linux/drivers/spi/spi-atmel.c
<<
>>
Prefs
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pm_runtime.h>
  29
  30/* SPI register offsets */
  31#define SPI_CR                                  0x0000
  32#define SPI_MR                                  0x0004
  33#define SPI_RDR                                 0x0008
  34#define SPI_TDR                                 0x000c
  35#define SPI_SR                                  0x0010
  36#define SPI_IER                                 0x0014
  37#define SPI_IDR                                 0x0018
  38#define SPI_IMR                                 0x001c
  39#define SPI_CSR0                                0x0030
  40#define SPI_CSR1                                0x0034
  41#define SPI_CSR2                                0x0038
  42#define SPI_CSR3                                0x003c
  43#define SPI_FMR                                 0x0040
  44#define SPI_FLR                                 0x0044
  45#define SPI_VERSION                             0x00fc
  46#define SPI_RPR                                 0x0100
  47#define SPI_RCR                                 0x0104
  48#define SPI_TPR                                 0x0108
  49#define SPI_TCR                                 0x010c
  50#define SPI_RNPR                                0x0110
  51#define SPI_RNCR                                0x0114
  52#define SPI_TNPR                                0x0118
  53#define SPI_TNCR                                0x011c
  54#define SPI_PTCR                                0x0120
  55#define SPI_PTSR                                0x0124
  56
  57/* Bitfields in CR */
  58#define SPI_SPIEN_OFFSET                        0
  59#define SPI_SPIEN_SIZE                          1
  60#define SPI_SPIDIS_OFFSET                       1
  61#define SPI_SPIDIS_SIZE                         1
  62#define SPI_SWRST_OFFSET                        7
  63#define SPI_SWRST_SIZE                          1
  64#define SPI_LASTXFER_OFFSET                     24
  65#define SPI_LASTXFER_SIZE                       1
  66#define SPI_TXFCLR_OFFSET                       16
  67#define SPI_TXFCLR_SIZE                         1
  68#define SPI_RXFCLR_OFFSET                       17
  69#define SPI_RXFCLR_SIZE                         1
  70#define SPI_FIFOEN_OFFSET                       30
  71#define SPI_FIFOEN_SIZE                         1
  72#define SPI_FIFODIS_OFFSET                      31
  73#define SPI_FIFODIS_SIZE                        1
  74
  75/* Bitfields in MR */
  76#define SPI_MSTR_OFFSET                         0
  77#define SPI_MSTR_SIZE                           1
  78#define SPI_PS_OFFSET                           1
  79#define SPI_PS_SIZE                             1
  80#define SPI_PCSDEC_OFFSET                       2
  81#define SPI_PCSDEC_SIZE                         1
  82#define SPI_FDIV_OFFSET                         3
  83#define SPI_FDIV_SIZE                           1
  84#define SPI_MODFDIS_OFFSET                      4
  85#define SPI_MODFDIS_SIZE                        1
  86#define SPI_WDRBT_OFFSET                        5
  87#define SPI_WDRBT_SIZE                          1
  88#define SPI_LLB_OFFSET                          7
  89#define SPI_LLB_SIZE                            1
  90#define SPI_PCS_OFFSET                          16
  91#define SPI_PCS_SIZE                            4
  92#define SPI_DLYBCS_OFFSET                       24
  93#define SPI_DLYBCS_SIZE                         8
  94
  95/* Bitfields in RDR */
  96#define SPI_RD_OFFSET                           0
  97#define SPI_RD_SIZE                             16
  98
  99/* Bitfields in TDR */
 100#define SPI_TD_OFFSET                           0
 101#define SPI_TD_SIZE                             16
 102
 103/* Bitfields in SR */
 104#define SPI_RDRF_OFFSET                         0
 105#define SPI_RDRF_SIZE                           1
 106#define SPI_TDRE_OFFSET                         1
 107#define SPI_TDRE_SIZE                           1
 108#define SPI_MODF_OFFSET                         2
 109#define SPI_MODF_SIZE                           1
 110#define SPI_OVRES_OFFSET                        3
 111#define SPI_OVRES_SIZE                          1
 112#define SPI_ENDRX_OFFSET                        4
 113#define SPI_ENDRX_SIZE                          1
 114#define SPI_ENDTX_OFFSET                        5
 115#define SPI_ENDTX_SIZE                          1
 116#define SPI_RXBUFF_OFFSET                       6
 117#define SPI_RXBUFF_SIZE                         1
 118#define SPI_TXBUFE_OFFSET                       7
 119#define SPI_TXBUFE_SIZE                         1
 120#define SPI_NSSR_OFFSET                         8
 121#define SPI_NSSR_SIZE                           1
 122#define SPI_TXEMPTY_OFFSET                      9
 123#define SPI_TXEMPTY_SIZE                        1
 124#define SPI_SPIENS_OFFSET                       16
 125#define SPI_SPIENS_SIZE                         1
 126#define SPI_TXFEF_OFFSET                        24
 127#define SPI_TXFEF_SIZE                          1
 128#define SPI_TXFFF_OFFSET                        25
 129#define SPI_TXFFF_SIZE                          1
 130#define SPI_TXFTHF_OFFSET                       26
 131#define SPI_TXFTHF_SIZE                         1
 132#define SPI_RXFEF_OFFSET                        27
 133#define SPI_RXFEF_SIZE                          1
 134#define SPI_RXFFF_OFFSET                        28
 135#define SPI_RXFFF_SIZE                          1
 136#define SPI_RXFTHF_OFFSET                       29
 137#define SPI_RXFTHF_SIZE                         1
 138#define SPI_TXFPTEF_OFFSET                      30
 139#define SPI_TXFPTEF_SIZE                        1
 140#define SPI_RXFPTEF_OFFSET                      31
 141#define SPI_RXFPTEF_SIZE                        1
 142
 143/* Bitfields in CSR0 */
 144#define SPI_CPOL_OFFSET                         0
 145#define SPI_CPOL_SIZE                           1
 146#define SPI_NCPHA_OFFSET                        1
 147#define SPI_NCPHA_SIZE                          1
 148#define SPI_CSAAT_OFFSET                        3
 149#define SPI_CSAAT_SIZE                          1
 150#define SPI_BITS_OFFSET                         4
 151#define SPI_BITS_SIZE                           4
 152#define SPI_SCBR_OFFSET                         8
 153#define SPI_SCBR_SIZE                           8
 154#define SPI_DLYBS_OFFSET                        16
 155#define SPI_DLYBS_SIZE                          8
 156#define SPI_DLYBCT_OFFSET                       24
 157#define SPI_DLYBCT_SIZE                         8
 158
 159/* Bitfields in RCR */
 160#define SPI_RXCTR_OFFSET                        0
 161#define SPI_RXCTR_SIZE                          16
 162
 163/* Bitfields in TCR */
 164#define SPI_TXCTR_OFFSET                        0
 165#define SPI_TXCTR_SIZE                          16
 166
 167/* Bitfields in RNCR */
 168#define SPI_RXNCR_OFFSET                        0
 169#define SPI_RXNCR_SIZE                          16
 170
 171/* Bitfields in TNCR */
 172#define SPI_TXNCR_OFFSET                        0
 173#define SPI_TXNCR_SIZE                          16
 174
 175/* Bitfields in PTCR */
 176#define SPI_RXTEN_OFFSET                        0
 177#define SPI_RXTEN_SIZE                          1
 178#define SPI_RXTDIS_OFFSET                       1
 179#define SPI_RXTDIS_SIZE                         1
 180#define SPI_TXTEN_OFFSET                        8
 181#define SPI_TXTEN_SIZE                          1
 182#define SPI_TXTDIS_OFFSET                       9
 183#define SPI_TXTDIS_SIZE                         1
 184
 185/* Bitfields in FMR */
 186#define SPI_TXRDYM_OFFSET                       0
 187#define SPI_TXRDYM_SIZE                         2
 188#define SPI_RXRDYM_OFFSET                       4
 189#define SPI_RXRDYM_SIZE                         2
 190#define SPI_TXFTHRES_OFFSET                     16
 191#define SPI_TXFTHRES_SIZE                       6
 192#define SPI_RXFTHRES_OFFSET                     24
 193#define SPI_RXFTHRES_SIZE                       6
 194
 195/* Bitfields in FLR */
 196#define SPI_TXFL_OFFSET                         0
 197#define SPI_TXFL_SIZE                           6
 198#define SPI_RXFL_OFFSET                         16
 199#define SPI_RXFL_SIZE                           6
 200
 201/* Constants for BITS */
 202#define SPI_BITS_8_BPT                          0
 203#define SPI_BITS_9_BPT                          1
 204#define SPI_BITS_10_BPT                         2
 205#define SPI_BITS_11_BPT                         3
 206#define SPI_BITS_12_BPT                         4
 207#define SPI_BITS_13_BPT                         5
 208#define SPI_BITS_14_BPT                         6
 209#define SPI_BITS_15_BPT                         7
 210#define SPI_BITS_16_BPT                         8
 211#define SPI_ONE_DATA                            0
 212#define SPI_TWO_DATA                            1
 213#define SPI_FOUR_DATA                           2
 214
 215/* Bit manipulation macros */
 216#define SPI_BIT(name) \
 217        (1 << SPI_##name##_OFFSET)
 218#define SPI_BF(name, value) \
 219        (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 220#define SPI_BFEXT(name, value) \
 221        (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 222#define SPI_BFINS(name, value, old) \
 223        (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 224          | SPI_BF(name, value))
 225
 226/* Register access macros */
 227#ifdef CONFIG_AVR32
 228#define spi_readl(port, reg) \
 229        __raw_readl((port)->regs + SPI_##reg)
 230#define spi_writel(port, reg, value) \
 231        __raw_writel((value), (port)->regs + SPI_##reg)
 232
 233#define spi_readw(port, reg) \
 234        __raw_readw((port)->regs + SPI_##reg)
 235#define spi_writew(port, reg, value) \
 236        __raw_writew((value), (port)->regs + SPI_##reg)
 237
 238#define spi_readb(port, reg) \
 239        __raw_readb((port)->regs + SPI_##reg)
 240#define spi_writeb(port, reg, value) \
 241        __raw_writeb((value), (port)->regs + SPI_##reg)
 242#else
 243#define spi_readl(port, reg) \
 244        readl_relaxed((port)->regs + SPI_##reg)
 245#define spi_writel(port, reg, value) \
 246        writel_relaxed((value), (port)->regs + SPI_##reg)
 247
 248#define spi_readw(port, reg) \
 249        readw_relaxed((port)->regs + SPI_##reg)
 250#define spi_writew(port, reg, value) \
 251        writew_relaxed((value), (port)->regs + SPI_##reg)
 252
 253#define spi_readb(port, reg) \
 254        readb_relaxed((port)->regs + SPI_##reg)
 255#define spi_writeb(port, reg, value) \
 256        writeb_relaxed((value), (port)->regs + SPI_##reg)
 257#endif
 258/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 259 * cache operations; better heuristics consider wordsize and bitrate.
 260 */
 261#define DMA_MIN_BYTES   16
 262
 263#define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
 264
 265#define AUTOSUSPEND_TIMEOUT     2000
 266
 267struct atmel_spi_dma {
 268        struct dma_chan                 *chan_rx;
 269        struct dma_chan                 *chan_tx;
 270        struct scatterlist              sgrx;
 271        struct scatterlist              sgtx;
 272        struct dma_async_tx_descriptor  *data_desc_rx;
 273        struct dma_async_tx_descriptor  *data_desc_tx;
 274
 275        struct at_dma_slave     dma_slave;
 276};
 277
 278struct atmel_spi_caps {
 279        bool    is_spi2;
 280        bool    has_wdrbt;
 281        bool    has_dma_support;
 282};
 283
 284/*
 285 * The core SPI transfer engine just talks to a register bank to set up
 286 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 287 * framework provides the base clock, subdivided for each spi_device.
 288 */
 289struct atmel_spi {
 290        spinlock_t              lock;
 291        unsigned long           flags;
 292
 293        phys_addr_t             phybase;
 294        void __iomem            *regs;
 295        int                     irq;
 296        struct clk              *clk;
 297        struct platform_device  *pdev;
 298
 299        struct spi_transfer     *current_transfer;
 300        int                     current_remaining_bytes;
 301        int                     done_status;
 302
 303        struct completion       xfer_completion;
 304
 305        /* scratch buffer */
 306        void                    *buffer;
 307        dma_addr_t              buffer_dma;
 308
 309        struct atmel_spi_caps   caps;
 310
 311        bool                    use_dma;
 312        bool                    use_pdc;
 313        bool                    use_cs_gpios;
 314        /* dmaengine data */
 315        struct atmel_spi_dma    dma;
 316
 317        bool                    keep_cs;
 318        bool                    cs_active;
 319
 320        u32                     fifo_size;
 321};
 322
 323/* Controller-specific per-slave state */
 324struct atmel_spi_device {
 325        unsigned int            npcs_pin;
 326        u32                     csr;
 327};
 328
 329#define BUFFER_SIZE             PAGE_SIZE
 330#define INVALID_DMA_ADDRESS     0xffffffff
 331
 332/*
 333 * Version 2 of the SPI controller has
 334 *  - CR.LASTXFER
 335 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 336 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 337 *  - SPI_CSRx.CSAAT
 338 *  - SPI_CSRx.SBCR allows faster clocking
 339 */
 340static bool atmel_spi_is_v2(struct atmel_spi *as)
 341{
 342        return as->caps.is_spi2;
 343}
 344
 345/*
 346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 347 * they assume that spi slave device state will not change on deselect, so
 348 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 349 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 350 * controllers have CSAAT and friends.
 351 *
 352 * Since the CSAAT functionality is a bit weird on newer controllers as
 353 * well, we use GPIO to control nCSx pins on all controllers, updating
 354 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 355 * support active-high chipselects despite the controller's belief that
 356 * only active-low devices/systems exists.
 357 *
 358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 359 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 360 * Master on Chip Select 0.")  No workaround exists for that ... so for
 361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 362 * and (c) will trigger that first erratum in some cases.
 363 */
 364
 365static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 366{
 367        struct atmel_spi_device *asd = spi->controller_state;
 368        unsigned active = spi->mode & SPI_CS_HIGH;
 369        u32 mr;
 370
 371        if (atmel_spi_is_v2(as)) {
 372                spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 373                /* For the low SPI version, there is a issue that PDC transfer
 374                 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 375                 */
 376                spi_writel(as, CSR0, asd->csr);
 377                if (as->caps.has_wdrbt) {
 378                        spi_writel(as, MR,
 379                                        SPI_BF(PCS, ~(0x01 << spi->chip_select))
 380                                        | SPI_BIT(WDRBT)
 381                                        | SPI_BIT(MODFDIS)
 382                                        | SPI_BIT(MSTR));
 383                } else {
 384                        spi_writel(as, MR,
 385                                        SPI_BF(PCS, ~(0x01 << spi->chip_select))
 386                                        | SPI_BIT(MODFDIS)
 387                                        | SPI_BIT(MSTR));
 388                }
 389
 390                mr = spi_readl(as, MR);
 391                if (as->use_cs_gpios)
 392                        gpio_set_value(asd->npcs_pin, active);
 393        } else {
 394                u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 395                int i;
 396                u32 csr;
 397
 398                /* Make sure clock polarity is correct */
 399                for (i = 0; i < spi->master->num_chipselect; i++) {
 400                        csr = spi_readl(as, CSR0 + 4 * i);
 401                        if ((csr ^ cpol) & SPI_BIT(CPOL))
 402                                spi_writel(as, CSR0 + 4 * i,
 403                                                csr ^ SPI_BIT(CPOL));
 404                }
 405
 406                mr = spi_readl(as, MR);
 407                mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 408                if (as->use_cs_gpios && spi->chip_select != 0)
 409                        gpio_set_value(asd->npcs_pin, active);
 410                spi_writel(as, MR, mr);
 411        }
 412
 413        dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 414                        asd->npcs_pin, active ? " (high)" : "",
 415                        mr);
 416}
 417
 418static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 419{
 420        struct atmel_spi_device *asd = spi->controller_state;
 421        unsigned active = spi->mode & SPI_CS_HIGH;
 422        u32 mr;
 423
 424        /* only deactivate *this* device; sometimes transfers to
 425         * another device may be active when this routine is called.
 426         */
 427        mr = spi_readl(as, MR);
 428        if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 429                mr = SPI_BFINS(PCS, 0xf, mr);
 430                spi_writel(as, MR, mr);
 431        }
 432
 433        dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 434                        asd->npcs_pin, active ? " (low)" : "",
 435                        mr);
 436
 437        if (!as->use_cs_gpios)
 438                spi_writel(as, CR, SPI_BIT(LASTXFER));
 439        else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 440                gpio_set_value(asd->npcs_pin, !active);
 441}
 442
 443static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 444{
 445        spin_lock_irqsave(&as->lock, as->flags);
 446}
 447
 448static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 449{
 450        spin_unlock_irqrestore(&as->lock, as->flags);
 451}
 452
 453static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 454                                struct spi_transfer *xfer)
 455{
 456        return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 457}
 458
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460                                struct dma_slave_config *slave_config,
 461                                u8 bits_per_word)
 462{
 463        int err = 0;
 464
 465        if (bits_per_word > 8) {
 466                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 467                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468        } else {
 469                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 470                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471        }
 472
 473        slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 474        slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 475        slave_config->src_maxburst = 1;
 476        slave_config->dst_maxburst = 1;
 477        slave_config->device_fc = false;
 478
 479        /*
 480         * This driver uses fixed peripheral select mode (PS bit set to '0' in
 481         * the Mode Register).
 482         * So according to the datasheet, when FIFOs are available (and
 483         * enabled), the Transmit FIFO operates in Multiple Data Mode.
 484         * In this mode, up to 2 data, not 4, can be written into the Transmit
 485         * Data Register in a single access.
 486         * However, the first data has to be written into the lowest 16 bits and
 487         * the second data into the highest 16 bits of the Transmit
 488         * Data Register. For 8bit data (the most frequent case), it would
 489         * require to rework tx_buf so each data would actualy fit 16 bits.
 490         * So we'd rather write only one data at the time. Hence the transmit
 491         * path works the same whether FIFOs are available (and enabled) or not.
 492         */
 493        slave_config->direction = DMA_MEM_TO_DEV;
 494        if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
 495                dev_err(&as->pdev->dev,
 496                        "failed to configure tx dma channel\n");
 497                err = -EINVAL;
 498        }
 499
 500        /*
 501         * This driver configures the spi controller for master mode (MSTR bit
 502         * set to '1' in the Mode Register).
 503         * So according to the datasheet, when FIFOs are available (and
 504         * enabled), the Receive FIFO operates in Single Data Mode.
 505         * So the receive path works the same whether FIFOs are available (and
 506         * enabled) or not.
 507         */
 508        slave_config->direction = DMA_DEV_TO_MEM;
 509        if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
 510                dev_err(&as->pdev->dev,
 511                        "failed to configure rx dma channel\n");
 512                err = -EINVAL;
 513        }
 514
 515        return err;
 516}
 517
 518static int atmel_spi_configure_dma(struct atmel_spi *as)
 519{
 520        struct dma_slave_config slave_config;
 521        struct device *dev = &as->pdev->dev;
 522        int err;
 523
 524        dma_cap_mask_t mask;
 525        dma_cap_zero(mask);
 526        dma_cap_set(DMA_SLAVE, mask);
 527
 528        as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
 529        if (IS_ERR(as->dma.chan_tx)) {
 530                err = PTR_ERR(as->dma.chan_tx);
 531                if (err == -EPROBE_DEFER) {
 532                        dev_warn(dev, "no DMA channel available at the moment\n");
 533                        return err;
 534                }
 535                dev_err(dev,
 536                        "DMA TX channel not available, SPI unable to use DMA\n");
 537                err = -EBUSY;
 538                goto error;
 539        }
 540
 541        /*
 542         * No reason to check EPROBE_DEFER here since we have already requested
 543         * tx channel. If it fails here, it's for another reason.
 544         */
 545        as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
 546
 547        if (!as->dma.chan_rx) {
 548                dev_err(dev,
 549                        "DMA RX channel not available, SPI unable to use DMA\n");
 550                err = -EBUSY;
 551                goto error;
 552        }
 553
 554        err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 555        if (err)
 556                goto error;
 557
 558        dev_info(&as->pdev->dev,
 559                        "Using %s (tx) and %s (rx) for DMA transfers\n",
 560                        dma_chan_name(as->dma.chan_tx),
 561                        dma_chan_name(as->dma.chan_rx));
 562        return 0;
 563error:
 564        if (as->dma.chan_rx)
 565                dma_release_channel(as->dma.chan_rx);
 566        if (!IS_ERR(as->dma.chan_tx))
 567                dma_release_channel(as->dma.chan_tx);
 568        return err;
 569}
 570
 571static void atmel_spi_stop_dma(struct atmel_spi *as)
 572{
 573        if (as->dma.chan_rx)
 574                dmaengine_terminate_all(as->dma.chan_rx);
 575        if (as->dma.chan_tx)
 576                dmaengine_terminate_all(as->dma.chan_tx);
 577}
 578
 579static void atmel_spi_release_dma(struct atmel_spi *as)
 580{
 581        if (as->dma.chan_rx)
 582                dma_release_channel(as->dma.chan_rx);
 583        if (as->dma.chan_tx)
 584                dma_release_channel(as->dma.chan_tx);
 585}
 586
 587/* This function is called by the DMA driver from tasklet context */
 588static void dma_callback(void *data)
 589{
 590        struct spi_master       *master = data;
 591        struct atmel_spi        *as = spi_master_get_devdata(master);
 592
 593        complete(&as->xfer_completion);
 594}
 595
 596/*
 597 * Next transfer using PIO without FIFO.
 598 */
 599static void atmel_spi_next_xfer_single(struct spi_master *master,
 600                                       struct spi_transfer *xfer)
 601{
 602        struct atmel_spi        *as = spi_master_get_devdata(master);
 603        unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 604
 605        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 606
 607        /* Make sure data is not remaining in RDR */
 608        spi_readl(as, RDR);
 609        while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 610                spi_readl(as, RDR);
 611                cpu_relax();
 612        }
 613
 614        if (xfer->tx_buf) {
 615                if (xfer->bits_per_word > 8)
 616                        spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 617                else
 618                        spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 619        } else {
 620                spi_writel(as, TDR, 0);
 621        }
 622
 623        dev_dbg(master->dev.parent,
 624                "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 625                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 626                xfer->bits_per_word);
 627
 628        /* Enable relevant interrupts */
 629        spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 630}
 631
 632/*
 633 * Next transfer using PIO with FIFO.
 634 */
 635static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 636                                     struct spi_transfer *xfer)
 637{
 638        struct atmel_spi *as = spi_master_get_devdata(master);
 639        u32 current_remaining_data, num_data;
 640        u32 offset = xfer->len - as->current_remaining_bytes;
 641        const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 642        const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 643        u16 td0, td1;
 644        u32 fifomr;
 645
 646        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 647
 648        /* Compute the number of data to transfer in the current iteration */
 649        current_remaining_data = ((xfer->bits_per_word > 8) ?
 650                                  ((u32)as->current_remaining_bytes >> 1) :
 651                                  (u32)as->current_remaining_bytes);
 652        num_data = min(current_remaining_data, as->fifo_size);
 653
 654        /* Flush RX and TX FIFOs */
 655        spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 656        while (spi_readl(as, FLR))
 657                cpu_relax();
 658
 659        /* Set RX FIFO Threshold to the number of data to transfer */
 660        fifomr = spi_readl(as, FMR);
 661        spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 662
 663        /* Clear FIFO flags in the Status Register, especially RXFTHF */
 664        (void)spi_readl(as, SR);
 665
 666        /* Fill TX FIFO */
 667        while (num_data >= 2) {
 668                if (xfer->tx_buf) {
 669                        if (xfer->bits_per_word > 8) {
 670                                td0 = *words++;
 671                                td1 = *words++;
 672                        } else {
 673                                td0 = *bytes++;
 674                                td1 = *bytes++;
 675                        }
 676                } else {
 677                        td0 = 0;
 678                        td1 = 0;
 679                }
 680
 681                spi_writel(as, TDR, (td1 << 16) | td0);
 682                num_data -= 2;
 683        }
 684
 685        if (num_data) {
 686                if (xfer->tx_buf) {
 687                        if (xfer->bits_per_word > 8)
 688                                td0 = *words++;
 689                        else
 690                                td0 = *bytes++;
 691                } else {
 692                        td0 = 0;
 693                }
 694
 695                spi_writew(as, TDR, td0);
 696                num_data--;
 697        }
 698
 699        dev_dbg(master->dev.parent,
 700                "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 701                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 702                xfer->bits_per_word);
 703
 704        /*
 705         * Enable RX FIFO Threshold Flag interrupt to be notified about
 706         * transfer completion.
 707         */
 708        spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 709}
 710
 711/*
 712 * Next transfer using PIO.
 713 */
 714static void atmel_spi_next_xfer_pio(struct spi_master *master,
 715                                    struct spi_transfer *xfer)
 716{
 717        struct atmel_spi *as = spi_master_get_devdata(master);
 718
 719        if (as->fifo_size)
 720                atmel_spi_next_xfer_fifo(master, xfer);
 721        else
 722                atmel_spi_next_xfer_single(master, xfer);
 723}
 724
 725/*
 726 * Submit next transfer for DMA.
 727 */
 728static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 729                                struct spi_transfer *xfer,
 730                                u32 *plen)
 731{
 732        struct atmel_spi        *as = spi_master_get_devdata(master);
 733        struct dma_chan         *rxchan = as->dma.chan_rx;
 734        struct dma_chan         *txchan = as->dma.chan_tx;
 735        struct dma_async_tx_descriptor *rxdesc;
 736        struct dma_async_tx_descriptor *txdesc;
 737        struct dma_slave_config slave_config;
 738        dma_cookie_t            cookie;
 739        u32     len = *plen;
 740
 741        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743        /* Check that the channels are available */
 744        if (!rxchan || !txchan)
 745                return -ENODEV;
 746
 747        /* release lock for DMA operations */
 748        atmel_spi_unlock(as);
 749
 750        /* prepare the RX dma transfer */
 751        sg_init_table(&as->dma.sgrx, 1);
 752        if (xfer->rx_buf) {
 753                as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
 754        } else {
 755                as->dma.sgrx.dma_address = as->buffer_dma;
 756                if (len > BUFFER_SIZE)
 757                        len = BUFFER_SIZE;
 758        }
 759
 760        /* prepare the TX dma transfer */
 761        sg_init_table(&as->dma.sgtx, 1);
 762        if (xfer->tx_buf) {
 763                as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
 764        } else {
 765                as->dma.sgtx.dma_address = as->buffer_dma;
 766                if (len > BUFFER_SIZE)
 767                        len = BUFFER_SIZE;
 768                memset(as->buffer, 0, len);
 769        }
 770
 771        sg_dma_len(&as->dma.sgtx) = len;
 772        sg_dma_len(&as->dma.sgrx) = len;
 773
 774        *plen = len;
 775
 776        if (atmel_spi_dma_slave_config(as, &slave_config,
 777                                       xfer->bits_per_word))
 778                goto err_exit;
 779
 780        /* Send both scatterlists */
 781        rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
 782                                         DMA_FROM_DEVICE,
 783                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 784        if (!rxdesc)
 785                goto err_dma;
 786
 787        txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
 788                                         DMA_TO_DEVICE,
 789                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 790        if (!txdesc)
 791                goto err_dma;
 792
 793        dev_dbg(master->dev.parent,
 794                "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 795                xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 796                xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 797
 798        /* Enable relevant interrupts */
 799        spi_writel(as, IER, SPI_BIT(OVRES));
 800
 801        /* Put the callback on the RX transfer only, that should finish last */
 802        rxdesc->callback = dma_callback;
 803        rxdesc->callback_param = master;
 804
 805        /* Submit and fire RX and TX with TX last so we're ready to read! */
 806        cookie = rxdesc->tx_submit(rxdesc);
 807        if (dma_submit_error(cookie))
 808                goto err_dma;
 809        cookie = txdesc->tx_submit(txdesc);
 810        if (dma_submit_error(cookie))
 811                goto err_dma;
 812        rxchan->device->device_issue_pending(rxchan);
 813        txchan->device->device_issue_pending(txchan);
 814
 815        /* take back lock */
 816        atmel_spi_lock(as);
 817        return 0;
 818
 819err_dma:
 820        spi_writel(as, IDR, SPI_BIT(OVRES));
 821        atmel_spi_stop_dma(as);
 822err_exit:
 823        atmel_spi_lock(as);
 824        return -ENOMEM;
 825}
 826
 827static void atmel_spi_next_xfer_data(struct spi_master *master,
 828                                struct spi_transfer *xfer,
 829                                dma_addr_t *tx_dma,
 830                                dma_addr_t *rx_dma,
 831                                u32 *plen)
 832{
 833        struct atmel_spi        *as = spi_master_get_devdata(master);
 834        u32                     len = *plen;
 835
 836        /* use scratch buffer only when rx or tx data is unspecified */
 837        if (xfer->rx_buf)
 838                *rx_dma = xfer->rx_dma + xfer->len - *plen;
 839        else {
 840                *rx_dma = as->buffer_dma;
 841                if (len > BUFFER_SIZE)
 842                        len = BUFFER_SIZE;
 843        }
 844
 845        if (xfer->tx_buf)
 846                *tx_dma = xfer->tx_dma + xfer->len - *plen;
 847        else {
 848                *tx_dma = as->buffer_dma;
 849                if (len > BUFFER_SIZE)
 850                        len = BUFFER_SIZE;
 851                memset(as->buffer, 0, len);
 852                dma_sync_single_for_device(&as->pdev->dev,
 853                                as->buffer_dma, len, DMA_TO_DEVICE);
 854        }
 855
 856        *plen = len;
 857}
 858
 859static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 860                                    struct spi_device *spi,
 861                                    struct spi_transfer *xfer)
 862{
 863        u32                     scbr, csr;
 864        unsigned long           bus_hz;
 865
 866        /* v1 chips start out at half the peripheral bus speed. */
 867        bus_hz = clk_get_rate(as->clk);
 868        if (!atmel_spi_is_v2(as))
 869                bus_hz /= 2;
 870
 871        /*
 872         * Calculate the lowest divider that satisfies the
 873         * constraint, assuming div32/fdiv/mbz == 0.
 874         */
 875        scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 876
 877        /*
 878         * If the resulting divider doesn't fit into the
 879         * register bitfield, we can't satisfy the constraint.
 880         */
 881        if (scbr >= (1 << SPI_SCBR_SIZE)) {
 882                dev_err(&spi->dev,
 883                        "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 884                        xfer->speed_hz, scbr, bus_hz/255);
 885                return -EINVAL;
 886        }
 887        if (scbr == 0) {
 888                dev_err(&spi->dev,
 889                        "setup: %d Hz too high, scbr %u; max %ld Hz\n",
 890                        xfer->speed_hz, scbr, bus_hz);
 891                return -EINVAL;
 892        }
 893        csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 894        csr = SPI_BFINS(SCBR, scbr, csr);
 895        spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 896
 897        return 0;
 898}
 899
 900/*
 901 * Submit next transfer for PDC.
 902 * lock is held, spi irq is blocked
 903 */
 904static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 905                                        struct spi_message *msg,
 906                                        struct spi_transfer *xfer)
 907{
 908        struct atmel_spi        *as = spi_master_get_devdata(master);
 909        u32                     len;
 910        dma_addr_t              tx_dma, rx_dma;
 911
 912        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 913
 914        len = as->current_remaining_bytes;
 915        atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 916        as->current_remaining_bytes -= len;
 917
 918        spi_writel(as, RPR, rx_dma);
 919        spi_writel(as, TPR, tx_dma);
 920
 921        if (msg->spi->bits_per_word > 8)
 922                len >>= 1;
 923        spi_writel(as, RCR, len);
 924        spi_writel(as, TCR, len);
 925
 926        dev_dbg(&msg->spi->dev,
 927                "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 928                xfer, xfer->len, xfer->tx_buf,
 929                (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 930                (unsigned long long)xfer->rx_dma);
 931
 932        if (as->current_remaining_bytes) {
 933                len = as->current_remaining_bytes;
 934                atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 935                as->current_remaining_bytes -= len;
 936
 937                spi_writel(as, RNPR, rx_dma);
 938                spi_writel(as, TNPR, tx_dma);
 939
 940                if (msg->spi->bits_per_word > 8)
 941                        len >>= 1;
 942                spi_writel(as, RNCR, len);
 943                spi_writel(as, TNCR, len);
 944
 945                dev_dbg(&msg->spi->dev,
 946                        "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 947                        xfer, xfer->len, xfer->tx_buf,
 948                        (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 949                        (unsigned long long)xfer->rx_dma);
 950        }
 951
 952        /* REVISIT: We're waiting for RXBUFF before we start the next
 953         * transfer because we need to handle some difficult timing
 954         * issues otherwise. If we wait for TXBUFE in one transfer and
 955         * then starts waiting for RXBUFF in the next, it's difficult
 956         * to tell the difference between the RXBUFF interrupt we're
 957         * actually waiting for and the RXBUFF interrupt of the
 958         * previous transfer.
 959         *
 960         * It should be doable, though. Just not now...
 961         */
 962        spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 963        spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 964}
 965
 966/*
 967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 968 *  - The buffer is either valid for CPU access, else NULL
 969 *  - If the buffer is valid, so is its DMA address
 970 *
 971 * This driver manages the dma address unless message->is_dma_mapped.
 972 */
 973static int
 974atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 975{
 976        struct device   *dev = &as->pdev->dev;
 977
 978        xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 979        if (xfer->tx_buf) {
 980                /* tx_buf is a const void* where we need a void * for the dma
 981                 * mapping */
 982                void *nonconst_tx = (void *)xfer->tx_buf;
 983
 984                xfer->tx_dma = dma_map_single(dev,
 985                                nonconst_tx, xfer->len,
 986                                DMA_TO_DEVICE);
 987                if (dma_mapping_error(dev, xfer->tx_dma))
 988                        return -ENOMEM;
 989        }
 990        if (xfer->rx_buf) {
 991                xfer->rx_dma = dma_map_single(dev,
 992                                xfer->rx_buf, xfer->len,
 993                                DMA_FROM_DEVICE);
 994                if (dma_mapping_error(dev, xfer->rx_dma)) {
 995                        if (xfer->tx_buf)
 996                                dma_unmap_single(dev,
 997                                                xfer->tx_dma, xfer->len,
 998                                                DMA_TO_DEVICE);
 999                        return -ENOMEM;
1000                }
1001        }
1002        return 0;
1003}
1004
1005static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1006                                     struct spi_transfer *xfer)
1007{
1008        if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1009                dma_unmap_single(master->dev.parent, xfer->tx_dma,
1010                                 xfer->len, DMA_TO_DEVICE);
1011        if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1012                dma_unmap_single(master->dev.parent, xfer->rx_dma,
1013                                 xfer->len, DMA_FROM_DEVICE);
1014}
1015
1016static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1017{
1018        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1019}
1020
1021static void
1022atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1023{
1024        u8              *rxp;
1025        u16             *rxp16;
1026        unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1027
1028        if (xfer->rx_buf) {
1029                if (xfer->bits_per_word > 8) {
1030                        rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1031                        *rxp16 = spi_readl(as, RDR);
1032                } else {
1033                        rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1034                        *rxp = spi_readl(as, RDR);
1035                }
1036        } else {
1037                spi_readl(as, RDR);
1038        }
1039        if (xfer->bits_per_word > 8) {
1040                if (as->current_remaining_bytes > 2)
1041                        as->current_remaining_bytes -= 2;
1042                else
1043                        as->current_remaining_bytes = 0;
1044        } else {
1045                as->current_remaining_bytes--;
1046        }
1047}
1048
1049static void
1050atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1051{
1052        u32 fifolr = spi_readl(as, FLR);
1053        u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1054        u32 offset = xfer->len - as->current_remaining_bytes;
1055        u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1056        u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1057        u16 rd; /* RD field is the lowest 16 bits of RDR */
1058
1059        /* Update the number of remaining bytes to transfer */
1060        num_bytes = ((xfer->bits_per_word > 8) ?
1061                     (num_data << 1) :
1062                     num_data);
1063
1064        if (as->current_remaining_bytes > num_bytes)
1065                as->current_remaining_bytes -= num_bytes;
1066        else
1067                as->current_remaining_bytes = 0;
1068
1069        /* Handle odd number of bytes when data are more than 8bit width */
1070        if (xfer->bits_per_word > 8)
1071                as->current_remaining_bytes &= ~0x1;
1072
1073        /* Read data */
1074        while (num_data) {
1075                rd = spi_readl(as, RDR);
1076                if (xfer->rx_buf) {
1077                        if (xfer->bits_per_word > 8)
1078                                *words++ = rd;
1079                        else
1080                                *bytes++ = rd;
1081                }
1082                num_data--;
1083        }
1084}
1085
1086/* Called from IRQ
1087 *
1088 * Must update "current_remaining_bytes" to keep track of data
1089 * to transfer.
1090 */
1091static void
1092atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1093{
1094        if (as->fifo_size)
1095                atmel_spi_pump_fifo_data(as, xfer);
1096        else
1097                atmel_spi_pump_single_data(as, xfer);
1098}
1099
1100/* Interrupt
1101 *
1102 * No need for locking in this Interrupt handler: done_status is the
1103 * only information modified.
1104 */
1105static irqreturn_t
1106atmel_spi_pio_interrupt(int irq, void *dev_id)
1107{
1108        struct spi_master       *master = dev_id;
1109        struct atmel_spi        *as = spi_master_get_devdata(master);
1110        u32                     status, pending, imr;
1111        struct spi_transfer     *xfer;
1112        int                     ret = IRQ_NONE;
1113
1114        imr = spi_readl(as, IMR);
1115        status = spi_readl(as, SR);
1116        pending = status & imr;
1117
1118        if (pending & SPI_BIT(OVRES)) {
1119                ret = IRQ_HANDLED;
1120                spi_writel(as, IDR, SPI_BIT(OVRES));
1121                dev_warn(master->dev.parent, "overrun\n");
1122
1123                /*
1124                 * When we get an overrun, we disregard the current
1125                 * transfer. Data will not be copied back from any
1126                 * bounce buffer and msg->actual_len will not be
1127                 * updated with the last xfer.
1128                 *
1129                 * We will also not process any remaning transfers in
1130                 * the message.
1131                 */
1132                as->done_status = -EIO;
1133                smp_wmb();
1134
1135                /* Clear any overrun happening while cleaning up */
1136                spi_readl(as, SR);
1137
1138                complete(&as->xfer_completion);
1139
1140        } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1141                atmel_spi_lock(as);
1142
1143                if (as->current_remaining_bytes) {
1144                        ret = IRQ_HANDLED;
1145                        xfer = as->current_transfer;
1146                        atmel_spi_pump_pio_data(as, xfer);
1147                        if (!as->current_remaining_bytes)
1148                                spi_writel(as, IDR, pending);
1149
1150                        complete(&as->xfer_completion);
1151                }
1152
1153                atmel_spi_unlock(as);
1154        } else {
1155                WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1156                ret = IRQ_HANDLED;
1157                spi_writel(as, IDR, pending);
1158        }
1159
1160        return ret;
1161}
1162
1163static irqreturn_t
1164atmel_spi_pdc_interrupt(int irq, void *dev_id)
1165{
1166        struct spi_master       *master = dev_id;
1167        struct atmel_spi        *as = spi_master_get_devdata(master);
1168        u32                     status, pending, imr;
1169        int                     ret = IRQ_NONE;
1170
1171        imr = spi_readl(as, IMR);
1172        status = spi_readl(as, SR);
1173        pending = status & imr;
1174
1175        if (pending & SPI_BIT(OVRES)) {
1176
1177                ret = IRQ_HANDLED;
1178
1179                spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1180                                     | SPI_BIT(OVRES)));
1181
1182                /* Clear any overrun happening while cleaning up */
1183                spi_readl(as, SR);
1184
1185                as->done_status = -EIO;
1186
1187                complete(&as->xfer_completion);
1188
1189        } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1190                ret = IRQ_HANDLED;
1191
1192                spi_writel(as, IDR, pending);
1193
1194                complete(&as->xfer_completion);
1195        }
1196
1197        return ret;
1198}
1199
1200static int atmel_spi_setup(struct spi_device *spi)
1201{
1202        struct atmel_spi        *as;
1203        struct atmel_spi_device *asd;
1204        u32                     csr;
1205        unsigned int            bits = spi->bits_per_word;
1206        unsigned int            npcs_pin;
1207        int                     ret;
1208
1209        as = spi_master_get_devdata(spi->master);
1210
1211        /* see notes above re chipselect */
1212        if (!atmel_spi_is_v2(as)
1213                        && spi->chip_select == 0
1214                        && (spi->mode & SPI_CS_HIGH)) {
1215                dev_dbg(&spi->dev, "setup: can't be active-high\n");
1216                return -EINVAL;
1217        }
1218
1219        csr = SPI_BF(BITS, bits - 8);
1220        if (spi->mode & SPI_CPOL)
1221                csr |= SPI_BIT(CPOL);
1222        if (!(spi->mode & SPI_CPHA))
1223                csr |= SPI_BIT(NCPHA);
1224        if (!as->use_cs_gpios)
1225                csr |= SPI_BIT(CSAAT);
1226
1227        /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1228         *
1229         * DLYBCT would add delays between words, slowing down transfers.
1230         * It could potentially be useful to cope with DMA bottlenecks, but
1231         * in those cases it's probably best to just use a lower bitrate.
1232         */
1233        csr |= SPI_BF(DLYBS, 0);
1234        csr |= SPI_BF(DLYBCT, 0);
1235
1236        /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1237        npcs_pin = (unsigned long)spi->controller_data;
1238
1239        if (!as->use_cs_gpios)
1240                npcs_pin = spi->chip_select;
1241        else if (gpio_is_valid(spi->cs_gpio))
1242                npcs_pin = spi->cs_gpio;
1243
1244        asd = spi->controller_state;
1245        if (!asd) {
1246                asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1247                if (!asd)
1248                        return -ENOMEM;
1249
1250                if (as->use_cs_gpios) {
1251                        ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1252                        if (ret) {
1253                                kfree(asd);
1254                                return ret;
1255                        }
1256
1257                        gpio_direction_output(npcs_pin,
1258                                              !(spi->mode & SPI_CS_HIGH));
1259                }
1260
1261                asd->npcs_pin = npcs_pin;
1262                spi->controller_state = asd;
1263        }
1264
1265        asd->csr = csr;
1266
1267        dev_dbg(&spi->dev,
1268                "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1269                bits, spi->mode, spi->chip_select, csr);
1270
1271        if (!atmel_spi_is_v2(as))
1272                spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1273
1274        return 0;
1275}
1276
1277static int atmel_spi_one_transfer(struct spi_master *master,
1278                                        struct spi_message *msg,
1279                                        struct spi_transfer *xfer)
1280{
1281        struct atmel_spi        *as;
1282        struct spi_device       *spi = msg->spi;
1283        u8                      bits;
1284        u32                     len;
1285        struct atmel_spi_device *asd;
1286        int                     timeout;
1287        int                     ret;
1288        unsigned long           dma_timeout;
1289
1290        as = spi_master_get_devdata(master);
1291
1292        if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1293                dev_dbg(&spi->dev, "missing rx or tx buf\n");
1294                return -EINVAL;
1295        }
1296
1297        asd = spi->controller_state;
1298        bits = (asd->csr >> 4) & 0xf;
1299        if (bits != xfer->bits_per_word - 8) {
1300                dev_dbg(&spi->dev,
1301                        "you can't yet change bits_per_word in transfers\n");
1302                return -ENOPROTOOPT;
1303        }
1304
1305        /*
1306         * DMA map early, for performance (empties dcache ASAP) and
1307         * better fault reporting.
1308         */
1309        if ((!msg->is_dma_mapped)
1310                && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1311                if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1312                        return -ENOMEM;
1313        }
1314
1315        atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1316
1317        as->done_status = 0;
1318        as->current_transfer = xfer;
1319        as->current_remaining_bytes = xfer->len;
1320        while (as->current_remaining_bytes) {
1321                reinit_completion(&as->xfer_completion);
1322
1323                if (as->use_pdc) {
1324                        atmel_spi_pdc_next_xfer(master, msg, xfer);
1325                } else if (atmel_spi_use_dma(as, xfer)) {
1326                        len = as->current_remaining_bytes;
1327                        ret = atmel_spi_next_xfer_dma_submit(master,
1328                                                                xfer, &len);
1329                        if (ret) {
1330                                dev_err(&spi->dev,
1331                                        "unable to use DMA, fallback to PIO\n");
1332                                atmel_spi_next_xfer_pio(master, xfer);
1333                        } else {
1334                                as->current_remaining_bytes -= len;
1335                                if (as->current_remaining_bytes < 0)
1336                                        as->current_remaining_bytes = 0;
1337                        }
1338                } else {
1339                        atmel_spi_next_xfer_pio(master, xfer);
1340                }
1341
1342                /* interrupts are disabled, so free the lock for schedule */
1343                atmel_spi_unlock(as);
1344                dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1345                                                          SPI_DMA_TIMEOUT);
1346                atmel_spi_lock(as);
1347                if (WARN_ON(dma_timeout == 0)) {
1348                        dev_err(&spi->dev, "spi transfer timeout\n");
1349                        as->done_status = -EIO;
1350                }
1351
1352                if (as->done_status)
1353                        break;
1354        }
1355
1356        if (as->done_status) {
1357                if (as->use_pdc) {
1358                        dev_warn(master->dev.parent,
1359                                "overrun (%u/%u remaining)\n",
1360                                spi_readl(as, TCR), spi_readl(as, RCR));
1361
1362                        /*
1363                         * Clean up DMA registers and make sure the data
1364                         * registers are empty.
1365                         */
1366                        spi_writel(as, RNCR, 0);
1367                        spi_writel(as, TNCR, 0);
1368                        spi_writel(as, RCR, 0);
1369                        spi_writel(as, TCR, 0);
1370                        for (timeout = 1000; timeout; timeout--)
1371                                if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1372                                        break;
1373                        if (!timeout)
1374                                dev_warn(master->dev.parent,
1375                                         "timeout waiting for TXEMPTY");
1376                        while (spi_readl(as, SR) & SPI_BIT(RDRF))
1377                                spi_readl(as, RDR);
1378
1379                        /* Clear any overrun happening while cleaning up */
1380                        spi_readl(as, SR);
1381
1382                } else if (atmel_spi_use_dma(as, xfer)) {
1383                        atmel_spi_stop_dma(as);
1384                }
1385
1386                if (!msg->is_dma_mapped
1387                        && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1388                        atmel_spi_dma_unmap_xfer(master, xfer);
1389
1390                return 0;
1391
1392        } else {
1393                /* only update length if no error */
1394                msg->actual_length += xfer->len;
1395        }
1396
1397        if (!msg->is_dma_mapped
1398                && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1399                atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401        if (xfer->delay_usecs)
1402                udelay(xfer->delay_usecs);
1403
1404        if (xfer->cs_change) {
1405                if (list_is_last(&xfer->transfer_list,
1406                                 &msg->transfers)) {
1407                        as->keep_cs = true;
1408                } else {
1409                        as->cs_active = !as->cs_active;
1410                        if (as->cs_active)
1411                                cs_activate(as, msg->spi);
1412                        else
1413                                cs_deactivate(as, msg->spi);
1414                }
1415        }
1416
1417        return 0;
1418}
1419
1420static int atmel_spi_transfer_one_message(struct spi_master *master,
1421                                                struct spi_message *msg)
1422{
1423        struct atmel_spi *as;
1424        struct spi_transfer *xfer;
1425        struct spi_device *spi = msg->spi;
1426        int ret = 0;
1427
1428        as = spi_master_get_devdata(master);
1429
1430        dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431                                        msg, dev_name(&spi->dev));
1432
1433        atmel_spi_lock(as);
1434        cs_activate(as, spi);
1435
1436        as->cs_active = true;
1437        as->keep_cs = false;
1438
1439        msg->status = 0;
1440        msg->actual_length = 0;
1441
1442        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443                ret = atmel_spi_one_transfer(master, msg, xfer);
1444                if (ret)
1445                        goto msg_done;
1446        }
1447
1448        if (as->use_pdc)
1449                atmel_spi_disable_pdc_transfer(as);
1450
1451        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452                dev_dbg(&spi->dev,
1453                        "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1454                        xfer, xfer->len,
1455                        xfer->tx_buf, &xfer->tx_dma,
1456                        xfer->rx_buf, &xfer->rx_dma);
1457        }
1458
1459msg_done:
1460        if (!as->keep_cs)
1461                cs_deactivate(as, msg->spi);
1462
1463        atmel_spi_unlock(as);
1464
1465        msg->status = as->done_status;
1466        spi_finalize_current_message(spi->master);
1467
1468        return ret;
1469}
1470
1471static void atmel_spi_cleanup(struct spi_device *spi)
1472{
1473        struct atmel_spi_device *asd = spi->controller_state;
1474        unsigned                gpio = (unsigned long) spi->controller_data;
1475
1476        if (!asd)
1477                return;
1478
1479        spi->controller_state = NULL;
1480        gpio_free(gpio);
1481        kfree(asd);
1482}
1483
1484static inline unsigned int atmel_get_version(struct atmel_spi *as)
1485{
1486        return spi_readl(as, VERSION) & 0x00000fff;
1487}
1488
1489static void atmel_get_caps(struct atmel_spi *as)
1490{
1491        unsigned int version;
1492
1493        version = atmel_get_version(as);
1494        dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1495
1496        as->caps.is_spi2 = version > 0x121;
1497        as->caps.has_wdrbt = version >= 0x210;
1498        as->caps.has_dma_support = version >= 0x212;
1499}
1500
1501/*-------------------------------------------------------------------------*/
1502
1503static int atmel_spi_probe(struct platform_device *pdev)
1504{
1505        struct resource         *regs;
1506        int                     irq;
1507        struct clk              *clk;
1508        int                     ret;
1509        struct spi_master       *master;
1510        struct atmel_spi        *as;
1511
1512        /* Select default pin state */
1513        pinctrl_pm_select_default_state(&pdev->dev);
1514
1515        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1516        if (!regs)
1517                return -ENXIO;
1518
1519        irq = platform_get_irq(pdev, 0);
1520        if (irq < 0)
1521                return irq;
1522
1523        clk = devm_clk_get(&pdev->dev, "spi_clk");
1524        if (IS_ERR(clk))
1525                return PTR_ERR(clk);
1526
1527        /* setup spi core then atmel-specific driver state */
1528        ret = -ENOMEM;
1529        master = spi_alloc_master(&pdev->dev, sizeof(*as));
1530        if (!master)
1531                goto out_free;
1532
1533        /* the spi->mode bits understood by this driver: */
1534        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1535        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1536        master->dev.of_node = pdev->dev.of_node;
1537        master->bus_num = pdev->id;
1538        master->num_chipselect = master->dev.of_node ? 0 : 4;
1539        master->setup = atmel_spi_setup;
1540        master->transfer_one_message = atmel_spi_transfer_one_message;
1541        master->cleanup = atmel_spi_cleanup;
1542        master->auto_runtime_pm = true;
1543        platform_set_drvdata(pdev, master);
1544
1545        as = spi_master_get_devdata(master);
1546
1547        /*
1548         * Scratch buffer is used for throwaway rx and tx data.
1549         * It's coherent to minimize dcache pollution.
1550         */
1551        as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1552                                        &as->buffer_dma, GFP_KERNEL);
1553        if (!as->buffer)
1554                goto out_free;
1555
1556        spin_lock_init(&as->lock);
1557
1558        as->pdev = pdev;
1559        as->regs = devm_ioremap_resource(&pdev->dev, regs);
1560        if (IS_ERR(as->regs)) {
1561                ret = PTR_ERR(as->regs);
1562                goto out_free_buffer;
1563        }
1564        as->phybase = regs->start;
1565        as->irq = irq;
1566        as->clk = clk;
1567
1568        init_completion(&as->xfer_completion);
1569
1570        atmel_get_caps(as);
1571
1572        as->use_cs_gpios = true;
1573        if (atmel_spi_is_v2(as) &&
1574            pdev->dev.of_node &&
1575            !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1576                as->use_cs_gpios = false;
1577                master->num_chipselect = 4;
1578        }
1579
1580        as->use_dma = false;
1581        as->use_pdc = false;
1582        if (as->caps.has_dma_support) {
1583                ret = atmel_spi_configure_dma(as);
1584                if (ret == 0)
1585                        as->use_dma = true;
1586                else if (ret == -EPROBE_DEFER)
1587                        return ret;
1588        } else {
1589                as->use_pdc = true;
1590        }
1591
1592        if (as->caps.has_dma_support && !as->use_dma)
1593                dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1594
1595        if (as->use_pdc) {
1596                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1597                                        0, dev_name(&pdev->dev), master);
1598        } else {
1599                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1600                                        0, dev_name(&pdev->dev), master);
1601        }
1602        if (ret)
1603                goto out_unmap_regs;
1604
1605        /* Initialize the hardware */
1606        ret = clk_prepare_enable(clk);
1607        if (ret)
1608                goto out_free_irq;
1609        spi_writel(as, CR, SPI_BIT(SWRST));
1610        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1611        if (as->caps.has_wdrbt) {
1612                spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1613                                | SPI_BIT(MSTR));
1614        } else {
1615                spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1616        }
1617
1618        if (as->use_pdc)
1619                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1620        spi_writel(as, CR, SPI_BIT(SPIEN));
1621
1622        as->fifo_size = 0;
1623        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1624                                  &as->fifo_size)) {
1625                dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1626                spi_writel(as, CR, SPI_BIT(FIFOEN));
1627        }
1628
1629        /* go! */
1630        dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1631                        (unsigned long)regs->start, irq);
1632
1633        pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1634        pm_runtime_use_autosuspend(&pdev->dev);
1635        pm_runtime_set_active(&pdev->dev);
1636        pm_runtime_enable(&pdev->dev);
1637
1638        ret = devm_spi_register_master(&pdev->dev, master);
1639        if (ret)
1640                goto out_free_dma;
1641
1642        return 0;
1643
1644out_free_dma:
1645        pm_runtime_disable(&pdev->dev);
1646        pm_runtime_set_suspended(&pdev->dev);
1647
1648        if (as->use_dma)
1649                atmel_spi_release_dma(as);
1650
1651        spi_writel(as, CR, SPI_BIT(SWRST));
1652        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1653        clk_disable_unprepare(clk);
1654out_free_irq:
1655out_unmap_regs:
1656out_free_buffer:
1657        dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1658                        as->buffer_dma);
1659out_free:
1660        spi_master_put(master);
1661        return ret;
1662}
1663
1664static int atmel_spi_remove(struct platform_device *pdev)
1665{
1666        struct spi_master       *master = platform_get_drvdata(pdev);
1667        struct atmel_spi        *as = spi_master_get_devdata(master);
1668
1669        pm_runtime_get_sync(&pdev->dev);
1670
1671        /* reset the hardware and block queue progress */
1672        spin_lock_irq(&as->lock);
1673        if (as->use_dma) {
1674                atmel_spi_stop_dma(as);
1675                atmel_spi_release_dma(as);
1676        }
1677
1678        spi_writel(as, CR, SPI_BIT(SWRST));
1679        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1680        spi_readl(as, SR);
1681        spin_unlock_irq(&as->lock);
1682
1683        dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1684                        as->buffer_dma);
1685
1686        clk_disable_unprepare(as->clk);
1687
1688        pm_runtime_put_noidle(&pdev->dev);
1689        pm_runtime_disable(&pdev->dev);
1690
1691        return 0;
1692}
1693
1694#ifdef CONFIG_PM
1695static int atmel_spi_runtime_suspend(struct device *dev)
1696{
1697        struct spi_master *master = dev_get_drvdata(dev);
1698        struct atmel_spi *as = spi_master_get_devdata(master);
1699
1700        clk_disable_unprepare(as->clk);
1701        pinctrl_pm_select_sleep_state(dev);
1702
1703        return 0;
1704}
1705
1706static int atmel_spi_runtime_resume(struct device *dev)
1707{
1708        struct spi_master *master = dev_get_drvdata(dev);
1709        struct atmel_spi *as = spi_master_get_devdata(master);
1710
1711        pinctrl_pm_select_default_state(dev);
1712
1713        return clk_prepare_enable(as->clk);
1714}
1715
1716#ifdef CONFIG_PM_SLEEP
1717static int atmel_spi_suspend(struct device *dev)
1718{
1719        struct spi_master *master = dev_get_drvdata(dev);
1720        int ret;
1721
1722        /* Stop the queue running */
1723        ret = spi_master_suspend(master);
1724        if (ret) {
1725                dev_warn(dev, "cannot suspend master\n");
1726                return ret;
1727        }
1728
1729        if (!pm_runtime_suspended(dev))
1730                atmel_spi_runtime_suspend(dev);
1731
1732        return 0;
1733}
1734
1735static int atmel_spi_resume(struct device *dev)
1736{
1737        struct spi_master *master = dev_get_drvdata(dev);
1738        int ret;
1739
1740        if (!pm_runtime_suspended(dev)) {
1741                ret = atmel_spi_runtime_resume(dev);
1742                if (ret)
1743                        return ret;
1744        }
1745
1746        /* Start the queue running */
1747        ret = spi_master_resume(master);
1748        if (ret)
1749                dev_err(dev, "problem starting queue (%d)\n", ret);
1750
1751        return ret;
1752}
1753#endif
1754
1755static const struct dev_pm_ops atmel_spi_pm_ops = {
1756        SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1757        SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1758                           atmel_spi_runtime_resume, NULL)
1759};
1760#define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1761#else
1762#define ATMEL_SPI_PM_OPS        NULL
1763#endif
1764
1765#if defined(CONFIG_OF)
1766static const struct of_device_id atmel_spi_dt_ids[] = {
1767        { .compatible = "atmel,at91rm9200-spi" },
1768        { /* sentinel */ }
1769};
1770
1771MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1772#endif
1773
1774static struct platform_driver atmel_spi_driver = {
1775        .driver         = {
1776                .name   = "atmel_spi",
1777                .pm     = ATMEL_SPI_PM_OPS,
1778                .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1779        },
1780        .probe          = atmel_spi_probe,
1781        .remove         = atmel_spi_remove,
1782};
1783module_platform_driver(atmel_spi_driver);
1784
1785MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1786MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1787MODULE_LICENSE("GPL");
1788MODULE_ALIAS("platform:atmel_spi");
1789