linux/fs/f2fs/node.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11/* start node id of a node block dedicated to the given node id */
  12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13
  14/* node block offset on the NAT area dedicated to the given start node id */
  15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  16
  17/* # of pages to perform synchronous readahead before building free nids */
  18#define FREE_NID_PAGES  8
  19#define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  20
  21#define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  22
  23/* maximum readahead size for node during getting data blocks */
  24#define MAX_RA_NODE             128
  25
  26/* control the memory footprint threshold (10MB per 1GB ram) */
  27#define DEF_RAM_THRESHOLD       1
  28
  29/* control dirty nats ratio threshold (default: 10% over max nid count) */
  30#define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  31/* control total # of nats */
  32#define DEF_NAT_CACHE_THRESHOLD                 100000
  33
  34/* vector size for gang look-up from nat cache that consists of radix tree */
  35#define NATVEC_SIZE     64
  36#define SETVEC_SIZE     32
  37
  38/* return value for read_node_page */
  39#define LOCKED_PAGE     1
  40
  41/* For flag in struct node_info */
  42enum {
  43        IS_CHECKPOINTED,        /* is it checkpointed before? */
  44        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  45        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  46        IS_DIRTY,               /* this nat entry is dirty? */
  47};
  48
  49/*
  50 * For node information
  51 */
  52struct node_info {
  53        nid_t nid;              /* node id */
  54        nid_t ino;              /* inode number of the node's owner */
  55        block_t blk_addr;       /* block address of the node */
  56        unsigned char version;  /* version of the node */
  57        unsigned char flag;     /* for node information bits */
  58};
  59
  60struct nat_entry {
  61        struct list_head list;  /* for clean or dirty nat list */
  62        struct node_info ni;    /* in-memory node information */
  63};
  64
  65#define nat_get_nid(nat)                (nat->ni.nid)
  66#define nat_set_nid(nat, n)             (nat->ni.nid = n)
  67#define nat_get_blkaddr(nat)            (nat->ni.blk_addr)
  68#define nat_set_blkaddr(nat, b)         (nat->ni.blk_addr = b)
  69#define nat_get_ino(nat)                (nat->ni.ino)
  70#define nat_set_ino(nat, i)             (nat->ni.ino = i)
  71#define nat_get_version(nat)            (nat->ni.version)
  72#define nat_set_version(nat, v)         (nat->ni.version = v)
  73
  74#define inc_node_version(version)       (++version)
  75
  76static inline void copy_node_info(struct node_info *dst,
  77                                                struct node_info *src)
  78{
  79        dst->nid = src->nid;
  80        dst->ino = src->ino;
  81        dst->blk_addr = src->blk_addr;
  82        dst->version = src->version;
  83        /* should not copy flag here */
  84}
  85
  86static inline void set_nat_flag(struct nat_entry *ne,
  87                                unsigned int type, bool set)
  88{
  89        unsigned char mask = 0x01 << type;
  90        if (set)
  91                ne->ni.flag |= mask;
  92        else
  93                ne->ni.flag &= ~mask;
  94}
  95
  96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  97{
  98        unsigned char mask = 0x01 << type;
  99        return ne->ni.flag & mask;
 100}
 101
 102static inline void nat_reset_flag(struct nat_entry *ne)
 103{
 104        /* these states can be set only after checkpoint was done */
 105        set_nat_flag(ne, IS_CHECKPOINTED, true);
 106        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 107        set_nat_flag(ne, HAS_LAST_FSYNC, true);
 108}
 109
 110static inline void node_info_from_raw_nat(struct node_info *ni,
 111                                                struct f2fs_nat_entry *raw_ne)
 112{
 113        ni->ino = le32_to_cpu(raw_ne->ino);
 114        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 115        ni->version = raw_ne->version;
 116}
 117
 118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 119                                                struct node_info *ni)
 120{
 121        raw_ne->ino = cpu_to_le32(ni->ino);
 122        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 123        raw_ne->version = ni->version;
 124}
 125
 126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 127{
 128        return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
 129                                        NM_I(sbi)->dirty_nats_ratio / 100;
 130}
 131
 132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 133{
 134        return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
 135}
 136
 137enum mem_type {
 138        FREE_NIDS,      /* indicates the free nid list */
 139        NAT_ENTRIES,    /* indicates the cached nat entry */
 140        DIRTY_DENTS,    /* indicates dirty dentry pages */
 141        INO_ENTRIES,    /* indicates inode entries */
 142        EXTENT_CACHE,   /* indicates extent cache */
 143        BASE_CHECK,     /* check kernel status */
 144};
 145
 146struct nat_entry_set {
 147        struct list_head set_list;      /* link with other nat sets */
 148        struct list_head entry_list;    /* link with dirty nat entries */
 149        nid_t set;                      /* set number*/
 150        unsigned int entry_cnt;         /* the # of nat entries in set */
 151};
 152
 153/*
 154 * For free nid mangement
 155 */
 156enum nid_state {
 157        NID_NEW,        /* newly added to free nid list */
 158        NID_ALLOC       /* it is allocated */
 159};
 160
 161struct free_nid {
 162        struct list_head list;  /* for free node id list */
 163        nid_t nid;              /* node id */
 164        int state;              /* in use or not: NID_NEW or NID_ALLOC */
 165};
 166
 167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 168{
 169        struct f2fs_nm_info *nm_i = NM_I(sbi);
 170        struct free_nid *fnid;
 171
 172        spin_lock(&nm_i->free_nid_list_lock);
 173        if (nm_i->fcnt <= 0) {
 174                spin_unlock(&nm_i->free_nid_list_lock);
 175                return;
 176        }
 177        fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
 178        *nid = fnid->nid;
 179        spin_unlock(&nm_i->free_nid_list_lock);
 180}
 181
 182/*
 183 * inline functions
 184 */
 185static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 186{
 187        struct f2fs_nm_info *nm_i = NM_I(sbi);
 188        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 189}
 190
 191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 192{
 193        struct f2fs_nm_info *nm_i = NM_I(sbi);
 194        pgoff_t block_off;
 195        pgoff_t block_addr;
 196        int seg_off;
 197
 198        block_off = NAT_BLOCK_OFFSET(start);
 199        seg_off = block_off >> sbi->log_blocks_per_seg;
 200
 201        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 202                (seg_off << sbi->log_blocks_per_seg << 1) +
 203                (block_off & (sbi->blocks_per_seg - 1)));
 204
 205        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 206                block_addr += sbi->blocks_per_seg;
 207
 208        return block_addr;
 209}
 210
 211static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 212                                                pgoff_t block_addr)
 213{
 214        struct f2fs_nm_info *nm_i = NM_I(sbi);
 215
 216        block_addr -= nm_i->nat_blkaddr;
 217        if ((block_addr >> sbi->log_blocks_per_seg) % 2)
 218                block_addr -= sbi->blocks_per_seg;
 219        else
 220                block_addr += sbi->blocks_per_seg;
 221
 222        return block_addr + nm_i->nat_blkaddr;
 223}
 224
 225static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 226{
 227        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 228
 229        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 230}
 231
 232static inline nid_t ino_of_node(struct page *node_page)
 233{
 234        struct f2fs_node *rn = F2FS_NODE(node_page);
 235        return le32_to_cpu(rn->footer.ino);
 236}
 237
 238static inline nid_t nid_of_node(struct page *node_page)
 239{
 240        struct f2fs_node *rn = F2FS_NODE(node_page);
 241        return le32_to_cpu(rn->footer.nid);
 242}
 243
 244static inline unsigned int ofs_of_node(struct page *node_page)
 245{
 246        struct f2fs_node *rn = F2FS_NODE(node_page);
 247        unsigned flag = le32_to_cpu(rn->footer.flag);
 248        return flag >> OFFSET_BIT_SHIFT;
 249}
 250
 251static inline __u64 cpver_of_node(struct page *node_page)
 252{
 253        struct f2fs_node *rn = F2FS_NODE(node_page);
 254        return le64_to_cpu(rn->footer.cp_ver);
 255}
 256
 257static inline block_t next_blkaddr_of_node(struct page *node_page)
 258{
 259        struct f2fs_node *rn = F2FS_NODE(node_page);
 260        return le32_to_cpu(rn->footer.next_blkaddr);
 261}
 262
 263static inline void fill_node_footer(struct page *page, nid_t nid,
 264                                nid_t ino, unsigned int ofs, bool reset)
 265{
 266        struct f2fs_node *rn = F2FS_NODE(page);
 267        unsigned int old_flag = 0;
 268
 269        if (reset)
 270                memset(rn, 0, sizeof(*rn));
 271        else
 272                old_flag = le32_to_cpu(rn->footer.flag);
 273
 274        rn->footer.nid = cpu_to_le32(nid);
 275        rn->footer.ino = cpu_to_le32(ino);
 276
 277        /* should remain old flag bits such as COLD_BIT_SHIFT */
 278        rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 279                                        (old_flag & OFFSET_BIT_MASK));
 280}
 281
 282static inline void copy_node_footer(struct page *dst, struct page *src)
 283{
 284        struct f2fs_node *src_rn = F2FS_NODE(src);
 285        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 286        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 287}
 288
 289static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 290{
 291        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 292        struct f2fs_node *rn = F2FS_NODE(page);
 293        size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
 294        __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
 295
 296        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
 297                __u64 crc = le32_to_cpu(*((__le32 *)
 298                                ((unsigned char *)ckpt + crc_offset)));
 299                cp_ver |= (crc << 32);
 300        }
 301        rn->footer.cp_ver = cpu_to_le64(cp_ver);
 302        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 303}
 304
 305static inline bool is_recoverable_dnode(struct page *page)
 306{
 307        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 308        size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
 309        __u64 cp_ver = cur_cp_version(ckpt);
 310
 311        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
 312                __u64 crc = le32_to_cpu(*((__le32 *)
 313                                ((unsigned char *)ckpt + crc_offset)));
 314                cp_ver |= (crc << 32);
 315        }
 316        return cpu_to_le64(cp_ver) == cpver_of_node(page);
 317}
 318
 319/*
 320 * f2fs assigns the following node offsets described as (num).
 321 * N = NIDS_PER_BLOCK
 322 *
 323 *  Inode block (0)
 324 *    |- direct node (1)
 325 *    |- direct node (2)
 326 *    |- indirect node (3)
 327 *    |            `- direct node (4 => 4 + N - 1)
 328 *    |- indirect node (4 + N)
 329 *    |            `- direct node (5 + N => 5 + 2N - 1)
 330 *    `- double indirect node (5 + 2N)
 331 *                 `- indirect node (6 + 2N)
 332 *                       `- direct node
 333 *                 ......
 334 *                 `- indirect node ((6 + 2N) + x(N + 1))
 335 *                       `- direct node
 336 *                 ......
 337 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 338 *                       `- direct node
 339 */
 340static inline bool IS_DNODE(struct page *node_page)
 341{
 342        unsigned int ofs = ofs_of_node(node_page);
 343
 344        if (f2fs_has_xattr_block(ofs))
 345                return false;
 346
 347        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 348                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 349                return false;
 350        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 351                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 352                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 353                        return false;
 354        }
 355        return true;
 356}
 357
 358static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 359{
 360        struct f2fs_node *rn = F2FS_NODE(p);
 361
 362        f2fs_wait_on_page_writeback(p, NODE, true);
 363
 364        if (i)
 365                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 366        else
 367                rn->in.nid[off] = cpu_to_le32(nid);
 368        return set_page_dirty(p);
 369}
 370
 371static inline nid_t get_nid(struct page *p, int off, bool i)
 372{
 373        struct f2fs_node *rn = F2FS_NODE(p);
 374
 375        if (i)
 376                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 377        return le32_to_cpu(rn->in.nid[off]);
 378}
 379
 380/*
 381 * Coldness identification:
 382 *  - Mark cold files in f2fs_inode_info
 383 *  - Mark cold node blocks in their node footer
 384 *  - Mark cold data pages in page cache
 385 */
 386static inline int is_cold_data(struct page *page)
 387{
 388        return PageChecked(page);
 389}
 390
 391static inline void set_cold_data(struct page *page)
 392{
 393        SetPageChecked(page);
 394}
 395
 396static inline void clear_cold_data(struct page *page)
 397{
 398        ClearPageChecked(page);
 399}
 400
 401static inline int is_node(struct page *page, int type)
 402{
 403        struct f2fs_node *rn = F2FS_NODE(page);
 404        return le32_to_cpu(rn->footer.flag) & (1 << type);
 405}
 406
 407#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 408#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 409#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 410
 411static inline int is_inline_node(struct page *page)
 412{
 413        return PageChecked(page);
 414}
 415
 416static inline void set_inline_node(struct page *page)
 417{
 418        SetPageChecked(page);
 419}
 420
 421static inline void clear_inline_node(struct page *page)
 422{
 423        ClearPageChecked(page);
 424}
 425
 426static inline void set_cold_node(struct inode *inode, struct page *page)
 427{
 428        struct f2fs_node *rn = F2FS_NODE(page);
 429        unsigned int flag = le32_to_cpu(rn->footer.flag);
 430
 431        if (S_ISDIR(inode->i_mode))
 432                flag &= ~(0x1 << COLD_BIT_SHIFT);
 433        else
 434                flag |= (0x1 << COLD_BIT_SHIFT);
 435        rn->footer.flag = cpu_to_le32(flag);
 436}
 437
 438static inline void set_mark(struct page *page, int mark, int type)
 439{
 440        struct f2fs_node *rn = F2FS_NODE(page);
 441        unsigned int flag = le32_to_cpu(rn->footer.flag);
 442        if (mark)
 443                flag |= (0x1 << type);
 444        else
 445                flag &= ~(0x1 << type);
 446        rn->footer.flag = cpu_to_le32(flag);
 447}
 448#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 449#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 450