linux/drivers/net/wireless/zydas/zd1211rw/zd_mac.c
<<
>>
Prefs
   1/* ZD1211 USB-WLAN driver for Linux
   2 *
   3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
   6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include <linux/netdevice.h>
  23#include <linux/etherdevice.h>
  24#include <linux/slab.h>
  25#include <linux/usb.h>
  26#include <linux/jiffies.h>
  27#include <net/ieee80211_radiotap.h>
  28
  29#include "zd_def.h"
  30#include "zd_chip.h"
  31#include "zd_mac.h"
  32#include "zd_rf.h"
  33
  34struct zd_reg_alpha2_map {
  35        u32 reg;
  36        char alpha2[2];
  37};
  38
  39static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  40        { ZD_REGDOMAIN_FCC, "US" },
  41        { ZD_REGDOMAIN_IC, "CA" },
  42        { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  43        { ZD_REGDOMAIN_JAPAN, "JP" },
  44        { ZD_REGDOMAIN_JAPAN_2, "JP" },
  45        { ZD_REGDOMAIN_JAPAN_3, "JP" },
  46        { ZD_REGDOMAIN_SPAIN, "ES" },
  47        { ZD_REGDOMAIN_FRANCE, "FR" },
  48};
  49
  50/* This table contains the hardware specific values for the modulation rates. */
  51static const struct ieee80211_rate zd_rates[] = {
  52        { .bitrate = 10,
  53          .hw_value = ZD_CCK_RATE_1M, },
  54        { .bitrate = 20,
  55          .hw_value = ZD_CCK_RATE_2M,
  56          .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  57          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  58        { .bitrate = 55,
  59          .hw_value = ZD_CCK_RATE_5_5M,
  60          .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  61          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  62        { .bitrate = 110,
  63          .hw_value = ZD_CCK_RATE_11M,
  64          .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  65          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  66        { .bitrate = 60,
  67          .hw_value = ZD_OFDM_RATE_6M,
  68          .flags = 0 },
  69        { .bitrate = 90,
  70          .hw_value = ZD_OFDM_RATE_9M,
  71          .flags = 0 },
  72        { .bitrate = 120,
  73          .hw_value = ZD_OFDM_RATE_12M,
  74          .flags = 0 },
  75        { .bitrate = 180,
  76          .hw_value = ZD_OFDM_RATE_18M,
  77          .flags = 0 },
  78        { .bitrate = 240,
  79          .hw_value = ZD_OFDM_RATE_24M,
  80          .flags = 0 },
  81        { .bitrate = 360,
  82          .hw_value = ZD_OFDM_RATE_36M,
  83          .flags = 0 },
  84        { .bitrate = 480,
  85          .hw_value = ZD_OFDM_RATE_48M,
  86          .flags = 0 },
  87        { .bitrate = 540,
  88          .hw_value = ZD_OFDM_RATE_54M,
  89          .flags = 0 },
  90};
  91
  92/*
  93 * Zydas retry rates table. Each line is listed in the same order as
  94 * in zd_rates[] and contains all the rate used when a packet is sent
  95 * starting with a given rates. Let's consider an example :
  96 *
  97 * "11 Mbits : 4, 3, 2, 1, 0" means :
  98 * - packet is sent using 4 different rates
  99 * - 1st rate is index 3 (ie 11 Mbits)
 100 * - 2nd rate is index 2 (ie 5.5 Mbits)
 101 * - 3rd rate is index 1 (ie 2 Mbits)
 102 * - 4th rate is index 0 (ie 1 Mbits)
 103 */
 104
 105static const struct tx_retry_rate zd_retry_rates[] = {
 106        { /*  1 Mbits */        1, { 0 }},
 107        { /*  2 Mbits */        2, { 1,  0 }},
 108        { /*  5.5 Mbits */      3, { 2,  1, 0 }},
 109        { /* 11 Mbits */        4, { 3,  2, 1, 0 }},
 110        { /*  6 Mbits */        5, { 4,  3, 2, 1, 0 }},
 111        { /*  9 Mbits */        6, { 5,  4, 3, 2, 1, 0}},
 112        { /* 12 Mbits */        5, { 6,  3, 2, 1, 0 }},
 113        { /* 18 Mbits */        6, { 7,  6, 3, 2, 1, 0 }},
 114        { /* 24 Mbits */        6, { 8,  6, 3, 2, 1, 0 }},
 115        { /* 36 Mbits */        7, { 9,  8, 6, 3, 2, 1, 0 }},
 116        { /* 48 Mbits */        8, {10,  9, 8, 6, 3, 2, 1, 0 }},
 117        { /* 54 Mbits */        9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
 118};
 119
 120static const struct ieee80211_channel zd_channels[] = {
 121        { .center_freq = 2412, .hw_value = 1 },
 122        { .center_freq = 2417, .hw_value = 2 },
 123        { .center_freq = 2422, .hw_value = 3 },
 124        { .center_freq = 2427, .hw_value = 4 },
 125        { .center_freq = 2432, .hw_value = 5 },
 126        { .center_freq = 2437, .hw_value = 6 },
 127        { .center_freq = 2442, .hw_value = 7 },
 128        { .center_freq = 2447, .hw_value = 8 },
 129        { .center_freq = 2452, .hw_value = 9 },
 130        { .center_freq = 2457, .hw_value = 10 },
 131        { .center_freq = 2462, .hw_value = 11 },
 132        { .center_freq = 2467, .hw_value = 12 },
 133        { .center_freq = 2472, .hw_value = 13 },
 134        { .center_freq = 2484, .hw_value = 14 },
 135};
 136
 137static void housekeeping_init(struct zd_mac *mac);
 138static void housekeeping_enable(struct zd_mac *mac);
 139static void housekeeping_disable(struct zd_mac *mac);
 140static void beacon_init(struct zd_mac *mac);
 141static void beacon_enable(struct zd_mac *mac);
 142static void beacon_disable(struct zd_mac *mac);
 143static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
 144static int zd_mac_config_beacon(struct ieee80211_hw *hw,
 145                                struct sk_buff *beacon, bool in_intr);
 146
 147static int zd_reg2alpha2(u8 regdomain, char *alpha2)
 148{
 149        unsigned int i;
 150        struct zd_reg_alpha2_map *reg_map;
 151        for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
 152                reg_map = &reg_alpha2_map[i];
 153                if (regdomain == reg_map->reg) {
 154                        alpha2[0] = reg_map->alpha2[0];
 155                        alpha2[1] = reg_map->alpha2[1];
 156                        return 0;
 157                }
 158        }
 159        return 1;
 160}
 161
 162static int zd_check_signal(struct ieee80211_hw *hw, int signal)
 163{
 164        struct zd_mac *mac = zd_hw_mac(hw);
 165
 166        dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
 167                        "%s: signal value from device not in range 0..100, "
 168                        "but %d.\n", __func__, signal);
 169
 170        if (signal < 0)
 171                signal = 0;
 172        else if (signal > 100)
 173                signal = 100;
 174
 175        return signal;
 176}
 177
 178int zd_mac_preinit_hw(struct ieee80211_hw *hw)
 179{
 180        int r;
 181        u8 addr[ETH_ALEN];
 182        struct zd_mac *mac = zd_hw_mac(hw);
 183
 184        r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
 185        if (r)
 186                return r;
 187
 188        SET_IEEE80211_PERM_ADDR(hw, addr);
 189
 190        return 0;
 191}
 192
 193int zd_mac_init_hw(struct ieee80211_hw *hw)
 194{
 195        int r;
 196        struct zd_mac *mac = zd_hw_mac(hw);
 197        struct zd_chip *chip = &mac->chip;
 198        char alpha2[2];
 199        u8 default_regdomain;
 200
 201        r = zd_chip_enable_int(chip);
 202        if (r)
 203                goto out;
 204        r = zd_chip_init_hw(chip);
 205        if (r)
 206                goto disable_int;
 207
 208        ZD_ASSERT(!irqs_disabled());
 209
 210        r = zd_read_regdomain(chip, &default_regdomain);
 211        if (r)
 212                goto disable_int;
 213        spin_lock_irq(&mac->lock);
 214        mac->regdomain = mac->default_regdomain = default_regdomain;
 215        spin_unlock_irq(&mac->lock);
 216
 217        /* We must inform the device that we are doing encryption/decryption in
 218         * software at the moment. */
 219        r = zd_set_encryption_type(chip, ENC_SNIFFER);
 220        if (r)
 221                goto disable_int;
 222
 223        r = zd_reg2alpha2(mac->regdomain, alpha2);
 224        if (r)
 225                goto disable_int;
 226
 227        r = regulatory_hint(hw->wiphy, alpha2);
 228disable_int:
 229        zd_chip_disable_int(chip);
 230out:
 231        return r;
 232}
 233
 234void zd_mac_clear(struct zd_mac *mac)
 235{
 236        flush_workqueue(zd_workqueue);
 237        zd_chip_clear(&mac->chip);
 238        ZD_ASSERT(!spin_is_locked(&mac->lock));
 239        ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
 240}
 241
 242static int set_rx_filter(struct zd_mac *mac)
 243{
 244        unsigned long flags;
 245        u32 filter = STA_RX_FILTER;
 246
 247        spin_lock_irqsave(&mac->lock, flags);
 248        if (mac->pass_ctrl)
 249                filter |= RX_FILTER_CTRL;
 250        spin_unlock_irqrestore(&mac->lock, flags);
 251
 252        return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
 253}
 254
 255static int set_mac_and_bssid(struct zd_mac *mac)
 256{
 257        int r;
 258
 259        if (!mac->vif)
 260                return -1;
 261
 262        r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
 263        if (r)
 264                return r;
 265
 266        /* Vendor driver after setting MAC either sets BSSID for AP or
 267         * filter for other modes.
 268         */
 269        if (mac->type != NL80211_IFTYPE_AP)
 270                return set_rx_filter(mac);
 271        else
 272                return zd_write_bssid(&mac->chip, mac->vif->addr);
 273}
 274
 275static int set_mc_hash(struct zd_mac *mac)
 276{
 277        struct zd_mc_hash hash;
 278        zd_mc_clear(&hash);
 279        return zd_chip_set_multicast_hash(&mac->chip, &hash);
 280}
 281
 282int zd_op_start(struct ieee80211_hw *hw)
 283{
 284        struct zd_mac *mac = zd_hw_mac(hw);
 285        struct zd_chip *chip = &mac->chip;
 286        struct zd_usb *usb = &chip->usb;
 287        int r;
 288
 289        if (!usb->initialized) {
 290                r = zd_usb_init_hw(usb);
 291                if (r)
 292                        goto out;
 293        }
 294
 295        r = zd_chip_enable_int(chip);
 296        if (r < 0)
 297                goto out;
 298
 299        r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
 300        if (r < 0)
 301                goto disable_int;
 302        r = set_rx_filter(mac);
 303        if (r)
 304                goto disable_int;
 305        r = set_mc_hash(mac);
 306        if (r)
 307                goto disable_int;
 308
 309        /* Wait after setting the multicast hash table and powering on
 310         * the radio otherwise interface bring up will fail. This matches
 311         * what the vendor driver did.
 312         */
 313        msleep(10);
 314
 315        r = zd_chip_switch_radio_on(chip);
 316        if (r < 0) {
 317                dev_err(zd_chip_dev(chip),
 318                        "%s: failed to set radio on\n", __func__);
 319                goto disable_int;
 320        }
 321        r = zd_chip_enable_rxtx(chip);
 322        if (r < 0)
 323                goto disable_radio;
 324        r = zd_chip_enable_hwint(chip);
 325        if (r < 0)
 326                goto disable_rxtx;
 327
 328        housekeeping_enable(mac);
 329        beacon_enable(mac);
 330        set_bit(ZD_DEVICE_RUNNING, &mac->flags);
 331        return 0;
 332disable_rxtx:
 333        zd_chip_disable_rxtx(chip);
 334disable_radio:
 335        zd_chip_switch_radio_off(chip);
 336disable_int:
 337        zd_chip_disable_int(chip);
 338out:
 339        return r;
 340}
 341
 342void zd_op_stop(struct ieee80211_hw *hw)
 343{
 344        struct zd_mac *mac = zd_hw_mac(hw);
 345        struct zd_chip *chip = &mac->chip;
 346        struct sk_buff *skb;
 347        struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
 348
 349        clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
 350
 351        /* The order here deliberately is a little different from the open()
 352         * method, since we need to make sure there is no opportunity for RX
 353         * frames to be processed by mac80211 after we have stopped it.
 354         */
 355
 356        zd_chip_disable_rxtx(chip);
 357        beacon_disable(mac);
 358        housekeeping_disable(mac);
 359        flush_workqueue(zd_workqueue);
 360
 361        zd_chip_disable_hwint(chip);
 362        zd_chip_switch_radio_off(chip);
 363        zd_chip_disable_int(chip);
 364
 365
 366        while ((skb = skb_dequeue(ack_wait_queue)))
 367                dev_kfree_skb_any(skb);
 368}
 369
 370int zd_restore_settings(struct zd_mac *mac)
 371{
 372        struct sk_buff *beacon;
 373        struct zd_mc_hash multicast_hash;
 374        unsigned int short_preamble;
 375        int r, beacon_interval, beacon_period;
 376        u8 channel;
 377
 378        dev_dbg_f(zd_mac_dev(mac), "\n");
 379
 380        spin_lock_irq(&mac->lock);
 381        multicast_hash = mac->multicast_hash;
 382        short_preamble = mac->short_preamble;
 383        beacon_interval = mac->beacon.interval;
 384        beacon_period = mac->beacon.period;
 385        channel = mac->channel;
 386        spin_unlock_irq(&mac->lock);
 387
 388        r = set_mac_and_bssid(mac);
 389        if (r < 0) {
 390                dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
 391                return r;
 392        }
 393
 394        r = zd_chip_set_channel(&mac->chip, channel);
 395        if (r < 0) {
 396                dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
 397                          r);
 398                return r;
 399        }
 400
 401        set_rts_cts(mac, short_preamble);
 402
 403        r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
 404        if (r < 0) {
 405                dev_dbg_f(zd_mac_dev(mac),
 406                          "zd_chip_set_multicast_hash failed, %d\n", r);
 407                return r;
 408        }
 409
 410        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
 411            mac->type == NL80211_IFTYPE_ADHOC ||
 412            mac->type == NL80211_IFTYPE_AP) {
 413                if (mac->vif != NULL) {
 414                        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
 415                        if (beacon)
 416                                zd_mac_config_beacon(mac->hw, beacon, false);
 417                }
 418
 419                zd_set_beacon_interval(&mac->chip, beacon_interval,
 420                                        beacon_period, mac->type);
 421
 422                spin_lock_irq(&mac->lock);
 423                mac->beacon.last_update = jiffies;
 424                spin_unlock_irq(&mac->lock);
 425        }
 426
 427        return 0;
 428}
 429
 430/**
 431 * zd_mac_tx_status - reports tx status of a packet if required
 432 * @hw - a &struct ieee80211_hw pointer
 433 * @skb - a sk-buffer
 434 * @flags: extra flags to set in the TX status info
 435 * @ackssi: ACK signal strength
 436 * @success - True for successful transmission of the frame
 437 *
 438 * This information calls ieee80211_tx_status_irqsafe() if required by the
 439 * control information. It copies the control information into the status
 440 * information.
 441 *
 442 * If no status information has been requested, the skb is freed.
 443 */
 444static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
 445                      int ackssi, struct tx_status *tx_status)
 446{
 447        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 448        int i;
 449        int success = 1, retry = 1;
 450        int first_idx;
 451        const struct tx_retry_rate *retries;
 452
 453        ieee80211_tx_info_clear_status(info);
 454
 455        if (tx_status) {
 456                success = !tx_status->failure;
 457                retry = tx_status->retry + success;
 458        }
 459
 460        if (success) {
 461                /* success */
 462                info->flags |= IEEE80211_TX_STAT_ACK;
 463        } else {
 464                /* failure */
 465                info->flags &= ~IEEE80211_TX_STAT_ACK;
 466        }
 467
 468        first_idx = info->status.rates[0].idx;
 469        ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 470        retries = &zd_retry_rates[first_idx];
 471        ZD_ASSERT(1 <= retry && retry <= retries->count);
 472
 473        info->status.rates[0].idx = retries->rate[0];
 474        info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
 475
 476        for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
 477                info->status.rates[i].idx = retries->rate[i];
 478                info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
 479        }
 480        for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
 481                info->status.rates[i].idx = retries->rate[retry - 1];
 482                info->status.rates[i].count = 1; // (success ? 1:2);
 483        }
 484        if (i<IEEE80211_TX_MAX_RATES)
 485                info->status.rates[i].idx = -1; /* terminate */
 486
 487        info->status.ack_signal = zd_check_signal(hw, ackssi);
 488        ieee80211_tx_status_irqsafe(hw, skb);
 489}
 490
 491/**
 492 * zd_mac_tx_failed - callback for failed frames
 493 * @dev: the mac80211 wireless device
 494 *
 495 * This function is called if a frame couldn't be successfully
 496 * transferred. The first frame from the tx queue, will be selected and
 497 * reported as error to the upper layers.
 498 */
 499void zd_mac_tx_failed(struct urb *urb)
 500{
 501        struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
 502        struct zd_mac *mac = zd_hw_mac(hw);
 503        struct sk_buff_head *q = &mac->ack_wait_queue;
 504        struct sk_buff *skb;
 505        struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
 506        unsigned long flags;
 507        int success = !tx_status->failure;
 508        int retry = tx_status->retry + success;
 509        int found = 0;
 510        int i, position = 0;
 511
 512        q = &mac->ack_wait_queue;
 513        spin_lock_irqsave(&q->lock, flags);
 514
 515        skb_queue_walk(q, skb) {
 516                struct ieee80211_hdr *tx_hdr;
 517                struct ieee80211_tx_info *info;
 518                int first_idx, final_idx;
 519                const struct tx_retry_rate *retries;
 520                u8 final_rate;
 521
 522                position ++;
 523
 524                /* if the hardware reports a failure and we had a 802.11 ACK
 525                 * pending, then we skip the first skb when searching for a
 526                 * matching frame */
 527                if (tx_status->failure && mac->ack_pending &&
 528                    skb_queue_is_first(q, skb)) {
 529                        continue;
 530                }
 531
 532                tx_hdr = (struct ieee80211_hdr *)skb->data;
 533
 534                /* we skip all frames not matching the reported destination */
 535                if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
 536                        continue;
 537
 538                /* we skip all frames not matching the reported final rate */
 539
 540                info = IEEE80211_SKB_CB(skb);
 541                first_idx = info->status.rates[0].idx;
 542                ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 543                retries = &zd_retry_rates[first_idx];
 544                if (retry <= 0 || retry > retries->count)
 545                        continue;
 546
 547                final_idx = retries->rate[retry - 1];
 548                final_rate = zd_rates[final_idx].hw_value;
 549
 550                if (final_rate != tx_status->rate) {
 551                        continue;
 552                }
 553
 554                found = 1;
 555                break;
 556        }
 557
 558        if (found) {
 559                for (i=1; i<=position; i++) {
 560                        skb = __skb_dequeue(q);
 561                        zd_mac_tx_status(hw, skb,
 562                                         mac->ack_pending ? mac->ack_signal : 0,
 563                                         i == position ? tx_status : NULL);
 564                        mac->ack_pending = 0;
 565                }
 566        }
 567
 568        spin_unlock_irqrestore(&q->lock, flags);
 569}
 570
 571/**
 572 * zd_mac_tx_to_dev - callback for USB layer
 573 * @skb: a &sk_buff pointer
 574 * @error: error value, 0 if transmission successful
 575 *
 576 * Informs the MAC layer that the frame has successfully transferred to the
 577 * device. If an ACK is required and the transfer to the device has been
 578 * successful, the packets are put on the @ack_wait_queue with
 579 * the control set removed.
 580 */
 581void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
 582{
 583        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 584        struct ieee80211_hw *hw = info->rate_driver_data[0];
 585        struct zd_mac *mac = zd_hw_mac(hw);
 586
 587        ieee80211_tx_info_clear_status(info);
 588
 589        skb_pull(skb, sizeof(struct zd_ctrlset));
 590        if (unlikely(error ||
 591            (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
 592                /*
 593                 * FIXME : do we need to fill in anything ?
 594                 */
 595                ieee80211_tx_status_irqsafe(hw, skb);
 596        } else {
 597                struct sk_buff_head *q = &mac->ack_wait_queue;
 598
 599                skb_queue_tail(q, skb);
 600                while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
 601                        zd_mac_tx_status(hw, skb_dequeue(q),
 602                                         mac->ack_pending ? mac->ack_signal : 0,
 603                                         NULL);
 604                        mac->ack_pending = 0;
 605                }
 606        }
 607}
 608
 609static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
 610{
 611        /* ZD_PURE_RATE() must be used to remove the modulation type flag of
 612         * the zd-rate values.
 613         */
 614        static const u8 rate_divisor[] = {
 615                [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
 616                [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
 617                /* Bits must be doubled. */
 618                [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
 619                [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
 620                [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
 621                [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
 622                [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
 623                [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
 624                [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
 625                [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
 626                [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
 627                [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
 628        };
 629
 630        u32 bits = (u32)tx_length * 8;
 631        u32 divisor;
 632
 633        divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
 634        if (divisor == 0)
 635                return -EINVAL;
 636
 637        switch (zd_rate) {
 638        case ZD_CCK_RATE_5_5M:
 639                bits = (2*bits) + 10; /* round up to the next integer */
 640                break;
 641        case ZD_CCK_RATE_11M:
 642                if (service) {
 643                        u32 t = bits % 11;
 644                        *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 645                        if (0 < t && t <= 3) {
 646                                *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 647                        }
 648                }
 649                bits += 10; /* round up to the next integer */
 650                break;
 651        }
 652
 653        return bits/divisor;
 654}
 655
 656static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
 657                           struct ieee80211_hdr *header,
 658                           struct ieee80211_tx_info *info)
 659{
 660        /*
 661         * CONTROL TODO:
 662         * - if backoff needed, enable bit 0
 663         * - if burst (backoff not needed) disable bit 0
 664         */
 665
 666        cs->control = 0;
 667
 668        /* First fragment */
 669        if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
 670                cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
 671
 672        /* No ACK expected (multicast, etc.) */
 673        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 674                cs->control |= ZD_CS_NO_ACK;
 675
 676        /* PS-POLL */
 677        if (ieee80211_is_pspoll(header->frame_control))
 678                cs->control |= ZD_CS_PS_POLL_FRAME;
 679
 680        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
 681                cs->control |= ZD_CS_RTS;
 682
 683        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
 684                cs->control |= ZD_CS_SELF_CTS;
 685
 686        /* FIXME: Management frame? */
 687}
 688
 689static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
 690{
 691        if (!mac->beacon.cur_beacon)
 692                return false;
 693
 694        if (mac->beacon.cur_beacon->len != beacon->len)
 695                return false;
 696
 697        return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
 698}
 699
 700static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
 701{
 702        ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
 703
 704        kfree_skb(mac->beacon.cur_beacon);
 705        mac->beacon.cur_beacon = NULL;
 706}
 707
 708static void zd_mac_free_cur_beacon(struct zd_mac *mac)
 709{
 710        mutex_lock(&mac->chip.mutex);
 711        zd_mac_free_cur_beacon_locked(mac);
 712        mutex_unlock(&mac->chip.mutex);
 713}
 714
 715static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
 716                                bool in_intr)
 717{
 718        struct zd_mac *mac = zd_hw_mac(hw);
 719        int r, ret, num_cmds, req_pos = 0;
 720        u32 tmp, j = 0;
 721        /* 4 more bytes for tail CRC */
 722        u32 full_len = beacon->len + 4;
 723        unsigned long end_jiffies, message_jiffies;
 724        struct zd_ioreq32 *ioreqs;
 725
 726        mutex_lock(&mac->chip.mutex);
 727
 728        /* Check if hw already has this beacon. */
 729        if (zd_mac_match_cur_beacon(mac, beacon)) {
 730                r = 0;
 731                goto out_nofree;
 732        }
 733
 734        /* Alloc memory for full beacon write at once. */
 735        num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
 736        ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
 737        if (!ioreqs) {
 738                r = -ENOMEM;
 739                goto out_nofree;
 740        }
 741
 742        r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
 743        if (r < 0)
 744                goto out;
 745        r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 746        if (r < 0)
 747                goto release_sema;
 748        if (in_intr && tmp & 0x2) {
 749                r = -EBUSY;
 750                goto release_sema;
 751        }
 752
 753        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 754        message_jiffies = jiffies + HZ / 10; /*~100ms*/
 755        while (tmp & 0x2) {
 756                r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 757                if (r < 0)
 758                        goto release_sema;
 759                if (time_is_before_eq_jiffies(message_jiffies)) {
 760                        message_jiffies = jiffies + HZ / 10;
 761                        dev_err(zd_mac_dev(mac),
 762                                        "CR_BCN_FIFO_SEMAPHORE not ready\n");
 763                        if (time_is_before_eq_jiffies(end_jiffies))  {
 764                                dev_err(zd_mac_dev(mac),
 765                                                "Giving up beacon config.\n");
 766                                r = -ETIMEDOUT;
 767                                goto reset_device;
 768                        }
 769                }
 770                msleep(20);
 771        }
 772
 773        ioreqs[req_pos].addr = CR_BCN_FIFO;
 774        ioreqs[req_pos].value = full_len - 1;
 775        req_pos++;
 776        if (zd_chip_is_zd1211b(&mac->chip)) {
 777                ioreqs[req_pos].addr = CR_BCN_LENGTH;
 778                ioreqs[req_pos].value = full_len - 1;
 779                req_pos++;
 780        }
 781
 782        for (j = 0 ; j < beacon->len; j++) {
 783                ioreqs[req_pos].addr = CR_BCN_FIFO;
 784                ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
 785                req_pos++;
 786        }
 787
 788        for (j = 0; j < 4; j++) {
 789                ioreqs[req_pos].addr = CR_BCN_FIFO;
 790                ioreqs[req_pos].value = 0x0;
 791                req_pos++;
 792        }
 793
 794        BUG_ON(req_pos != num_cmds);
 795
 796        r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
 797
 798release_sema:
 799        /*
 800         * Try very hard to release device beacon semaphore, as otherwise
 801         * device/driver can be left in unusable state.
 802         */
 803        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 804        ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 805        while (ret < 0) {
 806                if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
 807                        ret = -ETIMEDOUT;
 808                        break;
 809                }
 810
 811                msleep(20);
 812                ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 813        }
 814
 815        if (ret < 0)
 816                dev_err(zd_mac_dev(mac), "Could not release "
 817                                         "CR_BCN_FIFO_SEMAPHORE!\n");
 818        if (r < 0 || ret < 0) {
 819                if (r >= 0)
 820                        r = ret;
 821
 822                /* We don't know if beacon was written successfully or not,
 823                 * so clear current. */
 824                zd_mac_free_cur_beacon_locked(mac);
 825
 826                goto out;
 827        }
 828
 829        /* Beacon has now been written successfully, update current. */
 830        zd_mac_free_cur_beacon_locked(mac);
 831        mac->beacon.cur_beacon = beacon;
 832        beacon = NULL;
 833
 834        /* 802.11b/g 2.4G CCK 1Mb
 835         * 802.11a, not yet implemented, uses different values (see GPL vendor
 836         * driver)
 837         */
 838        r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
 839                                CR_BCN_PLCP_CFG);
 840out:
 841        kfree(ioreqs);
 842out_nofree:
 843        kfree_skb(beacon);
 844        mutex_unlock(&mac->chip.mutex);
 845
 846        return r;
 847
 848reset_device:
 849        zd_mac_free_cur_beacon_locked(mac);
 850        kfree_skb(beacon);
 851
 852        mutex_unlock(&mac->chip.mutex);
 853        kfree(ioreqs);
 854
 855        /* semaphore stuck, reset device to avoid fw freeze later */
 856        dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
 857                                  "resetting device...");
 858        usb_queue_reset_device(mac->chip.usb.intf);
 859
 860        return r;
 861}
 862
 863static int fill_ctrlset(struct zd_mac *mac,
 864                        struct sk_buff *skb)
 865{
 866        int r;
 867        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 868        unsigned int frag_len = skb->len + FCS_LEN;
 869        unsigned int packet_length;
 870        struct ieee80211_rate *txrate;
 871        struct zd_ctrlset *cs = (struct zd_ctrlset *)
 872                skb_push(skb, sizeof(struct zd_ctrlset));
 873        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 874
 875        ZD_ASSERT(frag_len <= 0xffff);
 876
 877        /*
 878         * Firmware computes the duration itself (for all frames except PSPoll)
 879         * and needs the field set to 0 at input, otherwise firmware messes up
 880         * duration_id and sets bits 14 and 15 on.
 881         */
 882        if (!ieee80211_is_pspoll(hdr->frame_control))
 883                hdr->duration_id = 0;
 884
 885        txrate = ieee80211_get_tx_rate(mac->hw, info);
 886
 887        cs->modulation = txrate->hw_value;
 888        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 889                cs->modulation = txrate->hw_value_short;
 890
 891        cs->tx_length = cpu_to_le16(frag_len);
 892
 893        cs_set_control(mac, cs, hdr, info);
 894
 895        packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
 896        ZD_ASSERT(packet_length <= 0xffff);
 897        /* ZD1211B: Computing the length difference this way, gives us
 898         * flexibility to compute the packet length.
 899         */
 900        cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
 901                        packet_length - frag_len : packet_length);
 902
 903        /*
 904         * CURRENT LENGTH:
 905         * - transmit frame length in microseconds
 906         * - seems to be derived from frame length
 907         * - see Cal_Us_Service() in zdinlinef.h
 908         * - if macp->bTxBurstEnable is enabled, then multiply by 4
 909         *  - bTxBurstEnable is never set in the vendor driver
 910         *
 911         * SERVICE:
 912         * - "for PLCP configuration"
 913         * - always 0 except in some situations at 802.11b 11M
 914         * - see line 53 of zdinlinef.h
 915         */
 916        cs->service = 0;
 917        r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
 918                                 le16_to_cpu(cs->tx_length));
 919        if (r < 0)
 920                return r;
 921        cs->current_length = cpu_to_le16(r);
 922        cs->next_frame_length = 0;
 923
 924        return 0;
 925}
 926
 927/**
 928 * zd_op_tx - transmits a network frame to the device
 929 *
 930 * @dev: mac80211 hardware device
 931 * @skb: socket buffer
 932 * @control: the control structure
 933 *
 934 * This function transmit an IEEE 802.11 network frame to the device. The
 935 * control block of the skbuff will be initialized. If necessary the incoming
 936 * mac80211 queues will be stopped.
 937 */
 938static void zd_op_tx(struct ieee80211_hw *hw,
 939                     struct ieee80211_tx_control *control,
 940                     struct sk_buff *skb)
 941{
 942        struct zd_mac *mac = zd_hw_mac(hw);
 943        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 944        int r;
 945
 946        r = fill_ctrlset(mac, skb);
 947        if (r)
 948                goto fail;
 949
 950        info->rate_driver_data[0] = hw;
 951
 952        r = zd_usb_tx(&mac->chip.usb, skb);
 953        if (r)
 954                goto fail;
 955        return;
 956
 957fail:
 958        dev_kfree_skb(skb);
 959}
 960
 961/**
 962 * filter_ack - filters incoming packets for acknowledgements
 963 * @dev: the mac80211 device
 964 * @rx_hdr: received header
 965 * @stats: the status for the received packet
 966 *
 967 * This functions looks for ACK packets and tries to match them with the
 968 * frames in the tx queue. If a match is found the frame will be dequeued and
 969 * the upper layers is informed about the successful transmission. If
 970 * mac80211 queues have been stopped and the number of frames still to be
 971 * transmitted is low the queues will be opened again.
 972 *
 973 * Returns 1 if the frame was an ACK, 0 if it was ignored.
 974 */
 975static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
 976                      struct ieee80211_rx_status *stats)
 977{
 978        struct zd_mac *mac = zd_hw_mac(hw);
 979        struct sk_buff *skb;
 980        struct sk_buff_head *q;
 981        unsigned long flags;
 982        int found = 0;
 983        int i, position = 0;
 984
 985        if (!ieee80211_is_ack(rx_hdr->frame_control))
 986                return 0;
 987
 988        q = &mac->ack_wait_queue;
 989        spin_lock_irqsave(&q->lock, flags);
 990        skb_queue_walk(q, skb) {
 991                struct ieee80211_hdr *tx_hdr;
 992
 993                position ++;
 994
 995                if (mac->ack_pending && skb_queue_is_first(q, skb))
 996                    continue;
 997
 998                tx_hdr = (struct ieee80211_hdr *)skb->data;
 999                if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
1000                {
1001                        found = 1;
1002                        break;
1003                }
1004        }
1005
1006        if (found) {
1007                for (i=1; i<position; i++) {
1008                        skb = __skb_dequeue(q);
1009                        zd_mac_tx_status(hw, skb,
1010                                         mac->ack_pending ? mac->ack_signal : 0,
1011                                         NULL);
1012                        mac->ack_pending = 0;
1013                }
1014
1015                mac->ack_pending = 1;
1016                mac->ack_signal = stats->signal;
1017
1018                /* Prevent pending tx-packet on AP-mode */
1019                if (mac->type == NL80211_IFTYPE_AP) {
1020                        skb = __skb_dequeue(q);
1021                        zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1022                        mac->ack_pending = 0;
1023                }
1024        }
1025
1026        spin_unlock_irqrestore(&q->lock, flags);
1027        return 1;
1028}
1029
1030int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1031{
1032        struct zd_mac *mac = zd_hw_mac(hw);
1033        struct ieee80211_rx_status stats;
1034        const struct rx_status *status;
1035        struct sk_buff *skb;
1036        int bad_frame = 0;
1037        __le16 fc;
1038        int need_padding;
1039        int i;
1040        u8 rate;
1041
1042        if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1043                     FCS_LEN + sizeof(struct rx_status))
1044                return -EINVAL;
1045
1046        memset(&stats, 0, sizeof(stats));
1047
1048        /* Note about pass_failed_fcs and pass_ctrl access below:
1049         * mac locking intentionally omitted here, as this is the only unlocked
1050         * reader and the only writer is configure_filter. Plus, if there were
1051         * any races accessing these variables, it wouldn't really matter.
1052         * If mac80211 ever provides a way for us to access filter flags
1053         * from outside configure_filter, we could improve on this. Also, this
1054         * situation may change once we implement some kind of DMA-into-skb
1055         * RX path. */
1056
1057        /* Caller has to ensure that length >= sizeof(struct rx_status). */
1058        status = (struct rx_status *)
1059                (buffer + (length - sizeof(struct rx_status)));
1060        if (status->frame_status & ZD_RX_ERROR) {
1061                if (mac->pass_failed_fcs &&
1062                                (status->frame_status & ZD_RX_CRC32_ERROR)) {
1063                        stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1064                        bad_frame = 1;
1065                } else {
1066                        return -EINVAL;
1067                }
1068        }
1069
1070        stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1071        stats.band = NL80211_BAND_2GHZ;
1072        stats.signal = zd_check_signal(hw, status->signal_strength);
1073
1074        rate = zd_rx_rate(buffer, status);
1075
1076        /* todo: return index in the big switches in zd_rx_rate instead */
1077        for (i = 0; i < mac->band.n_bitrates; i++)
1078                if (rate == mac->band.bitrates[i].hw_value)
1079                        stats.rate_idx = i;
1080
1081        length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1082        buffer += ZD_PLCP_HEADER_SIZE;
1083
1084        /* Except for bad frames, filter each frame to see if it is an ACK, in
1085         * which case our internal TX tracking is updated. Normally we then
1086         * bail here as there's no need to pass ACKs on up to the stack, but
1087         * there is also the case where the stack has requested us to pass
1088         * control frames on up (pass_ctrl) which we must consider. */
1089        if (!bad_frame &&
1090                        filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1091                        && !mac->pass_ctrl)
1092                return 0;
1093
1094        fc = get_unaligned((__le16*)buffer);
1095        need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1096
1097        skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1098        if (skb == NULL)
1099                return -ENOMEM;
1100        if (need_padding) {
1101                /* Make sure the payload data is 4 byte aligned. */
1102                skb_reserve(skb, 2);
1103        }
1104
1105        /* FIXME : could we avoid this big memcpy ? */
1106        memcpy(skb_put(skb, length), buffer, length);
1107
1108        memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1109        ieee80211_rx_irqsafe(hw, skb);
1110        return 0;
1111}
1112
1113static int zd_op_add_interface(struct ieee80211_hw *hw,
1114                                struct ieee80211_vif *vif)
1115{
1116        struct zd_mac *mac = zd_hw_mac(hw);
1117
1118        /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1119        if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1120                return -EOPNOTSUPP;
1121
1122        switch (vif->type) {
1123        case NL80211_IFTYPE_MONITOR:
1124        case NL80211_IFTYPE_MESH_POINT:
1125        case NL80211_IFTYPE_STATION:
1126        case NL80211_IFTYPE_ADHOC:
1127        case NL80211_IFTYPE_AP:
1128                mac->type = vif->type;
1129                break;
1130        default:
1131                return -EOPNOTSUPP;
1132        }
1133
1134        mac->vif = vif;
1135
1136        return set_mac_and_bssid(mac);
1137}
1138
1139static void zd_op_remove_interface(struct ieee80211_hw *hw,
1140                                    struct ieee80211_vif *vif)
1141{
1142        struct zd_mac *mac = zd_hw_mac(hw);
1143        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1144        mac->vif = NULL;
1145        zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1146        zd_write_mac_addr(&mac->chip, NULL);
1147
1148        zd_mac_free_cur_beacon(mac);
1149}
1150
1151static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1152{
1153        struct zd_mac *mac = zd_hw_mac(hw);
1154        struct ieee80211_conf *conf = &hw->conf;
1155
1156        spin_lock_irq(&mac->lock);
1157        mac->channel = conf->chandef.chan->hw_value;
1158        spin_unlock_irq(&mac->lock);
1159
1160        return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1161}
1162
1163static void zd_beacon_done(struct zd_mac *mac)
1164{
1165        struct sk_buff *skb, *beacon;
1166
1167        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1168                return;
1169        if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1170                return;
1171
1172        /*
1173         * Send out buffered broad- and multicast frames.
1174         */
1175        while (!ieee80211_queue_stopped(mac->hw, 0)) {
1176                skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1177                if (!skb)
1178                        break;
1179                zd_op_tx(mac->hw, NULL, skb);
1180        }
1181
1182        /*
1183         * Fetch next beacon so that tim_count is updated.
1184         */
1185        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1186        if (beacon)
1187                zd_mac_config_beacon(mac->hw, beacon, true);
1188
1189        spin_lock_irq(&mac->lock);
1190        mac->beacon.last_update = jiffies;
1191        spin_unlock_irq(&mac->lock);
1192}
1193
1194static void zd_process_intr(struct work_struct *work)
1195{
1196        u16 int_status;
1197        unsigned long flags;
1198        struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1199
1200        spin_lock_irqsave(&mac->lock, flags);
1201        int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1202        spin_unlock_irqrestore(&mac->lock, flags);
1203
1204        if (int_status & INT_CFG_NEXT_BCN) {
1205                /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1206                zd_beacon_done(mac);
1207        } else {
1208                dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1209        }
1210
1211        zd_chip_enable_hwint(&mac->chip);
1212}
1213
1214
1215static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1216                                   struct netdev_hw_addr_list *mc_list)
1217{
1218        struct zd_mac *mac = zd_hw_mac(hw);
1219        struct zd_mc_hash hash;
1220        struct netdev_hw_addr *ha;
1221
1222        zd_mc_clear(&hash);
1223
1224        netdev_hw_addr_list_for_each(ha, mc_list) {
1225                dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1226                zd_mc_add_addr(&hash, ha->addr);
1227        }
1228
1229        return hash.low | ((u64)hash.high << 32);
1230}
1231
1232#define SUPPORTED_FIF_FLAGS \
1233        (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1234        FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1235static void zd_op_configure_filter(struct ieee80211_hw *hw,
1236                        unsigned int changed_flags,
1237                        unsigned int *new_flags,
1238                        u64 multicast)
1239{
1240        struct zd_mc_hash hash = {
1241                .low = multicast,
1242                .high = multicast >> 32,
1243        };
1244        struct zd_mac *mac = zd_hw_mac(hw);
1245        unsigned long flags;
1246        int r;
1247
1248        /* Only deal with supported flags */
1249        changed_flags &= SUPPORTED_FIF_FLAGS;
1250        *new_flags &= SUPPORTED_FIF_FLAGS;
1251
1252        /*
1253         * If multicast parameter (as returned by zd_op_prepare_multicast)
1254         * has changed, no bit in changed_flags is set. To handle this
1255         * situation, we do not return if changed_flags is 0. If we do so,
1256         * we will have some issue with IPv6 which uses multicast for link
1257         * layer address resolution.
1258         */
1259        if (*new_flags & FIF_ALLMULTI)
1260                zd_mc_add_all(&hash);
1261
1262        spin_lock_irqsave(&mac->lock, flags);
1263        mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1264        mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1265        mac->multicast_hash = hash;
1266        spin_unlock_irqrestore(&mac->lock, flags);
1267
1268        zd_chip_set_multicast_hash(&mac->chip, &hash);
1269
1270        if (changed_flags & FIF_CONTROL) {
1271                r = set_rx_filter(mac);
1272                if (r)
1273                        dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1274        }
1275
1276        /* no handling required for FIF_OTHER_BSS as we don't currently
1277         * do BSSID filtering */
1278        /* FIXME: in future it would be nice to enable the probe response
1279         * filter (so that the driver doesn't see them) until
1280         * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1281         * have to schedule work to enable prbresp reception, which might
1282         * happen too late. For now we'll just listen and forward them all the
1283         * time. */
1284}
1285
1286static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1287{
1288        mutex_lock(&mac->chip.mutex);
1289        zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1290        mutex_unlock(&mac->chip.mutex);
1291}
1292
1293static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1294                                   struct ieee80211_vif *vif,
1295                                   struct ieee80211_bss_conf *bss_conf,
1296                                   u32 changes)
1297{
1298        struct zd_mac *mac = zd_hw_mac(hw);
1299        int associated;
1300
1301        dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1302
1303        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1304            mac->type == NL80211_IFTYPE_ADHOC ||
1305            mac->type == NL80211_IFTYPE_AP) {
1306                associated = true;
1307                if (changes & BSS_CHANGED_BEACON) {
1308                        struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1309
1310                        if (beacon) {
1311                                zd_chip_disable_hwint(&mac->chip);
1312                                zd_mac_config_beacon(hw, beacon, false);
1313                                zd_chip_enable_hwint(&mac->chip);
1314                        }
1315                }
1316
1317                if (changes & BSS_CHANGED_BEACON_ENABLED) {
1318                        u16 interval = 0;
1319                        u8 period = 0;
1320
1321                        if (bss_conf->enable_beacon) {
1322                                period = bss_conf->dtim_period;
1323                                interval = bss_conf->beacon_int;
1324                        }
1325
1326                        spin_lock_irq(&mac->lock);
1327                        mac->beacon.period = period;
1328                        mac->beacon.interval = interval;
1329                        mac->beacon.last_update = jiffies;
1330                        spin_unlock_irq(&mac->lock);
1331
1332                        zd_set_beacon_interval(&mac->chip, interval, period,
1333                                               mac->type);
1334                }
1335        } else
1336                associated = is_valid_ether_addr(bss_conf->bssid);
1337
1338        spin_lock_irq(&mac->lock);
1339        mac->associated = associated;
1340        spin_unlock_irq(&mac->lock);
1341
1342        /* TODO: do hardware bssid filtering */
1343
1344        if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1345                spin_lock_irq(&mac->lock);
1346                mac->short_preamble = bss_conf->use_short_preamble;
1347                spin_unlock_irq(&mac->lock);
1348
1349                set_rts_cts(mac, bss_conf->use_short_preamble);
1350        }
1351}
1352
1353static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1354{
1355        struct zd_mac *mac = zd_hw_mac(hw);
1356        return zd_chip_get_tsf(&mac->chip);
1357}
1358
1359static const struct ieee80211_ops zd_ops = {
1360        .tx                     = zd_op_tx,
1361        .start                  = zd_op_start,
1362        .stop                   = zd_op_stop,
1363        .add_interface          = zd_op_add_interface,
1364        .remove_interface       = zd_op_remove_interface,
1365        .config                 = zd_op_config,
1366        .prepare_multicast      = zd_op_prepare_multicast,
1367        .configure_filter       = zd_op_configure_filter,
1368        .bss_info_changed       = zd_op_bss_info_changed,
1369        .get_tsf                = zd_op_get_tsf,
1370};
1371
1372struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1373{
1374        struct zd_mac *mac;
1375        struct ieee80211_hw *hw;
1376
1377        hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1378        if (!hw) {
1379                dev_dbg_f(&intf->dev, "out of memory\n");
1380                return NULL;
1381        }
1382
1383        mac = zd_hw_mac(hw);
1384
1385        memset(mac, 0, sizeof(*mac));
1386        spin_lock_init(&mac->lock);
1387        mac->hw = hw;
1388
1389        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1390
1391        memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1392        memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1393        mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1394        mac->band.bitrates = mac->rates;
1395        mac->band.n_channels = ARRAY_SIZE(zd_channels);
1396        mac->band.channels = mac->channels;
1397
1398        hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1399
1400        ieee80211_hw_set(hw, MFP_CAPABLE);
1401        ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1402        ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1403        ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1404
1405        hw->wiphy->interface_modes =
1406                BIT(NL80211_IFTYPE_MESH_POINT) |
1407                BIT(NL80211_IFTYPE_STATION) |
1408                BIT(NL80211_IFTYPE_ADHOC) |
1409                BIT(NL80211_IFTYPE_AP);
1410
1411        hw->max_signal = 100;
1412        hw->queues = 1;
1413        hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1414
1415        /*
1416         * Tell mac80211 that we support multi rate retries
1417         */
1418        hw->max_rates = IEEE80211_TX_MAX_RATES;
1419        hw->max_rate_tries = 18;        /* 9 rates * 2 retries/rate */
1420
1421        skb_queue_head_init(&mac->ack_wait_queue);
1422        mac->ack_pending = 0;
1423
1424        zd_chip_init(&mac->chip, hw, intf);
1425        housekeeping_init(mac);
1426        beacon_init(mac);
1427        INIT_WORK(&mac->process_intr, zd_process_intr);
1428
1429        SET_IEEE80211_DEV(hw, &intf->dev);
1430        return hw;
1431}
1432
1433#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1434
1435static void beacon_watchdog_handler(struct work_struct *work)
1436{
1437        struct zd_mac *mac =
1438                container_of(work, struct zd_mac, beacon.watchdog_work.work);
1439        struct sk_buff *beacon;
1440        unsigned long timeout;
1441        int interval, period;
1442
1443        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1444                goto rearm;
1445        if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1446                goto rearm;
1447
1448        spin_lock_irq(&mac->lock);
1449        interval = mac->beacon.interval;
1450        period = mac->beacon.period;
1451        timeout = mac->beacon.last_update +
1452                        msecs_to_jiffies(interval * 1024 / 1000) * 3;
1453        spin_unlock_irq(&mac->lock);
1454
1455        if (interval > 0 && time_is_before_jiffies(timeout)) {
1456                dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1457                                           "restarting. "
1458                                           "(interval: %d, dtim: %d)\n",
1459                                           interval, period);
1460
1461                zd_chip_disable_hwint(&mac->chip);
1462
1463                beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1464                if (beacon) {
1465                        zd_mac_free_cur_beacon(mac);
1466
1467                        zd_mac_config_beacon(mac->hw, beacon, false);
1468                }
1469
1470                zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1471
1472                zd_chip_enable_hwint(&mac->chip);
1473
1474                spin_lock_irq(&mac->lock);
1475                mac->beacon.last_update = jiffies;
1476                spin_unlock_irq(&mac->lock);
1477        }
1478
1479rearm:
1480        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1481                           BEACON_WATCHDOG_DELAY);
1482}
1483
1484static void beacon_init(struct zd_mac *mac)
1485{
1486        INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1487}
1488
1489static void beacon_enable(struct zd_mac *mac)
1490{
1491        dev_dbg_f(zd_mac_dev(mac), "\n");
1492
1493        mac->beacon.last_update = jiffies;
1494        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1495                           BEACON_WATCHDOG_DELAY);
1496}
1497
1498static void beacon_disable(struct zd_mac *mac)
1499{
1500        dev_dbg_f(zd_mac_dev(mac), "\n");
1501        cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1502
1503        zd_mac_free_cur_beacon(mac);
1504}
1505
1506#define LINK_LED_WORK_DELAY HZ
1507
1508static void link_led_handler(struct work_struct *work)
1509{
1510        struct zd_mac *mac =
1511                container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1512        struct zd_chip *chip = &mac->chip;
1513        int is_associated;
1514        int r;
1515
1516        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1517                goto requeue;
1518
1519        spin_lock_irq(&mac->lock);
1520        is_associated = mac->associated;
1521        spin_unlock_irq(&mac->lock);
1522
1523        r = zd_chip_control_leds(chip,
1524                                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1525        if (r)
1526                dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1527
1528requeue:
1529        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1530                           LINK_LED_WORK_DELAY);
1531}
1532
1533static void housekeeping_init(struct zd_mac *mac)
1534{
1535        INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1536}
1537
1538static void housekeeping_enable(struct zd_mac *mac)
1539{
1540        dev_dbg_f(zd_mac_dev(mac), "\n");
1541        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1542                           0);
1543}
1544
1545static void housekeeping_disable(struct zd_mac *mac)
1546{
1547        dev_dbg_f(zd_mac_dev(mac), "\n");
1548        cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1549        zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1550}
1551