linux/drivers/net/irda/sh_sir.c
<<
>>
Prefs
   1/*
   2 * SuperH IrDA Driver
   3 *
   4 * Copyright (C) 2009 Renesas Solutions Corp.
   5 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
   6 *
   7 * Based on bfin_sir.c
   8 * Copyright 2006-2009 Analog Devices Inc.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 */
  14
  15#include <linux/io.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/platform_device.h>
  19#include <linux/slab.h>
  20#include <net/irda/wrapper.h>
  21#include <net/irda/irda_device.h>
  22#include <asm/clock.h>
  23
  24#define DRIVER_NAME "sh_sir"
  25
  26#define RX_PHASE        (1 << 0)
  27#define TX_PHASE        (1 << 1)
  28#define TX_COMP_PHASE   (1 << 2) /* tx complete */
  29#define NONE_PHASE      (1 << 31)
  30
  31#define IRIF_RINTCLR    0x0016 /* DMA rx interrupt source clear */
  32#define IRIF_TINTCLR    0x0018 /* DMA tx interrupt source clear */
  33#define IRIF_SIR0       0x0020 /* IrDA-SIR10 control */
  34#define IRIF_SIR1       0x0022 /* IrDA-SIR10 baudrate error correction */
  35#define IRIF_SIR2       0x0024 /* IrDA-SIR10 baudrate count */
  36#define IRIF_SIR3       0x0026 /* IrDA-SIR10 status */
  37#define IRIF_SIR_FRM    0x0028 /* Hardware frame processing set */
  38#define IRIF_SIR_EOF    0x002A /* EOF value */
  39#define IRIF_SIR_FLG    0x002C /* Flag clear */
  40#define IRIF_UART_STS2  0x002E /* UART status 2 */
  41#define IRIF_UART0      0x0030 /* UART control */
  42#define IRIF_UART1      0x0032 /* UART status */
  43#define IRIF_UART2      0x0034 /* UART mode */
  44#define IRIF_UART3      0x0036 /* UART transmit data */
  45#define IRIF_UART4      0x0038 /* UART receive data */
  46#define IRIF_UART5      0x003A /* UART interrupt mask */
  47#define IRIF_UART6      0x003C /* UART baud rate error correction */
  48#define IRIF_UART7      0x003E /* UART baud rate count set */
  49#define IRIF_CRC0       0x0040 /* CRC engine control */
  50#define IRIF_CRC1       0x0042 /* CRC engine input data */
  51#define IRIF_CRC2       0x0044 /* CRC engine calculation */
  52#define IRIF_CRC3       0x0046 /* CRC engine output data 1 */
  53#define IRIF_CRC4       0x0048 /* CRC engine output data 2 */
  54
  55/* IRIF_SIR0 */
  56#define IRTPW           (1 << 1) /* transmit pulse width select */
  57#define IRERRC          (1 << 0) /* Clear receive pulse width error */
  58
  59/* IRIF_SIR3 */
  60#define IRERR           (1 << 0) /* received pulse width Error */
  61
  62/* IRIF_SIR_FRM */
  63#define EOFD            (1 << 9) /* EOF detection flag */
  64#define FRER            (1 << 8) /* Frame Error bit */
  65#define FRP             (1 << 0) /* Frame processing set */
  66
  67/* IRIF_UART_STS2 */
  68#define IRSME           (1 << 6) /* Receive Sum     Error flag */
  69#define IROVE           (1 << 5) /* Receive Overrun Error flag */
  70#define IRFRE           (1 << 4) /* Receive Framing Error flag */
  71#define IRPRE           (1 << 3) /* Receive Parity  Error flag */
  72
  73/* IRIF_UART0_*/
  74#define TBEC            (1 << 2) /* Transmit Data Clear */
  75#define RIE             (1 << 1) /* Receive Enable */
  76#define TIE             (1 << 0) /* Transmit Enable */
  77
  78/* IRIF_UART1 */
  79#define URSME           (1 << 6) /* Receive Sum Error Flag */
  80#define UROVE           (1 << 5) /* Receive Overrun Error Flag */
  81#define URFRE           (1 << 4) /* Receive Framing Error Flag */
  82#define URPRE           (1 << 3) /* Receive Parity Error Flag */
  83#define RBF             (1 << 2) /* Receive Buffer Full Flag */
  84#define TSBE            (1 << 1) /* Transmit Shift Buffer Empty Flag */
  85#define TBE             (1 << 0) /* Transmit Buffer Empty flag */
  86#define TBCOMP          (TSBE | TBE)
  87
  88/* IRIF_UART5 */
  89#define RSEIM           (1 << 6) /* Receive Sum Error Flag IRQ Mask */
  90#define RBFIM           (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
  91#define TSBEIM          (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
  92#define TBEIM           (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
  93#define RX_MASK         (RSEIM  | RBFIM)
  94
  95/* IRIF_CRC0 */
  96#define CRC_RST         (1 << 15) /* CRC Engine Reset */
  97#define CRC_CT_MASK     0x0FFF
  98
  99/************************************************************************
 100
 101
 102                        structure
 103
 104
 105************************************************************************/
 106struct sh_sir_self {
 107        void __iomem            *membase;
 108        unsigned int             irq;
 109        struct clk              *clk;
 110
 111        struct net_device       *ndev;
 112
 113        struct irlap_cb         *irlap;
 114        struct qos_info         qos;
 115
 116        iobuff_t                tx_buff;
 117        iobuff_t                rx_buff;
 118};
 119
 120/************************************************************************
 121
 122
 123                        common function
 124
 125
 126************************************************************************/
 127static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
 128{
 129        iowrite16(data, self->membase + offset);
 130}
 131
 132static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
 133{
 134        return ioread16(self->membase + offset);
 135}
 136
 137static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
 138                               u16 mask, u16 data)
 139{
 140        u16 old, new;
 141
 142        old = sh_sir_read(self, offset);
 143        new = (old & ~mask) | data;
 144        if (old != new)
 145                sh_sir_write(self, offset, new);
 146}
 147
 148/************************************************************************
 149
 150
 151                        CRC function
 152
 153
 154************************************************************************/
 155static void sh_sir_crc_reset(struct sh_sir_self *self)
 156{
 157        sh_sir_write(self, IRIF_CRC0, CRC_RST);
 158}
 159
 160static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
 161{
 162        sh_sir_write(self, IRIF_CRC1, (u16)data);
 163}
 164
 165static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
 166{
 167        return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
 168}
 169
 170static u16 sh_sir_crc_out(struct sh_sir_self *self)
 171{
 172        return sh_sir_read(self, IRIF_CRC4);
 173}
 174
 175static int sh_sir_crc_init(struct sh_sir_self *self)
 176{
 177        struct device *dev = &self->ndev->dev;
 178        int ret = -EIO;
 179        u16 val;
 180
 181        sh_sir_crc_reset(self);
 182
 183        sh_sir_crc_add(self, 0xCC);
 184        sh_sir_crc_add(self, 0xF5);
 185        sh_sir_crc_add(self, 0xF1);
 186        sh_sir_crc_add(self, 0xA7);
 187
 188        val = sh_sir_crc_cnt(self);
 189        if (4 != val) {
 190                dev_err(dev, "CRC count error %x\n", val);
 191                goto crc_init_out;
 192        }
 193
 194        val = sh_sir_crc_out(self);
 195        if (0x51DF != val) {
 196                dev_err(dev, "CRC result error%x\n", val);
 197                goto crc_init_out;
 198        }
 199
 200        ret = 0;
 201
 202crc_init_out:
 203
 204        sh_sir_crc_reset(self);
 205        return ret;
 206}
 207
 208/************************************************************************
 209
 210
 211                        baud rate functions
 212
 213
 214************************************************************************/
 215#define SCLK_BASE 1843200 /* 1.8432MHz */
 216
 217static u32 sh_sir_find_sclk(struct clk *irda_clk)
 218{
 219        struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
 220        struct cpufreq_frequency_table *pos;
 221        struct clk *pclk = clk_get(NULL, "peripheral_clk");
 222        u32 limit, min = 0xffffffff, tmp;
 223        int index = 0;
 224
 225        limit = clk_get_rate(pclk);
 226        clk_put(pclk);
 227
 228        /* IrDA can not set over peripheral_clk */
 229        cpufreq_for_each_valid_entry(pos, freq_table) {
 230                u32 freq = pos->frequency;
 231
 232                /* IrDA should not over peripheral_clk */
 233                if (freq > limit)
 234                        continue;
 235
 236                tmp = freq % SCLK_BASE;
 237                if (tmp < min) {
 238                        min = tmp;
 239                        index = pos - freq_table;
 240                }
 241        }
 242
 243        return freq_table[index].frequency;
 244}
 245
 246#define ERR_ROUNDING(a) ((a + 5000) / 10000)
 247static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
 248{
 249        struct clk *clk;
 250        struct device *dev = &self->ndev->dev;
 251        u32 rate;
 252        u16 uabca, uabc;
 253        u16 irbca, irbc;
 254        u32 min, rerr, tmp;
 255        int i;
 256
 257        /* Baud Rate Error Correction x 10000 */
 258        u32 rate_err_array[] = {
 259                   0,  625, 1250, 1875,
 260                2500, 3125, 3750, 4375,
 261                5000, 5625, 6250, 6875,
 262                7500, 8125, 8750, 9375,
 263        };
 264
 265        /*
 266         * FIXME
 267         *
 268         * it support 9600 only now
 269         */
 270        switch (baudrate) {
 271        case 9600:
 272                break;
 273        default:
 274                dev_err(dev, "un-supported baudrate %d\n", baudrate);
 275                return -EIO;
 276        }
 277
 278        clk = clk_get(NULL, "irda_clk");
 279        if (IS_ERR(clk)) {
 280                dev_err(dev, "can not get irda_clk\n");
 281                return -EIO;
 282        }
 283
 284        clk_set_rate(clk, sh_sir_find_sclk(clk));
 285        rate = clk_get_rate(clk);
 286        clk_put(clk);
 287
 288        dev_dbg(dev, "selected sclk = %d\n", rate);
 289
 290        /*
 291         * CALCULATION
 292         *
 293         * 1843200 = system rate / (irbca + (irbc + 1))
 294         */
 295
 296        irbc = rate / SCLK_BASE;
 297
 298        tmp = rate - (SCLK_BASE * irbc);
 299        tmp *= 10000;
 300
 301        rerr = tmp / SCLK_BASE;
 302
 303        min = 0xffffffff;
 304        irbca = 0;
 305        for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
 306                tmp = abs(rate_err_array[i] - rerr);
 307                if (min > tmp) {
 308                        min = tmp;
 309                        irbca = i;
 310                }
 311        }
 312
 313        tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
 314        if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
 315                dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
 316
 317        dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
 318               SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
 319
 320        irbca = (irbca & 0xF) << 4;
 321        irbc  = (irbc - 1) & 0xF;
 322
 323        if (!irbc) {
 324                dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
 325                return -EIO;
 326        }
 327
 328        sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
 329        sh_sir_write(self, IRIF_SIR1, irbca);
 330        sh_sir_write(self, IRIF_SIR2, irbc);
 331
 332        /*
 333         * CALCULATION
 334         *
 335         * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
 336         */
 337
 338        uabc = rate / baudrate;
 339        uabc = (uabc / 16) - 1;
 340        uabc = (uabc + 1) * 16;
 341
 342        tmp = rate - (uabc * baudrate);
 343        tmp *= 10000;
 344
 345        rerr = tmp / baudrate;
 346
 347        min = 0xffffffff;
 348        uabca = 0;
 349        for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
 350                tmp = abs(rate_err_array[i] - rerr);
 351                if (min > tmp) {
 352                        min = tmp;
 353                        uabca = i;
 354                }
 355        }
 356
 357        tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
 358        if ((baudrate / 100) < abs(tmp - baudrate))
 359                dev_warn(dev, "UART freq error margin over %d\n", tmp);
 360
 361        dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
 362               baudrate, tmp,
 363               uabc, rate_err_array[uabca]);
 364
 365        uabca = (uabca & 0xF) << 4;
 366        uabc  = (uabc / 16) - 1;
 367
 368        sh_sir_write(self, IRIF_UART6, uabca);
 369        sh_sir_write(self, IRIF_UART7, uabc);
 370
 371        return 0;
 372}
 373
 374/************************************************************************
 375
 376
 377                        iobuf function
 378
 379
 380************************************************************************/
 381static int __sh_sir_init_iobuf(iobuff_t *io, int size)
 382{
 383        io->head = kmalloc(size, GFP_KERNEL);
 384        if (!io->head)
 385                return -ENOMEM;
 386
 387        io->truesize    = size;
 388        io->in_frame    = FALSE;
 389        io->state       = OUTSIDE_FRAME;
 390        io->data        = io->head;
 391
 392        return 0;
 393}
 394
 395static void sh_sir_remove_iobuf(struct sh_sir_self *self)
 396{
 397        kfree(self->rx_buff.head);
 398        kfree(self->tx_buff.head);
 399
 400        self->rx_buff.head = NULL;
 401        self->tx_buff.head = NULL;
 402}
 403
 404static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
 405{
 406        int err = -ENOMEM;
 407
 408        if (self->rx_buff.head ||
 409            self->tx_buff.head) {
 410                dev_err(&self->ndev->dev, "iobuff has already existed.");
 411                return err;
 412        }
 413
 414        err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
 415        if (err)
 416                goto iobuf_err;
 417
 418        err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
 419
 420iobuf_err:
 421        if (err)
 422                sh_sir_remove_iobuf(self);
 423
 424        return err;
 425}
 426
 427/************************************************************************
 428
 429
 430                        status function
 431
 432
 433************************************************************************/
 434static void sh_sir_clear_all_err(struct sh_sir_self *self)
 435{
 436        /* Clear error flag for receive pulse width */
 437        sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
 438
 439        /* Clear frame / EOF error flag */
 440        sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
 441
 442        /* Clear all status error */
 443        sh_sir_write(self, IRIF_UART_STS2, 0);
 444}
 445
 446static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
 447{
 448        u16 uart5 = 0;
 449        u16 uart0 = 0;
 450
 451        switch (phase) {
 452        case TX_PHASE:
 453                uart5 = TBEIM;
 454                uart0 = TBEC | TIE;
 455                break;
 456        case TX_COMP_PHASE:
 457                uart5 = TSBEIM;
 458                uart0 = TIE;
 459                break;
 460        case RX_PHASE:
 461                uart5 = RX_MASK;
 462                uart0 = RIE;
 463                break;
 464        default:
 465                break;
 466        }
 467
 468        sh_sir_write(self, IRIF_UART5, uart5);
 469        sh_sir_write(self, IRIF_UART0, uart0);
 470}
 471
 472static int sh_sir_is_which_phase(struct sh_sir_self *self)
 473{
 474        u16 val = sh_sir_read(self, IRIF_UART5);
 475
 476        if (val & TBEIM)
 477                return TX_PHASE;
 478
 479        if (val & TSBEIM)
 480                return TX_COMP_PHASE;
 481
 482        if (val & RX_MASK)
 483                return RX_PHASE;
 484
 485        return NONE_PHASE;
 486}
 487
 488static void sh_sir_tx(struct sh_sir_self *self, int phase)
 489{
 490        switch (phase) {
 491        case TX_PHASE:
 492                if (0 >= self->tx_buff.len) {
 493                        sh_sir_set_phase(self, TX_COMP_PHASE);
 494                } else {
 495                        sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
 496                        self->tx_buff.len--;
 497                        self->tx_buff.data++;
 498                }
 499                break;
 500        case TX_COMP_PHASE:
 501                sh_sir_set_phase(self, RX_PHASE);
 502                netif_wake_queue(self->ndev);
 503                break;
 504        default:
 505                dev_err(&self->ndev->dev, "should not happen\n");
 506                break;
 507        }
 508}
 509
 510static int sh_sir_read_data(struct sh_sir_self *self)
 511{
 512        u16 val = 0;
 513        int timeout = 1024;
 514
 515        while (timeout--) {
 516                val = sh_sir_read(self, IRIF_UART1);
 517
 518                /* data get */
 519                if (val & RBF) {
 520                        if (val & (URSME | UROVE | URFRE | URPRE))
 521                                break;
 522
 523                        return (int)sh_sir_read(self, IRIF_UART4);
 524                }
 525
 526                udelay(1);
 527        }
 528
 529        dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
 530                val, sh_sir_read(self, IRIF_UART_STS2));
 531
 532        /* read data register for clear error */
 533        sh_sir_read(self, IRIF_UART4);
 534
 535        return -1;
 536}
 537
 538static void sh_sir_rx(struct sh_sir_self *self)
 539{
 540        int timeout = 1024;
 541        int data;
 542
 543        while (timeout--) {
 544                data = sh_sir_read_data(self);
 545                if (data < 0)
 546                        break;
 547
 548                async_unwrap_char(self->ndev, &self->ndev->stats,
 549                                  &self->rx_buff, (u8)data);
 550                self->ndev->last_rx = jiffies;
 551
 552                if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
 553                        continue;
 554
 555                break;
 556        }
 557}
 558
 559static irqreturn_t sh_sir_irq(int irq, void *dev_id)
 560{
 561        struct sh_sir_self *self = dev_id;
 562        struct device *dev = &self->ndev->dev;
 563        int phase = sh_sir_is_which_phase(self);
 564
 565        switch (phase) {
 566        case TX_COMP_PHASE:
 567        case TX_PHASE:
 568                sh_sir_tx(self, phase);
 569                break;
 570        case RX_PHASE:
 571                if (sh_sir_read(self, IRIF_SIR3))
 572                        dev_err(dev, "rcv pulse width error occurred\n");
 573
 574                sh_sir_rx(self);
 575                sh_sir_clear_all_err(self);
 576                break;
 577        default:
 578                dev_err(dev, "unknown interrupt\n");
 579        }
 580
 581         return IRQ_HANDLED;
 582}
 583
 584/************************************************************************
 585
 586
 587                        net_device_ops function
 588
 589
 590************************************************************************/
 591static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
 592{
 593        struct sh_sir_self *self = netdev_priv(ndev);
 594        int speed = irda_get_next_speed(skb);
 595
 596        if ((0 < speed) &&
 597            (9600 != speed)) {
 598                dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
 599                return -EIO;
 600        }
 601
 602        netif_stop_queue(ndev);
 603
 604        self->tx_buff.data = self->tx_buff.head;
 605        self->tx_buff.len = 0;
 606        if (skb->len)
 607                self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
 608                                                   self->tx_buff.truesize);
 609
 610        sh_sir_set_phase(self, TX_PHASE);
 611        dev_kfree_skb(skb);
 612
 613        return 0;
 614}
 615
 616static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
 617{
 618        /*
 619         * FIXME
 620         *
 621         * This function is needed for irda framework.
 622         * But nothing to do now
 623         */
 624        return 0;
 625}
 626
 627static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
 628{
 629        struct sh_sir_self *self = netdev_priv(ndev);
 630
 631        return &self->ndev->stats;
 632}
 633
 634static int sh_sir_open(struct net_device *ndev)
 635{
 636        struct sh_sir_self *self = netdev_priv(ndev);
 637        int err;
 638
 639        clk_enable(self->clk);
 640        err = sh_sir_crc_init(self);
 641        if (err)
 642                goto open_err;
 643
 644        sh_sir_set_baudrate(self, 9600);
 645
 646        self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
 647        if (!self->irlap) {
 648                err = -ENODEV;
 649                goto open_err;
 650        }
 651
 652        /*
 653         * Now enable the interrupt then start the queue
 654         */
 655        sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
 656        sh_sir_read(self, IRIF_UART1); /* flag clear */
 657        sh_sir_read(self, IRIF_UART4); /* flag clear */
 658        sh_sir_set_phase(self, RX_PHASE);
 659
 660        netif_start_queue(ndev);
 661
 662        dev_info(&self->ndev->dev, "opened\n");
 663
 664        return 0;
 665
 666open_err:
 667        clk_disable(self->clk);
 668
 669        return err;
 670}
 671
 672static int sh_sir_stop(struct net_device *ndev)
 673{
 674        struct sh_sir_self *self = netdev_priv(ndev);
 675
 676        /* Stop IrLAP */
 677        if (self->irlap) {
 678                irlap_close(self->irlap);
 679                self->irlap = NULL;
 680        }
 681
 682        netif_stop_queue(ndev);
 683
 684        dev_info(&ndev->dev, "stopped\n");
 685
 686        return 0;
 687}
 688
 689static const struct net_device_ops sh_sir_ndo = {
 690        .ndo_open               = sh_sir_open,
 691        .ndo_stop               = sh_sir_stop,
 692        .ndo_start_xmit         = sh_sir_hard_xmit,
 693        .ndo_do_ioctl           = sh_sir_ioctl,
 694        .ndo_get_stats          = sh_sir_stats,
 695};
 696
 697/************************************************************************
 698
 699
 700                        platform_driver function
 701
 702
 703************************************************************************/
 704static int sh_sir_probe(struct platform_device *pdev)
 705{
 706        struct net_device *ndev;
 707        struct sh_sir_self *self;
 708        struct resource *res;
 709        char clk_name[8];
 710        int irq;
 711        int err = -ENOMEM;
 712
 713        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 714        irq = platform_get_irq(pdev, 0);
 715        if (!res || irq < 0) {
 716                dev_err(&pdev->dev, "Not enough platform resources.\n");
 717                goto exit;
 718        }
 719
 720        ndev = alloc_irdadev(sizeof(*self));
 721        if (!ndev)
 722                goto exit;
 723
 724        self = netdev_priv(ndev);
 725        self->membase = ioremap_nocache(res->start, resource_size(res));
 726        if (!self->membase) {
 727                err = -ENXIO;
 728                dev_err(&pdev->dev, "Unable to ioremap.\n");
 729                goto err_mem_1;
 730        }
 731
 732        err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
 733        if (err)
 734                goto err_mem_2;
 735
 736        snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
 737        self->clk = clk_get(&pdev->dev, clk_name);
 738        if (IS_ERR(self->clk)) {
 739                dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
 740                err = -ENODEV;
 741                goto err_mem_3;
 742        }
 743
 744        irda_init_max_qos_capabilies(&self->qos);
 745
 746        ndev->netdev_ops        = &sh_sir_ndo;
 747        ndev->irq               = irq;
 748
 749        self->ndev                      = ndev;
 750        self->qos.baud_rate.bits        &= IR_9600; /* FIXME */
 751        self->qos.min_turn_time.bits    = 1; /* 10 ms or more */
 752
 753        irda_qos_bits_to_value(&self->qos);
 754
 755        err = register_netdev(ndev);
 756        if (err)
 757                goto err_mem_4;
 758
 759        platform_set_drvdata(pdev, ndev);
 760        err = devm_request_irq(&pdev->dev, irq, sh_sir_irq, 0, "sh_sir", self);
 761        if (err) {
 762                dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
 763                goto err_mem_4;
 764        }
 765
 766        dev_info(&pdev->dev, "SuperH IrDA probed\n");
 767
 768        goto exit;
 769
 770err_mem_4:
 771        clk_put(self->clk);
 772err_mem_3:
 773        sh_sir_remove_iobuf(self);
 774err_mem_2:
 775        iounmap(self->membase);
 776err_mem_1:
 777        free_netdev(ndev);
 778exit:
 779        return err;
 780}
 781
 782static int sh_sir_remove(struct platform_device *pdev)
 783{
 784        struct net_device *ndev = platform_get_drvdata(pdev);
 785        struct sh_sir_self *self = netdev_priv(ndev);
 786
 787        if (!self)
 788                return 0;
 789
 790        unregister_netdev(ndev);
 791        clk_put(self->clk);
 792        sh_sir_remove_iobuf(self);
 793        iounmap(self->membase);
 794        free_netdev(ndev);
 795
 796        return 0;
 797}
 798
 799static struct platform_driver sh_sir_driver = {
 800        .probe   = sh_sir_probe,
 801        .remove  = sh_sir_remove,
 802        .driver  = {
 803                .name = DRIVER_NAME,
 804        },
 805};
 806
 807module_platform_driver(sh_sir_driver);
 808
 809MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
 810MODULE_DESCRIPTION("SuperH IrDA driver");
 811MODULE_LICENSE("GPL");
 812