linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40
  41/*
  42 * How many user pages to map in one call to get_user_pages().  This determines
  43 * the size of a structure in the slab cache
  44 */
  45#define DIO_PAGES       64
  46
  47/*
  48 * This code generally works in units of "dio_blocks".  A dio_block is
  49 * somewhere between the hard sector size and the filesystem block size.  it
  50 * is determined on a per-invocation basis.   When talking to the filesystem
  51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  52 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  53 * to bio_block quantities by shifting left by blkfactor.
  54 *
  55 * If blkfactor is zero then the user's request was aligned to the filesystem's
  56 * blocksize.
  57 */
  58
  59/* dio_state only used in the submission path */
  60
  61struct dio_submit {
  62        struct bio *bio;                /* bio under assembly */
  63        unsigned blkbits;               /* doesn't change */
  64        unsigned blkfactor;             /* When we're using an alignment which
  65                                           is finer than the filesystem's soft
  66                                           blocksize, this specifies how much
  67                                           finer.  blkfactor=2 means 1/4-block
  68                                           alignment.  Does not change */
  69        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  70                                           been performed at the start of a
  71                                           write */
  72        int pages_in_io;                /* approximate total IO pages */
  73        sector_t block_in_file;         /* Current offset into the underlying
  74                                           file in dio_block units. */
  75        unsigned blocks_available;      /* At block_in_file.  changes */
  76        int reap_counter;               /* rate limit reaping */
  77        sector_t final_block_in_request;/* doesn't change */
  78        int boundary;                   /* prev block is at a boundary */
  79        get_block_t *get_block;         /* block mapping function */
  80        dio_submit_t *submit_io;        /* IO submition function */
  81
  82        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  83        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  84        sector_t next_block_for_io;     /* next block to be put under IO,
  85                                           in dio_blocks units */
  86
  87        /*
  88         * Deferred addition of a page to the dio.  These variables are
  89         * private to dio_send_cur_page(), submit_page_section() and
  90         * dio_bio_add_page().
  91         */
  92        struct page *cur_page;          /* The page */
  93        unsigned cur_page_offset;       /* Offset into it, in bytes */
  94        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  95        sector_t cur_page_block;        /* Where it starts */
  96        loff_t cur_page_fs_offset;      /* Offset in file */
  97
  98        struct iov_iter *iter;
  99        /*
 100         * Page queue.  These variables belong to dio_refill_pages() and
 101         * dio_get_page().
 102         */
 103        unsigned head;                  /* next page to process */
 104        unsigned tail;                  /* last valid page + 1 */
 105        size_t from, to;
 106};
 107
 108/* dio_state communicated between submission path and end_io */
 109struct dio {
 110        int flags;                      /* doesn't change */
 111        int op;
 112        int op_flags;
 113        blk_qc_t bio_cookie;
 114        struct block_device *bio_bdev;
 115        struct inode *inode;
 116        loff_t i_size;                  /* i_size when submitted */
 117        dio_iodone_t *end_io;           /* IO completion function */
 118
 119        void *private;                  /* copy from map_bh.b_private */
 120
 121        /* BIO completion state */
 122        spinlock_t bio_lock;            /* protects BIO fields below */
 123        int page_errors;                /* errno from get_user_pages() */
 124        int is_async;                   /* is IO async ? */
 125        bool defer_completion;          /* defer AIO completion to workqueue? */
 126        bool should_dirty;              /* if pages should be dirtied */
 127        int io_error;                   /* IO error in completion path */
 128        unsigned long refcount;         /* direct_io_worker() and bios */
 129        struct bio *bio_list;           /* singly linked via bi_private */
 130        struct task_struct *waiter;     /* waiting task (NULL if none) */
 131
 132        /* AIO related stuff */
 133        struct kiocb *iocb;             /* kiocb */
 134        ssize_t result;                 /* IO result */
 135
 136        /*
 137         * pages[] (and any fields placed after it) are not zeroed out at
 138         * allocation time.  Don't add new fields after pages[] unless you
 139         * wish that they not be zeroed.
 140         */
 141        union {
 142                struct page *pages[DIO_PAGES];  /* page buffer */
 143                struct work_struct complete_work;/* deferred AIO completion */
 144        };
 145} ____cacheline_aligned_in_smp;
 146
 147static struct kmem_cache *dio_cache __read_mostly;
 148
 149/*
 150 * How many pages are in the queue?
 151 */
 152static inline unsigned dio_pages_present(struct dio_submit *sdio)
 153{
 154        return sdio->tail - sdio->head;
 155}
 156
 157/*
 158 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 159 */
 160static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 161{
 162        ssize_t ret;
 163
 164        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 165                                &sdio->from);
 166
 167        if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
 168                struct page *page = ZERO_PAGE(0);
 169                /*
 170                 * A memory fault, but the filesystem has some outstanding
 171                 * mapped blocks.  We need to use those blocks up to avoid
 172                 * leaking stale data in the file.
 173                 */
 174                if (dio->page_errors == 0)
 175                        dio->page_errors = ret;
 176                get_page(page);
 177                dio->pages[0] = page;
 178                sdio->head = 0;
 179                sdio->tail = 1;
 180                sdio->from = 0;
 181                sdio->to = PAGE_SIZE;
 182                return 0;
 183        }
 184
 185        if (ret >= 0) {
 186                iov_iter_advance(sdio->iter, ret);
 187                ret += sdio->from;
 188                sdio->head = 0;
 189                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 190                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 191                return 0;
 192        }
 193        return ret;     
 194}
 195
 196/*
 197 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 198 * buffered inside the dio so that we can call get_user_pages() against a
 199 * decent number of pages, less frequently.  To provide nicer use of the
 200 * L1 cache.
 201 */
 202static inline struct page *dio_get_page(struct dio *dio,
 203                                        struct dio_submit *sdio)
 204{
 205        if (dio_pages_present(sdio) == 0) {
 206                int ret;
 207
 208                ret = dio_refill_pages(dio, sdio);
 209                if (ret)
 210                        return ERR_PTR(ret);
 211                BUG_ON(dio_pages_present(sdio) == 0);
 212        }
 213        return dio->pages[sdio->head];
 214}
 215
 216/**
 217 * dio_complete() - called when all DIO BIO I/O has been completed
 218 * @offset: the byte offset in the file of the completed operation
 219 *
 220 * This drops i_dio_count, lets interested parties know that a DIO operation
 221 * has completed, and calculates the resulting return code for the operation.
 222 *
 223 * It lets the filesystem know if it registered an interest earlier via
 224 * get_block.  Pass the private field of the map buffer_head so that
 225 * filesystems can use it to hold additional state between get_block calls and
 226 * dio_complete.
 227 */
 228static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
 229{
 230        loff_t offset = dio->iocb->ki_pos;
 231        ssize_t transferred = 0;
 232
 233        /*
 234         * AIO submission can race with bio completion to get here while
 235         * expecting to have the last io completed by bio completion.
 236         * In that case -EIOCBQUEUED is in fact not an error we want
 237         * to preserve through this call.
 238         */
 239        if (ret == -EIOCBQUEUED)
 240                ret = 0;
 241
 242        if (dio->result) {
 243                transferred = dio->result;
 244
 245                /* Check for short read case */
 246                if ((dio->op == REQ_OP_READ) &&
 247                    ((offset + transferred) > dio->i_size))
 248                        transferred = dio->i_size - offset;
 249                /* ignore EFAULT if some IO has been done */
 250                if (unlikely(ret == -EFAULT) && transferred)
 251                        ret = 0;
 252        }
 253
 254        if (ret == 0)
 255                ret = dio->page_errors;
 256        if (ret == 0)
 257                ret = dio->io_error;
 258        if (ret == 0)
 259                ret = transferred;
 260
 261        if (dio->end_io) {
 262                int err;
 263
 264                // XXX: ki_pos??
 265                err = dio->end_io(dio->iocb, offset, ret, dio->private);
 266                if (err)
 267                        ret = err;
 268        }
 269
 270        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
 271                inode_dio_end(dio->inode);
 272
 273        if (is_async) {
 274                /*
 275                 * generic_write_sync expects ki_pos to have been updated
 276                 * already, but the submission path only does this for
 277                 * synchronous I/O.
 278                 */
 279                dio->iocb->ki_pos += transferred;
 280
 281                if (dio->op == REQ_OP_WRITE)
 282                        ret = generic_write_sync(dio->iocb,  transferred);
 283                dio->iocb->ki_complete(dio->iocb, ret, 0);
 284        }
 285
 286        kmem_cache_free(dio_cache, dio);
 287        return ret;
 288}
 289
 290static void dio_aio_complete_work(struct work_struct *work)
 291{
 292        struct dio *dio = container_of(work, struct dio, complete_work);
 293
 294        dio_complete(dio, 0, true);
 295}
 296
 297static int dio_bio_complete(struct dio *dio, struct bio *bio);
 298
 299/*
 300 * Asynchronous IO callback. 
 301 */
 302static void dio_bio_end_aio(struct bio *bio)
 303{
 304        struct dio *dio = bio->bi_private;
 305        unsigned long remaining;
 306        unsigned long flags;
 307
 308        /* cleanup the bio */
 309        dio_bio_complete(dio, bio);
 310
 311        spin_lock_irqsave(&dio->bio_lock, flags);
 312        remaining = --dio->refcount;
 313        if (remaining == 1 && dio->waiter)
 314                wake_up_process(dio->waiter);
 315        spin_unlock_irqrestore(&dio->bio_lock, flags);
 316
 317        if (remaining == 0) {
 318                if (dio->result && dio->defer_completion) {
 319                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 320                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 321                                   &dio->complete_work);
 322                } else {
 323                        dio_complete(dio, 0, true);
 324                }
 325        }
 326}
 327
 328/*
 329 * The BIO completion handler simply queues the BIO up for the process-context
 330 * handler.
 331 *
 332 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 333 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 334 */
 335static void dio_bio_end_io(struct bio *bio)
 336{
 337        struct dio *dio = bio->bi_private;
 338        unsigned long flags;
 339
 340        spin_lock_irqsave(&dio->bio_lock, flags);
 341        bio->bi_private = dio->bio_list;
 342        dio->bio_list = bio;
 343        if (--dio->refcount == 1 && dio->waiter)
 344                wake_up_process(dio->waiter);
 345        spin_unlock_irqrestore(&dio->bio_lock, flags);
 346}
 347
 348/**
 349 * dio_end_io - handle the end io action for the given bio
 350 * @bio: The direct io bio thats being completed
 351 * @error: Error if there was one
 352 *
 353 * This is meant to be called by any filesystem that uses their own dio_submit_t
 354 * so that the DIO specific endio actions are dealt with after the filesystem
 355 * has done it's completion work.
 356 */
 357void dio_end_io(struct bio *bio, int error)
 358{
 359        struct dio *dio = bio->bi_private;
 360
 361        if (dio->is_async)
 362                dio_bio_end_aio(bio);
 363        else
 364                dio_bio_end_io(bio);
 365}
 366EXPORT_SYMBOL_GPL(dio_end_io);
 367
 368static inline void
 369dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 370              struct block_device *bdev,
 371              sector_t first_sector, int nr_vecs)
 372{
 373        struct bio *bio;
 374
 375        /*
 376         * bio_alloc() is guaranteed to return a bio when called with
 377         * __GFP_RECLAIM and we request a valid number of vectors.
 378         */
 379        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 380
 381        bio->bi_bdev = bdev;
 382        bio->bi_iter.bi_sector = first_sector;
 383        bio_set_op_attrs(bio, dio->op, dio->op_flags);
 384        if (dio->is_async)
 385                bio->bi_end_io = dio_bio_end_aio;
 386        else
 387                bio->bi_end_io = dio_bio_end_io;
 388
 389        sdio->bio = bio;
 390        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 391}
 392
 393/*
 394 * In the AIO read case we speculatively dirty the pages before starting IO.
 395 * During IO completion, any of these pages which happen to have been written
 396 * back will be redirtied by bio_check_pages_dirty().
 397 *
 398 * bios hold a dio reference between submit_bio and ->end_io.
 399 */
 400static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 401{
 402        struct bio *bio = sdio->bio;
 403        unsigned long flags;
 404
 405        bio->bi_private = dio;
 406
 407        spin_lock_irqsave(&dio->bio_lock, flags);
 408        dio->refcount++;
 409        spin_unlock_irqrestore(&dio->bio_lock, flags);
 410
 411        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
 412                bio_set_pages_dirty(bio);
 413
 414        dio->bio_bdev = bio->bi_bdev;
 415
 416        if (sdio->submit_io) {
 417                sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
 418                dio->bio_cookie = BLK_QC_T_NONE;
 419        } else
 420                dio->bio_cookie = submit_bio(bio);
 421
 422        sdio->bio = NULL;
 423        sdio->boundary = 0;
 424        sdio->logical_offset_in_bio = 0;
 425}
 426
 427/*
 428 * Release any resources in case of a failure
 429 */
 430static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 431{
 432        while (sdio->head < sdio->tail)
 433                put_page(dio->pages[sdio->head++]);
 434}
 435
 436/*
 437 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 438 * returned once all BIOs have been completed.  This must only be called once
 439 * all bios have been issued so that dio->refcount can only decrease.  This
 440 * requires that that the caller hold a reference on the dio.
 441 */
 442static struct bio *dio_await_one(struct dio *dio)
 443{
 444        unsigned long flags;
 445        struct bio *bio = NULL;
 446
 447        spin_lock_irqsave(&dio->bio_lock, flags);
 448
 449        /*
 450         * Wait as long as the list is empty and there are bios in flight.  bio
 451         * completion drops the count, maybe adds to the list, and wakes while
 452         * holding the bio_lock so we don't need set_current_state()'s barrier
 453         * and can call it after testing our condition.
 454         */
 455        while (dio->refcount > 1 && dio->bio_list == NULL) {
 456                __set_current_state(TASK_UNINTERRUPTIBLE);
 457                dio->waiter = current;
 458                spin_unlock_irqrestore(&dio->bio_lock, flags);
 459                if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
 460                    !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
 461                        io_schedule();
 462                /* wake up sets us TASK_RUNNING */
 463                spin_lock_irqsave(&dio->bio_lock, flags);
 464                dio->waiter = NULL;
 465        }
 466        if (dio->bio_list) {
 467                bio = dio->bio_list;
 468                dio->bio_list = bio->bi_private;
 469        }
 470        spin_unlock_irqrestore(&dio->bio_lock, flags);
 471        return bio;
 472}
 473
 474/*
 475 * Process one completed BIO.  No locks are held.
 476 */
 477static int dio_bio_complete(struct dio *dio, struct bio *bio)
 478{
 479        struct bio_vec *bvec;
 480        unsigned i;
 481        int err;
 482
 483        if (bio->bi_error)
 484                dio->io_error = -EIO;
 485
 486        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
 487                err = bio->bi_error;
 488                bio_check_pages_dirty(bio);     /* transfers ownership */
 489        } else {
 490                bio_for_each_segment_all(bvec, bio, i) {
 491                        struct page *page = bvec->bv_page;
 492
 493                        if (dio->op == REQ_OP_READ && !PageCompound(page) &&
 494                                        dio->should_dirty)
 495                                set_page_dirty_lock(page);
 496                        put_page(page);
 497                }
 498                err = bio->bi_error;
 499                bio_put(bio);
 500        }
 501        return err;
 502}
 503
 504/*
 505 * Wait on and process all in-flight BIOs.  This must only be called once
 506 * all bios have been issued so that the refcount can only decrease.
 507 * This just waits for all bios to make it through dio_bio_complete.  IO
 508 * errors are propagated through dio->io_error and should be propagated via
 509 * dio_complete().
 510 */
 511static void dio_await_completion(struct dio *dio)
 512{
 513        struct bio *bio;
 514        do {
 515                bio = dio_await_one(dio);
 516                if (bio)
 517                        dio_bio_complete(dio, bio);
 518        } while (bio);
 519}
 520
 521/*
 522 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 523 * to keep the memory consumption sane we periodically reap any completed BIOs
 524 * during the BIO generation phase.
 525 *
 526 * This also helps to limit the peak amount of pinned userspace memory.
 527 */
 528static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 529{
 530        int ret = 0;
 531
 532        if (sdio->reap_counter++ >= 64) {
 533                while (dio->bio_list) {
 534                        unsigned long flags;
 535                        struct bio *bio;
 536                        int ret2;
 537
 538                        spin_lock_irqsave(&dio->bio_lock, flags);
 539                        bio = dio->bio_list;
 540                        dio->bio_list = bio->bi_private;
 541                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 542                        ret2 = dio_bio_complete(dio, bio);
 543                        if (ret == 0)
 544                                ret = ret2;
 545                }
 546                sdio->reap_counter = 0;
 547        }
 548        return ret;
 549}
 550
 551/*
 552 * Create workqueue for deferred direct IO completions. We allocate the
 553 * workqueue when it's first needed. This avoids creating workqueue for
 554 * filesystems that don't need it and also allows us to create the workqueue
 555 * late enough so the we can include s_id in the name of the workqueue.
 556 */
 557static int sb_init_dio_done_wq(struct super_block *sb)
 558{
 559        struct workqueue_struct *old;
 560        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 561                                                      WQ_MEM_RECLAIM, 0,
 562                                                      sb->s_id);
 563        if (!wq)
 564                return -ENOMEM;
 565        /*
 566         * This has to be atomic as more DIOs can race to create the workqueue
 567         */
 568        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 569        /* Someone created workqueue before us? Free ours... */
 570        if (old)
 571                destroy_workqueue(wq);
 572        return 0;
 573}
 574
 575static int dio_set_defer_completion(struct dio *dio)
 576{
 577        struct super_block *sb = dio->inode->i_sb;
 578
 579        if (dio->defer_completion)
 580                return 0;
 581        dio->defer_completion = true;
 582        if (!sb->s_dio_done_wq)
 583                return sb_init_dio_done_wq(sb);
 584        return 0;
 585}
 586
 587/*
 588 * Call into the fs to map some more disk blocks.  We record the current number
 589 * of available blocks at sdio->blocks_available.  These are in units of the
 590 * fs blocksize, (1 << inode->i_blkbits).
 591 *
 592 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 593 * it uses the passed inode-relative block number as the file offset, as usual.
 594 *
 595 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 596 * has remaining to do.  The fs should not map more than this number of blocks.
 597 *
 598 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 599 * indicate how much contiguous disk space has been made available at
 600 * bh->b_blocknr.
 601 *
 602 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 603 * This isn't very efficient...
 604 *
 605 * In the case of filesystem holes: the fs may return an arbitrarily-large
 606 * hole by returning an appropriate value in b_size and by clearing
 607 * buffer_mapped().  However the direct-io code will only process holes one
 608 * block at a time - it will repeatedly call get_block() as it walks the hole.
 609 */
 610static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 611                           struct buffer_head *map_bh)
 612{
 613        int ret;
 614        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 615        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 616        unsigned long fs_count; /* Number of filesystem-sized blocks */
 617        int create;
 618        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 619
 620        /*
 621         * If there was a memory error and we've overwritten all the
 622         * mapped blocks then we can now return that memory error
 623         */
 624        ret = dio->page_errors;
 625        if (ret == 0) {
 626                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 627                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 628                fs_endblk = (sdio->final_block_in_request - 1) >>
 629                                        sdio->blkfactor;
 630                fs_count = fs_endblk - fs_startblk + 1;
 631
 632                map_bh->b_state = 0;
 633                map_bh->b_size = fs_count << i_blkbits;
 634
 635                /*
 636                 * For writes that could fill holes inside i_size on a
 637                 * DIO_SKIP_HOLES filesystem we forbid block creations: only
 638                 * overwrites are permitted. We will return early to the caller
 639                 * once we see an unmapped buffer head returned, and the caller
 640                 * will fall back to buffered I/O.
 641                 *
 642                 * Otherwise the decision is left to the get_blocks method,
 643                 * which may decide to handle it or also return an unmapped
 644                 * buffer head.
 645                 */
 646                create = dio->op == REQ_OP_WRITE;
 647                if (dio->flags & DIO_SKIP_HOLES) {
 648                        if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
 649                                                        i_blkbits))
 650                                create = 0;
 651                }
 652
 653                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 654                                                map_bh, create);
 655
 656                /* Store for completion */
 657                dio->private = map_bh->b_private;
 658
 659                if (ret == 0 && buffer_defer_completion(map_bh))
 660                        ret = dio_set_defer_completion(dio);
 661        }
 662        return ret;
 663}
 664
 665/*
 666 * There is no bio.  Make one now.
 667 */
 668static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 669                sector_t start_sector, struct buffer_head *map_bh)
 670{
 671        sector_t sector;
 672        int ret, nr_pages;
 673
 674        ret = dio_bio_reap(dio, sdio);
 675        if (ret)
 676                goto out;
 677        sector = start_sector << (sdio->blkbits - 9);
 678        nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
 679        BUG_ON(nr_pages <= 0);
 680        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 681        sdio->boundary = 0;
 682out:
 683        return ret;
 684}
 685
 686/*
 687 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 688 * that was successful then update final_block_in_bio and take a ref against
 689 * the just-added page.
 690 *
 691 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 692 */
 693static inline int dio_bio_add_page(struct dio_submit *sdio)
 694{
 695        int ret;
 696
 697        ret = bio_add_page(sdio->bio, sdio->cur_page,
 698                        sdio->cur_page_len, sdio->cur_page_offset);
 699        if (ret == sdio->cur_page_len) {
 700                /*
 701                 * Decrement count only, if we are done with this page
 702                 */
 703                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 704                        sdio->pages_in_io--;
 705                get_page(sdio->cur_page);
 706                sdio->final_block_in_bio = sdio->cur_page_block +
 707                        (sdio->cur_page_len >> sdio->blkbits);
 708                ret = 0;
 709        } else {
 710                ret = 1;
 711        }
 712        return ret;
 713}
 714                
 715/*
 716 * Put cur_page under IO.  The section of cur_page which is described by
 717 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 718 * starts on-disk at cur_page_block.
 719 *
 720 * We take a ref against the page here (on behalf of its presence in the bio).
 721 *
 722 * The caller of this function is responsible for removing cur_page from the
 723 * dio, and for dropping the refcount which came from that presence.
 724 */
 725static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 726                struct buffer_head *map_bh)
 727{
 728        int ret = 0;
 729
 730        if (sdio->bio) {
 731                loff_t cur_offset = sdio->cur_page_fs_offset;
 732                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 733                        sdio->bio->bi_iter.bi_size;
 734
 735                /*
 736                 * See whether this new request is contiguous with the old.
 737                 *
 738                 * Btrfs cannot handle having logically non-contiguous requests
 739                 * submitted.  For example if you have
 740                 *
 741                 * Logical:  [0-4095][HOLE][8192-12287]
 742                 * Physical: [0-4095]      [4096-8191]
 743                 *
 744                 * We cannot submit those pages together as one BIO.  So if our
 745                 * current logical offset in the file does not equal what would
 746                 * be the next logical offset in the bio, submit the bio we
 747                 * have.
 748                 */
 749                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 750                    cur_offset != bio_next_offset)
 751                        dio_bio_submit(dio, sdio);
 752        }
 753
 754        if (sdio->bio == NULL) {
 755                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 756                if (ret)
 757                        goto out;
 758        }
 759
 760        if (dio_bio_add_page(sdio) != 0) {
 761                dio_bio_submit(dio, sdio);
 762                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 763                if (ret == 0) {
 764                        ret = dio_bio_add_page(sdio);
 765                        BUG_ON(ret != 0);
 766                }
 767        }
 768out:
 769        return ret;
 770}
 771
 772/*
 773 * An autonomous function to put a chunk of a page under deferred IO.
 774 *
 775 * The caller doesn't actually know (or care) whether this piece of page is in
 776 * a BIO, or is under IO or whatever.  We just take care of all possible 
 777 * situations here.  The separation between the logic of do_direct_IO() and
 778 * that of submit_page_section() is important for clarity.  Please don't break.
 779 *
 780 * The chunk of page starts on-disk at blocknr.
 781 *
 782 * We perform deferred IO, by recording the last-submitted page inside our
 783 * private part of the dio structure.  If possible, we just expand the IO
 784 * across that page here.
 785 *
 786 * If that doesn't work out then we put the old page into the bio and add this
 787 * page to the dio instead.
 788 */
 789static inline int
 790submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 791                    unsigned offset, unsigned len, sector_t blocknr,
 792                    struct buffer_head *map_bh)
 793{
 794        int ret = 0;
 795
 796        if (dio->op == REQ_OP_WRITE) {
 797                /*
 798                 * Read accounting is performed in submit_bio()
 799                 */
 800                task_io_account_write(len);
 801        }
 802
 803        /*
 804         * Can we just grow the current page's presence in the dio?
 805         */
 806        if (sdio->cur_page == page &&
 807            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 808            sdio->cur_page_block +
 809            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 810                sdio->cur_page_len += len;
 811                goto out;
 812        }
 813
 814        /*
 815         * If there's a deferred page already there then send it.
 816         */
 817        if (sdio->cur_page) {
 818                ret = dio_send_cur_page(dio, sdio, map_bh);
 819                put_page(sdio->cur_page);
 820                sdio->cur_page = NULL;
 821                if (ret)
 822                        return ret;
 823        }
 824
 825        get_page(page);         /* It is in dio */
 826        sdio->cur_page = page;
 827        sdio->cur_page_offset = offset;
 828        sdio->cur_page_len = len;
 829        sdio->cur_page_block = blocknr;
 830        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 831out:
 832        /*
 833         * If sdio->boundary then we want to schedule the IO now to
 834         * avoid metadata seeks.
 835         */
 836        if (sdio->boundary) {
 837                ret = dio_send_cur_page(dio, sdio, map_bh);
 838                dio_bio_submit(dio, sdio);
 839                put_page(sdio->cur_page);
 840                sdio->cur_page = NULL;
 841        }
 842        return ret;
 843}
 844
 845/*
 846 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 847 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 848 * buffer_new
 849 */
 850static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 851{
 852        unsigned i;
 853        unsigned nblocks;
 854
 855        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 856
 857        for (i = 0; i < nblocks; i++) {
 858                unmap_underlying_metadata(map_bh->b_bdev,
 859                                          map_bh->b_blocknr + i);
 860        }
 861}
 862
 863/*
 864 * If we are not writing the entire block and get_block() allocated
 865 * the block for us, we need to fill-in the unused portion of the
 866 * block with zeros. This happens only if user-buffer, fileoffset or
 867 * io length is not filesystem block-size multiple.
 868 *
 869 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 870 * IO.
 871 */
 872static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 873                int end, struct buffer_head *map_bh)
 874{
 875        unsigned dio_blocks_per_fs_block;
 876        unsigned this_chunk_blocks;     /* In dio_blocks */
 877        unsigned this_chunk_bytes;
 878        struct page *page;
 879
 880        sdio->start_zero_done = 1;
 881        if (!sdio->blkfactor || !buffer_new(map_bh))
 882                return;
 883
 884        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 885        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 886
 887        if (!this_chunk_blocks)
 888                return;
 889
 890        /*
 891         * We need to zero out part of an fs block.  It is either at the
 892         * beginning or the end of the fs block.
 893         */
 894        if (end) 
 895                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 896
 897        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 898
 899        page = ZERO_PAGE(0);
 900        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 901                                sdio->next_block_for_io, map_bh))
 902                return;
 903
 904        sdio->next_block_for_io += this_chunk_blocks;
 905}
 906
 907/*
 908 * Walk the user pages, and the file, mapping blocks to disk and generating
 909 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 910 * into submit_page_section(), which takes care of the next stage of submission
 911 *
 912 * Direct IO against a blockdev is different from a file.  Because we can
 913 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 914 * blockdev IO be able to have fine alignment and large sizes.
 915 *
 916 * So what we do is to permit the ->get_block function to populate bh.b_size
 917 * with the size of IO which is permitted at this offset and this i_blkbits.
 918 *
 919 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 920 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 921 * fine alignment but still allows this function to work in PAGE_SIZE units.
 922 */
 923static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 924                        struct buffer_head *map_bh)
 925{
 926        const unsigned blkbits = sdio->blkbits;
 927        int ret = 0;
 928
 929        while (sdio->block_in_file < sdio->final_block_in_request) {
 930                struct page *page;
 931                size_t from, to;
 932
 933                page = dio_get_page(dio, sdio);
 934                if (IS_ERR(page)) {
 935                        ret = PTR_ERR(page);
 936                        goto out;
 937                }
 938                from = sdio->head ? 0 : sdio->from;
 939                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 940                sdio->head++;
 941
 942                while (from < to) {
 943                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 944                        unsigned this_chunk_blocks;     /* # of blocks */
 945                        unsigned u;
 946
 947                        if (sdio->blocks_available == 0) {
 948                                /*
 949                                 * Need to go and map some more disk
 950                                 */
 951                                unsigned long blkmask;
 952                                unsigned long dio_remainder;
 953
 954                                ret = get_more_blocks(dio, sdio, map_bh);
 955                                if (ret) {
 956                                        put_page(page);
 957                                        goto out;
 958                                }
 959                                if (!buffer_mapped(map_bh))
 960                                        goto do_holes;
 961
 962                                sdio->blocks_available =
 963                                                map_bh->b_size >> sdio->blkbits;
 964                                sdio->next_block_for_io =
 965                                        map_bh->b_blocknr << sdio->blkfactor;
 966                                if (buffer_new(map_bh))
 967                                        clean_blockdev_aliases(dio, map_bh);
 968
 969                                if (!sdio->blkfactor)
 970                                        goto do_holes;
 971
 972                                blkmask = (1 << sdio->blkfactor) - 1;
 973                                dio_remainder = (sdio->block_in_file & blkmask);
 974
 975                                /*
 976                                 * If we are at the start of IO and that IO
 977                                 * starts partway into a fs-block,
 978                                 * dio_remainder will be non-zero.  If the IO
 979                                 * is a read then we can simply advance the IO
 980                                 * cursor to the first block which is to be
 981                                 * read.  But if the IO is a write and the
 982                                 * block was newly allocated we cannot do that;
 983                                 * the start of the fs block must be zeroed out
 984                                 * on-disk
 985                                 */
 986                                if (!buffer_new(map_bh))
 987                                        sdio->next_block_for_io += dio_remainder;
 988                                sdio->blocks_available -= dio_remainder;
 989                        }
 990do_holes:
 991                        /* Handle holes */
 992                        if (!buffer_mapped(map_bh)) {
 993                                loff_t i_size_aligned;
 994
 995                                /* AKPM: eargh, -ENOTBLK is a hack */
 996                                if (dio->op == REQ_OP_WRITE) {
 997                                        put_page(page);
 998                                        return -ENOTBLK;
 999                                }
1000
1001                                /*
1002                                 * Be sure to account for a partial block as the
1003                                 * last block in the file
1004                                 */
1005                                i_size_aligned = ALIGN(i_size_read(dio->inode),
1006                                                        1 << blkbits);
1007                                if (sdio->block_in_file >=
1008                                                i_size_aligned >> blkbits) {
1009                                        /* We hit eof */
1010                                        put_page(page);
1011                                        goto out;
1012                                }
1013                                zero_user(page, from, 1 << blkbits);
1014                                sdio->block_in_file++;
1015                                from += 1 << blkbits;
1016                                dio->result += 1 << blkbits;
1017                                goto next_block;
1018                        }
1019
1020                        /*
1021                         * If we're performing IO which has an alignment which
1022                         * is finer than the underlying fs, go check to see if
1023                         * we must zero out the start of this block.
1024                         */
1025                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1026                                dio_zero_block(dio, sdio, 0, map_bh);
1027
1028                        /*
1029                         * Work out, in this_chunk_blocks, how much disk we
1030                         * can add to this page
1031                         */
1032                        this_chunk_blocks = sdio->blocks_available;
1033                        u = (to - from) >> blkbits;
1034                        if (this_chunk_blocks > u)
1035                                this_chunk_blocks = u;
1036                        u = sdio->final_block_in_request - sdio->block_in_file;
1037                        if (this_chunk_blocks > u)
1038                                this_chunk_blocks = u;
1039                        this_chunk_bytes = this_chunk_blocks << blkbits;
1040                        BUG_ON(this_chunk_bytes == 0);
1041
1042                        if (this_chunk_blocks == sdio->blocks_available)
1043                                sdio->boundary = buffer_boundary(map_bh);
1044                        ret = submit_page_section(dio, sdio, page,
1045                                                  from,
1046                                                  this_chunk_bytes,
1047                                                  sdio->next_block_for_io,
1048                                                  map_bh);
1049                        if (ret) {
1050                                put_page(page);
1051                                goto out;
1052                        }
1053                        sdio->next_block_for_io += this_chunk_blocks;
1054
1055                        sdio->block_in_file += this_chunk_blocks;
1056                        from += this_chunk_bytes;
1057                        dio->result += this_chunk_bytes;
1058                        sdio->blocks_available -= this_chunk_blocks;
1059next_block:
1060                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1061                        if (sdio->block_in_file == sdio->final_block_in_request)
1062                                break;
1063                }
1064
1065                /* Drop the ref which was taken in get_user_pages() */
1066                put_page(page);
1067        }
1068out:
1069        return ret;
1070}
1071
1072static inline int drop_refcount(struct dio *dio)
1073{
1074        int ret2;
1075        unsigned long flags;
1076
1077        /*
1078         * Sync will always be dropping the final ref and completing the
1079         * operation.  AIO can if it was a broken operation described above or
1080         * in fact if all the bios race to complete before we get here.  In
1081         * that case dio_complete() translates the EIOCBQUEUED into the proper
1082         * return code that the caller will hand to ->complete().
1083         *
1084         * This is managed by the bio_lock instead of being an atomic_t so that
1085         * completion paths can drop their ref and use the remaining count to
1086         * decide to wake the submission path atomically.
1087         */
1088        spin_lock_irqsave(&dio->bio_lock, flags);
1089        ret2 = --dio->refcount;
1090        spin_unlock_irqrestore(&dio->bio_lock, flags);
1091        return ret2;
1092}
1093
1094/*
1095 * This is a library function for use by filesystem drivers.
1096 *
1097 * The locking rules are governed by the flags parameter:
1098 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1099 *    scheme for dumb filesystems.
1100 *    For writes this function is called under i_mutex and returns with
1101 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1102 *    taken and dropped again before returning.
1103 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1104 *    internal locking but rather rely on the filesystem to synchronize
1105 *    direct I/O reads/writes versus each other and truncate.
1106 *
1107 * To help with locking against truncate we incremented the i_dio_count
1108 * counter before starting direct I/O, and decrement it once we are done.
1109 * Truncate can wait for it to reach zero to provide exclusion.  It is
1110 * expected that filesystem provide exclusion between new direct I/O
1111 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1112 * but other filesystems need to take care of this on their own.
1113 *
1114 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1115 * is always inlined. Otherwise gcc is unable to split the structure into
1116 * individual fields and will generate much worse code. This is important
1117 * for the whole file.
1118 */
1119static inline ssize_t
1120do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1121                      struct block_device *bdev, struct iov_iter *iter,
1122                      get_block_t get_block, dio_iodone_t end_io,
1123                      dio_submit_t submit_io, int flags)
1124{
1125        unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1126        unsigned blkbits = i_blkbits;
1127        unsigned blocksize_mask = (1 << blkbits) - 1;
1128        ssize_t retval = -EINVAL;
1129        size_t count = iov_iter_count(iter);
1130        loff_t offset = iocb->ki_pos;
1131        loff_t end = offset + count;
1132        struct dio *dio;
1133        struct dio_submit sdio = { 0, };
1134        struct buffer_head map_bh = { 0, };
1135        struct blk_plug plug;
1136        unsigned long align = offset | iov_iter_alignment(iter);
1137
1138        /*
1139         * Avoid references to bdev if not absolutely needed to give
1140         * the early prefetch in the caller enough time.
1141         */
1142
1143        if (align & blocksize_mask) {
1144                if (bdev)
1145                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1146                blocksize_mask = (1 << blkbits) - 1;
1147                if (align & blocksize_mask)
1148                        goto out;
1149        }
1150
1151        /* watch out for a 0 len io from a tricksy fs */
1152        if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1153                return 0;
1154
1155        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1156        retval = -ENOMEM;
1157        if (!dio)
1158                goto out;
1159        /*
1160         * Believe it or not, zeroing out the page array caused a .5%
1161         * performance regression in a database benchmark.  So, we take
1162         * care to only zero out what's needed.
1163         */
1164        memset(dio, 0, offsetof(struct dio, pages));
1165
1166        dio->flags = flags;
1167        if (dio->flags & DIO_LOCKING) {
1168                if (iov_iter_rw(iter) == READ) {
1169                        struct address_space *mapping =
1170                                        iocb->ki_filp->f_mapping;
1171
1172                        /* will be released by direct_io_worker */
1173                        inode_lock(inode);
1174
1175                        retval = filemap_write_and_wait_range(mapping, offset,
1176                                                              end - 1);
1177                        if (retval) {
1178                                inode_unlock(inode);
1179                                kmem_cache_free(dio_cache, dio);
1180                                goto out;
1181                        }
1182                }
1183        }
1184
1185        /* Once we sampled i_size check for reads beyond EOF */
1186        dio->i_size = i_size_read(inode);
1187        if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1188                if (dio->flags & DIO_LOCKING)
1189                        inode_unlock(inode);
1190                kmem_cache_free(dio_cache, dio);
1191                retval = 0;
1192                goto out;
1193        }
1194
1195        /*
1196         * For file extending writes updating i_size before data writeouts
1197         * complete can expose uninitialized blocks in dumb filesystems.
1198         * In that case we need to wait for I/O completion even if asked
1199         * for an asynchronous write.
1200         */
1201        if (is_sync_kiocb(iocb))
1202                dio->is_async = false;
1203        else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1204                 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1205                dio->is_async = false;
1206        else
1207                dio->is_async = true;
1208
1209        dio->inode = inode;
1210        if (iov_iter_rw(iter) == WRITE) {
1211                dio->op = REQ_OP_WRITE;
1212                dio->op_flags = WRITE_ODIRECT;
1213        } else {
1214                dio->op = REQ_OP_READ;
1215        }
1216
1217        /*
1218         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1219         * so that we can call ->fsync.
1220         */
1221        if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1222            ((iocb->ki_filp->f_flags & O_DSYNC) ||
1223             IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1224                retval = dio_set_defer_completion(dio);
1225                if (retval) {
1226                        /*
1227                         * We grab i_mutex only for reads so we don't have
1228                         * to release it here
1229                         */
1230                        kmem_cache_free(dio_cache, dio);
1231                        goto out;
1232                }
1233        }
1234
1235        /*
1236         * Will be decremented at I/O completion time.
1237         */
1238        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1239                inode_dio_begin(inode);
1240
1241        retval = 0;
1242        sdio.blkbits = blkbits;
1243        sdio.blkfactor = i_blkbits - blkbits;
1244        sdio.block_in_file = offset >> blkbits;
1245
1246        sdio.get_block = get_block;
1247        dio->end_io = end_io;
1248        sdio.submit_io = submit_io;
1249        sdio.final_block_in_bio = -1;
1250        sdio.next_block_for_io = -1;
1251
1252        dio->iocb = iocb;
1253
1254        spin_lock_init(&dio->bio_lock);
1255        dio->refcount = 1;
1256
1257        dio->should_dirty = (iter->type == ITER_IOVEC);
1258        sdio.iter = iter;
1259        sdio.final_block_in_request =
1260                (offset + iov_iter_count(iter)) >> blkbits;
1261
1262        /*
1263         * In case of non-aligned buffers, we may need 2 more
1264         * pages since we need to zero out first and last block.
1265         */
1266        if (unlikely(sdio.blkfactor))
1267                sdio.pages_in_io = 2;
1268
1269        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1270
1271        blk_start_plug(&plug);
1272
1273        retval = do_direct_IO(dio, &sdio, &map_bh);
1274        if (retval)
1275                dio_cleanup(dio, &sdio);
1276
1277        if (retval == -ENOTBLK) {
1278                /*
1279                 * The remaining part of the request will be
1280                 * be handled by buffered I/O when we return
1281                 */
1282                retval = 0;
1283        }
1284        /*
1285         * There may be some unwritten disk at the end of a part-written
1286         * fs-block-sized block.  Go zero that now.
1287         */
1288        dio_zero_block(dio, &sdio, 1, &map_bh);
1289
1290        if (sdio.cur_page) {
1291                ssize_t ret2;
1292
1293                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1294                if (retval == 0)
1295                        retval = ret2;
1296                put_page(sdio.cur_page);
1297                sdio.cur_page = NULL;
1298        }
1299        if (sdio.bio)
1300                dio_bio_submit(dio, &sdio);
1301
1302        blk_finish_plug(&plug);
1303
1304        /*
1305         * It is possible that, we return short IO due to end of file.
1306         * In that case, we need to release all the pages we got hold on.
1307         */
1308        dio_cleanup(dio, &sdio);
1309
1310        /*
1311         * All block lookups have been performed. For READ requests
1312         * we can let i_mutex go now that its achieved its purpose
1313         * of protecting us from looking up uninitialized blocks.
1314         */
1315        if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1316                inode_unlock(dio->inode);
1317
1318        /*
1319         * The only time we want to leave bios in flight is when a successful
1320         * partial aio read or full aio write have been setup.  In that case
1321         * bio completion will call aio_complete.  The only time it's safe to
1322         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1323         * This had *better* be the only place that raises -EIOCBQUEUED.
1324         */
1325        BUG_ON(retval == -EIOCBQUEUED);
1326        if (dio->is_async && retval == 0 && dio->result &&
1327            (iov_iter_rw(iter) == READ || dio->result == count))
1328                retval = -EIOCBQUEUED;
1329        else
1330                dio_await_completion(dio);
1331
1332        if (drop_refcount(dio) == 0) {
1333                retval = dio_complete(dio, retval, false);
1334        } else
1335                BUG_ON(retval != -EIOCBQUEUED);
1336
1337out:
1338        return retval;
1339}
1340
1341ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1342                             struct block_device *bdev, struct iov_iter *iter,
1343                             get_block_t get_block,
1344                             dio_iodone_t end_io, dio_submit_t submit_io,
1345                             int flags)
1346{
1347        /*
1348         * The block device state is needed in the end to finally
1349         * submit everything.  Since it's likely to be cache cold
1350         * prefetch it here as first thing to hide some of the
1351         * latency.
1352         *
1353         * Attempt to prefetch the pieces we likely need later.
1354         */
1355        prefetch(&bdev->bd_disk->part_tbl);
1356        prefetch(bdev->bd_queue);
1357        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1358
1359        return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1360                                     end_io, submit_io, flags);
1361}
1362
1363EXPORT_SYMBOL(__blockdev_direct_IO);
1364
1365static __init int dio_init(void)
1366{
1367        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1368        return 0;
1369}
1370module_init(dio_init)
1371