linux/drivers/staging/vt6656/card.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
   3 * All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 *
  16 * File: card.c
  17 * Purpose: Provide functions to setup NIC operation mode
  18 * Functions:
  19 *      vnt_set_rspinf - Set RSPINF
  20 *      vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
  21 *      vnt_update_top_rates - Update BasicTopRate
  22 *      vnt_add_basic_rate - Add to BasicRateSet
  23 *      vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
  24 *      vnt_get_tsf_offset - Calculate TSFOffset
  25 *      vnt_get_current_tsf - Read Current NIC TSF counter
  26 *      vnt_get_next_tbtt - Calculate Next Beacon TSF counter
  27 *      vnt_reset_next_tbtt - Set NIC Beacon time
  28 *      vnt_update_next_tbtt - Sync. NIC Beacon time
  29 *      vnt_radio_power_off - Turn Off NIC Radio Power
  30 *      vnt_radio_power_on - Turn On NIC Radio Power
  31 *
  32 * Revision History:
  33 *      06-10-2003 Bryan YC Fan:  Re-write codes to support VT3253 spec.
  34 *      08-26-2003 Kyle Hsu:      Modify the definition type of dwIoBase.
  35 *      09-01-2003 Bryan YC Fan:  Add vnt_update_ifs().
  36 *
  37 */
  38
  39#include "device.h"
  40#include "card.h"
  41#include "baseband.h"
  42#include "mac.h"
  43#include "desc.h"
  44#include "rf.h"
  45#include "power.h"
  46#include "key.h"
  47#include "usbpipe.h"
  48
  49/* const u16 cw_rxbcntsf_off[MAX_RATE] =
  50 *   {17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3};
  51 */
  52
  53static const u16 cw_rxbcntsf_off[MAX_RATE] = {
  54        192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
  55};
  56
  57/*
  58 * Description: Set NIC media channel
  59 *
  60 * Parameters:
  61 *  In:
  62 *      pDevice             - The adapter to be set
  63 *      connection_channel  - Channel to be set
  64 *  Out:
  65 *      none
  66 */
  67void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
  68{
  69        if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
  70                return;
  71
  72        /* clear NAV */
  73        vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
  74
  75        /* Set Channel[7] = 0 to tell H/W channel is changing now. */
  76        vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
  77
  78        vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
  79                        connection_channel, 0, 0, NULL);
  80
  81        vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
  82                           (u8)(connection_channel | 0x80));
  83}
  84
  85/*
  86 * Description: Get CCK mode basic rate
  87 *
  88 * Parameters:
  89 *  In:
  90 *      priv            - The adapter to be set
  91 *      rate_idx        - Receiving data rate
  92 *  Out:
  93 *      none
  94 *
  95 * Return Value: response Control frame rate
  96 *
  97 */
  98static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
  99{
 100        u16 ui = rate_idx;
 101
 102        while (ui > RATE_1M) {
 103                if (priv->basic_rates & (1 << ui))
 104                        return ui;
 105                ui--;
 106        }
 107
 108        return RATE_1M;
 109}
 110
 111/*
 112 * Description: Get OFDM mode basic rate
 113 *
 114 * Parameters:
 115 *  In:
 116 *      priv            - The adapter to be set
 117 *      rate_idx        - Receiving data rate
 118 *  Out:
 119 *      none
 120 *
 121 * Return Value: response Control frame rate
 122 *
 123 */
 124static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
 125{
 126        u16 ui = rate_idx;
 127
 128        dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
 129                __func__,  priv->basic_rates);
 130
 131        if (!vnt_ofdm_min_rate(priv)) {
 132                dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
 133                        __func__, rate_idx);
 134                if (rate_idx > RATE_24M)
 135                        rate_idx = RATE_24M;
 136                return rate_idx;
 137        }
 138
 139        while (ui > RATE_11M) {
 140                if (priv->basic_rates & (1 << ui)) {
 141                        dev_dbg(&priv->usb->dev, "%s rate: %d\n",
 142                                __func__, ui);
 143                        return ui;
 144                }
 145                ui--;
 146        }
 147
 148        dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
 149
 150        return RATE_24M;
 151}
 152
 153/*
 154 * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
 155 *
 156 * Parameters:
 157 * In:
 158 *      rate    - Tx Rate
 159 *      bb_type - Tx Packet type
 160 * Out:
 161 *      tx_rate - pointer to RSPINF TxRate field
 162 *      rsv_time- pointer to RSPINF RsvTime field
 163 *
 164 * Return Value: none
 165 *
 166 */
 167static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
 168                                    u8 *tx_rate, u8 *rsv_time)
 169{
 170        switch (rate) {
 171        case RATE_6M:
 172                if (bb_type == BB_TYPE_11A) {
 173                        *tx_rate = 0x9b;
 174                        *rsv_time = 24;
 175                } else {
 176                        *tx_rate = 0x8b;
 177                        *rsv_time = 30;
 178                }
 179                        break;
 180        case RATE_9M:
 181                if (bb_type == BB_TYPE_11A) {
 182                        *tx_rate = 0x9f;
 183                        *rsv_time = 16;
 184                } else {
 185                        *tx_rate = 0x8f;
 186                        *rsv_time = 22;
 187                }
 188                break;
 189        case RATE_12M:
 190                if (bb_type == BB_TYPE_11A) {
 191                        *tx_rate = 0x9a;
 192                        *rsv_time = 12;
 193                } else {
 194                        *tx_rate = 0x8a;
 195                        *rsv_time = 18;
 196                }
 197                break;
 198        case RATE_18M:
 199                if (bb_type == BB_TYPE_11A) {
 200                        *tx_rate = 0x9e;
 201                        *rsv_time = 8;
 202                } else {
 203                        *tx_rate = 0x8e;
 204                        *rsv_time = 14;
 205                }
 206                break;
 207        case RATE_36M:
 208                if (bb_type == BB_TYPE_11A) {
 209                        *tx_rate = 0x9d;
 210                        *rsv_time = 4;
 211                } else {
 212                        *tx_rate = 0x8d;
 213                        *rsv_time = 10;
 214                }
 215                break;
 216        case RATE_48M:
 217                if (bb_type == BB_TYPE_11A) {
 218                        *tx_rate = 0x98;
 219                        *rsv_time = 4;
 220                } else {
 221                        *tx_rate = 0x88;
 222                        *rsv_time = 10;
 223                }
 224                break;
 225        case RATE_54M:
 226                if (bb_type == BB_TYPE_11A) {
 227                        *tx_rate = 0x9c;
 228                        *rsv_time = 4;
 229                } else {
 230                        *tx_rate = 0x8c;
 231                        *rsv_time = 10;
 232                }
 233                break;
 234        case RATE_24M:
 235        default:
 236                if (bb_type == BB_TYPE_11A) {
 237                        *tx_rate = 0x99;
 238                        *rsv_time = 8;
 239                } else {
 240                        *tx_rate = 0x89;
 241                        *rsv_time = 14;
 242                }
 243                break;
 244        }
 245}
 246
 247/*
 248 * Description: Set RSPINF
 249 *
 250 * Parameters:
 251 *  In:
 252 *      pDevice             - The adapter to be set
 253 *  Out:
 254 *      none
 255 *
 256 * Return Value: None.
 257 *
 258 */
 259
 260void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
 261{
 262        struct vnt_phy_field phy[4];
 263        u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
 264        u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
 265        u8 data[34];
 266        int i;
 267
 268        /*RSPINF_b_1*/
 269        vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_1M),
 270                          PK_TYPE_11B, &phy[0]);
 271
 272        /*RSPINF_b_2*/
 273        vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_2M),
 274                          PK_TYPE_11B, &phy[1]);
 275
 276        /*RSPINF_b_5*/
 277        vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_5M),
 278                          PK_TYPE_11B, &phy[2]);
 279
 280        /*RSPINF_b_11*/
 281        vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_11M),
 282                          PK_TYPE_11B, &phy[3]);
 283
 284        /*RSPINF_a_6*/
 285        vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
 286
 287        /*RSPINF_a_9*/
 288        vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
 289
 290        /*RSPINF_a_12*/
 291        vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
 292
 293        /*RSPINF_a_18*/
 294        vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
 295
 296        /*RSPINF_a_24*/
 297        vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
 298
 299        /*RSPINF_a_36*/
 300        vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
 301                                bb_type, &tx_rate[5], &rsv_time[5]);
 302
 303        /*RSPINF_a_48*/
 304        vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
 305                                bb_type, &tx_rate[6], &rsv_time[6]);
 306
 307        /*RSPINF_a_54*/
 308        vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
 309                                bb_type, &tx_rate[7], &rsv_time[7]);
 310
 311        /*RSPINF_a_72*/
 312        vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
 313                                bb_type, &tx_rate[8], &rsv_time[8]);
 314
 315        put_unaligned(phy[0].len, (u16 *)&data[0]);
 316        data[2] = phy[0].signal;
 317        data[3] = phy[0].service;
 318
 319        put_unaligned(phy[1].len, (u16 *)&data[4]);
 320        data[6] = phy[1].signal;
 321        data[7] = phy[1].service;
 322
 323        put_unaligned(phy[2].len, (u16 *)&data[8]);
 324        data[10] = phy[2].signal;
 325        data[11] = phy[2].service;
 326
 327        put_unaligned(phy[3].len, (u16 *)&data[12]);
 328        data[14] = phy[3].signal;
 329        data[15] = phy[3].service;
 330
 331        for (i = 0; i < 9; i++) {
 332                data[16 + i * 2] = tx_rate[i];
 333                data[16 + i * 2 + 1] = rsv_time[i];
 334        }
 335
 336        vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_RSPINF_B_1,
 337                        MESSAGE_REQUEST_MACREG, 34, &data[0]);
 338}
 339
 340/*
 341 * Description: Update IFS
 342 *
 343 * Parameters:
 344 *  In:
 345 *      priv - The adapter to be set
 346 * Out:
 347 *      none
 348 *
 349 * Return Value: None.
 350 *
 351 */
 352void vnt_update_ifs(struct vnt_private *priv)
 353{
 354        u8 max_min = 0;
 355        u8 data[4];
 356
 357        if (priv->packet_type == PK_TYPE_11A) {
 358                priv->slot = C_SLOT_SHORT;
 359                priv->sifs = C_SIFS_A;
 360                priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
 361                max_min = 4;
 362        } else if (priv->packet_type == PK_TYPE_11B) {
 363                priv->slot = C_SLOT_LONG;
 364                priv->sifs = C_SIFS_BG;
 365                priv->difs = C_SIFS_BG + 2 * C_SLOT_LONG;
 366                max_min = 5;
 367        } else {/* PK_TYPE_11GA & PK_TYPE_11GB */
 368                bool ofdm_rate = false;
 369                unsigned int ii = 0;
 370
 371                priv->sifs = C_SIFS_BG;
 372
 373                if (priv->short_slot_time)
 374                        priv->slot = C_SLOT_SHORT;
 375                else
 376                        priv->slot = C_SLOT_LONG;
 377
 378                priv->difs = C_SIFS_BG + 2 * priv->slot;
 379
 380                for (ii = RATE_54M; ii >= RATE_6M; ii--) {
 381                        if (priv->basic_rates & ((u32)(0x1 << ii))) {
 382                                ofdm_rate = true;
 383                                break;
 384                        }
 385                }
 386
 387                if (ofdm_rate)
 388                        max_min = 4;
 389                else
 390                        max_min = 5;
 391        }
 392
 393        priv->eifs = C_EIFS;
 394
 395        switch (priv->rf_type) {
 396        case RF_VT3226D0:
 397                if (priv->bb_type != BB_TYPE_11B) {
 398                        priv->sifs -= 1;
 399                        priv->difs -= 1;
 400                        break;
 401                }
 402        case RF_AIROHA7230:
 403        case RF_AL2230:
 404        case RF_AL2230S:
 405                if (priv->bb_type != BB_TYPE_11B)
 406                        break;
 407        case RF_RFMD2959:
 408        case RF_VT3226:
 409        case RF_VT3342A0:
 410                priv->sifs -= 3;
 411                priv->difs -= 3;
 412                break;
 413        case RF_MAXIM2829:
 414                if (priv->bb_type == BB_TYPE_11A) {
 415                        priv->sifs -= 5;
 416                        priv->difs -= 5;
 417                } else {
 418                        priv->sifs -= 2;
 419                        priv->difs -= 2;
 420                }
 421
 422                break;
 423        }
 424
 425        data[0] = (u8)priv->sifs;
 426        data[1] = (u8)priv->difs;
 427        data[2] = (u8)priv->eifs;
 428        data[3] = (u8)priv->slot;
 429
 430        vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
 431                        MESSAGE_REQUEST_MACREG, 4, &data[0]);
 432
 433        max_min |= 0xa0;
 434
 435        vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
 436                        MESSAGE_REQUEST_MACREG, 1, &max_min);
 437}
 438
 439void vnt_update_top_rates(struct vnt_private *priv)
 440{
 441        u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
 442        u8 i;
 443
 444        /*Determines the highest basic rate.*/
 445        for (i = RATE_54M; i >= RATE_6M; i--) {
 446                if (priv->basic_rates & (u16)(1 << i)) {
 447                        top_ofdm = i;
 448                        break;
 449                }
 450        }
 451
 452        priv->top_ofdm_basic_rate = top_ofdm;
 453
 454        for (i = RATE_11M;; i--) {
 455                if (priv->basic_rates & (u16)(1 << i)) {
 456                        top_cck = i;
 457                        break;
 458                }
 459                if (i == RATE_1M)
 460                        break;
 461        }
 462
 463        priv->top_cck_basic_rate = top_cck;
 464}
 465
 466int vnt_ofdm_min_rate(struct vnt_private *priv)
 467{
 468        int ii;
 469
 470        for (ii = RATE_54M; ii >= RATE_6M; ii--) {
 471                if ((priv->basic_rates) & ((u16)BIT(ii)))
 472                        return true;
 473        }
 474
 475        return false;
 476}
 477
 478u8 vnt_get_pkt_type(struct vnt_private *priv)
 479{
 480        if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
 481                return (u8)priv->bb_type;
 482        else if (vnt_ofdm_min_rate(priv))
 483                return PK_TYPE_11GA;
 484        return PK_TYPE_11GB;
 485}
 486
 487/*
 488 * Description: Calculate TSF offset of two TSF input
 489 *              Get TSF Offset from RxBCN's TSF and local TSF
 490 *
 491 * Parameters:
 492 *  In:
 493 *      rx_rate - rx rate.
 494 *      tsf1    - Rx BCN's TSF
 495 *      tsf2    - Local TSF
 496 *  Out:
 497 *      none
 498 *
 499 * Return Value: TSF Offset value
 500 *
 501 */
 502u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
 503{
 504        u64 tsf_offset = 0;
 505        u16 rx_bcn_offset;
 506
 507        rx_bcn_offset = cw_rxbcntsf_off[rx_rate % MAX_RATE];
 508
 509        tsf2 += (u64)rx_bcn_offset;
 510
 511        tsf_offset = tsf1 - tsf2;
 512
 513        return tsf_offset;
 514}
 515
 516/*
 517 * Description: Sync. TSF counter to BSS
 518 *              Get TSF offset and write to HW
 519 *
 520 * Parameters:
 521 *  In:
 522 *      priv            - The adapter to be sync.
 523 *      time_stamp      - Rx BCN's TSF
 524 *      local_tsf       - Local TSF
 525 *  Out:
 526 *      none
 527 *
 528 * Return Value: none
 529 *
 530 */
 531void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
 532                    u64 time_stamp, u64 local_tsf)
 533{
 534        u64 tsf_offset = 0;
 535        u8 data[8];
 536
 537        tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
 538
 539        data[0] = (u8)tsf_offset;
 540        data[1] = (u8)(tsf_offset >> 8);
 541        data[2] = (u8)(tsf_offset >> 16);
 542        data[3] = (u8)(tsf_offset >> 24);
 543        data[4] = (u8)(tsf_offset >> 32);
 544        data[5] = (u8)(tsf_offset >> 40);
 545        data[6] = (u8)(tsf_offset >> 48);
 546        data[7] = (u8)(tsf_offset >> 56);
 547
 548        vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
 549                        MESSAGE_REQUEST_TSF, 0, 8, data);
 550}
 551
 552/*
 553 * Description: Read NIC TSF counter
 554 *              Get local TSF counter
 555 *
 556 * Parameters:
 557 *  In:
 558 *      priv            - The adapter to be read
 559 *  Out:
 560 *      current_tsf     - Current TSF counter
 561 *
 562 * Return Value: true if success; otherwise false
 563 *
 564 */
 565bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
 566{
 567        *current_tsf = priv->current_tsf;
 568
 569        return true;
 570}
 571
 572/*
 573 * Description: Clear NIC TSF counter
 574 *              Clear local TSF counter
 575 *
 576 * Parameters:
 577 *  In:
 578 *      priv    - The adapter to be read
 579 *
 580 * Return Value: true if success; otherwise false
 581 *
 582 */
 583bool vnt_clear_current_tsf(struct vnt_private *priv)
 584{
 585        vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
 586
 587        priv->current_tsf = 0;
 588
 589        return true;
 590}
 591
 592/*
 593 * Description: Read NIC TSF counter
 594 *              Get NEXTTBTT from adjusted TSF and Beacon Interval
 595 *
 596 * Parameters:
 597 *  In:
 598 *      tsf             - Current TSF counter
 599 *      beacon_interval - Beacon Interval
 600 *  Out:
 601 *      tsf             - Current TSF counter
 602 *
 603 * Return Value: TSF value of next Beacon
 604 *
 605 */
 606u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
 607{
 608        u32 beacon_int;
 609
 610        beacon_int = beacon_interval * 1024;
 611
 612        /* Next TBTT =
 613        *       ((local_current_TSF / beacon_interval) + 1) * beacon_interval
 614        */
 615        if (beacon_int) {
 616                do_div(tsf, beacon_int);
 617                tsf += 1;
 618                tsf *= beacon_int;
 619        }
 620
 621        return tsf;
 622}
 623
 624/*
 625 * Description: Set NIC TSF counter for first Beacon time
 626 *              Get NEXTTBTT from adjusted TSF and Beacon Interval
 627 *
 628 * Parameters:
 629 *  In:
 630 *      dwIoBase        - IO Base
 631 *      beacon_interval - Beacon Interval
 632 *  Out:
 633 *      none
 634 *
 635 * Return Value: none
 636 *
 637 */
 638void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
 639{
 640        u64 next_tbtt = 0;
 641        u8 data[8];
 642
 643        vnt_clear_current_tsf(priv);
 644
 645        next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
 646
 647        data[0] = (u8)next_tbtt;
 648        data[1] = (u8)(next_tbtt >> 8);
 649        data[2] = (u8)(next_tbtt >> 16);
 650        data[3] = (u8)(next_tbtt >> 24);
 651        data[4] = (u8)(next_tbtt >> 32);
 652        data[5] = (u8)(next_tbtt >> 40);
 653        data[6] = (u8)(next_tbtt >> 48);
 654        data[7] = (u8)(next_tbtt >> 56);
 655
 656        vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
 657                        MESSAGE_REQUEST_TBTT, 0, 8, data);
 658}
 659
 660/*
 661 * Description: Sync NIC TSF counter for Beacon time
 662 *              Get NEXTTBTT and write to HW
 663 *
 664 * Parameters:
 665 *  In:
 666 *      priv            - The adapter to be set
 667 *      tsf             - Current TSF counter
 668 *      beacon_interval - Beacon Interval
 669 *  Out:
 670 *      none
 671 *
 672 * Return Value: none
 673 *
 674 */
 675void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
 676                          u16 beacon_interval)
 677{
 678        u8 data[8];
 679
 680        tsf = vnt_get_next_tbtt(tsf, beacon_interval);
 681
 682        data[0] = (u8)tsf;
 683        data[1] = (u8)(tsf >> 8);
 684        data[2] = (u8)(tsf >> 16);
 685        data[3] = (u8)(tsf >> 24);
 686        data[4] = (u8)(tsf >> 32);
 687        data[5] = (u8)(tsf >> 40);
 688        data[6] = (u8)(tsf >> 48);
 689        data[7] = (u8)(tsf >> 56);
 690
 691        vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
 692                        MESSAGE_REQUEST_TBTT, 0, 8, data);
 693
 694        dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
 695}
 696
 697/*
 698 * Description: Turn off Radio power
 699 *
 700 * Parameters:
 701 *  In:
 702 *      priv         - The adapter to be turned off
 703 *  Out:
 704 *      none
 705 *
 706 * Return Value: true if success; otherwise false
 707 *
 708 */
 709int vnt_radio_power_off(struct vnt_private *priv)
 710{
 711        int ret = true;
 712
 713        switch (priv->rf_type) {
 714        case RF_AL2230:
 715        case RF_AL2230S:
 716        case RF_AIROHA7230:
 717        case RF_VT3226:
 718        case RF_VT3226D0:
 719        case RF_VT3342A0:
 720                vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
 721                                     (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
 722                break;
 723        }
 724
 725        vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
 726
 727        vnt_set_deep_sleep(priv);
 728
 729        vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
 730
 731        return ret;
 732}
 733
 734/*
 735 * Description: Turn on Radio power
 736 *
 737 * Parameters:
 738 *  In:
 739 *      priv         - The adapter to be turned on
 740 *  Out:
 741 *      none
 742 *
 743 * Return Value: true if success; otherwise false
 744 *
 745 */
 746int vnt_radio_power_on(struct vnt_private *priv)
 747{
 748        int ret = true;
 749
 750        vnt_exit_deep_sleep(priv);
 751
 752        vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
 753
 754        switch (priv->rf_type) {
 755        case RF_AL2230:
 756        case RF_AL2230S:
 757        case RF_AIROHA7230:
 758        case RF_VT3226:
 759        case RF_VT3226D0:
 760        case RF_VT3342A0:
 761                vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
 762                                    (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
 763                break;
 764        }
 765
 766        vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
 767
 768        return ret;
 769}
 770
 771void vnt_set_bss_mode(struct vnt_private *priv)
 772{
 773        if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
 774                vnt_mac_set_bb_type(priv, BB_TYPE_11G);
 775        else
 776                vnt_mac_set_bb_type(priv, priv->bb_type);
 777
 778        priv->packet_type = vnt_get_pkt_type(priv);
 779
 780        if (priv->bb_type == BB_TYPE_11A)
 781                vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
 782        else if (priv->bb_type == BB_TYPE_11B)
 783                vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
 784        else if (priv->bb_type == BB_TYPE_11G)
 785                vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
 786
 787        vnt_update_ifs(priv);
 788        vnt_set_rspinf(priv, (u8)priv->bb_type);
 789
 790        if (priv->bb_type == BB_TYPE_11A) {
 791                if (priv->rf_type == RF_AIROHA7230) {
 792                        priv->bb_vga[0] = 0x20;
 793
 794                        vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
 795                                           0xe7, priv->bb_vga[0]);
 796                }
 797
 798                priv->bb_vga[2] = 0x10;
 799                priv->bb_vga[3] = 0x10;
 800        } else {
 801                if (priv->rf_type == RF_AIROHA7230) {
 802                        priv->bb_vga[0] = 0x1c;
 803
 804                        vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
 805                                           0xe7, priv->bb_vga[0]);
 806                }
 807
 808                priv->bb_vga[2] = 0x0;
 809                priv->bb_vga[3] = 0x0;
 810        }
 811
 812        vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
 813}
 814