linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *              Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
  26#include <crypto/hash.h>
  27#include <crypto/skcipher.h>
  28#include <linux/fs.h>
  29#include <linux/mount.h>
  30#include <linux/pagemap.h>
  31#include <linux/random.h>
  32#include <linux/compiler.h>
  33#include <linux/key.h>
  34#include <linux/namei.h>
  35#include <linux/file.h>
  36#include <linux/scatterlist.h>
  37#include <linux/slab.h>
  38#include <asm/unaligned.h>
  39#include "ecryptfs_kernel.h"
  40
  41#define DECRYPT         0
  42#define ENCRYPT         1
  43
  44/**
  45 * ecryptfs_to_hex
  46 * @dst: Buffer to take hex character representation of contents of
  47 *       src; must be at least of size (src_size * 2)
  48 * @src: Buffer to be converted to a hex string representation
  49 * @src_size: number of bytes to convert
  50 */
  51void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  52{
  53        int x;
  54
  55        for (x = 0; x < src_size; x++)
  56                sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  57}
  58
  59/**
  60 * ecryptfs_from_hex
  61 * @dst: Buffer to take the bytes from src hex; must be at least of
  62 *       size (src_size / 2)
  63 * @src: Buffer to be converted from a hex string representation to raw value
  64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  65 */
  66void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  67{
  68        int x;
  69        char tmp[3] = { 0, };
  70
  71        for (x = 0; x < dst_size; x++) {
  72                tmp[0] = src[x * 2];
  73                tmp[1] = src[x * 2 + 1];
  74                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  75        }
  76}
  77
  78static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  79                                char *src, int len, char *dst)
  80{
  81        SHASH_DESC_ON_STACK(desc, tfm);
  82        int err;
  83
  84        desc->tfm = tfm;
  85        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  86        err = crypto_shash_digest(desc, src, len, dst);
  87        shash_desc_zero(desc);
  88        return err;
  89}
  90
  91/**
  92 * ecryptfs_calculate_md5 - calculates the md5 of @src
  93 * @dst: Pointer to 16 bytes of allocated memory
  94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  95 * @src: Data to be md5'd
  96 * @len: Length of @src
  97 *
  98 * Uses the allocated crypto context that crypt_stat references to
  99 * generate the MD5 sum of the contents of src.
 100 */
 101static int ecryptfs_calculate_md5(char *dst,
 102                                  struct ecryptfs_crypt_stat *crypt_stat,
 103                                  char *src, int len)
 104{
 105        struct crypto_shash *tfm;
 106        int rc = 0;
 107
 108        tfm = crypt_stat->hash_tfm;
 109        rc = ecryptfs_hash_digest(tfm, src, len, dst);
 110        if (rc) {
 111                printk(KERN_ERR
 112                       "%s: Error computing crypto hash; rc = [%d]\n",
 113                       __func__, rc);
 114                goto out;
 115        }
 116out:
 117        return rc;
 118}
 119
 120static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 121                                                  char *cipher_name,
 122                                                  char *chaining_modifier)
 123{
 124        int cipher_name_len = strlen(cipher_name);
 125        int chaining_modifier_len = strlen(chaining_modifier);
 126        int algified_name_len;
 127        int rc;
 128
 129        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 130        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 131        if (!(*algified_name)) {
 132                rc = -ENOMEM;
 133                goto out;
 134        }
 135        snprintf((*algified_name), algified_name_len, "%s(%s)",
 136                 chaining_modifier, cipher_name);
 137        rc = 0;
 138out:
 139        return rc;
 140}
 141
 142/**
 143 * ecryptfs_derive_iv
 144 * @iv: destination for the derived iv vale
 145 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 146 * @offset: Offset of the extent whose IV we are to derive
 147 *
 148 * Generate the initialization vector from the given root IV and page
 149 * offset.
 150 *
 151 * Returns zero on success; non-zero on error.
 152 */
 153int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 154                       loff_t offset)
 155{
 156        int rc = 0;
 157        char dst[MD5_DIGEST_SIZE];
 158        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 159
 160        if (unlikely(ecryptfs_verbosity > 0)) {
 161                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 162                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 163        }
 164        /* TODO: It is probably secure to just cast the least
 165         * significant bits of the root IV into an unsigned long and
 166         * add the offset to that rather than go through all this
 167         * hashing business. -Halcrow */
 168        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 169        memset((src + crypt_stat->iv_bytes), 0, 16);
 170        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 171        if (unlikely(ecryptfs_verbosity > 0)) {
 172                ecryptfs_printk(KERN_DEBUG, "source:\n");
 173                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 174        }
 175        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 176                                    (crypt_stat->iv_bytes + 16));
 177        if (rc) {
 178                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 179                                "MD5 while generating IV for a page\n");
 180                goto out;
 181        }
 182        memcpy(iv, dst, crypt_stat->iv_bytes);
 183        if (unlikely(ecryptfs_verbosity > 0)) {
 184                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 185                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 186        }
 187out:
 188        return rc;
 189}
 190
 191/**
 192 * ecryptfs_init_crypt_stat
 193 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 194 *
 195 * Initialize the crypt_stat structure.
 196 */
 197int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 198{
 199        struct crypto_shash *tfm;
 200        int rc;
 201
 202        tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 203        if (IS_ERR(tfm)) {
 204                rc = PTR_ERR(tfm);
 205                ecryptfs_printk(KERN_ERR, "Error attempting to "
 206                                "allocate crypto context; rc = [%d]\n",
 207                                rc);
 208                return rc;
 209        }
 210
 211        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 212        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 213        mutex_init(&crypt_stat->keysig_list_mutex);
 214        mutex_init(&crypt_stat->cs_mutex);
 215        mutex_init(&crypt_stat->cs_tfm_mutex);
 216        crypt_stat->hash_tfm = tfm;
 217        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 218
 219        return 0;
 220}
 221
 222/**
 223 * ecryptfs_destroy_crypt_stat
 224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 225 *
 226 * Releases all memory associated with a crypt_stat struct.
 227 */
 228void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 229{
 230        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 231
 232        crypto_free_skcipher(crypt_stat->tfm);
 233        crypto_free_shash(crypt_stat->hash_tfm);
 234        list_for_each_entry_safe(key_sig, key_sig_tmp,
 235                                 &crypt_stat->keysig_list, crypt_stat_list) {
 236                list_del(&key_sig->crypt_stat_list);
 237                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 238        }
 239        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 240}
 241
 242void ecryptfs_destroy_mount_crypt_stat(
 243        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 244{
 245        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 246
 247        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 248                return;
 249        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 250        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 251                                 &mount_crypt_stat->global_auth_tok_list,
 252                                 mount_crypt_stat_list) {
 253                list_del(&auth_tok->mount_crypt_stat_list);
 254                if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 255                        key_put(auth_tok->global_auth_tok_key);
 256                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 257        }
 258        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 259        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 260}
 261
 262/**
 263 * virt_to_scatterlist
 264 * @addr: Virtual address
 265 * @size: Size of data; should be an even multiple of the block size
 266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 267 *      the number of scatterlist structs required in array
 268 * @sg_size: Max array size
 269 *
 270 * Fills in a scatterlist array with page references for a passed
 271 * virtual address.
 272 *
 273 * Returns the number of scatterlist structs in array used
 274 */
 275int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 276                        int sg_size)
 277{
 278        int i = 0;
 279        struct page *pg;
 280        int offset;
 281        int remainder_of_page;
 282
 283        sg_init_table(sg, sg_size);
 284
 285        while (size > 0 && i < sg_size) {
 286                pg = virt_to_page(addr);
 287                offset = offset_in_page(addr);
 288                sg_set_page(&sg[i], pg, 0, offset);
 289                remainder_of_page = PAGE_SIZE - offset;
 290                if (size >= remainder_of_page) {
 291                        sg[i].length = remainder_of_page;
 292                        addr += remainder_of_page;
 293                        size -= remainder_of_page;
 294                } else {
 295                        sg[i].length = size;
 296                        addr += size;
 297                        size = 0;
 298                }
 299                i++;
 300        }
 301        if (size > 0)
 302                return -ENOMEM;
 303        return i;
 304}
 305
 306struct extent_crypt_result {
 307        struct completion completion;
 308        int rc;
 309};
 310
 311static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 312{
 313        struct extent_crypt_result *ecr = req->data;
 314
 315        if (rc == -EINPROGRESS)
 316                return;
 317
 318        ecr->rc = rc;
 319        complete(&ecr->completion);
 320}
 321
 322/**
 323 * crypt_scatterlist
 324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 325 * @dst_sg: Destination of the data after performing the crypto operation
 326 * @src_sg: Data to be encrypted or decrypted
 327 * @size: Length of data
 328 * @iv: IV to use
 329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 330 *
 331 * Returns the number of bytes encrypted or decrypted; negative value on error
 332 */
 333static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 334                             struct scatterlist *dst_sg,
 335                             struct scatterlist *src_sg, int size,
 336                             unsigned char *iv, int op)
 337{
 338        struct skcipher_request *req = NULL;
 339        struct extent_crypt_result ecr;
 340        int rc = 0;
 341
 342        BUG_ON(!crypt_stat || !crypt_stat->tfm
 343               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 344        if (unlikely(ecryptfs_verbosity > 0)) {
 345                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 346                                crypt_stat->key_size);
 347                ecryptfs_dump_hex(crypt_stat->key,
 348                                  crypt_stat->key_size);
 349        }
 350
 351        init_completion(&ecr.completion);
 352
 353        mutex_lock(&crypt_stat->cs_tfm_mutex);
 354        req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 355        if (!req) {
 356                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 357                rc = -ENOMEM;
 358                goto out;
 359        }
 360
 361        skcipher_request_set_callback(req,
 362                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 363                        extent_crypt_complete, &ecr);
 364        /* Consider doing this once, when the file is opened */
 365        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 366                rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 367                                            crypt_stat->key_size);
 368                if (rc) {
 369                        ecryptfs_printk(KERN_ERR,
 370                                        "Error setting key; rc = [%d]\n",
 371                                        rc);
 372                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 373                        rc = -EINVAL;
 374                        goto out;
 375                }
 376                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 377        }
 378        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 379        skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 380        rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 381                             crypto_skcipher_decrypt(req);
 382        if (rc == -EINPROGRESS || rc == -EBUSY) {
 383                struct extent_crypt_result *ecr = req->base.data;
 384
 385                wait_for_completion(&ecr->completion);
 386                rc = ecr->rc;
 387                reinit_completion(&ecr->completion);
 388        }
 389out:
 390        skcipher_request_free(req);
 391        return rc;
 392}
 393
 394/**
 395 * lower_offset_for_page
 396 *
 397 * Convert an eCryptfs page index into a lower byte offset
 398 */
 399static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 400                                    struct page *page)
 401{
 402        return ecryptfs_lower_header_size(crypt_stat) +
 403               ((loff_t)page->index << PAGE_SHIFT);
 404}
 405
 406/**
 407 * crypt_extent
 408 * @crypt_stat: crypt_stat containing cryptographic context for the
 409 *              encryption operation
 410 * @dst_page: The page to write the result into
 411 * @src_page: The page to read from
 412 * @extent_offset: Page extent offset for use in generating IV
 413 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 414 *
 415 * Encrypts or decrypts one extent of data.
 416 *
 417 * Return zero on success; non-zero otherwise
 418 */
 419static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 420                        struct page *dst_page,
 421                        struct page *src_page,
 422                        unsigned long extent_offset, int op)
 423{
 424        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 425        loff_t extent_base;
 426        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 427        struct scatterlist src_sg, dst_sg;
 428        size_t extent_size = crypt_stat->extent_size;
 429        int rc;
 430
 431        extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 432        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 433                                (extent_base + extent_offset));
 434        if (rc) {
 435                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 436                        "extent [0x%.16llx]; rc = [%d]\n",
 437                        (unsigned long long)(extent_base + extent_offset), rc);
 438                goto out;
 439        }
 440
 441        sg_init_table(&src_sg, 1);
 442        sg_init_table(&dst_sg, 1);
 443
 444        sg_set_page(&src_sg, src_page, extent_size,
 445                    extent_offset * extent_size);
 446        sg_set_page(&dst_sg, dst_page, extent_size,
 447                    extent_offset * extent_size);
 448
 449        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 450                               extent_iv, op);
 451        if (rc < 0) {
 452                printk(KERN_ERR "%s: Error attempting to crypt page with "
 453                       "page_index = [%ld], extent_offset = [%ld]; "
 454                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 455                goto out;
 456        }
 457        rc = 0;
 458out:
 459        return rc;
 460}
 461
 462/**
 463 * ecryptfs_encrypt_page
 464 * @page: Page mapped from the eCryptfs inode for the file; contains
 465 *        decrypted content that needs to be encrypted (to a temporary
 466 *        page; not in place) and written out to the lower file
 467 *
 468 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 469 * that eCryptfs pages may straddle the lower pages -- for instance,
 470 * if the file was created on a machine with an 8K page size
 471 * (resulting in an 8K header), and then the file is copied onto a
 472 * host with a 32K page size, then when reading page 0 of the eCryptfs
 473 * file, 24K of page 0 of the lower file will be read and decrypted,
 474 * and then 8K of page 1 of the lower file will be read and decrypted.
 475 *
 476 * Returns zero on success; negative on error
 477 */
 478int ecryptfs_encrypt_page(struct page *page)
 479{
 480        struct inode *ecryptfs_inode;
 481        struct ecryptfs_crypt_stat *crypt_stat;
 482        char *enc_extent_virt;
 483        struct page *enc_extent_page = NULL;
 484        loff_t extent_offset;
 485        loff_t lower_offset;
 486        int rc = 0;
 487
 488        ecryptfs_inode = page->mapping->host;
 489        crypt_stat =
 490                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 491        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 492        enc_extent_page = alloc_page(GFP_USER);
 493        if (!enc_extent_page) {
 494                rc = -ENOMEM;
 495                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 496                                "encrypted extent\n");
 497                goto out;
 498        }
 499
 500        for (extent_offset = 0;
 501             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 502             extent_offset++) {
 503                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 504                                  extent_offset, ENCRYPT);
 505                if (rc) {
 506                        printk(KERN_ERR "%s: Error encrypting extent; "
 507                               "rc = [%d]\n", __func__, rc);
 508                        goto out;
 509                }
 510        }
 511
 512        lower_offset = lower_offset_for_page(crypt_stat, page);
 513        enc_extent_virt = kmap(enc_extent_page);
 514        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 515                                  PAGE_SIZE);
 516        kunmap(enc_extent_page);
 517        if (rc < 0) {
 518                ecryptfs_printk(KERN_ERR,
 519                        "Error attempting to write lower page; rc = [%d]\n",
 520                        rc);
 521                goto out;
 522        }
 523        rc = 0;
 524out:
 525        if (enc_extent_page) {
 526                __free_page(enc_extent_page);
 527        }
 528        return rc;
 529}
 530
 531/**
 532 * ecryptfs_decrypt_page
 533 * @page: Page mapped from the eCryptfs inode for the file; data read
 534 *        and decrypted from the lower file will be written into this
 535 *        page
 536 *
 537 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 538 * that eCryptfs pages may straddle the lower pages -- for instance,
 539 * if the file was created on a machine with an 8K page size
 540 * (resulting in an 8K header), and then the file is copied onto a
 541 * host with a 32K page size, then when reading page 0 of the eCryptfs
 542 * file, 24K of page 0 of the lower file will be read and decrypted,
 543 * and then 8K of page 1 of the lower file will be read and decrypted.
 544 *
 545 * Returns zero on success; negative on error
 546 */
 547int ecryptfs_decrypt_page(struct page *page)
 548{
 549        struct inode *ecryptfs_inode;
 550        struct ecryptfs_crypt_stat *crypt_stat;
 551        char *page_virt;
 552        unsigned long extent_offset;
 553        loff_t lower_offset;
 554        int rc = 0;
 555
 556        ecryptfs_inode = page->mapping->host;
 557        crypt_stat =
 558                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 559        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 560
 561        lower_offset = lower_offset_for_page(crypt_stat, page);
 562        page_virt = kmap(page);
 563        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 564                                 ecryptfs_inode);
 565        kunmap(page);
 566        if (rc < 0) {
 567                ecryptfs_printk(KERN_ERR,
 568                        "Error attempting to read lower page; rc = [%d]\n",
 569                        rc);
 570                goto out;
 571        }
 572
 573        for (extent_offset = 0;
 574             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 575             extent_offset++) {
 576                rc = crypt_extent(crypt_stat, page, page,
 577                                  extent_offset, DECRYPT);
 578                if (rc) {
 579                        printk(KERN_ERR "%s: Error encrypting extent; "
 580                               "rc = [%d]\n", __func__, rc);
 581                        goto out;
 582                }
 583        }
 584out:
 585        return rc;
 586}
 587
 588#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 589
 590/**
 591 * ecryptfs_init_crypt_ctx
 592 * @crypt_stat: Uninitialized crypt stats structure
 593 *
 594 * Initialize the crypto context.
 595 *
 596 * TODO: Performance: Keep a cache of initialized cipher contexts;
 597 * only init if needed
 598 */
 599int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 600{
 601        char *full_alg_name;
 602        int rc = -EINVAL;
 603
 604        ecryptfs_printk(KERN_DEBUG,
 605                        "Initializing cipher [%s]; strlen = [%d]; "
 606                        "key_size_bits = [%zd]\n",
 607                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 608                        crypt_stat->key_size << 3);
 609        mutex_lock(&crypt_stat->cs_tfm_mutex);
 610        if (crypt_stat->tfm) {
 611                rc = 0;
 612                goto out_unlock;
 613        }
 614        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 615                                                    crypt_stat->cipher, "cbc");
 616        if (rc)
 617                goto out_unlock;
 618        crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 619        if (IS_ERR(crypt_stat->tfm)) {
 620                rc = PTR_ERR(crypt_stat->tfm);
 621                crypt_stat->tfm = NULL;
 622                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 623                                "Error initializing cipher [%s]\n",
 624                                full_alg_name);
 625                goto out_free;
 626        }
 627        crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 628        rc = 0;
 629out_free:
 630        kfree(full_alg_name);
 631out_unlock:
 632        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 633        return rc;
 634}
 635
 636static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 637{
 638        int extent_size_tmp;
 639
 640        crypt_stat->extent_mask = 0xFFFFFFFF;
 641        crypt_stat->extent_shift = 0;
 642        if (crypt_stat->extent_size == 0)
 643                return;
 644        extent_size_tmp = crypt_stat->extent_size;
 645        while ((extent_size_tmp & 0x01) == 0) {
 646                extent_size_tmp >>= 1;
 647                crypt_stat->extent_mask <<= 1;
 648                crypt_stat->extent_shift++;
 649        }
 650}
 651
 652void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 653{
 654        /* Default values; may be overwritten as we are parsing the
 655         * packets. */
 656        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 657        set_extent_mask_and_shift(crypt_stat);
 658        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 659        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 660                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 661        else {
 662                if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 663                        crypt_stat->metadata_size =
 664                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 665                else
 666                        crypt_stat->metadata_size = PAGE_SIZE;
 667        }
 668}
 669
 670/**
 671 * ecryptfs_compute_root_iv
 672 * @crypt_stats
 673 *
 674 * On error, sets the root IV to all 0's.
 675 */
 676int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 677{
 678        int rc = 0;
 679        char dst[MD5_DIGEST_SIZE];
 680
 681        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 682        BUG_ON(crypt_stat->iv_bytes <= 0);
 683        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 684                rc = -EINVAL;
 685                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 686                                "cannot generate root IV\n");
 687                goto out;
 688        }
 689        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 690                                    crypt_stat->key_size);
 691        if (rc) {
 692                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 693                                "MD5 while generating root IV\n");
 694                goto out;
 695        }
 696        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 697out:
 698        if (rc) {
 699                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 700                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 701        }
 702        return rc;
 703}
 704
 705static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 706{
 707        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 708        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 709        ecryptfs_compute_root_iv(crypt_stat);
 710        if (unlikely(ecryptfs_verbosity > 0)) {
 711                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 712                ecryptfs_dump_hex(crypt_stat->key,
 713                                  crypt_stat->key_size);
 714        }
 715}
 716
 717/**
 718 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 719 * @crypt_stat: The inode's cryptographic context
 720 * @mount_crypt_stat: The mount point's cryptographic context
 721 *
 722 * This function propagates the mount-wide flags to individual inode
 723 * flags.
 724 */
 725static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 726        struct ecryptfs_crypt_stat *crypt_stat,
 727        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 728{
 729        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 730                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 731        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 732                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 733        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 734                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 735                if (mount_crypt_stat->flags
 736                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 737                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 738                else if (mount_crypt_stat->flags
 739                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 740                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 741        }
 742}
 743
 744static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 745        struct ecryptfs_crypt_stat *crypt_stat,
 746        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 747{
 748        struct ecryptfs_global_auth_tok *global_auth_tok;
 749        int rc = 0;
 750
 751        mutex_lock(&crypt_stat->keysig_list_mutex);
 752        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 753
 754        list_for_each_entry(global_auth_tok,
 755                            &mount_crypt_stat->global_auth_tok_list,
 756                            mount_crypt_stat_list) {
 757                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 758                        continue;
 759                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 760                if (rc) {
 761                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 762                        goto out;
 763                }
 764        }
 765
 766out:
 767        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 768        mutex_unlock(&crypt_stat->keysig_list_mutex);
 769        return rc;
 770}
 771
 772/**
 773 * ecryptfs_set_default_crypt_stat_vals
 774 * @crypt_stat: The inode's cryptographic context
 775 * @mount_crypt_stat: The mount point's cryptographic context
 776 *
 777 * Default values in the event that policy does not override them.
 778 */
 779static void ecryptfs_set_default_crypt_stat_vals(
 780        struct ecryptfs_crypt_stat *crypt_stat,
 781        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 782{
 783        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 784                                                      mount_crypt_stat);
 785        ecryptfs_set_default_sizes(crypt_stat);
 786        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 787        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 788        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 789        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 790        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 791}
 792
 793/**
 794 * ecryptfs_new_file_context
 795 * @ecryptfs_inode: The eCryptfs inode
 796 *
 797 * If the crypto context for the file has not yet been established,
 798 * this is where we do that.  Establishing a new crypto context
 799 * involves the following decisions:
 800 *  - What cipher to use?
 801 *  - What set of authentication tokens to use?
 802 * Here we just worry about getting enough information into the
 803 * authentication tokens so that we know that they are available.
 804 * We associate the available authentication tokens with the new file
 805 * via the set of signatures in the crypt_stat struct.  Later, when
 806 * the headers are actually written out, we may again defer to
 807 * userspace to perform the encryption of the session key; for the
 808 * foreseeable future, this will be the case with public key packets.
 809 *
 810 * Returns zero on success; non-zero otherwise
 811 */
 812int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 813{
 814        struct ecryptfs_crypt_stat *crypt_stat =
 815            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 816        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 817            &ecryptfs_superblock_to_private(
 818                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 819        int cipher_name_len;
 820        int rc = 0;
 821
 822        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 823        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 824        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 825                                                      mount_crypt_stat);
 826        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 827                                                         mount_crypt_stat);
 828        if (rc) {
 829                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 830                       "to the inode key sigs; rc = [%d]\n", rc);
 831                goto out;
 832        }
 833        cipher_name_len =
 834                strlen(mount_crypt_stat->global_default_cipher_name);
 835        memcpy(crypt_stat->cipher,
 836               mount_crypt_stat->global_default_cipher_name,
 837               cipher_name_len);
 838        crypt_stat->cipher[cipher_name_len] = '\0';
 839        crypt_stat->key_size =
 840                mount_crypt_stat->global_default_cipher_key_size;
 841        ecryptfs_generate_new_key(crypt_stat);
 842        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 843        if (rc)
 844                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 845                                "context for cipher [%s]: rc = [%d]\n",
 846                                crypt_stat->cipher, rc);
 847out:
 848        return rc;
 849}
 850
 851/**
 852 * ecryptfs_validate_marker - check for the ecryptfs marker
 853 * @data: The data block in which to check
 854 *
 855 * Returns zero if marker found; -EINVAL if not found
 856 */
 857static int ecryptfs_validate_marker(char *data)
 858{
 859        u32 m_1, m_2;
 860
 861        m_1 = get_unaligned_be32(data);
 862        m_2 = get_unaligned_be32(data + 4);
 863        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 864                return 0;
 865        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 866                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 867                        MAGIC_ECRYPTFS_MARKER);
 868        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 869                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 870        return -EINVAL;
 871}
 872
 873struct ecryptfs_flag_map_elem {
 874        u32 file_flag;
 875        u32 local_flag;
 876};
 877
 878/* Add support for additional flags by adding elements here. */
 879static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 880        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 881        {0x00000002, ECRYPTFS_ENCRYPTED},
 882        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 883        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 884};
 885
 886/**
 887 * ecryptfs_process_flags
 888 * @crypt_stat: The cryptographic context
 889 * @page_virt: Source data to be parsed
 890 * @bytes_read: Updated with the number of bytes read
 891 *
 892 * Returns zero on success; non-zero if the flag set is invalid
 893 */
 894static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 895                                  char *page_virt, int *bytes_read)
 896{
 897        int rc = 0;
 898        int i;
 899        u32 flags;
 900
 901        flags = get_unaligned_be32(page_virt);
 902        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 903                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
 904                if (flags & ecryptfs_flag_map[i].file_flag) {
 905                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 906                } else
 907                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 908        /* Version is in top 8 bits of the 32-bit flag vector */
 909        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 910        (*bytes_read) = 4;
 911        return rc;
 912}
 913
 914/**
 915 * write_ecryptfs_marker
 916 * @page_virt: The pointer to in a page to begin writing the marker
 917 * @written: Number of bytes written
 918 *
 919 * Marker = 0x3c81b7f5
 920 */
 921static void write_ecryptfs_marker(char *page_virt, size_t *written)
 922{
 923        u32 m_1, m_2;
 924
 925        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 926        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 927        put_unaligned_be32(m_1, page_virt);
 928        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 929        put_unaligned_be32(m_2, page_virt);
 930        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 931}
 932
 933void ecryptfs_write_crypt_stat_flags(char *page_virt,
 934                                     struct ecryptfs_crypt_stat *crypt_stat,
 935                                     size_t *written)
 936{
 937        u32 flags = 0;
 938        int i;
 939
 940        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 941                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
 942                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 943                        flags |= ecryptfs_flag_map[i].file_flag;
 944        /* Version is in top 8 bits of the 32-bit flag vector */
 945        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 946        put_unaligned_be32(flags, page_virt);
 947        (*written) = 4;
 948}
 949
 950struct ecryptfs_cipher_code_str_map_elem {
 951        char cipher_str[16];
 952        u8 cipher_code;
 953};
 954
 955/* Add support for additional ciphers by adding elements here. The
 956 * cipher_code is whatever OpenPGP applications use to identify the
 957 * ciphers. List in order of probability. */
 958static struct ecryptfs_cipher_code_str_map_elem
 959ecryptfs_cipher_code_str_map[] = {
 960        {"aes",RFC2440_CIPHER_AES_128 },
 961        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 962        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 963        {"cast5", RFC2440_CIPHER_CAST_5},
 964        {"twofish", RFC2440_CIPHER_TWOFISH},
 965        {"cast6", RFC2440_CIPHER_CAST_6},
 966        {"aes", RFC2440_CIPHER_AES_192},
 967        {"aes", RFC2440_CIPHER_AES_256}
 968};
 969
 970/**
 971 * ecryptfs_code_for_cipher_string
 972 * @cipher_name: The string alias for the cipher
 973 * @key_bytes: Length of key in bytes; used for AES code selection
 974 *
 975 * Returns zero on no match, or the cipher code on match
 976 */
 977u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 978{
 979        int i;
 980        u8 code = 0;
 981        struct ecryptfs_cipher_code_str_map_elem *map =
 982                ecryptfs_cipher_code_str_map;
 983
 984        if (strcmp(cipher_name, "aes") == 0) {
 985                switch (key_bytes) {
 986                case 16:
 987                        code = RFC2440_CIPHER_AES_128;
 988                        break;
 989                case 24:
 990                        code = RFC2440_CIPHER_AES_192;
 991                        break;
 992                case 32:
 993                        code = RFC2440_CIPHER_AES_256;
 994                }
 995        } else {
 996                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 997                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 998                                code = map[i].cipher_code;
 999                                break;
1000                        }
1001        }
1002        return code;
1003}
1004
1005/**
1006 * ecryptfs_cipher_code_to_string
1007 * @str: Destination to write out the cipher name
1008 * @cipher_code: The code to convert to cipher name string
1009 *
1010 * Returns zero on success
1011 */
1012int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1013{
1014        int rc = 0;
1015        int i;
1016
1017        str[0] = '\0';
1018        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1019                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1020                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1021        if (str[0] == '\0') {
1022                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1023                                "[%d]\n", cipher_code);
1024                rc = -EINVAL;
1025        }
1026        return rc;
1027}
1028
1029int ecryptfs_read_and_validate_header_region(struct inode *inode)
1030{
1031        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1032        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1033        int rc;
1034
1035        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1036                                 inode);
1037        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1038                return rc >= 0 ? -EINVAL : rc;
1039        rc = ecryptfs_validate_marker(marker);
1040        if (!rc)
1041                ecryptfs_i_size_init(file_size, inode);
1042        return rc;
1043}
1044
1045void
1046ecryptfs_write_header_metadata(char *virt,
1047                               struct ecryptfs_crypt_stat *crypt_stat,
1048                               size_t *written)
1049{
1050        u32 header_extent_size;
1051        u16 num_header_extents_at_front;
1052
1053        header_extent_size = (u32)crypt_stat->extent_size;
1054        num_header_extents_at_front =
1055                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1056        put_unaligned_be32(header_extent_size, virt);
1057        virt += 4;
1058        put_unaligned_be16(num_header_extents_at_front, virt);
1059        (*written) = 6;
1060}
1061
1062struct kmem_cache *ecryptfs_header_cache;
1063
1064/**
1065 * ecryptfs_write_headers_virt
1066 * @page_virt: The virtual address to write the headers to
1067 * @max: The size of memory allocated at page_virt
1068 * @size: Set to the number of bytes written by this function
1069 * @crypt_stat: The cryptographic context
1070 * @ecryptfs_dentry: The eCryptfs dentry
1071 *
1072 * Format version: 1
1073 *
1074 *   Header Extent:
1075 *     Octets 0-7:        Unencrypted file size (big-endian)
1076 *     Octets 8-15:       eCryptfs special marker
1077 *     Octets 16-19:      Flags
1078 *      Octet 16:         File format version number (between 0 and 255)
1079 *      Octets 17-18:     Reserved
1080 *      Octet 19:         Bit 1 (lsb): Reserved
1081 *                        Bit 2: Encrypted?
1082 *                        Bits 3-8: Reserved
1083 *     Octets 20-23:      Header extent size (big-endian)
1084 *     Octets 24-25:      Number of header extents at front of file
1085 *                        (big-endian)
1086 *     Octet  26:         Begin RFC 2440 authentication token packet set
1087 *   Data Extent 0:
1088 *     Lower data (CBC encrypted)
1089 *   Data Extent 1:
1090 *     Lower data (CBC encrypted)
1091 *   ...
1092 *
1093 * Returns zero on success
1094 */
1095static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1096                                       size_t *size,
1097                                       struct ecryptfs_crypt_stat *crypt_stat,
1098                                       struct dentry *ecryptfs_dentry)
1099{
1100        int rc;
1101        size_t written;
1102        size_t offset;
1103
1104        offset = ECRYPTFS_FILE_SIZE_BYTES;
1105        write_ecryptfs_marker((page_virt + offset), &written);
1106        offset += written;
1107        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1108                                        &written);
1109        offset += written;
1110        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1111                                       &written);
1112        offset += written;
1113        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1114                                              ecryptfs_dentry, &written,
1115                                              max - offset);
1116        if (rc)
1117                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1118                                "set; rc = [%d]\n", rc);
1119        if (size) {
1120                offset += written;
1121                *size = offset;
1122        }
1123        return rc;
1124}
1125
1126static int
1127ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1128                                    char *virt, size_t virt_len)
1129{
1130        int rc;
1131
1132        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1133                                  0, virt_len);
1134        if (rc < 0)
1135                printk(KERN_ERR "%s: Error attempting to write header "
1136                       "information to lower file; rc = [%d]\n", __func__, rc);
1137        else
1138                rc = 0;
1139        return rc;
1140}
1141
1142static int
1143ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1144                                 struct inode *ecryptfs_inode,
1145                                 char *page_virt, size_t size)
1146{
1147        int rc;
1148
1149        rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1150                               ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1151        return rc;
1152}
1153
1154static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1155                                               unsigned int order)
1156{
1157        struct page *page;
1158
1159        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1160        if (page)
1161                return (unsigned long) page_address(page);
1162        return 0;
1163}
1164
1165/**
1166 * ecryptfs_write_metadata
1167 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1168 * @ecryptfs_inode: The newly created eCryptfs inode
1169 *
1170 * Write the file headers out.  This will likely involve a userspace
1171 * callout, in which the session key is encrypted with one or more
1172 * public keys and/or the passphrase necessary to do the encryption is
1173 * retrieved via a prompt.  Exactly what happens at this point should
1174 * be policy-dependent.
1175 *
1176 * Returns zero on success; non-zero on error
1177 */
1178int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1179                            struct inode *ecryptfs_inode)
1180{
1181        struct ecryptfs_crypt_stat *crypt_stat =
1182                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1183        unsigned int order;
1184        char *virt;
1185        size_t virt_len;
1186        size_t size = 0;
1187        int rc = 0;
1188
1189        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1190                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1191                        printk(KERN_ERR "Key is invalid; bailing out\n");
1192                        rc = -EINVAL;
1193                        goto out;
1194                }
1195        } else {
1196                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1197                       __func__);
1198                rc = -EINVAL;
1199                goto out;
1200        }
1201        virt_len = crypt_stat->metadata_size;
1202        order = get_order(virt_len);
1203        /* Released in this function */
1204        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1205        if (!virt) {
1206                printk(KERN_ERR "%s: Out of memory\n", __func__);
1207                rc = -ENOMEM;
1208                goto out;
1209        }
1210        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1211        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1212                                         ecryptfs_dentry);
1213        if (unlikely(rc)) {
1214                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1215                       __func__, rc);
1216                goto out_free;
1217        }
1218        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1219                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1220                                                      virt, size);
1221        else
1222                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1223                                                         virt_len);
1224        if (rc) {
1225                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1226                       "rc = [%d]\n", __func__, rc);
1227                goto out_free;
1228        }
1229out_free:
1230        free_pages((unsigned long)virt, order);
1231out:
1232        return rc;
1233}
1234
1235#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1236#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1237static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1238                                 char *virt, int *bytes_read,
1239                                 int validate_header_size)
1240{
1241        int rc = 0;
1242        u32 header_extent_size;
1243        u16 num_header_extents_at_front;
1244
1245        header_extent_size = get_unaligned_be32(virt);
1246        virt += sizeof(__be32);
1247        num_header_extents_at_front = get_unaligned_be16(virt);
1248        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1249                                     * (size_t)header_extent_size));
1250        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1251        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1252            && (crypt_stat->metadata_size
1253                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1254                rc = -EINVAL;
1255                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1256                       crypt_stat->metadata_size);
1257        }
1258        return rc;
1259}
1260
1261/**
1262 * set_default_header_data
1263 * @crypt_stat: The cryptographic context
1264 *
1265 * For version 0 file format; this function is only for backwards
1266 * compatibility for files created with the prior versions of
1267 * eCryptfs.
1268 */
1269static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1270{
1271        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1272}
1273
1274void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1275{
1276        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1277        struct ecryptfs_crypt_stat *crypt_stat;
1278        u64 file_size;
1279
1280        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1281        mount_crypt_stat =
1282                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1283        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1284                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1285                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1286                        file_size += crypt_stat->metadata_size;
1287        } else
1288                file_size = get_unaligned_be64(page_virt);
1289        i_size_write(inode, (loff_t)file_size);
1290        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1291}
1292
1293/**
1294 * ecryptfs_read_headers_virt
1295 * @page_virt: The virtual address into which to read the headers
1296 * @crypt_stat: The cryptographic context
1297 * @ecryptfs_dentry: The eCryptfs dentry
1298 * @validate_header_size: Whether to validate the header size while reading
1299 *
1300 * Read/parse the header data. The header format is detailed in the
1301 * comment block for the ecryptfs_write_headers_virt() function.
1302 *
1303 * Returns zero on success
1304 */
1305static int ecryptfs_read_headers_virt(char *page_virt,
1306                                      struct ecryptfs_crypt_stat *crypt_stat,
1307                                      struct dentry *ecryptfs_dentry,
1308                                      int validate_header_size)
1309{
1310        int rc = 0;
1311        int offset;
1312        int bytes_read;
1313
1314        ecryptfs_set_default_sizes(crypt_stat);
1315        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1316                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1317        offset = ECRYPTFS_FILE_SIZE_BYTES;
1318        rc = ecryptfs_validate_marker(page_virt + offset);
1319        if (rc)
1320                goto out;
1321        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1322                ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1323        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1324        rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1325                                    &bytes_read);
1326        if (rc) {
1327                ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1328                goto out;
1329        }
1330        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1331                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1332                                "file version [%d] is supported by this "
1333                                "version of eCryptfs\n",
1334                                crypt_stat->file_version,
1335                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1336                rc = -EINVAL;
1337                goto out;
1338        }
1339        offset += bytes_read;
1340        if (crypt_stat->file_version >= 1) {
1341                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1342                                           &bytes_read, validate_header_size);
1343                if (rc) {
1344                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1345                                        "metadata; rc = [%d]\n", rc);
1346                }
1347                offset += bytes_read;
1348        } else
1349                set_default_header_data(crypt_stat);
1350        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1351                                       ecryptfs_dentry);
1352out:
1353        return rc;
1354}
1355
1356/**
1357 * ecryptfs_read_xattr_region
1358 * @page_virt: The vitual address into which to read the xattr data
1359 * @ecryptfs_inode: The eCryptfs inode
1360 *
1361 * Attempts to read the crypto metadata from the extended attribute
1362 * region of the lower file.
1363 *
1364 * Returns zero on success; non-zero on error
1365 */
1366int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1367{
1368        struct dentry *lower_dentry =
1369                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1370        ssize_t size;
1371        int rc = 0;
1372
1373        size = ecryptfs_getxattr_lower(lower_dentry,
1374                                       ecryptfs_inode_to_lower(ecryptfs_inode),
1375                                       ECRYPTFS_XATTR_NAME,
1376                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1377        if (size < 0) {
1378                if (unlikely(ecryptfs_verbosity > 0))
1379                        printk(KERN_INFO "Error attempting to read the [%s] "
1380                               "xattr from the lower file; return value = "
1381                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1382                rc = -EINVAL;
1383                goto out;
1384        }
1385out:
1386        return rc;
1387}
1388
1389int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1390                                            struct inode *inode)
1391{
1392        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1393        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1394        int rc;
1395
1396        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1397                                     ecryptfs_inode_to_lower(inode),
1398                                     ECRYPTFS_XATTR_NAME, file_size,
1399                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1400        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1401                return rc >= 0 ? -EINVAL : rc;
1402        rc = ecryptfs_validate_marker(marker);
1403        if (!rc)
1404                ecryptfs_i_size_init(file_size, inode);
1405        return rc;
1406}
1407
1408/**
1409 * ecryptfs_read_metadata
1410 *
1411 * Common entry point for reading file metadata. From here, we could
1412 * retrieve the header information from the header region of the file,
1413 * the xattr region of the file, or some other repository that is
1414 * stored separately from the file itself. The current implementation
1415 * supports retrieving the metadata information from the file contents
1416 * and from the xattr region.
1417 *
1418 * Returns zero if valid headers found and parsed; non-zero otherwise
1419 */
1420int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1421{
1422        int rc;
1423        char *page_virt;
1424        struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1425        struct ecryptfs_crypt_stat *crypt_stat =
1426            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1427        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1428                &ecryptfs_superblock_to_private(
1429                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1430
1431        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1432                                                      mount_crypt_stat);
1433        /* Read the first page from the underlying file */
1434        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1435        if (!page_virt) {
1436                rc = -ENOMEM;
1437                printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1438                       __func__);
1439                goto out;
1440        }
1441        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1442                                 ecryptfs_inode);
1443        if (rc >= 0)
1444                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1445                                                ecryptfs_dentry,
1446                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1447        if (rc) {
1448                /* metadata is not in the file header, so try xattrs */
1449                memset(page_virt, 0, PAGE_SIZE);
1450                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1451                if (rc) {
1452                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1453                               "file header region or xattr region, inode %lu\n",
1454                                ecryptfs_inode->i_ino);
1455                        rc = -EINVAL;
1456                        goto out;
1457                }
1458                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1459                                                ecryptfs_dentry,
1460                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1461                if (rc) {
1462                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1463                               "file xattr region either, inode %lu\n",
1464                                ecryptfs_inode->i_ino);
1465                        rc = -EINVAL;
1466                }
1467                if (crypt_stat->mount_crypt_stat->flags
1468                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1469                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1470                } else {
1471                        printk(KERN_WARNING "Attempt to access file with "
1472                               "crypto metadata only in the extended attribute "
1473                               "region, but eCryptfs was mounted without "
1474                               "xattr support enabled. eCryptfs will not treat "
1475                               "this like an encrypted file, inode %lu\n",
1476                                ecryptfs_inode->i_ino);
1477                        rc = -EINVAL;
1478                }
1479        }
1480out:
1481        if (page_virt) {
1482                memset(page_virt, 0, PAGE_SIZE);
1483                kmem_cache_free(ecryptfs_header_cache, page_virt);
1484        }
1485        return rc;
1486}
1487
1488/**
1489 * ecryptfs_encrypt_filename - encrypt filename
1490 *
1491 * CBC-encrypts the filename. We do not want to encrypt the same
1492 * filename with the same key and IV, which may happen with hard
1493 * links, so we prepend random bits to each filename.
1494 *
1495 * Returns zero on success; non-zero otherwise
1496 */
1497static int
1498ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1499                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1500{
1501        int rc = 0;
1502
1503        filename->encrypted_filename = NULL;
1504        filename->encrypted_filename_size = 0;
1505        if (mount_crypt_stat && (mount_crypt_stat->flags
1506                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1507                size_t packet_size;
1508                size_t remaining_bytes;
1509
1510                rc = ecryptfs_write_tag_70_packet(
1511                        NULL, NULL,
1512                        &filename->encrypted_filename_size,
1513                        mount_crypt_stat, NULL,
1514                        filename->filename_size);
1515                if (rc) {
1516                        printk(KERN_ERR "%s: Error attempting to get packet "
1517                               "size for tag 72; rc = [%d]\n", __func__,
1518                               rc);
1519                        filename->encrypted_filename_size = 0;
1520                        goto out;
1521                }
1522                filename->encrypted_filename =
1523                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1524                if (!filename->encrypted_filename) {
1525                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1526                               "to kmalloc [%zd] bytes\n", __func__,
1527                               filename->encrypted_filename_size);
1528                        rc = -ENOMEM;
1529                        goto out;
1530                }
1531                remaining_bytes = filename->encrypted_filename_size;
1532                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1533                                                  &remaining_bytes,
1534                                                  &packet_size,
1535                                                  mount_crypt_stat,
1536                                                  filename->filename,
1537                                                  filename->filename_size);
1538                if (rc) {
1539                        printk(KERN_ERR "%s: Error attempting to generate "
1540                               "tag 70 packet; rc = [%d]\n", __func__,
1541                               rc);
1542                        kfree(filename->encrypted_filename);
1543                        filename->encrypted_filename = NULL;
1544                        filename->encrypted_filename_size = 0;
1545                        goto out;
1546                }
1547                filename->encrypted_filename_size = packet_size;
1548        } else {
1549                printk(KERN_ERR "%s: No support for requested filename "
1550                       "encryption method in this release\n", __func__);
1551                rc = -EOPNOTSUPP;
1552                goto out;
1553        }
1554out:
1555        return rc;
1556}
1557
1558static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1559                                  const char *name, size_t name_size)
1560{
1561        int rc = 0;
1562
1563        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1564        if (!(*copied_name)) {
1565                rc = -ENOMEM;
1566                goto out;
1567        }
1568        memcpy((void *)(*copied_name), (void *)name, name_size);
1569        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1570                                                 * in printing out the
1571                                                 * string in debug
1572                                                 * messages */
1573        (*copied_name_size) = name_size;
1574out:
1575        return rc;
1576}
1577
1578/**
1579 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1580 * @key_tfm: Crypto context for key material, set by this function
1581 * @cipher_name: Name of the cipher
1582 * @key_size: Size of the key in bytes
1583 *
1584 * Returns zero on success. Any crypto_tfm structs allocated here
1585 * should be released by other functions, such as on a superblock put
1586 * event, regardless of whether this function succeeds for fails.
1587 */
1588static int
1589ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1590                            char *cipher_name, size_t *key_size)
1591{
1592        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1593        char *full_alg_name = NULL;
1594        int rc;
1595
1596        *key_tfm = NULL;
1597        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1598                rc = -EINVAL;
1599                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1600                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1601                goto out;
1602        }
1603        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1604                                                    "ecb");
1605        if (rc)
1606                goto out;
1607        *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1608        if (IS_ERR(*key_tfm)) {
1609                rc = PTR_ERR(*key_tfm);
1610                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1611                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1612                goto out;
1613        }
1614        crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1615        if (*key_size == 0)
1616                *key_size = crypto_skcipher_default_keysize(*key_tfm);
1617        get_random_bytes(dummy_key, *key_size);
1618        rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1619        if (rc) {
1620                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1621                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1622                       rc);
1623                rc = -EINVAL;
1624                goto out;
1625        }
1626out:
1627        kfree(full_alg_name);
1628        return rc;
1629}
1630
1631struct kmem_cache *ecryptfs_key_tfm_cache;
1632static struct list_head key_tfm_list;
1633struct mutex key_tfm_list_mutex;
1634
1635int __init ecryptfs_init_crypto(void)
1636{
1637        mutex_init(&key_tfm_list_mutex);
1638        INIT_LIST_HEAD(&key_tfm_list);
1639        return 0;
1640}
1641
1642/**
1643 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1644 *
1645 * Called only at module unload time
1646 */
1647int ecryptfs_destroy_crypto(void)
1648{
1649        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1650
1651        mutex_lock(&key_tfm_list_mutex);
1652        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1653                                 key_tfm_list) {
1654                list_del(&key_tfm->key_tfm_list);
1655                crypto_free_skcipher(key_tfm->key_tfm);
1656                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1657        }
1658        mutex_unlock(&key_tfm_list_mutex);
1659        return 0;
1660}
1661
1662int
1663ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1664                         size_t key_size)
1665{
1666        struct ecryptfs_key_tfm *tmp_tfm;
1667        int rc = 0;
1668
1669        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1670
1671        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1672        if (key_tfm != NULL)
1673                (*key_tfm) = tmp_tfm;
1674        if (!tmp_tfm) {
1675                rc = -ENOMEM;
1676                printk(KERN_ERR "Error attempting to allocate from "
1677                       "ecryptfs_key_tfm_cache\n");
1678                goto out;
1679        }
1680        mutex_init(&tmp_tfm->key_tfm_mutex);
1681        strncpy(tmp_tfm->cipher_name, cipher_name,
1682                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1683        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1684        tmp_tfm->key_size = key_size;
1685        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1686                                         tmp_tfm->cipher_name,
1687                                         &tmp_tfm->key_size);
1688        if (rc) {
1689                printk(KERN_ERR "Error attempting to initialize key TFM "
1690                       "cipher with name = [%s]; rc = [%d]\n",
1691                       tmp_tfm->cipher_name, rc);
1692                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1693                if (key_tfm != NULL)
1694                        (*key_tfm) = NULL;
1695                goto out;
1696        }
1697        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1698out:
1699        return rc;
1700}
1701
1702/**
1703 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1704 * @cipher_name: the name of the cipher to search for
1705 * @key_tfm: set to corresponding tfm if found
1706 *
1707 * Searches for cached key_tfm matching @cipher_name
1708 * Must be called with &key_tfm_list_mutex held
1709 * Returns 1 if found, with @key_tfm set
1710 * Returns 0 if not found, with @key_tfm set to NULL
1711 */
1712int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1713{
1714        struct ecryptfs_key_tfm *tmp_key_tfm;
1715
1716        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1717
1718        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1719                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1720                        if (key_tfm)
1721                                (*key_tfm) = tmp_key_tfm;
1722                        return 1;
1723                }
1724        }
1725        if (key_tfm)
1726                (*key_tfm) = NULL;
1727        return 0;
1728}
1729
1730/**
1731 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1732 *
1733 * @tfm: set to cached tfm found, or new tfm created
1734 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1735 * @cipher_name: the name of the cipher to search for and/or add
1736 *
1737 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1738 * Searches for cached item first, and creates new if not found.
1739 * Returns 0 on success, non-zero if adding new cipher failed
1740 */
1741int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1742                                               struct mutex **tfm_mutex,
1743                                               char *cipher_name)
1744{
1745        struct ecryptfs_key_tfm *key_tfm;
1746        int rc = 0;
1747
1748        (*tfm) = NULL;
1749        (*tfm_mutex) = NULL;
1750
1751        mutex_lock(&key_tfm_list_mutex);
1752        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1753                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1754                if (rc) {
1755                        printk(KERN_ERR "Error adding new key_tfm to list; "
1756                                        "rc = [%d]\n", rc);
1757                        goto out;
1758                }
1759        }
1760        (*tfm) = key_tfm->key_tfm;
1761        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1762out:
1763        mutex_unlock(&key_tfm_list_mutex);
1764        return rc;
1765}
1766
1767/* 64 characters forming a 6-bit target field */
1768static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1769                                                 "EFGHIJKLMNOPQRST"
1770                                                 "UVWXYZabcdefghij"
1771                                                 "klmnopqrstuvwxyz");
1772
1773/* We could either offset on every reverse map or just pad some 0x00's
1774 * at the front here */
1775static const unsigned char filename_rev_map[256] = {
1776        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1777        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1778        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1779        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1780        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1781        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1782        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1783        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1784        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1785        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1786        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1787        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1788        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1789        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1790        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1791        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1792};
1793
1794/**
1795 * ecryptfs_encode_for_filename
1796 * @dst: Destination location for encoded filename
1797 * @dst_size: Size of the encoded filename in bytes
1798 * @src: Source location for the filename to encode
1799 * @src_size: Size of the source in bytes
1800 */
1801static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1802                                  unsigned char *src, size_t src_size)
1803{
1804        size_t num_blocks;
1805        size_t block_num = 0;
1806        size_t dst_offset = 0;
1807        unsigned char last_block[3];
1808
1809        if (src_size == 0) {
1810                (*dst_size) = 0;
1811                goto out;
1812        }
1813        num_blocks = (src_size / 3);
1814        if ((src_size % 3) == 0) {
1815                memcpy(last_block, (&src[src_size - 3]), 3);
1816        } else {
1817                num_blocks++;
1818                last_block[2] = 0x00;
1819                switch (src_size % 3) {
1820                case 1:
1821                        last_block[0] = src[src_size - 1];
1822                        last_block[1] = 0x00;
1823                        break;
1824                case 2:
1825                        last_block[0] = src[src_size - 2];
1826                        last_block[1] = src[src_size - 1];
1827                }
1828        }
1829        (*dst_size) = (num_blocks * 4);
1830        if (!dst)
1831                goto out;
1832        while (block_num < num_blocks) {
1833                unsigned char *src_block;
1834                unsigned char dst_block[4];
1835
1836                if (block_num == (num_blocks - 1))
1837                        src_block = last_block;
1838                else
1839                        src_block = &src[block_num * 3];
1840                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1841                dst_block[1] = (((src_block[0] << 4) & 0x30)
1842                                | ((src_block[1] >> 4) & 0x0F));
1843                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1844                                | ((src_block[2] >> 6) & 0x03));
1845                dst_block[3] = (src_block[2] & 0x3F);
1846                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1847                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1848                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1849                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1850                block_num++;
1851        }
1852out:
1853        return;
1854}
1855
1856static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1857{
1858        /* Not exact; conservatively long. Every block of 4
1859         * encoded characters decodes into a block of 3
1860         * decoded characters. This segment of code provides
1861         * the caller with the maximum amount of allocated
1862         * space that @dst will need to point to in a
1863         * subsequent call. */
1864        return ((encoded_size + 1) * 3) / 4;
1865}
1866
1867/**
1868 * ecryptfs_decode_from_filename
1869 * @dst: If NULL, this function only sets @dst_size and returns. If
1870 *       non-NULL, this function decodes the encoded octets in @src
1871 *       into the memory that @dst points to.
1872 * @dst_size: Set to the size of the decoded string.
1873 * @src: The encoded set of octets to decode.
1874 * @src_size: The size of the encoded set of octets to decode.
1875 */
1876static void
1877ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1878                              const unsigned char *src, size_t src_size)
1879{
1880        u8 current_bit_offset = 0;
1881        size_t src_byte_offset = 0;
1882        size_t dst_byte_offset = 0;
1883
1884        if (dst == NULL) {
1885                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1886                goto out;
1887        }
1888        while (src_byte_offset < src_size) {
1889                unsigned char src_byte =
1890                                filename_rev_map[(int)src[src_byte_offset]];
1891
1892                switch (current_bit_offset) {
1893                case 0:
1894                        dst[dst_byte_offset] = (src_byte << 2);
1895                        current_bit_offset = 6;
1896                        break;
1897                case 6:
1898                        dst[dst_byte_offset++] |= (src_byte >> 4);
1899                        dst[dst_byte_offset] = ((src_byte & 0xF)
1900                                                 << 4);
1901                        current_bit_offset = 4;
1902                        break;
1903                case 4:
1904                        dst[dst_byte_offset++] |= (src_byte >> 2);
1905                        dst[dst_byte_offset] = (src_byte << 6);
1906                        current_bit_offset = 2;
1907                        break;
1908                case 2:
1909                        dst[dst_byte_offset++] |= (src_byte);
1910                        current_bit_offset = 0;
1911                        break;
1912                }
1913                src_byte_offset++;
1914        }
1915        (*dst_size) = dst_byte_offset;
1916out:
1917        return;
1918}
1919
1920/**
1921 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1922 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1923 * @name: The plaintext name
1924 * @length: The length of the plaintext
1925 * @encoded_name: The encypted name
1926 *
1927 * Encrypts and encodes a filename into something that constitutes a
1928 * valid filename for a filesystem, with printable characters.
1929 *
1930 * We assume that we have a properly initialized crypto context,
1931 * pointed to by crypt_stat->tfm.
1932 *
1933 * Returns zero on success; non-zero on otherwise
1934 */
1935int ecryptfs_encrypt_and_encode_filename(
1936        char **encoded_name,
1937        size_t *encoded_name_size,
1938        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1939        const char *name, size_t name_size)
1940{
1941        size_t encoded_name_no_prefix_size;
1942        int rc = 0;
1943
1944        (*encoded_name) = NULL;
1945        (*encoded_name_size) = 0;
1946        if (mount_crypt_stat && (mount_crypt_stat->flags
1947                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1948                struct ecryptfs_filename *filename;
1949
1950                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1951                if (!filename) {
1952                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1953                               "to kzalloc [%zd] bytes\n", __func__,
1954                               sizeof(*filename));
1955                        rc = -ENOMEM;
1956                        goto out;
1957                }
1958                filename->filename = (char *)name;
1959                filename->filename_size = name_size;
1960                rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1961                if (rc) {
1962                        printk(KERN_ERR "%s: Error attempting to encrypt "
1963                               "filename; rc = [%d]\n", __func__, rc);
1964                        kfree(filename);
1965                        goto out;
1966                }
1967                ecryptfs_encode_for_filename(
1968                        NULL, &encoded_name_no_prefix_size,
1969                        filename->encrypted_filename,
1970                        filename->encrypted_filename_size);
1971                if (mount_crypt_stat
1972                        && (mount_crypt_stat->flags
1973                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1974                        (*encoded_name_size) =
1975                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976                                 + encoded_name_no_prefix_size);
1977                else
1978                        (*encoded_name_size) =
1979                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1980                                 + encoded_name_no_prefix_size);
1981                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1982                if (!(*encoded_name)) {
1983                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1984                               "to kzalloc [%zd] bytes\n", __func__,
1985                               (*encoded_name_size));
1986                        rc = -ENOMEM;
1987                        kfree(filename->encrypted_filename);
1988                        kfree(filename);
1989                        goto out;
1990                }
1991                if (mount_crypt_stat
1992                        && (mount_crypt_stat->flags
1993                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1994                        memcpy((*encoded_name),
1995                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1996                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1997                        ecryptfs_encode_for_filename(
1998                            ((*encoded_name)
1999                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2000                            &encoded_name_no_prefix_size,
2001                            filename->encrypted_filename,
2002                            filename->encrypted_filename_size);
2003                        (*encoded_name_size) =
2004                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2005                                 + encoded_name_no_prefix_size);
2006                        (*encoded_name)[(*encoded_name_size)] = '\0';
2007                } else {
2008                        rc = -EOPNOTSUPP;
2009                }
2010                if (rc) {
2011                        printk(KERN_ERR "%s: Error attempting to encode "
2012                               "encrypted filename; rc = [%d]\n", __func__,
2013                               rc);
2014                        kfree((*encoded_name));
2015                        (*encoded_name) = NULL;
2016                        (*encoded_name_size) = 0;
2017                }
2018                kfree(filename->encrypted_filename);
2019                kfree(filename);
2020        } else {
2021                rc = ecryptfs_copy_filename(encoded_name,
2022                                            encoded_name_size,
2023                                            name, name_size);
2024        }
2025out:
2026        return rc;
2027}
2028
2029/**
2030 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2031 * @plaintext_name: The plaintext name
2032 * @plaintext_name_size: The plaintext name size
2033 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2034 * @name: The filename in cipher text
2035 * @name_size: The cipher text name size
2036 *
2037 * Decrypts and decodes the filename.
2038 *
2039 * Returns zero on error; non-zero otherwise
2040 */
2041int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2042                                         size_t *plaintext_name_size,
2043                                         struct super_block *sb,
2044                                         const char *name, size_t name_size)
2045{
2046        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2047                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2048        char *decoded_name;
2049        size_t decoded_name_size;
2050        size_t packet_size;
2051        int rc = 0;
2052
2053        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2054            && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2055            && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2056            && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2057                        ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2058                const char *orig_name = name;
2059                size_t orig_name_size = name_size;
2060
2061                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2062                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2063                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2064                                              name, name_size);
2065                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2066                if (!decoded_name) {
2067                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2068                               "to kmalloc [%zd] bytes\n", __func__,
2069                               decoded_name_size);
2070                        rc = -ENOMEM;
2071                        goto out;
2072                }
2073                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2074                                              name, name_size);
2075                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2076                                                  plaintext_name_size,
2077                                                  &packet_size,
2078                                                  mount_crypt_stat,
2079                                                  decoded_name,
2080                                                  decoded_name_size);
2081                if (rc) {
2082                        printk(KERN_INFO "%s: Could not parse tag 70 packet "
2083                               "from filename; copying through filename "
2084                               "as-is\n", __func__);
2085                        rc = ecryptfs_copy_filename(plaintext_name,
2086                                                    plaintext_name_size,
2087                                                    orig_name, orig_name_size);
2088                        goto out_free;
2089                }
2090        } else {
2091                rc = ecryptfs_copy_filename(plaintext_name,
2092                                            plaintext_name_size,
2093                                            name, name_size);
2094                goto out;
2095        }
2096out_free:
2097        kfree(decoded_name);
2098out:
2099        return rc;
2100}
2101
2102#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2103
2104int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2105                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2106{
2107        struct crypto_skcipher *tfm;
2108        struct mutex *tfm_mutex;
2109        size_t cipher_blocksize;
2110        int rc;
2111
2112        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2113                (*namelen) = lower_namelen;
2114                return 0;
2115        }
2116
2117        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2118                        mount_crypt_stat->global_default_fn_cipher_name);
2119        if (unlikely(rc)) {
2120                (*namelen) = 0;
2121                return rc;
2122        }
2123
2124        mutex_lock(tfm_mutex);
2125        cipher_blocksize = crypto_skcipher_blocksize(tfm);
2126        mutex_unlock(tfm_mutex);
2127
2128        /* Return an exact amount for the common cases */
2129        if (lower_namelen == NAME_MAX
2130            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2131                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2132                return 0;
2133        }
2134
2135        /* Return a safe estimate for the uncommon cases */
2136        (*namelen) = lower_namelen;
2137        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2138        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2139        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2140        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2141        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2142        /* Worst case is that the filename is padded nearly a full block size */
2143        (*namelen) -= cipher_blocksize - 1;
2144
2145        if ((*namelen) < 0)
2146                (*namelen) = 0;
2147
2148        return 0;
2149}
2150