621
 622static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
 623{
 624        u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
 625
 626        vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
 627
 628        return vf_v_idx;
 629}
 630
 631/**
 632 *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
 633 *  @hw: pointer to the HW structure
 634 *  @num_vfs: number of VFs to be allocated
 635 *  @num_pools: number of virtualization pools to be allocated
 636 *
 637 *  Allocates queues and traffic classes to virtualization entities to prepare
 638 *  the PF for SR-IOV and VMDq
 639 **/
 640static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
 641                                         u16 num_pools)
 642{
 643        u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
 644        u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
 645        int i, j;
 646
 647        /* hardware only supports up to 64 pools */
 648        if (num_pools > 64)
 649                return FM10K_ERR_PARAM;
 650
 651        /* the number of VFs cannot exceed the number of pools */
 652        if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
 653                return FM10K_ERR_PARAM;
 654
 655        /* record number of virtualization entities */
 656        hw->iov.num_vfs = num_vfs;
 657        hw->iov.num_pools = num_pools;
 658
 659        /* determine qmap offsets and counts */
 660        qmap_stride = (num_vfs > 8) ? 32 : 256;
 661        qpp = fm10k_queues_per_pool(hw);
 662        vpp = fm10k_vectors_per_pool(hw);
 663
 664        /* calculate starting index for queues */
 665        vf_q_idx = fm10k_vf_queue_index(hw, 0);
 666        qmap_idx = 0;
 667
 668        /* establish TCs with -1 credits and no quanta to prevent transmit */
 669        for (i = 0; i < num_vfs; i++) {
 670                fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
 671                fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
 672                fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
 673                                FM10K_TC_CREDIT_CREDIT_MASK);
 674        }
 675
 676        /* zero out all mbmem registers */
 677        for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
 678                fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
 679
 680        /* clear event notification of VF FLR */
 681        fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
 682        fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
 683
 684        /* loop through unallocated rings assigning them back to PF */
 685        for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
 686                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
 687                fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
 688                                FM10K_TXQCTL_UNLIMITED_BW | vid);
 689                fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
 690        }
 691
 692        /* PF should have already updated VFITR2[0] */
 693
 694        /* update all ITR registers to flow to VFITR2[0] */
 695        for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
 696                if (!(i & (vpp - 1)))
 697                        fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
 698                else
 699                        fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 700        }
 701
 702        /* update PF ITR2[0] to reference the last vector */
 703        fm10k_write_reg(hw, FM10K_ITR2(0),
 704                        fm10k_vf_vector_index(hw, num_vfs - 1));
 705
 706        /* loop through rings populating rings and TCs */
 707        for (i = 0; i < num_vfs; i++) {
 708                /* record index for VF queue 0 for use in end of loop */
 709                vf_q_idx0 = vf_q_idx;
 710
 711                for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
 712                        /* assign VF and locked TC to queues */
 713                        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 714                        fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
 715                                        (i << FM10K_TXQCTL_TC_SHIFT) | i |
 716                                        FM10K_TXQCTL_VF | vid);
 717                        fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
 718                                        FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
 719                                        FM10K_RXDCTL_DROP_ON_EMPTY);
 720                        fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
 721                                        (i << FM10K_RXQCTL_VF_SHIFT) |
 722                                        FM10K_RXQCTL_VF);
 723
 724                        /* map queue pair to VF */
 725                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 726                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
 727                }
 728
 729                /* repeat the first ring for all of the remaining VF rings */
 730                for (; j < qmap_stride; j++, qmap_idx++) {
 731                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
 732                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
 733                }
 734        }
 735
 736        /* loop through remaining indexes assigning all to queue 0 */
 737        while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
 738                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 739                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
 740                qmap_idx++;
 741        }
 742
 743        return 0;
 744}
 745
 746/**
 747 *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
 748 *  @hw: pointer to the HW structure
 749 *  @vf_idx: index of VF receiving GLORT
 750 *  @rate: Rate indicated in Mb/s
 751 *
 752 *  Configured the TC for a given VF to allow only up to a given number
 753 *  of Mb/s of outgoing Tx throughput.
 754 **/
 755static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
 756{
 757        /* configure defaults */
 758        u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
 759        u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
 760
 761        /* verify vf is in range */
 762        if (vf_idx >= hw->iov.num_vfs)
 763                return FM10K_ERR_PARAM;
 764
 765        /* set interval to align with 4.096 usec in all modes */
 766        switch (hw->bus.speed) {
 767        case fm10k_bus_speed_2500:
 768                interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
 769                break;
 770        case fm10k_bus_speed_5000:
 771                interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
 772                break;
 773        default:
 774                break;
 775        }
 776
 777        if (rate) {
 778                if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
 779                        return FM10K_ERR_PARAM;
 780
 781                /* The quanta is measured in Bytes per 4.096 or 8.192 usec
 782                 * The rate is provided in Mbits per second
 783                 * To tralslate from rate to quanta we need to multiply the
 784                 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
 785                 * dealing with floating point we can round the values up
 786                 * to the nearest whole number ratio which gives us 128 / 125.
 787                 */
 788                tc_rate = (rate * 128) / 125;
 789
 790                /* try to keep the rate limiting accurate by increasing
 791                 * the number of credits and interval for rates less than 4Gb/s
 792                 */
 793                if (rate < 4000)
 794                        interval <<= 1;
 795                else
 796                        tc_rate >>= 1;
 797        }
 798
 799        /* update rate limiter with new values */
 800        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
 801        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 802        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 803
 804        return 0;
 805}
 806
 807/**
 808 *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
 809 *  @hw: pointer to the HW structure
 810 *  @vf_idx: index of VF receiving GLORT
 811 *
 812 *  Update the interrupt moderator linked list to include any MSI-X
 813 *  interrupts which the VF has enabled in the MSI-X vector table.
 814 **/
 815static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
 816{
 817        u16 vf_v_idx, vf_v_limit, i;
 818
 819        /* verify vf is in range */
 820        if (vf_idx >= hw->iov.num_vfs)
 821                return FM10K_ERR_PARAM;
 822
 823        /* determine vector offset and count */
 824        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 825        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 826
 827        /* search for first vector that is not masked */
 828        for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
 829                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 830                        break;
 831        }
 832
 833        /* reset linked list so it now includes our active vectors */
 834        if (vf_idx == (hw->iov.num_vfs - 1))
 835                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 836        else
 837                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
 838
 839        return 0;
 840}
 841
 842/**
 843 *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
 844 *  @hw: pointer to the HW structure
 845 *  @vf_info: pointer to VF information structure
 846 *
 847 *  Assign a MAC address and default VLAN to a VF and notify it of the update
 848 **/
 849static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
 850                                                struct fm10k_vf_info *vf_info)
 851{
 852        u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
 853        u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
 854        s32 err = 0;
 855        u16 vf_idx, vf_vid;
 856
 857        /* verify vf is in range */
 858        if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
 859                return FM10K_ERR_PARAM;
 860
 861        /* determine qmap offsets and counts */
 862        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 863        queues_per_pool = fm10k_queues_per_pool(hw);
 864
 865        /* calculate starting index for queues */
 866        vf_idx = vf_info->vf_idx;
 867        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
 868        qmap_idx = qmap_stride * vf_idx;
 869
 870        /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
 871         * used here to indicate to the VF that it will not have privilege to
 872         * write VLAN_TABLE. All policy is enforced on the PF but this allows
 873         * the VF to correctly report errors to userspace rqeuests.
 874         */
 875        if (vf_info->pf_vid)
 876                vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
 877        else
 878                vf_vid = vf_info->sw_vid;
 879
 880        /* generate MAC_ADDR request */
 881        fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
 882        fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
 883                                    vf_info->mac, vf_vid);
 884
 885        /* Configure Queue control register with new VLAN ID. The TXQCTL
 886         * register is RO from the VF, so the PF must do this even in the
 887         * case of notifying the VF of a new VID via the mailbox.
 888         */
 889        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
 890                 FM10K_TXQCTL_VID_MASK;
 891        txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
 892                  FM10K_TXQCTL_VF | vf_idx;
 893
 894        for (i = 0; i < queues_per_pool; i++)
 895                fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
 896
 897        /* try loading a message onto outgoing mailbox first */
 898        if (vf_info->mbx.ops.enqueue_tx) {
 899                err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
 900                if (err != FM10K_MBX_ERR_NO_MBX)
 901                        return err;
 902                err = 0;
 903        }
 904
 905        /* If we aren't connected to a mailbox, this is most likely because
 906         * the VF driver is not running. It should thus be safe to re-map
 907         * queues and use the registers to pass the MAC address so that the VF
 908         * driver gets correct information during its initialization.
 909         */
 910
 911        /* MAP Tx queue back to 0 temporarily, and disable it */
 912        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 913        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 914
 915        /* verify ring has disabled before modifying base address registers */
 916        txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 917        for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
 918                /* limit ourselves to a 1ms timeout */
 919                if (timeout == 10) {
 920                        err = FM10K_ERR_DMA_PENDING;
 921                        goto err_out;
 922                }
 923
 924                usleep_range(100, 200);
 925                txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 926        }
 927
 928        /* Update base address registers to contain MAC address */
 929        if (is_valid_ether_addr(vf_info->mac)) {
 930                tdbal = (((u32)vf_info->mac[3]) << 24) |
 931                        (((u32)vf_info->mac[4]) << 16) |
 932                        (((u32)vf_info->mac[5]) << 8);
 933
 934                tdbah = (((u32)0xFF)            << 24) |
 935                        (((u32)vf_info->mac[0]) << 16) |
 936                        (((u32)vf_info->mac[1]) << 8) |
 937                        ((u32)vf_info->mac[2]);
 938        }
 939
 940        /* Record the base address into queue 0 */
 941        fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
 942        fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
 943
 944        /* Provide the VF the ITR scale, using software-defined fields in TDLEN
 945         * to pass the information during VF initialization. See definition of
 946         * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
 947         */
 948        fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
 949                                                   FM10K_TDLEN_ITR_SCALE_SHIFT);
 950
 951err_out:
 952        /* restore the queue back to VF ownership */
 953        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 954        return err;
 955}
 956
 957/**
 958 *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
 959 *  @hw: pointer to the HW structure
 960 *  @vf_info: pointer to VF information structure
 961 *
 962 *  Reassign the interrupts and queues to a VF following an FLR
 963 **/
 964static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
 965                                        struct fm10k_vf_info *vf_info)
 966{
 967        u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
 968        u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
 969        u16 vf_v_idx, vf_v_limit, vf_vid;
 970        u8 vf_idx = vf_info->vf_idx;
 971        int i;
 972
 973        /* verify vf is in range */
 974        if (vf_idx >= hw->iov.num_vfs)
 975                return FM10K_ERR_PARAM;
 976
 977        /* clear event notification of VF FLR */
 978        fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
 979
 980        /* force timeout and then disconnect the mailbox */
 981        vf_info->mbx.timeout = 0;
 982        if (vf_info->mbx.ops.disconnect)
 983                vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
 984
 985        /* determine vector offset and count */
 986        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 987        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 988
 989        /* determine qmap offsets and counts */
 990        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 991        queues_per_pool = fm10k_queues_per_pool(hw);
 992        qmap_idx = qmap_stride * vf_idx;
 993
 994        /* make all the queues inaccessible to the VF */
 995        for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
 996                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
 997                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
 998        }
 999
1000        /* calculate starting index for queues */
1001        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
1002
1003        /* determine correct default VLAN ID */
1004        if (vf_info->pf_vid)
1005                vf_vid = vf_info->pf_vid;
1006        else
1007                vf_vid = vf_info->sw_vid;
1008
1009        /* configure Queue control register */
1010        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1011                 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1012                 FM10K_TXQCTL_VF | vf_idx;
1013        rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1014
1015        /* stop further DMA and reset queue ownership back to VF */
1016        for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1017                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1018                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1019                fm10k_write_reg(hw, FM10K_RXDCTL(i),
1020                                FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1021                                FM10K_RXDCTL_DROP_ON_EMPTY);
1022                fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1023        }
1024
1025        /* reset TC with -1 credits and no quanta to prevent transmit */
1026        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1027        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1028        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1029                        FM10K_TC_CREDIT_CREDIT_MASK);
1030
1031        /* update our first entry in the table based on previous VF */
1032        if (!vf_idx)
1033                hw->mac.ops.update_int_moderator(hw);
1034        else
1035                hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1036
1037        /* reset linked list so it now includes our active vectors */
1038        if (vf_idx == (hw->iov.num_vfs - 1))
1039                fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1040        else
1041                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1042
1043        /* link remaining vectors so that next points to previous */
1044        for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1045                fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1046
1047        /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1048        for (i = FM10K_VFMBMEM_LEN; i--;)
1049                fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1050        for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1051                fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1052        for (i = FM10K_RETA_SIZE; i--;)
1053                fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1054        for (i = FM10K_RSSRK_SIZE; i--;)
1055                fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1056        fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1057
1058        /* Update base address registers to contain MAC address */
1059        if (is_valid_ether_addr(vf_info->mac)) {
1060                tdbal = (((u32)vf_info->mac[3]) << 24) |
1061                        (((u32)vf_info->mac[4]) << 16) |
1062                        (((u32)vf_info->mac[5]) << 8);
1063                tdbah = (((u32)0xFF)       << 24) |
1064                        (((u32)vf_info->mac[0]) << 16) |
1065                        (((u32)vf_info->mac[1]) << 8) |
1066                        ((u32)vf_info->mac[2]);
1067        }
1068
1069        /* map queue pairs back to VF from last to first */
1070        for (i = queues_per_pool; i--;) {
1071                fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1072                fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1073                /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1074                 * explanation of how TDLEN is used.
1075                 */
1076                fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1077                                hw->mac.itr_scale <<
1078                                FM10K_TDLEN_ITR_SCALE_SHIFT);
1079                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1080                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1081        }
1082
1083        /* repeat the first ring for all the remaining VF rings */
1084        for (i = queues_per_pool; i < qmap_stride; i++) {
1085                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1086                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1087        }
1088
1089        return 0;
1090}
1091
1092/**
1093 *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1094 *  @hw: pointer to hardware structure
1095 *  @vf_info: pointer to VF information structure
1096 *  @lport_idx: Logical port offset from the hardware glort
1097 *  @flags: Set of capability flags to extend port beyond basic functionality
1098 *
1099 *  This function allows enabling a VF port by assigning it a GLORT and
1100 *  setting the flags so that it can enable an Rx mode.
1101 **/
1102static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1103                                  struct fm10k_vf_info *vf_info,
1104                                  u16 lport_idx, u8 flags)
1105{
1106        u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1107
1108        /* if glort is not valid return error */
1109        if (!fm10k_glort_valid_pf(hw, glort))
1110                return FM10K_ERR_PARAM;
1111
1112        vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1113        vf_info->glort = glort;
1114
1115        return 0;
1116}
1117
1118/**
1119 *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1120 *  @hw: pointer to hardware structure
1121 *  @vf_info: pointer to VF information structure
1122 *
1123 *  This function disables a VF port by stripping it of a GLORT and
1124 *  setting the flags so that it cannot enable any Rx mode.
1125 **/
1126static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1127                                     struct fm10k_vf_info *vf_info)
1128{
1129        u32 msg[1];
1130
1131        /* need to disable the port if it is already enabled */
1132        if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1133                /* notify switch that this port has been disabled */
1134                fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1135
1136                /* generate port state response to notify VF it is not ready */
1137                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1138                vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1139        }
1140
1141        /* clear flags and glort if it exists */
1142        vf_info->vf_flags = 0;
1143        vf_info->glort = 0;
1144}
1145
1146/**
1147 *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1148 *  @hw: pointer to hardware structure
1149 *  @q: stats for all queues of a VF
1150 *  @vf_idx: index of VF
1151 *
1152 *  This function collects queue stats for VFs.
1153 **/
1154static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1155                                      struct fm10k_hw_stats_q *q,
1156                                      u16 vf_idx)
1157{
1158        u32 idx, qpp;
1159
1160        /* get stats for all of the queues */
1161        qpp = fm10k_queues_per_pool(hw);
1162        idx = fm10k_vf_queue_index(hw, vf_idx);
1163        fm10k_update_hw_stats_q(hw, q, idx, qpp);
1164}
1165
1166/**
1167 *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1168 *  @hw: Pointer to hardware structure
1169 *  @results: Pointer array to message, results[0] is pointer to message
1170 *  @mbx: Pointer to mailbox information structure
1171 *
1172 *  This function is a default handler for MSI-X requests from the VF.  The
1173 *  assumption is that in this case it is acceptable to just directly
1174 *  hand off the message from the VF to the underlying shared code.
1175 **/
1176s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1177                          struct fm10k_mbx_info *mbx)
1178{
1179        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1180        u8 vf_idx = vf_info->vf_idx;
1181
1182        return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1183}
1184
1185/**
1186 * fm10k_iov_select_vid - Select correct default VLAN ID
1187 * @hw: Pointer to hardware structure
1188 * @vid: VLAN ID to correct
1189 *
1190 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1191 * return either the pf_vid or sw_vid depending on which one is set.
1192 */
1193static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1194{
1195        if (!vid)
1196                return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1197        else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1198                return FM10K_ERR_PARAM;
1199        else
1200                return vid;
1201}
1202
1203/**
1204 *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1205 *  @hw: Pointer to hardware structure
1206 *  @results: Pointer array to message, results[0] is pointer to message
1207 *  @mbx: Pointer to mailbox information structure
1208 *
1209 *  This function is a default handler for MAC/VLAN requests from the VF.
1210 *  The assumption is that in this case it is acceptable to just directly
1211 *  hand off the message from the VF to the underlying shared code.
1212 **/
1213s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1214                              struct fm10k_mbx_info *mbx)
1215{
1216        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1217        u8 mac[ETH_ALEN];
1218        u32 *result;
1219        int err = 0;
1220        bool set;
1221        u16 vlan;
1222        u32 vid;
1223
1224        /* we shouldn't be updating rules on a disabled interface */
1225        if (!FM10K_VF_FLAG_ENABLED(vf_info))
1226                err = FM10K_ERR_PARAM;
1227
1228        if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1229                result = results[FM10K_MAC_VLAN_MSG_VLAN];
1230
1231                /* record VLAN id requested */
1232                err = fm10k_tlv_attr_get_u32(result, &vid);
1233                if (err)
1234                        return err;
1235
1236                set = !(vid & FM10K_VLAN_CLEAR);
1237                vid &= ~FM10K_VLAN_CLEAR;
1238
1239                /* if the length field has been set, this is a multi-bit
1240                 * update request. For multi-bit requests, simply disallow
1241                 * them when the pf_vid has been set. In this case, the PF
1242                 * should have already cleared the VLAN_TABLE, and if we
1243                 * allowed them, it could allow a rogue VF to receive traffic
1244                 * on a VLAN it was not assigned. In the single-bit case, we
1245                 * need to modify requests for VLAN 0 to use the default PF or
1246                 * SW vid when assigned.
1247                 */
1248
1249                if (vid >> 16) {
1250                        /* prevent multi-bit requests when PF has
1251                         * administratively set the VLAN for this VF
1252                         */
1253                        if (vf_info->pf_vid)
1254                                return FM10K_ERR_PARAM;
1255                } else {
1256                        err = fm10k_iov_select_vid(vf_info, (u16)vid);
1257                        if (err < 0)
1258                                return err;
1259
1260                        vid = err;
1261                }
1262
1263                /* update VSI info for VF in regards to VLAN table */
1264                err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1265        }
1266
1267        if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1268                result = results[FM10K_MAC_VLAN_MSG_MAC];
1269
1270                /* record unicast MAC address requested */
1271                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1272                if (err)
1273                        return err;
1274
1275                /* block attempts to set MAC for a locked device */
1276                if (is_valid_ether_addr(vf_info->mac) &&
1277                    !ether_addr_equal(mac, vf_info->mac))
1278                        return FM10K_ERR_PARAM;
1279
1280                set = !(vlan & FM10K_VLAN_CLEAR);
1281                vlan &= ~FM10K_VLAN_CLEAR;
1282
1283                err = fm10k_iov_select_vid(vf_info, vlan);
1284                if (err < 0)
1285                        return err;
1286
1287                vlan = (u16)err;
1288
1289                /* notify switch of request for new unicast address */
1290                err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1291                                                 mac, vlan, set, 0);
1292        }
1293
1294        if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1295                result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1296
1297                /* record multicast MAC address requested */
1298                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1299                if (err)
1300                        return err;
1301
1302                /* verify that the VF is allowed to request multicast */
1303                if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1304                        return FM10K_ERR_PARAM;
1305
1306                set = !(vlan & FM10K_VLAN_CLEAR);
1307                vlan &= ~FM10K_VLAN_CLEAR;
1308
1309                err = fm10k_iov_select_vid(vf_info, vlan);
1310                if (err < 0)
1311                        return err;
1312
1313                vlan = (u16)err;
1314
1315                /* notify switch of request for new multicast address */
1316                err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1317                                                 mac, vlan, set);
1318        }
1319
1320        return err;
1321}
1322
1323/**
1324 *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1325 *  @vf_info: VF info structure containing capability flags
1326 *  @mode: Requested xcast mode
1327 *
1328 *  This function outputs the mode that most closely matches the requested
1329 *  mode.  If not modes match it will request we disable the port
1330 **/
1331static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1332                                            u8 mode)
1333{
1334        u8 vf_flags = vf_info->vf_flags;
1335
1336        /* match up mode to capabilities as best as possible */
1337        switch (mode) {
1338        case FM10K_XCAST_MODE_PROMISC:
1339                if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1340                        return FM10K_XCAST_MODE_PROMISC;
1341                /* fallthough */
1342        case FM10K_XCAST_MODE_ALLMULTI:
1343                if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1344                        return FM10K_XCAST_MODE_ALLMULTI;
1345                /* fallthough */
1346        case FM10K_XCAST_MODE_MULTI:
1347                if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1348                        return FM10K_XCAST_MODE_MULTI;
1349                /* fallthough */
1350        case FM10K_XCAST_MODE_NONE:
1351                if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1352                        return FM10K_XCAST_MODE_NONE;
1353                /* fallthough */
1354        default:
1355                break;
1356        }
1357
1358        /* disable interface as it should not be able to request any */
1359        return FM10K_XCAST_MODE_DISABLE;
1360}
1361
1362/**
1363 *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1364 *  @hw: Pointer to hardware structure
1365 *  @results: Pointer array to message, results[0] is pointer to message
1366 *  @mbx: Pointer to mailbox information structure
1367 *
1368 *  This function is a default handler for port state requests.  The port
1369 *  state requests for now are basic and consist of enabling or disabling
1370 *  the port.
1371 **/
1372s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1373                                 struct fm10k_mbx_info *mbx)
1374{
1375        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1376        u32 *result;
1377        s32 err = 0;
1378        u32 msg[2];
1379        u8 mode = 0;
1380
1381        /* verify VF is allowed to enable even minimal mode */
1382        if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1383                return FM10K_ERR_PARAM;
1384
1385        if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1386                result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1387
1388                /* XCAST mode update requested */
1389                err = fm10k_tlv_attr_get_u8(result, &mode);
1390                if (err)
1391                        return FM10K_ERR_PARAM;
1392
1393                /* prep for possible demotion depending on capabilities */
1394                mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1395
1396                /* if mode is not currently enabled, enable it */
1397                if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1398                        fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1399
1400                /* swap mode back to a bit flag */
1401                mode = FM10K_VF_FLAG_SET_MODE(mode);
1402        } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1403                /* need to disable the port if it is already enabled */
1404                if (FM10K_VF_FLAG_ENABLED(vf_info))
1405                        err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1406                                                          1, false);
1407
1408                /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1409                 * that we actually re-enable the LPORT state below. Note that
1410                 * this has no impact if the VF is already disabled, as the
1411                 * flags are already cleared.
1412                 */
1413                if (!err)
1414                        vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1415
1416                /* when enabling the port we should reset the rate limiters */
1417                hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1418
1419                /* set mode for minimal functionality */
1420                mode = FM10K_VF_FLAG_SET_MODE_NONE;
1421
1422                /* generate port state response to notify VF it is ready */
1423                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1424                fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1425                mbx->ops.enqueue_tx(hw, mbx, msg);
1426        }
1427
1428        /* if enable state toggled note the update */
1429        if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1430                err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1431                                                  !!mode);
1432
1433        /* if state change succeeded, then update our stored state */
1434        mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1435        if (!err)
1436                vf_info->vf_flags = mode;
1437
1438        return err;
1439}
1440
1441/**
1442 *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1443 *  @hw: pointer to hardware structure
1444 *  @stats: pointer to the stats structure to update
1445 *
1446 *  This function collects and aggregates global and per queue hardware
1447 *  statistics.
1448 **/
1449static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1450                                     struct fm10k_hw_stats *stats)
1451{
1452        u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1453        u32 id, id_prev;
1454
1455        /* Use Tx queue 0 as a canary to detect a reset */
1456        id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1457
1458        /* Read Global Statistics */
1459        do {
1460                timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1461                                                  &stats->timeout);
1462                ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1463                ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1464                um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1465                xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1466                vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1467                                                    &stats->vlan_drop);
1468                loopback_drop =
1469                        fm10k_read_hw_stats_32b(hw,
1470                                                FM10K_STATS_LOOPBACK_DROP,
1471                                                &stats->loopback_drop);
1472                nodesc_drop = fm10k_read_hw_stats_32b(hw,
1473                                                      FM10K_STATS_NODESC_DROP,
1474                                                      &stats->nodesc_drop);
1475
1476                /* if value has not changed then we have consistent data */
1477                id_prev = id;
1478                id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1479        } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1480
1481        /* drop non-ID bits and set VALID ID bit */
1482        id &= FM10K_TXQCTL_ID_MASK;
1483        id |= FM10K_STAT_VALID;
1484
1485        /* Update Global Statistics */
1486        if (stats->stats_idx == id) {
1487                stats->timeout.count += timeout;
1488                stats->ur.count += ur;
1489                stats->ca.count += ca;
1490                stats->um.count += um;
1491                stats->xec.count += xec;
1492                stats->vlan_drop.count += vlan_drop;
1493                stats->loopback_drop.count += loopback_drop;
1494                stats->nodesc_drop.count += nodesc_drop;
1495        }
1496
1497        /* Update bases and record current PF id */
1498        fm10k_update_hw_base_32b(&stats->timeout, timeout);
1499        fm10k_update_hw_base_32b(&stats->ur, ur);
1500        fm10k_update_hw_base_32b(&stats->ca, ca);
1501        fm10k_update_hw_base_32b(&stats->um, um);
1502        fm10k_update_hw_base_32b(&stats->xec, xec);
1503        fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1504        fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1505        fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1506        stats->stats_idx = id;
1507
1508        /* Update Queue Statistics */
1509        fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1510}
1511
1512/**
1513 *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1514 *  @hw: pointer to hardware structure
1515 *  @stats: pointer to the stats structure to update
1516 *
1517 *  This function resets the base for global and per queue hardware
1518 *  statistics.
1519 **/
1520static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1521                                     struct fm10k_hw_stats *stats)
1522{
1523        /* Unbind Global Statistics */
1524        fm10k_unbind_hw_stats_32b(&stats->timeout);
1525        fm10k_unbind_hw_stats_32b(&stats->ur);
1526        fm10k_unbind_hw_stats_32b(&stats->ca);
1527        fm10k_unbind_hw_stats_32b(&stats->um);
1528        fm10k_unbind_hw_stats_32b(&stats->xec);
1529        fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1530        fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1531        fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1532
1533        /* Unbind Queue Statistics */
1534        fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1535
1536        /* Reinitialize bases for all stats */
1537        fm10k_update_hw_stats_pf(hw, stats);
1538}
1539
1540/**
1541 *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1542 *  @hw: pointer to hardware structure
1543 *  @dma_mask: 64 bit DMA mask required for platform
1544 *
1545 *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1546 *  to limit the access to memory beyond what is physically in the system.
1547 **/
1548static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1549{
1550        /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1551        u32 phyaddr = (u32)(dma_mask >> 32);
1552
1553        fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1554}
1555
1556/**
1557 *  fm10k_get_fault_pf - Record a fault in one of the interface units
1558 *  @hw: pointer to hardware structure
1559 *  @type: pointer to fault type register offset
1560 *  @fault: pointer to memory location to record the fault
1561 *
1562 *  Record the fault register contents to the fault data structure and
1563 *  clear the entry from the register.
1564 *
1565 *  Returns ERR_PARAM if invalid register is specified or no error is present.
1566 **/
1567static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1568                              struct fm10k_fault *fault)
1569{
1570        u32 func;
1571
1572        /* verify the fault register is in range and is aligned */
1573        switch (type) {
1574        case FM10K_PCA_FAULT:
1575        case FM10K_THI_FAULT:
1576        case FM10K_FUM_FAULT:
1577                break;
1578        default:
1579                return FM10K_ERR_PARAM;
1580        }
1581
1582        /* only service faults that are valid */
1583        func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1584        if (!(func & FM10K_FAULT_FUNC_VALID))
1585                return FM10K_ERR_PARAM;
1586
1587        /* read remaining fields */
1588        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1589        fault->address <<= 32;
1590        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1591        fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1592
1593        /* clear valid bit to allow for next error */
1594        fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1595
1596        /* Record which function triggered the error */
1597        if (func & FM10K_FAULT_FUNC_PF)
1598                fault->func = 0;
1599        else
1600                fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1601                                   FM10K_FAULT_FUNC_VF_SHIFT);
1602
1603        /* record fault type */
1604        fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1605
1606        return 0;
1607}
1608
1609/**
1610 *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1611 *  @hw: pointer to hardware structure
1612 *
1613 **/
1614static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1615{
1616        struct fm10k_mbx_info *mbx = &hw->mbx;
1617        u32 msg[1];
1618
1619        /* issue request asking for LPORT map */
1620        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1621
1622        /* load onto outgoing mailbox */
1623        return mbx->ops.enqueue_tx(hw, mbx, msg);
1624}
1625
1626/**
1627 *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1628 *  @hw: pointer to hardware structure
1629 *  @switch_ready: pointer to boolean value that will record switch state
1630 *
1631 *  This function will check the DMA_CTRL2 register and mailbox in order
1632 *  to determine if the switch is ready for the PF to begin requesting
1633 *  addresses and mapping traffic to the local interface.
1634 **/
1635static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1636{
1637        u32 dma_ctrl2;
1638
1639        /* verify the switch is ready for interaction */
1640        dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1641        if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1642                return 0;
1643
1644        /* retrieve generic host state info */
1645        return fm10k_get_host_state_generic(hw, switch_ready);
1646}
1647
1648/* This structure defines the attibutes to be parsed below */
1649const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1651                                 sizeof(struct fm10k_swapi_error)),
1652        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1653        FM10K_TLV_ATTR_LAST
1654};
1655
1656/**
1657 *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1658 *  @hw: Pointer to hardware structure
1659 *  @results: pointer array containing parsed data
1660 *  @mbx: Pointer to mailbox information structure
1661 *
1662 *  This handler configures the lport mapping based on the reply from the
1663 *  switch API.
1664 **/
1665s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1666                           struct fm10k_mbx_info *mbx)
1667{
1668        u16 glort, mask;
1669        u32 dglort_map;
1670        s32 err;
1671
1672        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1673                                     &dglort_map);
1674        if (err)
1675                return err;
1676
1677        /* extract values out of the header */
1678        glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1679        mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1680
1681        /* verify mask is set and none of the masked bits in glort are set */
1682        if (!mask || (glort & ~mask))
1683                return FM10K_ERR_PARAM;
1684
1685        /* verify the mask is contiguous, and that it is 1's followed by 0's */
1686        if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1687                return FM10K_ERR_PARAM;
1688
1689        /* record the glort, mask, and port count */
1690        hw->mac.dglort_map = dglort_map;
1691
1692        return 0;
1693}
1694
1695const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1696        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1697        FM10K_TLV_ATTR_LAST
1698};
1699
1700/**
1701 *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1702 *  @hw: Pointer to hardware structure
1703 *  @results: pointer array containing parsed data
1704 *  @mbx: Pointer to mailbox information structure
1705 *
1706 *  This handler configures the default VLAN for the PF
1707 **/
1708static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1709                                    struct fm10k_mbx_info *mbx)
1710{
1711        u16 glort, pvid;
1712        u32 pvid_update;
1713        s32 err;
1714
1715        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1716                                     &pvid_update);
1717        if (err)
1718                return err;
1719
1720        /* extract values from the pvid update */
1721        glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1722        pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1723
1724        /* if glort is not valid return error */
1725        if (!fm10k_glort_valid_pf(hw, glort))
1726                return FM10K_ERR_PARAM;
1727
1728        /* verify VLAN ID is valid */
1729        if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1730                return FM10K_ERR_PARAM;
1731
1732        /* record the port VLAN ID value */
1733        hw->mac.default_vid = pvid;
1734
1735        return 0;
1736}
1737
1738/**
1739 *  fm10k_record_global_table_data - Move global table data to swapi table info
1740 *  @from: pointer to source table data structure
1741 *  @to: pointer to destination table info structure
1742 *
1743 *  This function is will copy table_data to the table_info contained in
1744 *  the hw struct.
1745 **/
1746static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1747                                           struct fm10k_swapi_table_info *to)
1748{
1749        /* convert from le32 struct to CPU byte ordered values */
1750        to->used = le32_to_cpu(from->used);
1751        to->avail = le32_to_cpu(from->avail);
1752}
1753
1754const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1755        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1756                                 sizeof(struct fm10k_swapi_error)),
1757        FM10K_TLV_ATTR_LAST
1758};
1759
1760/**
1761 *  fm10k_msg_err_pf - Message handler for error reply
1762 *  @hw: Pointer to hardware structure
1763 *  @results: pointer array containing parsed data
1764 *  @mbx: Pointer to mailbox information structure
1765 *
1766 *  This handler will capture the data for any error replies to previous
1767 *  messages that the PF has sent.
1768 **/
1769s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1770                     struct fm10k_mbx_info *mbx)
1771{
1772        struct fm10k_swapi_error err_msg;
1773        s32 err;
1774
1775        /* extract structure from message */
1776        err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1777                                           &err_msg, sizeof(err_msg));
1778        if (err)
1779                return err;
1780
1781        /* record table status */
1782        fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1783        fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1784        fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1785
1786        /* record SW API status value */
1787        hw->swapi.status = le32_to_cpu(err_msg.status);
1788
1789        return 0;
1790}
1791
1792static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1793        FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1794        FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1795        FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1796        FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1797        FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1798        FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1799        FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1800};
1801
1802static const struct fm10k_mac_ops mac_ops_pf = {
1803        .get_bus_info           = fm10k_get_bus_info_generic,
1804        .reset_hw               = fm10k_reset_hw_pf,
1805        .init_hw                = fm10k_init_hw_pf,
1806        .start_hw               = fm10k_start_hw_generic,
1807        .stop_hw                = fm10k_stop_hw_generic,
1808        .update_vlan            = fm10k_update_vlan_pf,
1809        .read_mac_addr          = fm10k_read_mac_addr_pf,
1810        .update_uc_addr         = fm10k_update_uc_addr_pf,
1811        .update_mc_addr         = fm10k_update_mc_addr_pf,
1812        .update_xcast_mode      = fm10k_update_xcast_mode_pf,
1813        .update_int_moderator   = fm10k_update_int_moderator_pf,
1814        .update_lport_state     = fm10k_update_lport_state_pf,
1815        .update_hw_stats        = fm10k_update_hw_stats_pf,
1816        .rebind_hw_stats        = fm10k_rebind_hw_stats_pf,
1817        .configure_dglort_map   = fm10k_configure_dglort_map_pf,
1818        .set_dma_mask           = fm10k_set_dma_mask_pf,
1819        .get_fault              = fm10k_get_fault_pf,
1820        .get_host_state         = fm10k_get_host_state_pf,
1821        .request_lport_map      = fm10k_request_lport_map_pf,
1822};
1823
1824static const struct fm10k_iov_ops iov_ops_pf = {
1825        .assign_resources               = fm10k_iov_assign_resources_pf,
1826        .configure_tc                   = fm10k_iov_configure_tc_pf,
1827        .assign_int_moderator           = fm10k_iov_assign_int_moderator_pf,
1828        .assign_default_mac_vlan        = fm10k_iov_assign_default_mac_vlan_pf,
1829        .reset_resources                = fm10k_iov_reset_resources_pf,
1830        .set_lport                      = fm10k_iov_set_lport_pf,
1831        .reset_lport                    = fm10k_iov_reset_lport_pf,
1832        .update_stats                   = fm10k_iov_update_stats_pf,
1833};
1834
1835static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1836{
1837        fm10k_get_invariants_generic(hw);
1838
1839        return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1840}
1841
1842const struct fm10k_info fm10k_pf_info = {
1843        .mac            = fm10k_mac_pf,
1844        .get_invariants = fm10k_get_invariants_pf,
1845        .mac_ops        = &mac_ops_pf,
1846        .iov_ops        = &iov_ops_pf,
1847};
1848