linux/fs/xfs/libxfs/xfs_btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_mount.h"
  26#include "xfs_defer.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_buf_item.h"
  31#include "xfs_btree.h"
  32#include "xfs_error.h"
  33#include "xfs_trace.h"
  34#include "xfs_cksum.h"
  35#include "xfs_alloc.h"
  36#include "xfs_log.h"
  37
  38/*
  39 * Cursor allocation zone.
  40 */
  41kmem_zone_t     *xfs_btree_cur_zone;
  42
  43/*
  44 * Btree magic numbers.
  45 */
  46static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  47        { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  48          XFS_FIBT_MAGIC, 0 },
  49        { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  50          XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  51          XFS_REFC_CRC_MAGIC }
  52};
  53#define xfs_btree_magic(cur) \
  54        xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
  55
  56STATIC int                              /* error (0 or EFSCORRUPTED) */
  57xfs_btree_check_lblock(
  58        struct xfs_btree_cur    *cur,   /* btree cursor */
  59        struct xfs_btree_block  *block, /* btree long form block pointer */
  60        int                     level,  /* level of the btree block */
  61        struct xfs_buf          *bp)    /* buffer for block, if any */
  62{
  63        int                     lblock_ok = 1; /* block passes checks */
  64        struct xfs_mount        *mp;    /* file system mount point */
  65
  66        mp = cur->bc_mp;
  67
  68        if (xfs_sb_version_hascrc(&mp->m_sb)) {
  69                lblock_ok = lblock_ok &&
  70                        uuid_equal(&block->bb_u.l.bb_uuid,
  71                                   &mp->m_sb.sb_meta_uuid) &&
  72                        block->bb_u.l.bb_blkno == cpu_to_be64(
  73                                bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
  74        }
  75
  76        lblock_ok = lblock_ok &&
  77                be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
  78                be16_to_cpu(block->bb_level) == level &&
  79                be16_to_cpu(block->bb_numrecs) <=
  80                        cur->bc_ops->get_maxrecs(cur, level) &&
  81                block->bb_u.l.bb_leftsib &&
  82                (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
  83                 XFS_FSB_SANITY_CHECK(mp,
  84                        be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
  85                block->bb_u.l.bb_rightsib &&
  86                (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
  87                 XFS_FSB_SANITY_CHECK(mp,
  88                        be64_to_cpu(block->bb_u.l.bb_rightsib)));
  89
  90        if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
  91                        XFS_ERRTAG_BTREE_CHECK_LBLOCK,
  92                        XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
  93                if (bp)
  94                        trace_xfs_btree_corrupt(bp, _RET_IP_);
  95                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
  96                return -EFSCORRUPTED;
  97        }
  98        return 0;
  99}
 100
 101STATIC int                              /* error (0 or EFSCORRUPTED) */
 102xfs_btree_check_sblock(
 103        struct xfs_btree_cur    *cur,   /* btree cursor */
 104        struct xfs_btree_block  *block, /* btree short form block pointer */
 105        int                     level,  /* level of the btree block */
 106        struct xfs_buf          *bp)    /* buffer containing block */
 107{
 108        struct xfs_mount        *mp;    /* file system mount point */
 109        struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
 110        struct xfs_agf          *agf;   /* ag. freespace structure */
 111        xfs_agblock_t           agflen; /* native ag. freespace length */
 112        int                     sblock_ok = 1; /* block passes checks */
 113
 114        mp = cur->bc_mp;
 115        agbp = cur->bc_private.a.agbp;
 116        agf = XFS_BUF_TO_AGF(agbp);
 117        agflen = be32_to_cpu(agf->agf_length);
 118
 119        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 120                sblock_ok = sblock_ok &&
 121                        uuid_equal(&block->bb_u.s.bb_uuid,
 122                                   &mp->m_sb.sb_meta_uuid) &&
 123                        block->bb_u.s.bb_blkno == cpu_to_be64(
 124                                bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
 125        }
 126
 127        sblock_ok = sblock_ok &&
 128                be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
 129                be16_to_cpu(block->bb_level) == level &&
 130                be16_to_cpu(block->bb_numrecs) <=
 131                        cur->bc_ops->get_maxrecs(cur, level) &&
 132                (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
 133                 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
 134                block->bb_u.s.bb_leftsib &&
 135                (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
 136                 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
 137                block->bb_u.s.bb_rightsib;
 138
 139        if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
 140                        XFS_ERRTAG_BTREE_CHECK_SBLOCK,
 141                        XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
 142                if (bp)
 143                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 144                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 145                return -EFSCORRUPTED;
 146        }
 147        return 0;
 148}
 149
 150/*
 151 * Debug routine: check that block header is ok.
 152 */
 153int
 154xfs_btree_check_block(
 155        struct xfs_btree_cur    *cur,   /* btree cursor */
 156        struct xfs_btree_block  *block, /* generic btree block pointer */
 157        int                     level,  /* level of the btree block */
 158        struct xfs_buf          *bp)    /* buffer containing block, if any */
 159{
 160        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 161                return xfs_btree_check_lblock(cur, block, level, bp);
 162        else
 163                return xfs_btree_check_sblock(cur, block, level, bp);
 164}
 165
 166/*
 167 * Check that (long) pointer is ok.
 168 */
 169int                                     /* error (0 or EFSCORRUPTED) */
 170xfs_btree_check_lptr(
 171        struct xfs_btree_cur    *cur,   /* btree cursor */
 172        xfs_fsblock_t           bno,    /* btree block disk address */
 173        int                     level)  /* btree block level */
 174{
 175        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 176                level > 0 &&
 177                bno != NULLFSBLOCK &&
 178                XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
 179        return 0;
 180}
 181
 182#ifdef DEBUG
 183/*
 184 * Check that (short) pointer is ok.
 185 */
 186STATIC int                              /* error (0 or EFSCORRUPTED) */
 187xfs_btree_check_sptr(
 188        struct xfs_btree_cur    *cur,   /* btree cursor */
 189        xfs_agblock_t           bno,    /* btree block disk address */
 190        int                     level)  /* btree block level */
 191{
 192        xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
 193
 194        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 195                level > 0 &&
 196                bno != NULLAGBLOCK &&
 197                bno != 0 &&
 198                bno < agblocks);
 199        return 0;
 200}
 201
 202/*
 203 * Check that block ptr is ok.
 204 */
 205STATIC int                              /* error (0 or EFSCORRUPTED) */
 206xfs_btree_check_ptr(
 207        struct xfs_btree_cur    *cur,   /* btree cursor */
 208        union xfs_btree_ptr     *ptr,   /* btree block disk address */
 209        int                     index,  /* offset from ptr to check */
 210        int                     level)  /* btree block level */
 211{
 212        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 213                return xfs_btree_check_lptr(cur,
 214                                be64_to_cpu((&ptr->l)[index]), level);
 215        } else {
 216                return xfs_btree_check_sptr(cur,
 217                                be32_to_cpu((&ptr->s)[index]), level);
 218        }
 219}
 220#endif
 221
 222/*
 223 * Calculate CRC on the whole btree block and stuff it into the
 224 * long-form btree header.
 225 *
 226 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 227 * it into the buffer so recovery knows what the last modification was that made
 228 * it to disk.
 229 */
 230void
 231xfs_btree_lblock_calc_crc(
 232        struct xfs_buf          *bp)
 233{
 234        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 235        struct xfs_buf_log_item *bip = bp->b_fspriv;
 236
 237        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 238                return;
 239        if (bip)
 240                block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 241        xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 242}
 243
 244bool
 245xfs_btree_lblock_verify_crc(
 246        struct xfs_buf          *bp)
 247{
 248        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 249        struct xfs_mount        *mp = bp->b_target->bt_mount;
 250
 251        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 252                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 253                        return false;
 254                return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 255        }
 256
 257        return true;
 258}
 259
 260/*
 261 * Calculate CRC on the whole btree block and stuff it into the
 262 * short-form btree header.
 263 *
 264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 265 * it into the buffer so recovery knows what the last modification was that made
 266 * it to disk.
 267 */
 268void
 269xfs_btree_sblock_calc_crc(
 270        struct xfs_buf          *bp)
 271{
 272        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 273        struct xfs_buf_log_item *bip = bp->b_fspriv;
 274
 275        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 276                return;
 277        if (bip)
 278                block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 279        xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 280}
 281
 282bool
 283xfs_btree_sblock_verify_crc(
 284        struct xfs_buf          *bp)
 285{
 286        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 287        struct xfs_mount        *mp = bp->b_target->bt_mount;
 288
 289        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 290                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 291                        return false;
 292                return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 293        }
 294
 295        return true;
 296}
 297
 298static int
 299xfs_btree_free_block(
 300        struct xfs_btree_cur    *cur,
 301        struct xfs_buf          *bp)
 302{
 303        int                     error;
 304
 305        error = cur->bc_ops->free_block(cur, bp);
 306        if (!error) {
 307                xfs_trans_binval(cur->bc_tp, bp);
 308                XFS_BTREE_STATS_INC(cur, free);
 309        }
 310        return error;
 311}
 312
 313/*
 314 * Delete the btree cursor.
 315 */
 316void
 317xfs_btree_del_cursor(
 318        xfs_btree_cur_t *cur,           /* btree cursor */
 319        int             error)          /* del because of error */
 320{
 321        int             i;              /* btree level */
 322
 323        /*
 324         * Clear the buffer pointers, and release the buffers.
 325         * If we're doing this in the face of an error, we
 326         * need to make sure to inspect all of the entries
 327         * in the bc_bufs array for buffers to be unlocked.
 328         * This is because some of the btree code works from
 329         * level n down to 0, and if we get an error along
 330         * the way we won't have initialized all the entries
 331         * down to 0.
 332         */
 333        for (i = 0; i < cur->bc_nlevels; i++) {
 334                if (cur->bc_bufs[i])
 335                        xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 336                else if (!error)
 337                        break;
 338        }
 339        /*
 340         * Can't free a bmap cursor without having dealt with the
 341         * allocated indirect blocks' accounting.
 342         */
 343        ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 344               cur->bc_private.b.allocated == 0);
 345        /*
 346         * Free the cursor.
 347         */
 348        kmem_zone_free(xfs_btree_cur_zone, cur);
 349}
 350
 351/*
 352 * Duplicate the btree cursor.
 353 * Allocate a new one, copy the record, re-get the buffers.
 354 */
 355int                                     /* error */
 356xfs_btree_dup_cursor(
 357        xfs_btree_cur_t *cur,           /* input cursor */
 358        xfs_btree_cur_t **ncur)         /* output cursor */
 359{
 360        xfs_buf_t       *bp;            /* btree block's buffer pointer */
 361        int             error;          /* error return value */
 362        int             i;              /* level number of btree block */
 363        xfs_mount_t     *mp;            /* mount structure for filesystem */
 364        xfs_btree_cur_t *new;           /* new cursor value */
 365        xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
 366
 367        tp = cur->bc_tp;
 368        mp = cur->bc_mp;
 369
 370        /*
 371         * Allocate a new cursor like the old one.
 372         */
 373        new = cur->bc_ops->dup_cursor(cur);
 374
 375        /*
 376         * Copy the record currently in the cursor.
 377         */
 378        new->bc_rec = cur->bc_rec;
 379
 380        /*
 381         * For each level current, re-get the buffer and copy the ptr value.
 382         */
 383        for (i = 0; i < new->bc_nlevels; i++) {
 384                new->bc_ptrs[i] = cur->bc_ptrs[i];
 385                new->bc_ra[i] = cur->bc_ra[i];
 386                bp = cur->bc_bufs[i];
 387                if (bp) {
 388                        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 389                                                   XFS_BUF_ADDR(bp), mp->m_bsize,
 390                                                   0, &bp,
 391                                                   cur->bc_ops->buf_ops);
 392                        if (error) {
 393                                xfs_btree_del_cursor(new, error);
 394                                *ncur = NULL;
 395                                return error;
 396                        }
 397                }
 398                new->bc_bufs[i] = bp;
 399        }
 400        *ncur = new;
 401        return 0;
 402}
 403
 404/*
 405 * XFS btree block layout and addressing:
 406 *
 407 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 408 *
 409 * The leaf record start with a header then followed by records containing
 410 * the values.  A non-leaf block also starts with the same header, and
 411 * then first contains lookup keys followed by an equal number of pointers
 412 * to the btree blocks at the previous level.
 413 *
 414 *              +--------+-------+-------+-------+-------+-------+-------+
 415 * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 416 *              +--------+-------+-------+-------+-------+-------+-------+
 417 *
 418 *              +--------+-------+-------+-------+-------+-------+-------+
 419 * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 420 *              +--------+-------+-------+-------+-------+-------+-------+
 421 *
 422 * The header is called struct xfs_btree_block for reasons better left unknown
 423 * and comes in different versions for short (32bit) and long (64bit) block
 424 * pointers.  The record and key structures are defined by the btree instances
 425 * and opaque to the btree core.  The block pointers are simple disk endian
 426 * integers, available in a short (32bit) and long (64bit) variant.
 427 *
 428 * The helpers below calculate the offset of a given record, key or pointer
 429 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 430 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 431 * inside the btree block is done using indices starting at one, not zero!
 432 *
 433 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 434 * overlapping intervals.  In such a tree, records are still sorted lowest to
 435 * highest and indexed by the smallest key value that refers to the record.
 436 * However, nodes are different: each pointer has two associated keys -- one
 437 * indexing the lowest key available in the block(s) below (the same behavior
 438 * as the key in a regular btree) and another indexing the highest key
 439 * available in the block(s) below.  Because records are /not/ sorted by the
 440 * highest key, all leaf block updates require us to compute the highest key
 441 * that matches any record in the leaf and to recursively update the high keys
 442 * in the nodes going further up in the tree, if necessary.  Nodes look like
 443 * this:
 444 *
 445 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 446 * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 447 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 448 *
 449 * To perform an interval query on an overlapped tree, perform the usual
 450 * depth-first search and use the low and high keys to decide if we can skip
 451 * that particular node.  If a leaf node is reached, return the records that
 452 * intersect the interval.  Note that an interval query may return numerous
 453 * entries.  For a non-overlapped tree, simply search for the record associated
 454 * with the lowest key and iterate forward until a non-matching record is
 455 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 456 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 457 * more detail.
 458 *
 459 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 460 * reverse mapping records on a reflink filesystem:
 461 *
 462 * 1: +- file A startblock B offset C length D -----------+
 463 * 2:      +- file E startblock F offset G length H --------------+
 464 * 3:      +- file I startblock F offset J length K --+
 465 * 4:                                                        +- file L... --+
 466 *
 467 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 468 * we'd simply increment the length of record 1.  But how do we find the record
 469 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 470 * record 3 because the keys are ordered first by startblock.  An interval
 471 * query would return records 1 and 2 because they both overlap (B+D-1), and
 472 * from that we can pick out record 1 as the appropriate left neighbor.
 473 *
 474 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 475 * because a record's interval must end before the next record.
 476 */
 477
 478/*
 479 * Return size of the btree block header for this btree instance.
 480 */
 481static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 482{
 483        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 484                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 485                        return XFS_BTREE_LBLOCK_CRC_LEN;
 486                return XFS_BTREE_LBLOCK_LEN;
 487        }
 488        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 489                return XFS_BTREE_SBLOCK_CRC_LEN;
 490        return XFS_BTREE_SBLOCK_LEN;
 491}
 492
 493/*
 494 * Return size of btree block pointers for this btree instance.
 495 */
 496static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 497{
 498        return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 499                sizeof(__be64) : sizeof(__be32);
 500}
 501
 502/*
 503 * Calculate offset of the n-th record in a btree block.
 504 */
 505STATIC size_t
 506xfs_btree_rec_offset(
 507        struct xfs_btree_cur    *cur,
 508        int                     n)
 509{
 510        return xfs_btree_block_len(cur) +
 511                (n - 1) * cur->bc_ops->rec_len;
 512}
 513
 514/*
 515 * Calculate offset of the n-th key in a btree block.
 516 */
 517STATIC size_t
 518xfs_btree_key_offset(
 519        struct xfs_btree_cur    *cur,
 520        int                     n)
 521{
 522        return xfs_btree_block_len(cur) +
 523                (n - 1) * cur->bc_ops->key_len;
 524}
 525
 526/*
 527 * Calculate offset of the n-th high key in a btree block.
 528 */
 529STATIC size_t
 530xfs_btree_high_key_offset(
 531        struct xfs_btree_cur    *cur,
 532        int                     n)
 533{
 534        return xfs_btree_block_len(cur) +
 535                (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 536}
 537
 538/*
 539 * Calculate offset of the n-th block pointer in a btree block.
 540 */
 541STATIC size_t
 542xfs_btree_ptr_offset(
 543        struct xfs_btree_cur    *cur,
 544        int                     n,
 545        int                     level)
 546{
 547        return xfs_btree_block_len(cur) +
 548                cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 549                (n - 1) * xfs_btree_ptr_len(cur);
 550}
 551
 552/*
 553 * Return a pointer to the n-th record in the btree block.
 554 */
 555STATIC union xfs_btree_rec *
 556xfs_btree_rec_addr(
 557        struct xfs_btree_cur    *cur,
 558        int                     n,
 559        struct xfs_btree_block  *block)
 560{
 561        return (union xfs_btree_rec *)
 562                ((char *)block + xfs_btree_rec_offset(cur, n));
 563}
 564
 565/*
 566 * Return a pointer to the n-th key in the btree block.
 567 */
 568STATIC union xfs_btree_key *
 569xfs_btree_key_addr(
 570        struct xfs_btree_cur    *cur,
 571        int                     n,
 572        struct xfs_btree_block  *block)
 573{
 574        return (union xfs_btree_key *)
 575                ((char *)block + xfs_btree_key_offset(cur, n));
 576}
 577
 578/*
 579 * Return a pointer to the n-th high key in the btree block.
 580 */
 581STATIC union xfs_btree_key *
 582xfs_btree_high_key_addr(
 583        struct xfs_btree_cur    *cur,
 584        int                     n,
 585        struct xfs_btree_block  *block)
 586{
 587        return (union xfs_btree_key *)
 588                ((char *)block + xfs_btree_high_key_offset(cur, n));
 589}
 590
 591/*
 592 * Return a pointer to the n-th block pointer in the btree block.
 593 */
 594STATIC union xfs_btree_ptr *
 595xfs_btree_ptr_addr(
 596        struct xfs_btree_cur    *cur,
 597        int                     n,
 598        struct xfs_btree_block  *block)
 599{
 600        int                     level = xfs_btree_get_level(block);
 601
 602        ASSERT(block->bb_level != 0);
 603
 604        return (union xfs_btree_ptr *)
 605                ((char *)block + xfs_btree_ptr_offset(cur, n, level));
 606}
 607
 608/*
 609 * Get the root block which is stored in the inode.
 610 *
 611 * For now this btree implementation assumes the btree root is always
 612 * stored in the if_broot field of an inode fork.
 613 */
 614STATIC struct xfs_btree_block *
 615xfs_btree_get_iroot(
 616        struct xfs_btree_cur    *cur)
 617{
 618        struct xfs_ifork        *ifp;
 619
 620        ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 621        return (struct xfs_btree_block *)ifp->if_broot;
 622}
 623
 624/*
 625 * Retrieve the block pointer from the cursor at the given level.
 626 * This may be an inode btree root or from a buffer.
 627 */
 628STATIC struct xfs_btree_block *         /* generic btree block pointer */
 629xfs_btree_get_block(
 630        struct xfs_btree_cur    *cur,   /* btree cursor */
 631        int                     level,  /* level in btree */
 632        struct xfs_buf          **bpp)  /* buffer containing the block */
 633{
 634        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 635            (level == cur->bc_nlevels - 1)) {
 636                *bpp = NULL;
 637                return xfs_btree_get_iroot(cur);
 638        }
 639
 640        *bpp = cur->bc_bufs[level];
 641        return XFS_BUF_TO_BLOCK(*bpp);
 642}
 643
 644/*
 645 * Get a buffer for the block, return it with no data read.
 646 * Long-form addressing.
 647 */
 648xfs_buf_t *                             /* buffer for fsbno */
 649xfs_btree_get_bufl(
 650        xfs_mount_t     *mp,            /* file system mount point */
 651        xfs_trans_t     *tp,            /* transaction pointer */
 652        xfs_fsblock_t   fsbno,          /* file system block number */
 653        uint            lock)           /* lock flags for get_buf */
 654{
 655        xfs_daddr_t             d;              /* real disk block address */
 656
 657        ASSERT(fsbno != NULLFSBLOCK);
 658        d = XFS_FSB_TO_DADDR(mp, fsbno);
 659        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 660}
 661
 662/*
 663 * Get a buffer for the block, return it with no data read.
 664 * Short-form addressing.
 665 */
 666xfs_buf_t *                             /* buffer for agno/agbno */
 667xfs_btree_get_bufs(
 668        xfs_mount_t     *mp,            /* file system mount point */
 669        xfs_trans_t     *tp,            /* transaction pointer */
 670        xfs_agnumber_t  agno,           /* allocation group number */
 671        xfs_agblock_t   agbno,          /* allocation group block number */
 672        uint            lock)           /* lock flags for get_buf */
 673{
 674        xfs_daddr_t             d;              /* real disk block address */
 675
 676        ASSERT(agno != NULLAGNUMBER);
 677        ASSERT(agbno != NULLAGBLOCK);
 678        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 679        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 680}
 681
 682/*
 683 * Check for the cursor referring to the last block at the given level.
 684 */
 685int                                     /* 1=is last block, 0=not last block */
 686xfs_btree_islastblock(
 687        xfs_btree_cur_t         *cur,   /* btree cursor */
 688        int                     level)  /* level to check */
 689{
 690        struct xfs_btree_block  *block; /* generic btree block pointer */
 691        xfs_buf_t               *bp;    /* buffer containing block */
 692
 693        block = xfs_btree_get_block(cur, level, &bp);
 694        xfs_btree_check_block(cur, block, level, bp);
 695        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 696                return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
 697        else
 698                return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
 699}
 700
 701/*
 702 * Change the cursor to point to the first record at the given level.
 703 * Other levels are unaffected.
 704 */
 705STATIC int                              /* success=1, failure=0 */
 706xfs_btree_firstrec(
 707        xfs_btree_cur_t         *cur,   /* btree cursor */
 708        int                     level)  /* level to change */
 709{
 710        struct xfs_btree_block  *block; /* generic btree block pointer */
 711        xfs_buf_t               *bp;    /* buffer containing block */
 712
 713        /*
 714         * Get the block pointer for this level.
 715         */
 716        block = xfs_btree_get_block(cur, level, &bp);
 717        xfs_btree_check_block(cur, block, level, bp);
 718        /*
 719         * It's empty, there is no such record.
 720         */
 721        if (!block->bb_numrecs)
 722                return 0;
 723        /*
 724         * Set the ptr value to 1, that's the first record/key.
 725         */
 726        cur->bc_ptrs[level] = 1;
 727        return 1;
 728}
 729
 730/*
 731 * Change the cursor to point to the last record in the current block
 732 * at the given level.  Other levels are unaffected.
 733 */
 734STATIC int                              /* success=1, failure=0 */
 735xfs_btree_lastrec(
 736        xfs_btree_cur_t         *cur,   /* btree cursor */
 737        int                     level)  /* level to change */
 738{
 739        struct xfs_btree_block  *block; /* generic btree block pointer */
 740        xfs_buf_t               *bp;    /* buffer containing block */
 741
 742        /*
 743         * Get the block pointer for this level.
 744         */
 745        block = xfs_btree_get_block(cur, level, &bp);
 746        xfs_btree_check_block(cur, block, level, bp);
 747        /*
 748         * It's empty, there is no such record.
 749         */
 750        if (!block->bb_numrecs)
 751                return 0;
 752        /*
 753         * Set the ptr value to numrecs, that's the last record/key.
 754         */
 755        cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 756        return 1;
 757}
 758
 759/*
 760 * Compute first and last byte offsets for the fields given.
 761 * Interprets the offsets table, which contains struct field offsets.
 762 */
 763void
 764xfs_btree_offsets(
 765        __int64_t       fields,         /* bitmask of fields */
 766        const short     *offsets,       /* table of field offsets */
 767        int             nbits,          /* number of bits to inspect */
 768        int             *first,         /* output: first byte offset */
 769        int             *last)          /* output: last byte offset */
 770{
 771        int             i;              /* current bit number */
 772        __int64_t       imask;          /* mask for current bit number */
 773
 774        ASSERT(fields != 0);
 775        /*
 776         * Find the lowest bit, so the first byte offset.
 777         */
 778        for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 779                if (imask & fields) {
 780                        *first = offsets[i];
 781                        break;
 782                }
 783        }
 784        /*
 785         * Find the highest bit, so the last byte offset.
 786         */
 787        for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 788                if (imask & fields) {
 789                        *last = offsets[i + 1] - 1;
 790                        break;
 791                }
 792        }
 793}
 794
 795/*
 796 * Get a buffer for the block, return it read in.
 797 * Long-form addressing.
 798 */
 799int
 800xfs_btree_read_bufl(
 801        struct xfs_mount        *mp,            /* file system mount point */
 802        struct xfs_trans        *tp,            /* transaction pointer */
 803        xfs_fsblock_t           fsbno,          /* file system block number */
 804        uint                    lock,           /* lock flags for read_buf */
 805        struct xfs_buf          **bpp,          /* buffer for fsbno */
 806        int                     refval,         /* ref count value for buffer */
 807        const struct xfs_buf_ops *ops)
 808{
 809        struct xfs_buf          *bp;            /* return value */
 810        xfs_daddr_t             d;              /* real disk block address */
 811        int                     error;
 812
 813        ASSERT(fsbno != NULLFSBLOCK);
 814        d = XFS_FSB_TO_DADDR(mp, fsbno);
 815        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 816                                   mp->m_bsize, lock, &bp, ops);
 817        if (error)
 818                return error;
 819        if (bp)
 820                xfs_buf_set_ref(bp, refval);
 821        *bpp = bp;
 822        return 0;
 823}
 824
 825/*
 826 * Read-ahead the block, don't wait for it, don't return a buffer.
 827 * Long-form addressing.
 828 */
 829/* ARGSUSED */
 830void
 831xfs_btree_reada_bufl(
 832        struct xfs_mount        *mp,            /* file system mount point */
 833        xfs_fsblock_t           fsbno,          /* file system block number */
 834        xfs_extlen_t            count,          /* count of filesystem blocks */
 835        const struct xfs_buf_ops *ops)
 836{
 837        xfs_daddr_t             d;
 838
 839        ASSERT(fsbno != NULLFSBLOCK);
 840        d = XFS_FSB_TO_DADDR(mp, fsbno);
 841        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 842}
 843
 844/*
 845 * Read-ahead the block, don't wait for it, don't return a buffer.
 846 * Short-form addressing.
 847 */
 848/* ARGSUSED */
 849void
 850xfs_btree_reada_bufs(
 851        struct xfs_mount        *mp,            /* file system mount point */
 852        xfs_agnumber_t          agno,           /* allocation group number */
 853        xfs_agblock_t           agbno,          /* allocation group block number */
 854        xfs_extlen_t            count,          /* count of filesystem blocks */
 855        const struct xfs_buf_ops *ops)
 856{
 857        xfs_daddr_t             d;
 858
 859        ASSERT(agno != NULLAGNUMBER);
 860        ASSERT(agbno != NULLAGBLOCK);
 861        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 862        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 863}
 864
 865STATIC int
 866xfs_btree_readahead_lblock(
 867        struct xfs_btree_cur    *cur,
 868        int                     lr,
 869        struct xfs_btree_block  *block)
 870{
 871        int                     rval = 0;
 872        xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 873        xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 874
 875        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 876                xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 877                                     cur->bc_ops->buf_ops);
 878                rval++;
 879        }
 880
 881        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 882                xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 883                                     cur->bc_ops->buf_ops);
 884                rval++;
 885        }
 886
 887        return rval;
 888}
 889
 890STATIC int
 891xfs_btree_readahead_sblock(
 892        struct xfs_btree_cur    *cur,
 893        int                     lr,
 894        struct xfs_btree_block *block)
 895{
 896        int                     rval = 0;
 897        xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 898        xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 899
 900
 901        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 902                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 903                                     left, 1, cur->bc_ops->buf_ops);
 904                rval++;
 905        }
 906
 907        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 908                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 909                                     right, 1, cur->bc_ops->buf_ops);
 910                rval++;
 911        }
 912
 913        return rval;
 914}
 915
 916/*
 917 * Read-ahead btree blocks, at the given level.
 918 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 919 */
 920STATIC int
 921xfs_btree_readahead(
 922        struct xfs_btree_cur    *cur,           /* btree cursor */
 923        int                     lev,            /* level in btree */
 924        int                     lr)             /* left/right bits */
 925{
 926        struct xfs_btree_block  *block;
 927
 928        /*
 929         * No readahead needed if we are at the root level and the
 930         * btree root is stored in the inode.
 931         */
 932        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 933            (lev == cur->bc_nlevels - 1))
 934                return 0;
 935
 936        if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 937                return 0;
 938
 939        cur->bc_ra[lev] |= lr;
 940        block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 941
 942        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 943                return xfs_btree_readahead_lblock(cur, lr, block);
 944        return xfs_btree_readahead_sblock(cur, lr, block);
 945}
 946
 947STATIC xfs_daddr_t
 948xfs_btree_ptr_to_daddr(
 949        struct xfs_btree_cur    *cur,
 950        union xfs_btree_ptr     *ptr)
 951{
 952        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 953                ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
 954
 955                return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
 956        } else {
 957                ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
 958                ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
 959
 960                return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
 961                                        be32_to_cpu(ptr->s));
 962        }
 963}
 964
 965/*
 966 * Readahead @count btree blocks at the given @ptr location.
 967 *
 968 * We don't need to care about long or short form btrees here as we have a
 969 * method of converting the ptr directly to a daddr available to us.
 970 */
 971STATIC void
 972xfs_btree_readahead_ptr(
 973        struct xfs_btree_cur    *cur,
 974        union xfs_btree_ptr     *ptr,
 975        xfs_extlen_t            count)
 976{
 977        xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
 978                          xfs_btree_ptr_to_daddr(cur, ptr),
 979                          cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 980}
 981
 982/*
 983 * Set the buffer for level "lev" in the cursor to bp, releasing
 984 * any previous buffer.
 985 */
 986STATIC void
 987xfs_btree_setbuf(
 988        xfs_btree_cur_t         *cur,   /* btree cursor */
 989        int                     lev,    /* level in btree */
 990        xfs_buf_t               *bp)    /* new buffer to set */
 991{
 992        struct xfs_btree_block  *b;     /* btree block */
 993
 994        if (cur->bc_bufs[lev])
 995                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
 996        cur->bc_bufs[lev] = bp;
 997        cur->bc_ra[lev] = 0;
 998
 999        b = XFS_BUF_TO_BLOCK(bp);
1000        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001                if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003                if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005        } else {
1006                if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008                if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010        }
1011}
1012
1013STATIC int
1014xfs_btree_ptr_is_null(
1015        struct xfs_btree_cur    *cur,
1016        union xfs_btree_ptr     *ptr)
1017{
1018        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019                return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020        else
1021                return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022}
1023
1024STATIC void
1025xfs_btree_set_ptr_null(
1026        struct xfs_btree_cur    *cur,
1027        union xfs_btree_ptr     *ptr)
1028{
1029        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030                ptr->l = cpu_to_be64(NULLFSBLOCK);
1031        else
1032                ptr->s = cpu_to_be32(NULLAGBLOCK);
1033}
1034
1035/*
1036 * Get/set/init sibling pointers
1037 */
1038STATIC void
1039xfs_btree_get_sibling(
1040        struct xfs_btree_cur    *cur,
1041        struct xfs_btree_block  *block,
1042        union xfs_btree_ptr     *ptr,
1043        int                     lr)
1044{
1045        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048                if (lr == XFS_BB_RIGHTSIB)
1049                        ptr->l = block->bb_u.l.bb_rightsib;
1050                else
1051                        ptr->l = block->bb_u.l.bb_leftsib;
1052        } else {
1053                if (lr == XFS_BB_RIGHTSIB)
1054                        ptr->s = block->bb_u.s.bb_rightsib;
1055                else
1056                        ptr->s = block->bb_u.s.bb_leftsib;
1057        }
1058}
1059
1060STATIC void
1061xfs_btree_set_sibling(
1062        struct xfs_btree_cur    *cur,
1063        struct xfs_btree_block  *block,
1064        union xfs_btree_ptr     *ptr,
1065        int                     lr)
1066{
1067        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070                if (lr == XFS_BB_RIGHTSIB)
1071                        block->bb_u.l.bb_rightsib = ptr->l;
1072                else
1073                        block->bb_u.l.bb_leftsib = ptr->l;
1074        } else {
1075                if (lr == XFS_BB_RIGHTSIB)
1076                        block->bb_u.s.bb_rightsib = ptr->s;
1077                else
1078                        block->bb_u.s.bb_leftsib = ptr->s;
1079        }
1080}
1081
1082void
1083xfs_btree_init_block_int(
1084        struct xfs_mount        *mp,
1085        struct xfs_btree_block  *buf,
1086        xfs_daddr_t             blkno,
1087        __u32                   magic,
1088        __u16                   level,
1089        __u16                   numrecs,
1090        __u64                   owner,
1091        unsigned int            flags)
1092{
1093        buf->bb_magic = cpu_to_be32(magic);
1094        buf->bb_level = cpu_to_be16(level);
1095        buf->bb_numrecs = cpu_to_be16(numrecs);
1096
1097        if (flags & XFS_BTREE_LONG_PTRS) {
1098                buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1099                buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1100                if (flags & XFS_BTREE_CRC_BLOCKS) {
1101                        buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1102                        buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1103                        uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1104                        buf->bb_u.l.bb_pad = 0;
1105                        buf->bb_u.l.bb_lsn = 0;
1106                }
1107        } else {
1108                /* owner is a 32 bit value on short blocks */
1109                __u32 __owner = (__u32)owner;
1110
1111                buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1112                buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1113                if (flags & XFS_BTREE_CRC_BLOCKS) {
1114                        buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1115                        buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1116                        uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1117                        buf->bb_u.s.bb_lsn = 0;
1118                }
1119        }
1120}
1121
1122void
1123xfs_btree_init_block(
1124        struct xfs_mount *mp,
1125        struct xfs_buf  *bp,
1126        __u32           magic,
1127        __u16           level,
1128        __u16           numrecs,
1129        __u64           owner,
1130        unsigned int    flags)
1131{
1132        xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1133                                 magic, level, numrecs, owner, flags);
1134}
1135
1136STATIC void
1137xfs_btree_init_block_cur(
1138        struct xfs_btree_cur    *cur,
1139        struct xfs_buf          *bp,
1140        int                     level,
1141        int                     numrecs)
1142{
1143        __u64 owner;
1144
1145        /*
1146         * we can pull the owner from the cursor right now as the different
1147         * owners align directly with the pointer size of the btree. This may
1148         * change in future, but is safe for current users of the generic btree
1149         * code.
1150         */
1151        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1152                owner = cur->bc_private.b.ip->i_ino;
1153        else
1154                owner = cur->bc_private.a.agno;
1155
1156        xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1157                                 xfs_btree_magic(cur), level, numrecs,
1158                                 owner, cur->bc_flags);
1159}
1160
1161/*
1162 * Return true if ptr is the last record in the btree and
1163 * we need to track updates to this record.  The decision
1164 * will be further refined in the update_lastrec method.
1165 */
1166STATIC int
1167xfs_btree_is_lastrec(
1168        struct xfs_btree_cur    *cur,
1169        struct xfs_btree_block  *block,
1170        int                     level)
1171{
1172        union xfs_btree_ptr     ptr;
1173
1174        if (level > 0)
1175                return 0;
1176        if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1177                return 0;
1178
1179        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1180        if (!xfs_btree_ptr_is_null(cur, &ptr))
1181                return 0;
1182        return 1;
1183}
1184
1185STATIC void
1186xfs_btree_buf_to_ptr(
1187        struct xfs_btree_cur    *cur,
1188        struct xfs_buf          *bp,
1189        union xfs_btree_ptr     *ptr)
1190{
1191        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1192                ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1193                                        XFS_BUF_ADDR(bp)));
1194        else {
1195                ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1196                                        XFS_BUF_ADDR(bp)));
1197        }
1198}
1199
1200STATIC void
1201xfs_btree_set_refs(
1202        struct xfs_btree_cur    *cur,
1203        struct xfs_buf          *bp)
1204{
1205        switch (cur->bc_btnum) {
1206        case XFS_BTNUM_BNO:
1207        case XFS_BTNUM_CNT:
1208                xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1209                break;
1210        case XFS_BTNUM_INO:
1211        case XFS_BTNUM_FINO:
1212                xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1213                break;
1214        case XFS_BTNUM_BMAP:
1215                xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1216                break;
1217        case XFS_BTNUM_RMAP:
1218                xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1219                break;
1220        case XFS_BTNUM_REFC:
1221                xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1222                break;
1223        default:
1224                ASSERT(0);
1225        }
1226}
1227
1228STATIC int
1229xfs_btree_get_buf_block(
1230        struct xfs_btree_cur    *cur,
1231        union xfs_btree_ptr     *ptr,
1232        int                     flags,
1233        struct xfs_btree_block  **block,
1234        struct xfs_buf          **bpp)
1235{
1236        struct xfs_mount        *mp = cur->bc_mp;
1237        xfs_daddr_t             d;
1238
1239        /* need to sort out how callers deal with failures first */
1240        ASSERT(!(flags & XBF_TRYLOCK));
1241
1242        d = xfs_btree_ptr_to_daddr(cur, ptr);
1243        *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1244                                 mp->m_bsize, flags);
1245
1246        if (!*bpp)
1247                return -ENOMEM;
1248
1249        (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250        *block = XFS_BUF_TO_BLOCK(*bpp);
1251        return 0;
1252}
1253
1254/*
1255 * Read in the buffer at the given ptr and return the buffer and
1256 * the block pointer within the buffer.
1257 */
1258STATIC int
1259xfs_btree_read_buf_block(
1260        struct xfs_btree_cur    *cur,
1261        union xfs_btree_ptr     *ptr,
1262        int                     flags,
1263        struct xfs_btree_block  **block,
1264        struct xfs_buf          **bpp)
1265{
1266        struct xfs_mount        *mp = cur->bc_mp;
1267        xfs_daddr_t             d;
1268        int                     error;
1269
1270        /* need to sort out how callers deal with failures first */
1271        ASSERT(!(flags & XBF_TRYLOCK));
1272
1273        d = xfs_btree_ptr_to_daddr(cur, ptr);
1274        error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1275                                   mp->m_bsize, flags, bpp,
1276                                   cur->bc_ops->buf_ops);
1277        if (error)
1278                return error;
1279
1280        xfs_btree_set_refs(cur, *bpp);
1281        *block = XFS_BUF_TO_BLOCK(*bpp);
1282        return 0;
1283}
1284
1285/*
1286 * Copy keys from one btree block to another.
1287 */
1288STATIC void
1289xfs_btree_copy_keys(
1290        struct xfs_btree_cur    *cur,
1291        union xfs_btree_key     *dst_key,
1292        union xfs_btree_key     *src_key,
1293        int                     numkeys)
1294{
1295        ASSERT(numkeys >= 0);
1296        memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1297}
1298
1299/*
1300 * Copy records from one btree block to another.
1301 */
1302STATIC void
1303xfs_btree_copy_recs(
1304        struct xfs_btree_cur    *cur,
1305        union xfs_btree_rec     *dst_rec,
1306        union xfs_btree_rec     *src_rec,
1307        int                     numrecs)
1308{
1309        ASSERT(numrecs >= 0);
1310        memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1311}
1312
1313/*
1314 * Copy block pointers from one btree block to another.
1315 */
1316STATIC void
1317xfs_btree_copy_ptrs(
1318        struct xfs_btree_cur    *cur,
1319        union xfs_btree_ptr     *dst_ptr,
1320        union xfs_btree_ptr     *src_ptr,
1321        int                     numptrs)
1322{
1323        ASSERT(numptrs >= 0);
1324        memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1325}
1326
1327/*
1328 * Shift keys one index left/right inside a single btree block.
1329 */
1330STATIC void
1331xfs_btree_shift_keys(
1332        struct xfs_btree_cur    *cur,
1333        union xfs_btree_key     *key,
1334        int                     dir,
1335        int                     numkeys)
1336{
1337        char                    *dst_key;
1338
1339        ASSERT(numkeys >= 0);
1340        ASSERT(dir == 1 || dir == -1);
1341
1342        dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1343        memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1344}
1345
1346/*
1347 * Shift records one index left/right inside a single btree block.
1348 */
1349STATIC void
1350xfs_btree_shift_recs(
1351        struct xfs_btree_cur    *cur,
1352        union xfs_btree_rec     *rec,
1353        int                     dir,
1354        int                     numrecs)
1355{
1356        char                    *dst_rec;
1357
1358        ASSERT(numrecs >= 0);
1359        ASSERT(dir == 1 || dir == -1);
1360
1361        dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1362        memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1363}
1364
1365/*
1366 * Shift block pointers one index left/right inside a single btree block.
1367 */
1368STATIC void
1369xfs_btree_shift_ptrs(
1370        struct xfs_btree_cur    *cur,
1371        union xfs_btree_ptr     *ptr,
1372        int                     dir,
1373        int                     numptrs)
1374{
1375        char                    *dst_ptr;
1376
1377        ASSERT(numptrs >= 0);
1378        ASSERT(dir == 1 || dir == -1);
1379
1380        dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1381        memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1382}
1383
1384/*
1385 * Log key values from the btree block.
1386 */
1387STATIC void
1388xfs_btree_log_keys(
1389        struct xfs_btree_cur    *cur,
1390        struct xfs_buf          *bp,
1391        int                     first,
1392        int                     last)
1393{
1394        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1395        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1396
1397        if (bp) {
1398                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399                xfs_trans_log_buf(cur->bc_tp, bp,
1400                                  xfs_btree_key_offset(cur, first),
1401                                  xfs_btree_key_offset(cur, last + 1) - 1);
1402        } else {
1403                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1404                                xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1405        }
1406
1407        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1408}
1409
1410/*
1411 * Log record values from the btree block.
1412 */
1413void
1414xfs_btree_log_recs(
1415        struct xfs_btree_cur    *cur,
1416        struct xfs_buf          *bp,
1417        int                     first,
1418        int                     last)
1419{
1420        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1421        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1422
1423        xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1424        xfs_trans_log_buf(cur->bc_tp, bp,
1425                          xfs_btree_rec_offset(cur, first),
1426                          xfs_btree_rec_offset(cur, last + 1) - 1);
1427
1428        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1429}
1430
1431/*
1432 * Log block pointer fields from a btree block (nonleaf).
1433 */
1434STATIC void
1435xfs_btree_log_ptrs(
1436        struct xfs_btree_cur    *cur,   /* btree cursor */
1437        struct xfs_buf          *bp,    /* buffer containing btree block */
1438        int                     first,  /* index of first pointer to log */
1439        int                     last)   /* index of last pointer to log */
1440{
1441        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443
1444        if (bp) {
1445                struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1446                int                     level = xfs_btree_get_level(block);
1447
1448                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1449                xfs_trans_log_buf(cur->bc_tp, bp,
1450                                xfs_btree_ptr_offset(cur, first, level),
1451                                xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1452        } else {
1453                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1454                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1455        }
1456
1457        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458}
1459
1460/*
1461 * Log fields from a btree block header.
1462 */
1463void
1464xfs_btree_log_block(
1465        struct xfs_btree_cur    *cur,   /* btree cursor */
1466        struct xfs_buf          *bp,    /* buffer containing btree block */
1467        int                     fields) /* mask of fields: XFS_BB_... */
1468{
1469        int                     first;  /* first byte offset logged */
1470        int                     last;   /* last byte offset logged */
1471        static const short      soffsets[] = {  /* table of offsets (short) */
1472                offsetof(struct xfs_btree_block, bb_magic),
1473                offsetof(struct xfs_btree_block, bb_level),
1474                offsetof(struct xfs_btree_block, bb_numrecs),
1475                offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1476                offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1477                offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1478                offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1479                offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1480                offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1481                offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1482                XFS_BTREE_SBLOCK_CRC_LEN
1483        };
1484        static const short      loffsets[] = {  /* table of offsets (long) */
1485                offsetof(struct xfs_btree_block, bb_magic),
1486                offsetof(struct xfs_btree_block, bb_level),
1487                offsetof(struct xfs_btree_block, bb_numrecs),
1488                offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1489                offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1490                offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1491                offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1492                offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1493                offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1494                offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1495                offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1496                XFS_BTREE_LBLOCK_CRC_LEN
1497        };
1498
1499        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1500        XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1501
1502        if (bp) {
1503                int nbits;
1504
1505                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1506                        /*
1507                         * We don't log the CRC when updating a btree
1508                         * block but instead recreate it during log
1509                         * recovery.  As the log buffers have checksums
1510                         * of their own this is safe and avoids logging a crc
1511                         * update in a lot of places.
1512                         */
1513                        if (fields == XFS_BB_ALL_BITS)
1514                                fields = XFS_BB_ALL_BITS_CRC;
1515                        nbits = XFS_BB_NUM_BITS_CRC;
1516                } else {
1517                        nbits = XFS_BB_NUM_BITS;
1518                }
1519                xfs_btree_offsets(fields,
1520                                  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1521                                        loffsets : soffsets,
1522                                  nbits, &first, &last);
1523                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1524                xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1525        } else {
1526                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1527                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1528        }
1529
1530        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1531}
1532
1533/*
1534 * Increment cursor by one record at the level.
1535 * For nonzero levels the leaf-ward information is untouched.
1536 */
1537int                                             /* error */
1538xfs_btree_increment(
1539        struct xfs_btree_cur    *cur,
1540        int                     level,
1541        int                     *stat)          /* success/failure */
1542{
1543        struct xfs_btree_block  *block;
1544        union xfs_btree_ptr     ptr;
1545        struct xfs_buf          *bp;
1546        int                     error;          /* error return value */
1547        int                     lev;
1548
1549        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1550        XFS_BTREE_TRACE_ARGI(cur, level);
1551
1552        ASSERT(level < cur->bc_nlevels);
1553
1554        /* Read-ahead to the right at this level. */
1555        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1556
1557        /* Get a pointer to the btree block. */
1558        block = xfs_btree_get_block(cur, level, &bp);
1559
1560#ifdef DEBUG
1561        error = xfs_btree_check_block(cur, block, level, bp);
1562        if (error)
1563                goto error0;
1564#endif
1565
1566        /* We're done if we remain in the block after the increment. */
1567        if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1568                goto out1;
1569
1570        /* Fail if we just went off the right edge of the tree. */
1571        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1572        if (xfs_btree_ptr_is_null(cur, &ptr))
1573                goto out0;
1574
1575        XFS_BTREE_STATS_INC(cur, increment);
1576
1577        /*
1578         * March up the tree incrementing pointers.
1579         * Stop when we don't go off the right edge of a block.
1580         */
1581        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1582                block = xfs_btree_get_block(cur, lev, &bp);
1583
1584#ifdef DEBUG
1585                error = xfs_btree_check_block(cur, block, lev, bp);
1586                if (error)
1587                        goto error0;
1588#endif
1589
1590                if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1591                        break;
1592
1593                /* Read-ahead the right block for the next loop. */
1594                xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1595        }
1596
1597        /*
1598         * If we went off the root then we are either seriously
1599         * confused or have the tree root in an inode.
1600         */
1601        if (lev == cur->bc_nlevels) {
1602                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1603                        goto out0;
1604                ASSERT(0);
1605                error = -EFSCORRUPTED;
1606                goto error0;
1607        }
1608        ASSERT(lev < cur->bc_nlevels);
1609
1610        /*
1611         * Now walk back down the tree, fixing up the cursor's buffer
1612         * pointers and key numbers.
1613         */
1614        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1615                union xfs_btree_ptr     *ptrp;
1616
1617                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1618                --lev;
1619                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1620                if (error)
1621                        goto error0;
1622
1623                xfs_btree_setbuf(cur, lev, bp);
1624                cur->bc_ptrs[lev] = 1;
1625        }
1626out1:
1627        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1628        *stat = 1;
1629        return 0;
1630
1631out0:
1632        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1633        *stat = 0;
1634        return 0;
1635
1636error0:
1637        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1638        return error;
1639}
1640
1641/*
1642 * Decrement cursor by one record at the level.
1643 * For nonzero levels the leaf-ward information is untouched.
1644 */
1645int                                             /* error */
1646xfs_btree_decrement(
1647        struct xfs_btree_cur    *cur,
1648        int                     level,
1649        int                     *stat)          /* success/failure */
1650{
1651        struct xfs_btree_block  *block;
1652        xfs_buf_t               *bp;
1653        int                     error;          /* error return value */
1654        int                     lev;
1655        union xfs_btree_ptr     ptr;
1656
1657        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1658        XFS_BTREE_TRACE_ARGI(cur, level);
1659
1660        ASSERT(level < cur->bc_nlevels);
1661
1662        /* Read-ahead to the left at this level. */
1663        xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1664
1665        /* We're done if we remain in the block after the decrement. */
1666        if (--cur->bc_ptrs[level] > 0)
1667                goto out1;
1668
1669        /* Get a pointer to the btree block. */
1670        block = xfs_btree_get_block(cur, level, &bp);
1671
1672#ifdef DEBUG
1673        error = xfs_btree_check_block(cur, block, level, bp);
1674        if (error)
1675                goto error0;
1676#endif
1677
1678        /* Fail if we just went off the left edge of the tree. */
1679        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1680        if (xfs_btree_ptr_is_null(cur, &ptr))
1681                goto out0;
1682
1683        XFS_BTREE_STATS_INC(cur, decrement);
1684
1685        /*
1686         * March up the tree decrementing pointers.
1687         * Stop when we don't go off the left edge of a block.
1688         */
1689        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1690                if (--cur->bc_ptrs[lev] > 0)
1691                        break;
1692                /* Read-ahead the left block for the next loop. */
1693                xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1694        }
1695
1696        /*
1697         * If we went off the root then we are seriously confused.
1698         * or the root of the tree is in an inode.
1699         */
1700        if (lev == cur->bc_nlevels) {
1701                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1702                        goto out0;
1703                ASSERT(0);
1704                error = -EFSCORRUPTED;
1705                goto error0;
1706        }
1707        ASSERT(lev < cur->bc_nlevels);
1708
1709        /*
1710         * Now walk back down the tree, fixing up the cursor's buffer
1711         * pointers and key numbers.
1712         */
1713        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1714                union xfs_btree_ptr     *ptrp;
1715
1716                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1717                --lev;
1718                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1719                if (error)
1720                        goto error0;
1721                xfs_btree_setbuf(cur, lev, bp);
1722                cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1723        }
1724out1:
1725        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1726        *stat = 1;
1727        return 0;
1728
1729out0:
1730        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1731        *stat = 0;
1732        return 0;
1733
1734error0:
1735        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1736        return error;
1737}
1738
1739STATIC int
1740xfs_btree_lookup_get_block(
1741        struct xfs_btree_cur    *cur,   /* btree cursor */
1742        int                     level,  /* level in the btree */
1743        union xfs_btree_ptr     *pp,    /* ptr to btree block */
1744        struct xfs_btree_block  **blkp) /* return btree block */
1745{
1746        struct xfs_buf          *bp;    /* buffer pointer for btree block */
1747        int                     error = 0;
1748
1749        /* special case the root block if in an inode */
1750        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1751            (level == cur->bc_nlevels - 1)) {
1752                *blkp = xfs_btree_get_iroot(cur);
1753                return 0;
1754        }
1755
1756        /*
1757         * If the old buffer at this level for the disk address we are
1758         * looking for re-use it.
1759         *
1760         * Otherwise throw it away and get a new one.
1761         */
1762        bp = cur->bc_bufs[level];
1763        if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1764                *blkp = XFS_BUF_TO_BLOCK(bp);
1765                return 0;
1766        }
1767
1768        error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1769        if (error)
1770                return error;
1771
1772        xfs_btree_setbuf(cur, level, bp);
1773        return 0;
1774}
1775
1776/*
1777 * Get current search key.  For level 0 we don't actually have a key
1778 * structure so we make one up from the record.  For all other levels
1779 * we just return the right key.
1780 */
1781STATIC union xfs_btree_key *
1782xfs_lookup_get_search_key(
1783        struct xfs_btree_cur    *cur,
1784        int                     level,
1785        int                     keyno,
1786        struct xfs_btree_block  *block,
1787        union xfs_btree_key     *kp)
1788{
1789        if (level == 0) {
1790                cur->bc_ops->init_key_from_rec(kp,
1791                                xfs_btree_rec_addr(cur, keyno, block));
1792                return kp;
1793        }
1794
1795        return xfs_btree_key_addr(cur, keyno, block);
1796}
1797
1798/*
1799 * Lookup the record.  The cursor is made to point to it, based on dir.
1800 * stat is set to 0 if can't find any such record, 1 for success.
1801 */
1802int                                     /* error */
1803xfs_btree_lookup(
1804        struct xfs_btree_cur    *cur,   /* btree cursor */
1805        xfs_lookup_t            dir,    /* <=, ==, or >= */
1806        int                     *stat)  /* success/failure */
1807{
1808        struct xfs_btree_block  *block; /* current btree block */
1809        __int64_t               diff;   /* difference for the current key */
1810        int                     error;  /* error return value */
1811        int                     keyno;  /* current key number */
1812        int                     level;  /* level in the btree */
1813        union xfs_btree_ptr     *pp;    /* ptr to btree block */
1814        union xfs_btree_ptr     ptr;    /* ptr to btree block */
1815
1816        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1817        XFS_BTREE_TRACE_ARGI(cur, dir);
1818
1819        XFS_BTREE_STATS_INC(cur, lookup);
1820
1821        /* No such thing as a zero-level tree. */
1822        if (cur->bc_nlevels == 0)
1823                return -EFSCORRUPTED;
1824
1825        block = NULL;
1826        keyno = 0;
1827
1828        /* initialise start pointer from cursor */
1829        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1830        pp = &ptr;
1831
1832        /*
1833         * Iterate over each level in the btree, starting at the root.
1834         * For each level above the leaves, find the key we need, based
1835         * on the lookup record, then follow the corresponding block
1836         * pointer down to the next level.
1837         */
1838        for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1839                /* Get the block we need to do the lookup on. */
1840                error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1841                if (error)
1842                        goto error0;
1843
1844                if (diff == 0) {
1845                        /*
1846                         * If we already had a key match at a higher level, we
1847                         * know we need to use the first entry in this block.
1848                         */
1849                        keyno = 1;
1850                } else {
1851                        /* Otherwise search this block. Do a binary search. */
1852
1853                        int     high;   /* high entry number */
1854                        int     low;    /* low entry number */
1855
1856                        /* Set low and high entry numbers, 1-based. */
1857                        low = 1;
1858                        high = xfs_btree_get_numrecs(block);
1859                        if (!high) {
1860                                /* Block is empty, must be an empty leaf. */
1861                                ASSERT(level == 0 && cur->bc_nlevels == 1);
1862
1863                                cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1864                                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1865                                *stat = 0;
1866                                return 0;
1867                        }
1868
1869                        /* Binary search the block. */
1870                        while (low <= high) {
1871                                union xfs_btree_key     key;
1872                                union xfs_btree_key     *kp;
1873
1874                                XFS_BTREE_STATS_INC(cur, compare);
1875
1876                                /* keyno is average of low and high. */
1877                                keyno = (low + high) >> 1;
1878
1879                                /* Get current search key */
1880                                kp = xfs_lookup_get_search_key(cur, level,
1881                                                keyno, block, &key);
1882
1883                                /*
1884                                 * Compute difference to get next direction:
1885                                 *  - less than, move right
1886                                 *  - greater than, move left
1887                                 *  - equal, we're done
1888                                 */
1889                                diff = cur->bc_ops->key_diff(cur, kp);
1890                                if (diff < 0)
1891                                        low = keyno + 1;
1892                                else if (diff > 0)
1893                                        high = keyno - 1;
1894                                else
1895                                        break;
1896                        }
1897                }
1898
1899                /*
1900                 * If there are more levels, set up for the next level
1901                 * by getting the block number and filling in the cursor.
1902                 */
1903                if (level > 0) {
1904                        /*
1905                         * If we moved left, need the previous key number,
1906                         * unless there isn't one.
1907                         */
1908                        if (diff > 0 && --keyno < 1)
1909                                keyno = 1;
1910                        pp = xfs_btree_ptr_addr(cur, keyno, block);
1911
1912#ifdef DEBUG
1913                        error = xfs_btree_check_ptr(cur, pp, 0, level);
1914                        if (error)
1915                                goto error0;
1916#endif
1917                        cur->bc_ptrs[level] = keyno;
1918                }
1919        }
1920
1921        /* Done with the search. See if we need to adjust the results. */
1922        if (dir != XFS_LOOKUP_LE && diff < 0) {
1923                keyno++;
1924                /*
1925                 * If ge search and we went off the end of the block, but it's
1926                 * not the last block, we're in the wrong block.
1927                 */
1928                xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1929                if (dir == XFS_LOOKUP_GE &&
1930                    keyno > xfs_btree_get_numrecs(block) &&
1931                    !xfs_btree_ptr_is_null(cur, &ptr)) {
1932                        int     i;
1933
1934                        cur->bc_ptrs[0] = keyno;
1935                        error = xfs_btree_increment(cur, 0, &i);
1936                        if (error)
1937                                goto error0;
1938                        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1939                        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1940                        *stat = 1;
1941                        return 0;
1942                }
1943        } else if (dir == XFS_LOOKUP_LE && diff > 0)
1944                keyno--;
1945        cur->bc_ptrs[0] = keyno;
1946
1947        /* Return if we succeeded or not. */
1948        if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1949                *stat = 0;
1950        else if (dir != XFS_LOOKUP_EQ || diff == 0)
1951                *stat = 1;
1952        else
1953                *stat = 0;
1954        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1955        return 0;
1956
1957error0:
1958        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1959        return error;
1960}
1961
1962/* Find the high key storage area from a regular key. */
1963STATIC union xfs_btree_key *
1964xfs_btree_high_key_from_key(
1965        struct xfs_btree_cur    *cur,
1966        union xfs_btree_key     *key)
1967{
1968        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969        return (union xfs_btree_key *)((char *)key +
1970                        (cur->bc_ops->key_len / 2));
1971}
1972
1973/* Determine the low (and high if overlapped) keys of a leaf block */
1974STATIC void
1975xfs_btree_get_leaf_keys(
1976        struct xfs_btree_cur    *cur,
1977        struct xfs_btree_block  *block,
1978        union xfs_btree_key     *key)
1979{
1980        union xfs_btree_key     max_hkey;
1981        union xfs_btree_key     hkey;
1982        union xfs_btree_rec     *rec;
1983        union xfs_btree_key     *high;
1984        int                     n;
1985
1986        rec = xfs_btree_rec_addr(cur, 1, block);
1987        cur->bc_ops->init_key_from_rec(key, rec);
1988
1989        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990
1991                cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993                        rec = xfs_btree_rec_addr(cur, n, block);
1994                        cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995                        if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996                                        > 0)
1997                                max_hkey = hkey;
1998                }
1999
2000                high = xfs_btree_high_key_from_key(cur, key);
2001                memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002        }
2003}
2004
2005/* Determine the low (and high if overlapped) keys of a node block */
2006STATIC void
2007xfs_btree_get_node_keys(
2008        struct xfs_btree_cur    *cur,
2009        struct xfs_btree_block  *block,
2010        union xfs_btree_key     *key)
2011{
2012        union xfs_btree_key     *hkey;
2013        union xfs_btree_key     *max_hkey;
2014        union xfs_btree_key     *high;
2015        int                     n;
2016
2017        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019                                cur->bc_ops->key_len / 2);
2020
2021                max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023                        hkey = xfs_btree_high_key_addr(cur, n, block);
2024                        if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025                                max_hkey = hkey;
2026                }
2027
2028                high = xfs_btree_high_key_from_key(cur, key);
2029                memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030        } else {
2031                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032                                cur->bc_ops->key_len);
2033        }
2034}
2035
2036/* Derive the keys for any btree block. */
2037STATIC void
2038xfs_btree_get_keys(
2039        struct xfs_btree_cur    *cur,
2040        struct xfs_btree_block  *block,
2041        union xfs_btree_key     *key)
2042{
2043        if (be16_to_cpu(block->bb_level) == 0)
2044                xfs_btree_get_leaf_keys(cur, block, key);
2045        else
2046                xfs_btree_get_node_keys(cur, block, key);
2047}
2048
2049/*
2050 * Decide if we need to update the parent keys of a btree block.  For
2051 * a standard btree this is only necessary if we're updating the first
2052 * record/key.  For an overlapping btree, we must always update the
2053 * keys because the highest key can be in any of the records or keys
2054 * in the block.
2055 */
2056static inline bool
2057xfs_btree_needs_key_update(
2058        struct xfs_btree_cur    *cur,
2059        int                     ptr)
2060{
2061        return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062}
2063
2064/*
2065 * Update the low and high parent keys of the given level, progressing
2066 * towards the root.  If force_all is false, stop if the keys for a given
2067 * level do not need updating.
2068 */
2069STATIC int
2070__xfs_btree_updkeys(
2071        struct xfs_btree_cur    *cur,
2072        int                     level,
2073        struct xfs_btree_block  *block,
2074        struct xfs_buf          *bp0,
2075        bool                    force_all)
2076{
2077        union xfs_btree_key     key;    /* keys from current level */
2078        union xfs_btree_key     *lkey;  /* keys from the next level up */
2079        union xfs_btree_key     *hkey;
2080        union xfs_btree_key     *nlkey; /* keys from the next level up */
2081        union xfs_btree_key     *nhkey;
2082        struct xfs_buf          *bp;
2083        int                     ptr;
2084
2085        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086
2087        /* Exit if there aren't any parent levels to update. */
2088        if (level + 1 >= cur->bc_nlevels)
2089                return 0;
2090
2091        trace_xfs_btree_updkeys(cur, level, bp0);
2092
2093        lkey = &key;
2094        hkey = xfs_btree_high_key_from_key(cur, lkey);
2095        xfs_btree_get_keys(cur, block, lkey);
2096        for (level++; level < cur->bc_nlevels; level++) {
2097#ifdef DEBUG
2098                int             error;
2099#endif
2100                block = xfs_btree_get_block(cur, level, &bp);
2101                trace_xfs_btree_updkeys(cur, level, bp);
2102#ifdef DEBUG
2103                error = xfs_btree_check_block(cur, block, level, bp);
2104                if (error) {
2105                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2106                        return error;
2107                }
2108#endif
2109                ptr = cur->bc_ptrs[level];
2110                nlkey = xfs_btree_key_addr(cur, ptr, block);
2111                nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2112                if (!force_all &&
2113                    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2114                      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2115                        break;
2116                xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2117                xfs_btree_log_keys(cur, bp, ptr, ptr);
2118                if (level + 1 >= cur->bc_nlevels)
2119                        break;
2120                xfs_btree_get_node_keys(cur, block, lkey);
2121        }
2122
2123        return 0;
2124}
2125
2126/* Update all the keys from some level in cursor back to the root. */
2127STATIC int
2128xfs_btree_updkeys_force(
2129        struct xfs_btree_cur    *cur,
2130        int                     level)
2131{
2132        struct xfs_buf          *bp;
2133        struct xfs_btree_block  *block;
2134
2135        block = xfs_btree_get_block(cur, level, &bp);
2136        return __xfs_btree_updkeys(cur, level, block, bp, true);
2137}
2138
2139/*
2140 * Update the parent keys of the given level, progressing towards the root.
2141 */
2142STATIC int
2143xfs_btree_update_keys(
2144        struct xfs_btree_cur    *cur,
2145        int                     level)
2146{
2147        struct xfs_btree_block  *block;
2148        struct xfs_buf          *bp;
2149        union xfs_btree_key     *kp;
2150        union xfs_btree_key     key;
2151        int                     ptr;
2152
2153        ASSERT(level >= 0);
2154
2155        block = xfs_btree_get_block(cur, level, &bp);
2156        if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2157                return __xfs_btree_updkeys(cur, level, block, bp, false);
2158
2159        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2160        XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2161
2162        /*
2163         * Go up the tree from this level toward the root.
2164         * At each level, update the key value to the value input.
2165         * Stop when we reach a level where the cursor isn't pointing
2166         * at the first entry in the block.
2167         */
2168        xfs_btree_get_keys(cur, block, &key);
2169        for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2170#ifdef DEBUG
2171                int             error;
2172#endif
2173                block = xfs_btree_get_block(cur, level, &bp);
2174#ifdef DEBUG
2175                error = xfs_btree_check_block(cur, block, level, bp);
2176                if (error) {
2177                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2178                        return error;
2179                }
2180#endif
2181                ptr = cur->bc_ptrs[level];
2182                kp = xfs_btree_key_addr(cur, ptr, block);
2183                xfs_btree_copy_keys(cur, kp, &key, 1);
2184                xfs_btree_log_keys(cur, bp, ptr, ptr);
2185        }
2186
2187        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2188        return 0;
2189}
2190
2191/*
2192 * Update the record referred to by cur to the value in the
2193 * given record. This either works (return 0) or gets an
2194 * EFSCORRUPTED error.
2195 */
2196int
2197xfs_btree_update(
2198        struct xfs_btree_cur    *cur,
2199        union xfs_btree_rec     *rec)
2200{
2201        struct xfs_btree_block  *block;
2202        struct xfs_buf          *bp;
2203        int                     error;
2204        int                     ptr;
2205        union xfs_btree_rec     *rp;
2206
2207        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2208        XFS_BTREE_TRACE_ARGR(cur, rec);
2209
2210        /* Pick up the current block. */
2211        block = xfs_btree_get_block(cur, 0, &bp);
2212
2213#ifdef DEBUG
2214        error = xfs_btree_check_block(cur, block, 0, bp);
2215        if (error)
2216                goto error0;
2217#endif
2218        /* Get the address of the rec to be updated. */
2219        ptr = cur->bc_ptrs[0];
2220        rp = xfs_btree_rec_addr(cur, ptr, block);
2221
2222        /* Fill in the new contents and log them. */
2223        xfs_btree_copy_recs(cur, rp, rec, 1);
2224        xfs_btree_log_recs(cur, bp, ptr, ptr);
2225
2226        /*
2227         * If we are tracking the last record in the tree and
2228         * we are at the far right edge of the tree, update it.
2229         */
2230        if (xfs_btree_is_lastrec(cur, block, 0)) {
2231                cur->bc_ops->update_lastrec(cur, block, rec,
2232                                            ptr, LASTREC_UPDATE);
2233        }
2234
2235        /* Pass new key value up to our parent. */
2236        if (xfs_btree_needs_key_update(cur, ptr)) {
2237                error = xfs_btree_update_keys(cur, 0);
2238                if (error)
2239                        goto error0;
2240        }
2241
2242        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2243        return 0;
2244
2245error0:
2246        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2247        return error;
2248}
2249
2250/*
2251 * Move 1 record left from cur/level if possible.
2252 * Update cur to reflect the new path.
2253 */
2254STATIC int                                      /* error */
2255xfs_btree_lshift(
2256        struct xfs_btree_cur    *cur,
2257        int                     level,
2258        int                     *stat)          /* success/failure */
2259{
2260        struct xfs_buf          *lbp;           /* left buffer pointer */
2261        struct xfs_btree_block  *left;          /* left btree block */
2262        int                     lrecs;          /* left record count */
2263        struct xfs_buf          *rbp;           /* right buffer pointer */
2264        struct xfs_btree_block  *right;         /* right btree block */
2265        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2266        int                     rrecs;          /* right record count */
2267        union xfs_btree_ptr     lptr;           /* left btree pointer */
2268        union xfs_btree_key     *rkp = NULL;    /* right btree key */
2269        union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2270        union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2271        int                     error;          /* error return value */
2272        int                     i;
2273
2274        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2275        XFS_BTREE_TRACE_ARGI(cur, level);
2276
2277        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2278            level == cur->bc_nlevels - 1)
2279                goto out0;
2280
2281        /* Set up variables for this block as "right". */
2282        right = xfs_btree_get_block(cur, level, &rbp);
2283
2284#ifdef DEBUG
2285        error = xfs_btree_check_block(cur, right, level, rbp);
2286        if (error)
2287                goto error0;
2288#endif
2289
2290        /* If we've got no left sibling then we can't shift an entry left. */
2291        xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2292        if (xfs_btree_ptr_is_null(cur, &lptr))
2293                goto out0;
2294
2295        /*
2296         * If the cursor entry is the one that would be moved, don't
2297         * do it... it's too complicated.
2298         */
2299        if (cur->bc_ptrs[level] <= 1)
2300                goto out0;
2301
2302        /* Set up the left neighbor as "left". */
2303        error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2304        if (error)
2305                goto error0;
2306
2307        /* If it's full, it can't take another entry. */
2308        lrecs = xfs_btree_get_numrecs(left);
2309        if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2310                goto out0;
2311
2312        rrecs = xfs_btree_get_numrecs(right);
2313
2314        /*
2315         * We add one entry to the left side and remove one for the right side.
2316         * Account for it here, the changes will be updated on disk and logged
2317         * later.
2318         */
2319        lrecs++;
2320        rrecs--;
2321
2322        XFS_BTREE_STATS_INC(cur, lshift);
2323        XFS_BTREE_STATS_ADD(cur, moves, 1);
2324
2325        /*
2326         * If non-leaf, copy a key and a ptr to the left block.
2327         * Log the changes to the left block.
2328         */
2329        if (level > 0) {
2330                /* It's a non-leaf.  Move keys and pointers. */
2331                union xfs_btree_key     *lkp;   /* left btree key */
2332                union xfs_btree_ptr     *lpp;   /* left address pointer */
2333
2334                lkp = xfs_btree_key_addr(cur, lrecs, left);
2335                rkp = xfs_btree_key_addr(cur, 1, right);
2336
2337                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2338                rpp = xfs_btree_ptr_addr(cur, 1, right);
2339#ifdef DEBUG
2340                error = xfs_btree_check_ptr(cur, rpp, 0, level);
2341                if (error)
2342                        goto error0;
2343#endif
2344                xfs_btree_copy_keys(cur, lkp, rkp, 1);
2345                xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2346
2347                xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2348                xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2349
2350                ASSERT(cur->bc_ops->keys_inorder(cur,
2351                        xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2352        } else {
2353                /* It's a leaf.  Move records.  */
2354                union xfs_btree_rec     *lrp;   /* left record pointer */
2355
2356                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2357                rrp = xfs_btree_rec_addr(cur, 1, right);
2358
2359                xfs_btree_copy_recs(cur, lrp, rrp, 1);
2360                xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2361
2362                ASSERT(cur->bc_ops->recs_inorder(cur,
2363                        xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2364        }
2365
2366        xfs_btree_set_numrecs(left, lrecs);
2367        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2368
2369        xfs_btree_set_numrecs(right, rrecs);
2370        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2371
2372        /*
2373         * Slide the contents of right down one entry.
2374         */
2375        XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2376        if (level > 0) {
2377                /* It's a nonleaf. operate on keys and ptrs */
2378#ifdef DEBUG
2379                int                     i;              /* loop index */
2380
2381                for (i = 0; i < rrecs; i++) {
2382                        error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2383                        if (error)
2384                                goto error0;
2385                }
2386#endif
2387                xfs_btree_shift_keys(cur,
2388                                xfs_btree_key_addr(cur, 2, right),
2389                                -1, rrecs);
2390                xfs_btree_shift_ptrs(cur,
2391                                xfs_btree_ptr_addr(cur, 2, right),
2392                                -1, rrecs);
2393
2394                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2395                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2396        } else {
2397                /* It's a leaf. operate on records */
2398                xfs_btree_shift_recs(cur,
2399                        xfs_btree_rec_addr(cur, 2, right),
2400                        -1, rrecs);
2401                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2402        }
2403
2404        /*
2405         * Using a temporary cursor, update the parent key values of the
2406         * block on the left.
2407         */
2408        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2409                error = xfs_btree_dup_cursor(cur, &tcur);
2410                if (error)
2411                        goto error0;
2412                i = xfs_btree_firstrec(tcur, level);
2413                XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2414
2415                error = xfs_btree_decrement(tcur, level, &i);
2416                if (error)
2417                        goto error1;
2418
2419                /* Update the parent high keys of the left block, if needed. */
2420                error = xfs_btree_update_keys(tcur, level);
2421                if (error)
2422                        goto error1;
2423
2424                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2425        }
2426
2427        /* Update the parent keys of the right block. */
2428        error = xfs_btree_update_keys(cur, level);
2429        if (error)
2430                goto error0;
2431
2432        /* Slide the cursor value left one. */
2433        cur->bc_ptrs[level]--;
2434
2435        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2436        *stat = 1;
2437        return 0;
2438
2439out0:
2440        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2441        *stat = 0;
2442        return 0;
2443
2444error0:
2445        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2446        return error;
2447
2448error1:
2449        XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2450        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2451        return error;
2452}
2453
2454/*
2455 * Move 1 record right from cur/level if possible.
2456 * Update cur to reflect the new path.
2457 */
2458STATIC int                                      /* error */
2459xfs_btree_rshift(
2460        struct xfs_btree_cur    *cur,
2461        int                     level,
2462        int                     *stat)          /* success/failure */
2463{
2464        struct xfs_buf          *lbp;           /* left buffer pointer */
2465        struct xfs_btree_block  *left;          /* left btree block */
2466        struct xfs_buf          *rbp;           /* right buffer pointer */
2467        struct xfs_btree_block  *right;         /* right btree block */
2468        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2469        union xfs_btree_ptr     rptr;           /* right block pointer */
2470        union xfs_btree_key     *rkp;           /* right btree key */
2471        int                     rrecs;          /* right record count */
2472        int                     lrecs;          /* left record count */
2473        int                     error;          /* error return value */
2474        int                     i;              /* loop counter */
2475
2476        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2477        XFS_BTREE_TRACE_ARGI(cur, level);
2478
2479        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2480            (level == cur->bc_nlevels - 1))
2481                goto out0;
2482
2483        /* Set up variables for this block as "left". */
2484        left = xfs_btree_get_block(cur, level, &lbp);
2485
2486#ifdef DEBUG
2487        error = xfs_btree_check_block(cur, left, level, lbp);
2488        if (error)
2489                goto error0;
2490#endif
2491
2492        /* If we've got no right sibling then we can't shift an entry right. */
2493        xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2494        if (xfs_btree_ptr_is_null(cur, &rptr))
2495                goto out0;
2496
2497        /*
2498         * If the cursor entry is the one that would be moved, don't
2499         * do it... it's too complicated.
2500         */
2501        lrecs = xfs_btree_get_numrecs(left);
2502        if (cur->bc_ptrs[level] >= lrecs)
2503                goto out0;
2504
2505        /* Set up the right neighbor as "right". */
2506        error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2507        if (error)
2508                goto error0;
2509
2510        /* If it's full, it can't take another entry. */
2511        rrecs = xfs_btree_get_numrecs(right);
2512        if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2513                goto out0;
2514
2515        XFS_BTREE_STATS_INC(cur, rshift);
2516        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2517
2518        /*
2519         * Make a hole at the start of the right neighbor block, then
2520         * copy the last left block entry to the hole.
2521         */
2522        if (level > 0) {
2523                /* It's a nonleaf. make a hole in the keys and ptrs */
2524                union xfs_btree_key     *lkp;
2525                union xfs_btree_ptr     *lpp;
2526                union xfs_btree_ptr     *rpp;
2527
2528                lkp = xfs_btree_key_addr(cur, lrecs, left);
2529                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2530                rkp = xfs_btree_key_addr(cur, 1, right);
2531                rpp = xfs_btree_ptr_addr(cur, 1, right);
2532
2533#ifdef DEBUG
2534                for (i = rrecs - 1; i >= 0; i--) {
2535                        error = xfs_btree_check_ptr(cur, rpp, i, level);
2536                        if (error)
2537                                goto error0;
2538                }
2539#endif
2540
2541                xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2542                xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2543
2544#ifdef DEBUG
2545                error = xfs_btree_check_ptr(cur, lpp, 0, level);
2546                if (error)
2547                        goto error0;
2548#endif
2549
2550                /* Now put the new data in, and log it. */
2551                xfs_btree_copy_keys(cur, rkp, lkp, 1);
2552                xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2553
2554                xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2555                xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2556
2557                ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2558                        xfs_btree_key_addr(cur, 2, right)));
2559        } else {
2560                /* It's a leaf. make a hole in the records */
2561                union xfs_btree_rec     *lrp;
2562                union xfs_btree_rec     *rrp;
2563
2564                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2565                rrp = xfs_btree_rec_addr(cur, 1, right);
2566
2567                xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2568
2569                /* Now put the new data in, and log it. */
2570                xfs_btree_copy_recs(cur, rrp, lrp, 1);
2571                xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2572        }
2573
2574        /*
2575         * Decrement and log left's numrecs, bump and log right's numrecs.
2576         */
2577        xfs_btree_set_numrecs(left, --lrecs);
2578        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2579
2580        xfs_btree_set_numrecs(right, ++rrecs);
2581        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2582
2583        /*
2584         * Using a temporary cursor, update the parent key values of the
2585         * block on the right.
2586         */
2587        error = xfs_btree_dup_cursor(cur, &tcur);
2588        if (error)
2589                goto error0;
2590        i = xfs_btree_lastrec(tcur, level);
2591        XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2592
2593        error = xfs_btree_increment(tcur, level, &i);
2594        if (error)
2595                goto error1;
2596
2597        /* Update the parent high keys of the left block, if needed. */
2598        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2599                error = xfs_btree_update_keys(cur, level);
2600                if (error)
2601                        goto error1;
2602        }
2603
2604        /* Update the parent keys of the right block. */
2605        error = xfs_btree_update_keys(tcur, level);
2606        if (error)
2607                goto error1;
2608
2609        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2610
2611        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2612        *stat = 1;
2613        return 0;
2614
2615out0:
2616        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2617        *stat = 0;
2618        return 0;
2619
2620error0:
2621        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2622        return error;
2623
2624error1:
2625        XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2626        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2627        return error;
2628}
2629
2630/*
2631 * Split cur/level block in half.
2632 * Return new block number and the key to its first
2633 * record (to be inserted into parent).
2634 */
2635STATIC int                                      /* error */
2636__xfs_btree_split(
2637        struct xfs_btree_cur    *cur,
2638        int                     level,
2639        union xfs_btree_ptr     *ptrp,
2640        union xfs_btree_key     *key,
2641        struct xfs_btree_cur    **curp,
2642        int                     *stat)          /* success/failure */
2643{
2644        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2645        struct xfs_buf          *lbp;           /* left buffer pointer */
2646        struct xfs_btree_block  *left;          /* left btree block */
2647        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2648        struct xfs_buf          *rbp;           /* right buffer pointer */
2649        struct xfs_btree_block  *right;         /* right btree block */
2650        union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2651        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2652        struct xfs_btree_block  *rrblock;       /* right-right btree block */
2653        int                     lrecs;
2654        int                     rrecs;
2655        int                     src_index;
2656        int                     error;          /* error return value */
2657#ifdef DEBUG
2658        int                     i;
2659#endif
2660
2661        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2662        XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2663
2664        XFS_BTREE_STATS_INC(cur, split);
2665
2666        /* Set up left block (current one). */
2667        left = xfs_btree_get_block(cur, level, &lbp);
2668
2669#ifdef DEBUG
2670        error = xfs_btree_check_block(cur, left, level, lbp);
2671        if (error)
2672                goto error0;
2673#endif
2674
2675        xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2676
2677        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2678        error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2679        if (error)
2680                goto error0;
2681        if (*stat == 0)
2682                goto out0;
2683        XFS_BTREE_STATS_INC(cur, alloc);
2684
2685        /* Set up the new block as "right". */
2686        error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2687        if (error)
2688                goto error0;
2689
2690        /* Fill in the btree header for the new right block. */
2691        xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2692
2693        /*
2694         * Split the entries between the old and the new block evenly.
2695         * Make sure that if there's an odd number of entries now, that
2696         * each new block will have the same number of entries.
2697         */
2698        lrecs = xfs_btree_get_numrecs(left);
2699        rrecs = lrecs / 2;
2700        if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2701                rrecs++;
2702        src_index = (lrecs - rrecs + 1);
2703
2704        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2705
2706        /* Adjust numrecs for the later get_*_keys() calls. */
2707        lrecs -= rrecs;
2708        xfs_btree_set_numrecs(left, lrecs);
2709        xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2710
2711        /*
2712         * Copy btree block entries from the left block over to the
2713         * new block, the right. Update the right block and log the
2714         * changes.
2715         */
2716        if (level > 0) {
2717                /* It's a non-leaf.  Move keys and pointers. */
2718                union xfs_btree_key     *lkp;   /* left btree key */
2719                union xfs_btree_ptr     *lpp;   /* left address pointer */
2720                union xfs_btree_key     *rkp;   /* right btree key */
2721                union xfs_btree_ptr     *rpp;   /* right address pointer */
2722
2723                lkp = xfs_btree_key_addr(cur, src_index, left);
2724                lpp = xfs_btree_ptr_addr(cur, src_index, left);
2725                rkp = xfs_btree_key_addr(cur, 1, right);
2726                rpp = xfs_btree_ptr_addr(cur, 1, right);
2727
2728#ifdef DEBUG
2729                for (i = src_index; i < rrecs; i++) {
2730                        error = xfs_btree_check_ptr(cur, lpp, i, level);
2731                        if (error)
2732                                goto error0;
2733                }
2734#endif
2735
2736                /* Copy the keys & pointers to the new block. */
2737                xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2738                xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2739
2740                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2741                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2742
2743                /* Stash the keys of the new block for later insertion. */
2744                xfs_btree_get_node_keys(cur, right, key);
2745        } else {
2746                /* It's a leaf.  Move records.  */
2747                union xfs_btree_rec     *lrp;   /* left record pointer */
2748                union xfs_btree_rec     *rrp;   /* right record pointer */
2749
2750                lrp = xfs_btree_rec_addr(cur, src_index, left);
2751                rrp = xfs_btree_rec_addr(cur, 1, right);
2752
2753                /* Copy records to the new block. */
2754                xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2755                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2756
2757                /* Stash the keys of the new block for later insertion. */
2758                xfs_btree_get_leaf_keys(cur, right, key);
2759        }
2760
2761        /*
2762         * Find the left block number by looking in the buffer.
2763         * Adjust sibling pointers.
2764         */
2765        xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2766        xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2767        xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2768        xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2769
2770        xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2771        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2772
2773        /*
2774         * If there's a block to the new block's right, make that block
2775         * point back to right instead of to left.
2776         */
2777        if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2778                error = xfs_btree_read_buf_block(cur, &rrptr,
2779                                                        0, &rrblock, &rrbp);
2780                if (error)
2781                        goto error0;
2782                xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2783                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2784        }
2785
2786        /* Update the parent high keys of the left block, if needed. */
2787        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2788                error = xfs_btree_update_keys(cur, level);
2789                if (error)
2790                        goto error0;
2791        }
2792
2793        /*
2794         * If the cursor is really in the right block, move it there.
2795         * If it's just pointing past the last entry in left, then we'll
2796         * insert there, so don't change anything in that case.
2797         */
2798        if (cur->bc_ptrs[level] > lrecs + 1) {
2799                xfs_btree_setbuf(cur, level, rbp);
2800                cur->bc_ptrs[level] -= lrecs;
2801        }
2802        /*
2803         * If there are more levels, we'll need another cursor which refers
2804         * the right block, no matter where this cursor was.
2805         */
2806        if (level + 1 < cur->bc_nlevels) {
2807                error = xfs_btree_dup_cursor(cur, curp);
2808                if (error)
2809                        goto error0;
2810                (*curp)->bc_ptrs[level + 1]++;
2811        }
2812        *ptrp = rptr;
2813        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2814        *stat = 1;
2815        return 0;
2816out0:
2817        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2818        *stat = 0;
2819        return 0;
2820
2821error0:
2822        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2823        return error;
2824}
2825
2826struct xfs_btree_split_args {
2827        struct xfs_btree_cur    *cur;
2828        int                     level;
2829        union xfs_btree_ptr     *ptrp;
2830        union xfs_btree_key     *key;
2831        struct xfs_btree_cur    **curp;
2832        int                     *stat;          /* success/failure */
2833        int                     result;
2834        bool                    kswapd; /* allocation in kswapd context */
2835        struct completion       *done;
2836        struct work_struct      work;
2837};
2838
2839/*
2840 * Stack switching interfaces for allocation
2841 */
2842static void
2843xfs_btree_split_worker(
2844        struct work_struct      *work)
2845{
2846        struct xfs_btree_split_args     *args = container_of(work,
2847                                                struct xfs_btree_split_args, work);
2848        unsigned long           pflags;
2849        unsigned long           new_pflags = PF_FSTRANS;
2850
2851        /*
2852         * we are in a transaction context here, but may also be doing work
2853         * in kswapd context, and hence we may need to inherit that state
2854         * temporarily to ensure that we don't block waiting for memory reclaim
2855         * in any way.
2856         */
2857        if (args->kswapd)
2858                new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2859
2860        current_set_flags_nested(&pflags, new_pflags);
2861
2862        args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2863                                         args->key, args->curp, args->stat);
2864        complete(args->done);
2865
2866        current_restore_flags_nested(&pflags, new_pflags);
2867}
2868
2869/*
2870 * BMBT split requests often come in with little stack to work on. Push
2871 * them off to a worker thread so there is lots of stack to use. For the other
2872 * btree types, just call directly to avoid the context switch overhead here.
2873 */
2874STATIC int                                      /* error */
2875xfs_btree_split(
2876        struct xfs_btree_cur    *cur,
2877        int                     level,
2878        union xfs_btree_ptr     *ptrp,
2879        union xfs_btree_key     *key,
2880        struct xfs_btree_cur    **curp,
2881        int                     *stat)          /* success/failure */
2882{
2883        struct xfs_btree_split_args     args;
2884        DECLARE_COMPLETION_ONSTACK(done);
2885
2886        if (cur->bc_btnum != XFS_BTNUM_BMAP)
2887                return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2888
2889        args.cur = cur;
2890        args.level = level;
2891        args.ptrp = ptrp;
2892        args.key = key;
2893        args.curp = curp;
2894        args.stat = stat;
2895        args.done = &done;
2896        args.kswapd = current_is_kswapd();
2897        INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2898        queue_work(xfs_alloc_wq, &args.work);
2899        wait_for_completion(&done);
2900        destroy_work_on_stack(&args.work);
2901        return args.result;
2902}
2903
2904
2905/*
2906 * Copy the old inode root contents into a real block and make the
2907 * broot point to it.
2908 */
2909int                                             /* error */
2910xfs_btree_new_iroot(
2911        struct xfs_btree_cur    *cur,           /* btree cursor */
2912        int                     *logflags,      /* logging flags for inode */
2913        int                     *stat)          /* return status - 0 fail */
2914{
2915        struct xfs_buf          *cbp;           /* buffer for cblock */
2916        struct xfs_btree_block  *block;         /* btree block */
2917        struct xfs_btree_block  *cblock;        /* child btree block */
2918        union xfs_btree_key     *ckp;           /* child key pointer */
2919        union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2920        union xfs_btree_key     *kp;            /* pointer to btree key */
2921        union xfs_btree_ptr     *pp;            /* pointer to block addr */
2922        union xfs_btree_ptr     nptr;           /* new block addr */
2923        int                     level;          /* btree level */
2924        int                     error;          /* error return code */
2925#ifdef DEBUG
2926        int                     i;              /* loop counter */
2927#endif
2928
2929        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2930        XFS_BTREE_STATS_INC(cur, newroot);
2931
2932        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934        level = cur->bc_nlevels - 1;
2935
2936        block = xfs_btree_get_iroot(cur);
2937        pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2940        error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941        if (error)
2942                goto error0;
2943        if (*stat == 0) {
2944                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2945                return 0;
2946        }
2947        XFS_BTREE_STATS_INC(cur, alloc);
2948
2949        /* Copy the root into a real block. */
2950        error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2951        if (error)
2952                goto error0;
2953
2954        /*
2955         * we can't just memcpy() the root in for CRC enabled btree blocks.
2956         * In that case have to also ensure the blkno remains correct
2957         */
2958        memcpy(cblock, block, xfs_btree_block_len(cur));
2959        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2960                if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2961                        cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2962                else
2963                        cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2964        }
2965
2966        be16_add_cpu(&block->bb_level, 1);
2967        xfs_btree_set_numrecs(block, 1);
2968        cur->bc_nlevels++;
2969        cur->bc_ptrs[level + 1] = 1;
2970
2971        kp = xfs_btree_key_addr(cur, 1, block);
2972        ckp = xfs_btree_key_addr(cur, 1, cblock);
2973        xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2974
2975        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2976#ifdef DEBUG
2977        for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2978                error = xfs_btree_check_ptr(cur, pp, i, level);
2979                if (error)
2980                        goto error0;
2981        }
2982#endif
2983        xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2984
2985#ifdef DEBUG
2986        error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2987        if (error)
2988                goto error0;
2989#endif
2990        xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2991
2992        xfs_iroot_realloc(cur->bc_private.b.ip,
2993                          1 - xfs_btree_get_numrecs(cblock),
2994                          cur->bc_private.b.whichfork);
2995
2996        xfs_btree_setbuf(cur, level, cbp);
2997
2998        /*
2999         * Do all this logging at the end so that
3000         * the root is at the right level.
3001         */
3002        xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3003        xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004        xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005
3006        *logflags |=
3007                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3008        *stat = 1;
3009        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3010        return 0;
3011error0:
3012        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3013        return error;
3014}
3015
3016/*
3017 * Allocate a new root block, fill it in.
3018 */
3019STATIC int                              /* error */
3020xfs_btree_new_root(
3021        struct xfs_btree_cur    *cur,   /* btree cursor */
3022        int                     *stat)  /* success/failure */
3023{
3024        struct xfs_btree_block  *block; /* one half of the old root block */
3025        struct xfs_buf          *bp;    /* buffer containing block */
3026        int                     error;  /* error return value */
3027        struct xfs_buf          *lbp;   /* left buffer pointer */
3028        struct xfs_btree_block  *left;  /* left btree block */
3029        struct xfs_buf          *nbp;   /* new (root) buffer */
3030        struct xfs_btree_block  *new;   /* new (root) btree block */
3031        int                     nptr;   /* new value for key index, 1 or 2 */
3032        struct xfs_buf          *rbp;   /* right buffer pointer */
3033        struct xfs_btree_block  *right; /* right btree block */
3034        union xfs_btree_ptr     rptr;
3035        union xfs_btree_ptr     lptr;
3036
3037        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3038        XFS_BTREE_STATS_INC(cur, newroot);
3039
3040        /* initialise our start point from the cursor */
3041        cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3042
3043        /* Allocate the new block. If we can't do it, we're toast. Give up. */
3044        error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3045        if (error)
3046                goto error0;
3047        if (*stat == 0)
3048                goto out0;
3049        XFS_BTREE_STATS_INC(cur, alloc);
3050
3051        /* Set up the new block. */
3052        error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3053        if (error)
3054                goto error0;
3055
3056        /* Set the root in the holding structure  increasing the level by 1. */
3057        cur->bc_ops->set_root(cur, &lptr, 1);
3058
3059        /*
3060         * At the previous root level there are now two blocks: the old root,
3061         * and the new block generated when it was split.  We don't know which
3062         * one the cursor is pointing at, so we set up variables "left" and
3063         * "right" for each case.
3064         */
3065        block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3066
3067#ifdef DEBUG
3068        error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3069        if (error)
3070                goto error0;
3071#endif
3072
3073        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3074        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3075                /* Our block is left, pick up the right block. */
3076                lbp = bp;
3077                xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3078                left = block;
3079                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3080                if (error)
3081                        goto error0;
3082                bp = rbp;
3083                nptr = 1;
3084        } else {
3085                /* Our block is right, pick up the left block. */
3086                rbp = bp;
3087                xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3088                right = block;
3089                xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3090                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3091                if (error)
3092                        goto error0;
3093                bp = lbp;
3094                nptr = 2;
3095        }
3096
3097        /* Fill in the new block's btree header and log it. */
3098        xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3099        xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3100        ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3101                        !xfs_btree_ptr_is_null(cur, &rptr));
3102
3103        /* Fill in the key data in the new root. */
3104        if (xfs_btree_get_level(left) > 0) {
3105                /*
3106                 * Get the keys for the left block's keys and put them directly
3107                 * in the parent block.  Do the same for the right block.
3108                 */
3109                xfs_btree_get_node_keys(cur, left,
3110                                xfs_btree_key_addr(cur, 1, new));
3111                xfs_btree_get_node_keys(cur, right,
3112                                xfs_btree_key_addr(cur, 2, new));
3113        } else {
3114                /*
3115                 * Get the keys for the left block's records and put them
3116                 * directly in the parent block.  Do the same for the right
3117                 * block.
3118                 */
3119                xfs_btree_get_leaf_keys(cur, left,
3120                        xfs_btree_key_addr(cur, 1, new));
3121                xfs_btree_get_leaf_keys(cur, right,
3122                        xfs_btree_key_addr(cur, 2, new));
3123        }
3124        xfs_btree_log_keys(cur, nbp, 1, 2);
3125
3126        /* Fill in the pointer data in the new root. */
3127        xfs_btree_copy_ptrs(cur,
3128                xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3129        xfs_btree_copy_ptrs(cur,
3130                xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3131        xfs_btree_log_ptrs(cur, nbp, 1, 2);
3132
3133        /* Fix up the cursor. */
3134        xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3135        cur->bc_ptrs[cur->bc_nlevels] = nptr;
3136        cur->bc_nlevels++;
3137        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3138        *stat = 1;
3139        return 0;
3140error0:
3141        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3142        return error;
3143out0:
3144        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3145        *stat = 0;
3146        return 0;
3147}
3148
3149STATIC int
3150xfs_btree_make_block_unfull(
3151        struct xfs_btree_cur    *cur,   /* btree cursor */
3152        int                     level,  /* btree level */
3153        int                     numrecs,/* # of recs in block */
3154        int                     *oindex,/* old tree index */
3155        int                     *index, /* new tree index */
3156        union xfs_btree_ptr     *nptr,  /* new btree ptr */
3157        struct xfs_btree_cur    **ncur, /* new btree cursor */
3158        union xfs_btree_key     *key,   /* key of new block */
3159        int                     *stat)
3160{
3161        int                     error = 0;
3162
3163        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3164            level == cur->bc_nlevels - 1) {
3165                struct xfs_inode *ip = cur->bc_private.b.ip;
3166
3167                if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3168                        /* A root block that can be made bigger. */
3169                        xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3170                        *stat = 1;
3171                } else {
3172                        /* A root block that needs replacing */
3173                        int     logflags = 0;
3174
3175                        error = xfs_btree_new_iroot(cur, &logflags, stat);
3176                        if (error || *stat == 0)
3177                                return error;
3178
3179                        xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3180                }
3181
3182                return 0;
3183        }
3184
3185        /* First, try shifting an entry to the right neighbor. */
3186        error = xfs_btree_rshift(cur, level, stat);
3187        if (error || *stat)
3188                return error;
3189
3190        /* Next, try shifting an entry to the left neighbor. */
3191        error = xfs_btree_lshift(cur, level, stat);
3192        if (error)
3193                return error;
3194
3195        if (*stat) {
3196                *oindex = *index = cur->bc_ptrs[level];
3197                return 0;
3198        }
3199
3200        /*
3201         * Next, try splitting the current block in half.
3202         *
3203         * If this works we have to re-set our variables because we
3204         * could be in a different block now.
3205         */
3206        error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3207        if (error || *stat == 0)
3208                return error;
3209
3210
3211        *index = cur->bc_ptrs[level];
3212        return 0;
3213}
3214
3215/*
3216 * Insert one record/level.  Return information to the caller
3217 * allowing the next level up to proceed if necessary.
3218 */
3219STATIC int
3220xfs_btree_insrec(
3221        struct xfs_btree_cur    *cur,   /* btree cursor */
3222        int                     level,  /* level to insert record at */
3223        union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3224        union xfs_btree_rec     *rec,   /* record to insert */
3225        union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3226        struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3227        int                     *stat)  /* success/failure */
3228{
3229        struct xfs_btree_block  *block; /* btree block */
3230        struct xfs_buf          *bp;    /* buffer for block */
3231        union xfs_btree_ptr     nptr;   /* new block ptr */
3232        struct xfs_btree_cur    *ncur;  /* new btree cursor */
3233        union xfs_btree_key     nkey;   /* new block key */
3234        union xfs_btree_key     *lkey;
3235        int                     optr;   /* old key/record index */
3236        int                     ptr;    /* key/record index */
3237        int                     numrecs;/* number of records */
3238        int                     error;  /* error return value */
3239#ifdef DEBUG
3240        int                     i;
3241#endif
3242        xfs_daddr_t             old_bn;
3243
3244        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3245        XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3246
3247        ncur = NULL;
3248        lkey = &nkey;
3249
3250        /*
3251         * If we have an external root pointer, and we've made it to the
3252         * root level, allocate a new root block and we're done.
3253         */
3254        if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3255            (level >= cur->bc_nlevels)) {
3256                error = xfs_btree_new_root(cur, stat);
3257                xfs_btree_set_ptr_null(cur, ptrp);
3258
3259                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3260                return error;
3261        }
3262
3263        /* If we're off the left edge, return failure. */
3264        ptr = cur->bc_ptrs[level];
3265        if (ptr == 0) {
3266                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3267                *stat = 0;
3268                return 0;
3269        }
3270
3271        optr = ptr;
3272
3273        XFS_BTREE_STATS_INC(cur, insrec);
3274
3275        /* Get pointers to the btree buffer and block. */
3276        block = xfs_btree_get_block(cur, level, &bp);
3277        old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3278        numrecs = xfs_btree_get_numrecs(block);
3279
3280#ifdef DEBUG
3281        error = xfs_btree_check_block(cur, block, level, bp);
3282        if (error)
3283                goto error0;
3284
3285        /* Check that the new entry is being inserted in the right place. */
3286        if (ptr <= numrecs) {
3287                if (level == 0) {
3288                        ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3289                                xfs_btree_rec_addr(cur, ptr, block)));
3290                } else {
3291                        ASSERT(cur->bc_ops->keys_inorder(cur, key,
3292                                xfs_btree_key_addr(cur, ptr, block)));
3293                }
3294        }
3295#endif
3296
3297        /*
3298         * If the block is full, we can't insert the new entry until we
3299         * make the block un-full.
3300         */
3301        xfs_btree_set_ptr_null(cur, &nptr);
3302        if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3303                error = xfs_btree_make_block_unfull(cur, level, numrecs,
3304                                        &optr, &ptr, &nptr, &ncur, lkey, stat);
3305                if (error || *stat == 0)
3306                        goto error0;
3307        }
3308
3309        /*
3310         * The current block may have changed if the block was
3311         * previously full and we have just made space in it.
3312         */
3313        block = xfs_btree_get_block(cur, level, &bp);
3314        numrecs = xfs_btree_get_numrecs(block);
3315
3316#ifdef DEBUG
3317        error = xfs_btree_check_block(cur, block, level, bp);
3318        if (error)
3319                return error;
3320#endif
3321
3322        /*
3323         * At this point we know there's room for our new entry in the block
3324         * we're pointing at.
3325         */
3326        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3327
3328        if (level > 0) {
3329                /* It's a nonleaf. make a hole in the keys and ptrs */
3330                union xfs_btree_key     *kp;
3331                union xfs_btree_ptr     *pp;
3332
3333                kp = xfs_btree_key_addr(cur, ptr, block);
3334                pp = xfs_btree_ptr_addr(cur, ptr, block);
3335
3336#ifdef DEBUG
3337                for (i = numrecs - ptr; i >= 0; i--) {
3338                        error = xfs_btree_check_ptr(cur, pp, i, level);
3339                        if (error)
3340                                return error;
3341                }
3342#endif
3343
3344                xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3345                xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3346
3347#ifdef DEBUG
3348                error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3349                if (error)
3350                        goto error0;
3351#endif
3352
3353                /* Now put the new data in, bump numrecs and log it. */
3354                xfs_btree_copy_keys(cur, kp, key, 1);
3355                xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3356                numrecs++;
3357                xfs_btree_set_numrecs(block, numrecs);
3358                xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3359                xfs_btree_log_keys(cur, bp, ptr, numrecs);
3360#ifdef DEBUG
3361                if (ptr < numrecs) {
3362                        ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3363                                xfs_btree_key_addr(cur, ptr + 1, block)));
3364                }
3365#endif
3366        } else {
3367                /* It's a leaf. make a hole in the records */
3368                union xfs_btree_rec             *rp;
3369
3370                rp = xfs_btree_rec_addr(cur, ptr, block);
3371
3372                xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3373
3374                /* Now put the new data in, bump numrecs and log it. */
3375                xfs_btree_copy_recs(cur, rp, rec, 1);
3376                xfs_btree_set_numrecs(block, ++numrecs);
3377                xfs_btree_log_recs(cur, bp, ptr, numrecs);
3378#ifdef DEBUG
3379                if (ptr < numrecs) {
3380                        ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3381                                xfs_btree_rec_addr(cur, ptr + 1, block)));
3382                }
3383#endif
3384        }
3385
3386        /* Log the new number of records in the btree header. */
3387        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3388
3389        /*
3390         * If we just inserted into a new tree block, we have to
3391         * recalculate nkey here because nkey is out of date.
3392         *
3393         * Otherwise we're just updating an existing block (having shoved
3394         * some records into the new tree block), so use the regular key
3395         * update mechanism.
3396         */
3397        if (bp && bp->b_bn != old_bn) {
3398                xfs_btree_get_keys(cur, block, lkey);
3399        } else if (xfs_btree_needs_key_update(cur, optr)) {
3400                error = xfs_btree_update_keys(cur, level);
3401                if (error)
3402                        goto error0;
3403        }
3404
3405        /*
3406         * If we are tracking the last record in the tree and
3407         * we are at the far right edge of the tree, update it.
3408         */
3409        if (xfs_btree_is_lastrec(cur, block, level)) {
3410                cur->bc_ops->update_lastrec(cur, block, rec,
3411                                            ptr, LASTREC_INSREC);
3412        }
3413
3414        /*
3415         * Return the new block number, if any.
3416         * If there is one, give back a record value and a cursor too.
3417         */
3418        *ptrp = nptr;
3419        if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3420                xfs_btree_copy_keys(cur, key, lkey, 1);
3421                *curp = ncur;
3422        }
3423
3424        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3425        *stat = 1;
3426        return 0;
3427
3428error0:
3429        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3430        return error;
3431}
3432
3433/*
3434 * Insert the record at the point referenced by cur.
3435 *
3436 * A multi-level split of the tree on insert will invalidate the original
3437 * cursor.  All callers of this function should assume that the cursor is
3438 * no longer valid and revalidate it.
3439 */
3440int
3441xfs_btree_insert(
3442        struct xfs_btree_cur    *cur,
3443        int                     *stat)
3444{
3445        int                     error;  /* error return value */
3446        int                     i;      /* result value, 0 for failure */
3447        int                     level;  /* current level number in btree */
3448        union xfs_btree_ptr     nptr;   /* new block number (split result) */
3449        struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3450        struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3451        union xfs_btree_key     bkey;   /* key of block to insert */
3452        union xfs_btree_key     *key;
3453        union xfs_btree_rec     rec;    /* record to insert */
3454
3455        level = 0;
3456        ncur = NULL;
3457        pcur = cur;
3458        key = &bkey;
3459
3460        xfs_btree_set_ptr_null(cur, &nptr);
3461
3462        /* Make a key out of the record data to be inserted, and save it. */
3463        cur->bc_ops->init_rec_from_cur(cur, &rec);
3464        cur->bc_ops->init_key_from_rec(key, &rec);
3465
3466        /*
3467         * Loop going up the tree, starting at the leaf level.
3468         * Stop when we don't get a split block, that must mean that
3469         * the insert is finished with this level.
3470         */
3471        do {
3472                /*
3473                 * Insert nrec/nptr into this level of the tree.
3474                 * Note if we fail, nptr will be null.
3475                 */
3476                error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3477                                &ncur, &i);
3478                if (error) {
3479                        if (pcur != cur)
3480                                xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3481                        goto error0;
3482                }
3483
3484                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3485                level++;
3486
3487                /*
3488                 * See if the cursor we just used is trash.
3489                 * Can't trash the caller's cursor, but otherwise we should
3490                 * if ncur is a new cursor or we're about to be done.
3491                 */
3492                if (pcur != cur &&
3493                    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3494                        /* Save the state from the cursor before we trash it */
3495                        if (cur->bc_ops->update_cursor)
3496                                cur->bc_ops->update_cursor(pcur, cur);
3497                        cur->bc_nlevels = pcur->bc_nlevels;
3498                        xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3499                }
3500                /* If we got a new cursor, switch to it. */
3501                if (ncur) {
3502                        pcur = ncur;
3503                        ncur = NULL;
3504                }
3505        } while (!xfs_btree_ptr_is_null(cur, &nptr));
3506
3507        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3508        *stat = i;
3509        return 0;
3510error0:
3511        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3512        return error;
3513}
3514
3515/*
3516 * Try to merge a non-leaf block back into the inode root.
3517 *
3518 * Note: the killroot names comes from the fact that we're effectively
3519 * killing the old root block.  But because we can't just delete the
3520 * inode we have to copy the single block it was pointing to into the
3521 * inode.
3522 */
3523STATIC int
3524xfs_btree_kill_iroot(
3525        struct xfs_btree_cur    *cur)
3526{
3527        int                     whichfork = cur->bc_private.b.whichfork;
3528        struct xfs_inode        *ip = cur->bc_private.b.ip;
3529        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3530        struct xfs_btree_block  *block;
3531        struct xfs_btree_block  *cblock;
3532        union xfs_btree_key     *kp;
3533        union xfs_btree_key     *ckp;
3534        union xfs_btree_ptr     *pp;
3535        union xfs_btree_ptr     *cpp;
3536        struct xfs_buf          *cbp;
3537        int                     level;
3538        int                     index;
3539        int                     numrecs;
3540        int                     error;
3541#ifdef DEBUG
3542        union xfs_btree_ptr     ptr;
3543        int                     i;
3544#endif
3545
3546        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3547
3548        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3549        ASSERT(cur->bc_nlevels > 1);
3550
3551        /*
3552         * Don't deal with the root block needs to be a leaf case.
3553         * We're just going to turn the thing back into extents anyway.
3554         */
3555        level = cur->bc_nlevels - 1;
3556        if (level == 1)
3557                goto out0;
3558
3559        /*
3560         * Give up if the root has multiple children.
3561         */
3562        block = xfs_btree_get_iroot(cur);
3563        if (xfs_btree_get_numrecs(block) != 1)
3564                goto out0;
3565
3566        cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3567        numrecs = xfs_btree_get_numrecs(cblock);
3568
3569        /*
3570         * Only do this if the next level will fit.
3571         * Then the data must be copied up to the inode,
3572         * instead of freeing the root you free the next level.
3573         */
3574        if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3575                goto out0;
3576
3577        XFS_BTREE_STATS_INC(cur, killroot);
3578
3579#ifdef DEBUG
3580        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3581        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3582        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3583        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3584#endif
3585
3586        index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3587        if (index) {
3588                xfs_iroot_realloc(cur->bc_private.b.ip, index,
3589                                  cur->bc_private.b.whichfork);
3590                block = ifp->if_broot;
3591        }
3592
3593        be16_add_cpu(&block->bb_numrecs, index);
3594        ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3595
3596        kp = xfs_btree_key_addr(cur, 1, block);
3597        ckp = xfs_btree_key_addr(cur, 1, cblock);
3598        xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3599
3600        pp = xfs_btree_ptr_addr(cur, 1, block);
3601        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3602#ifdef DEBUG
3603        for (i = 0; i < numrecs; i++) {
3604                error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3605                if (error) {
3606                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3607                        return error;
3608                }
3609        }
3610#endif
3611        xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3612
3613        error = xfs_btree_free_block(cur, cbp);
3614        if (error) {
3615                XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3616                return error;
3617        }
3618
3619        cur->bc_bufs[level - 1] = NULL;
3620        be16_add_cpu(&block->bb_level, -1);
3621        xfs_trans_log_inode(cur->bc_tp, ip,
3622                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3623        cur->bc_nlevels--;
3624out0:
3625        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3626        return 0;
3627}
3628
3629/*
3630 * Kill the current root node, and replace it with it's only child node.
3631 */
3632STATIC int
3633xfs_btree_kill_root(
3634        struct xfs_btree_cur    *cur,
3635        struct xfs_buf          *bp,
3636        int                     level,
3637        union xfs_btree_ptr     *newroot)
3638{
3639        int                     error;
3640
3641        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3642        XFS_BTREE_STATS_INC(cur, killroot);
3643
3644        /*
3645         * Update the root pointer, decreasing the level by 1 and then
3646         * free the old root.
3647         */
3648        cur->bc_ops->set_root(cur, newroot, -1);
3649
3650        error = xfs_btree_free_block(cur, bp);
3651        if (error) {
3652                XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3653                return error;
3654        }
3655
3656        cur->bc_bufs[level] = NULL;
3657        cur->bc_ra[level] = 0;
3658        cur->bc_nlevels--;
3659
3660        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3661        return 0;
3662}
3663
3664STATIC int
3665xfs_btree_dec_cursor(
3666        struct xfs_btree_cur    *cur,
3667        int                     level,
3668        int                     *stat)
3669{
3670        int                     error;
3671        int                     i;
3672
3673        if (level > 0) {
3674                error = xfs_btree_decrement(cur, level, &i);
3675                if (error)
3676                        return error;
3677        }
3678
3679        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3680        *stat = 1;
3681        return 0;
3682}
3683
3684/*
3685 * Single level of the btree record deletion routine.
3686 * Delete record pointed to by cur/level.
3687 * Remove the record from its block then rebalance the tree.
3688 * Return 0 for error, 1 for done, 2 to go on to the next level.
3689 */
3690STATIC int                                      /* error */
3691xfs_btree_delrec(
3692        struct xfs_btree_cur    *cur,           /* btree cursor */
3693        int                     level,          /* level removing record from */
3694        int                     *stat)          /* fail/done/go-on */
3695{
3696        struct xfs_btree_block  *block;         /* btree block */
3697        union xfs_btree_ptr     cptr;           /* current block ptr */
3698        struct xfs_buf          *bp;            /* buffer for block */
3699        int                     error;          /* error return value */
3700        int                     i;              /* loop counter */
3701        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3702        struct xfs_buf          *lbp;           /* left buffer pointer */
3703        struct xfs_btree_block  *left;          /* left btree block */
3704        int                     lrecs = 0;      /* left record count */
3705        int                     ptr;            /* key/record index */
3706        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3707        struct xfs_buf          *rbp;           /* right buffer pointer */
3708        struct xfs_btree_block  *right;         /* right btree block */
3709        struct xfs_btree_block  *rrblock;       /* right-right btree block */
3710        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3711        int                     rrecs = 0;      /* right record count */
3712        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3713        int                     numrecs;        /* temporary numrec count */
3714
3715        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3716        XFS_BTREE_TRACE_ARGI(cur, level);
3717
3718        tcur = NULL;
3719
3720        /* Get the index of the entry being deleted, check for nothing there. */
3721        ptr = cur->bc_ptrs[level];
3722        if (ptr == 0) {
3723                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3724                *stat = 0;
3725                return 0;
3726        }
3727
3728        /* Get the buffer & block containing the record or key/ptr. */
3729        block = xfs_btree_get_block(cur, level, &bp);
3730        numrecs = xfs_btree_get_numrecs(block);
3731
3732#ifdef DEBUG
3733        error = xfs_btree_check_block(cur, block, level, bp);
3734        if (error)
3735                goto error0;
3736#endif
3737
3738        /* Fail if we're off the end of the block. */
3739        if (ptr > numrecs) {
3740                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3741                *stat = 0;
3742                return 0;
3743        }
3744
3745        XFS_BTREE_STATS_INC(cur, delrec);
3746        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3747
3748        /* Excise the entries being deleted. */
3749        if (level > 0) {
3750                /* It's a nonleaf. operate on keys and ptrs */
3751                union xfs_btree_key     *lkp;
3752                union xfs_btree_ptr     *lpp;
3753
3754                lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3755                lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3756
3757#ifdef DEBUG
3758                for (i = 0; i < numrecs - ptr; i++) {
3759                        error = xfs_btree_check_ptr(cur, lpp, i, level);
3760                        if (error)
3761                                goto error0;
3762                }
3763#endif
3764
3765                if (ptr < numrecs) {
3766                        xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3767                        xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3768                        xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3769                        xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3770                }
3771        } else {
3772                /* It's a leaf. operate on records */
3773                if (ptr < numrecs) {
3774                        xfs_btree_shift_recs(cur,
3775                                xfs_btree_rec_addr(cur, ptr + 1, block),
3776                                -1, numrecs - ptr);
3777                        xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3778                }
3779        }
3780
3781        /*
3782         * Decrement and log the number of entries in the block.
3783         */
3784        xfs_btree_set_numrecs(block, --numrecs);
3785        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3786
3787        /*
3788         * If we are tracking the last record in the tree and
3789         * we are at the far right edge of the tree, update it.
3790         */
3791        if (xfs_btree_is_lastrec(cur, block, level)) {
3792                cur->bc_ops->update_lastrec(cur, block, NULL,
3793                                            ptr, LASTREC_DELREC);
3794        }
3795
3796        /*
3797         * We're at the root level.  First, shrink the root block in-memory.
3798         * Try to get rid of the next level down.  If we can't then there's
3799         * nothing left to do.
3800         */
3801        if (level == cur->bc_nlevels - 1) {
3802                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3803                        xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3804                                          cur->bc_private.b.whichfork);
3805
3806                        error = xfs_btree_kill_iroot(cur);
3807                        if (error)
3808                                goto error0;
3809
3810                        error = xfs_btree_dec_cursor(cur, level, stat);
3811                        if (error)
3812                                goto error0;
3813                        *stat = 1;
3814                        return 0;
3815                }
3816
3817                /*
3818                 * If this is the root level, and there's only one entry left,
3819                 * and it's NOT the leaf level, then we can get rid of this
3820                 * level.
3821                 */
3822                if (numrecs == 1 && level > 0) {
3823                        union xfs_btree_ptr     *pp;
3824                        /*
3825                         * pp is still set to the first pointer in the block.
3826                         * Make it the new root of the btree.
3827                         */
3828                        pp = xfs_btree_ptr_addr(cur, 1, block);
3829                        error = xfs_btree_kill_root(cur, bp, level, pp);
3830                        if (error)
3831                                goto error0;
3832                } else if (level > 0) {
3833                        error = xfs_btree_dec_cursor(cur, level, stat);
3834                        if (error)
3835                                goto error0;
3836                }
3837                *stat = 1;
3838                return 0;
3839        }
3840
3841        /*
3842         * If we deleted the leftmost entry in the block, update the
3843         * key values above us in the tree.
3844         */
3845        if (xfs_btree_needs_key_update(cur, ptr)) {
3846                error = xfs_btree_update_keys(cur, level);
3847                if (error)
3848                        goto error0;
3849        }
3850
3851        /*
3852         * If the number of records remaining in the block is at least
3853         * the minimum, we're done.
3854         */
3855        if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3856                error = xfs_btree_dec_cursor(cur, level, stat);
3857                if (error)
3858                        goto error0;
3859                return 0;
3860        }
3861
3862        /*
3863         * Otherwise, we have to move some records around to keep the
3864         * tree balanced.  Look at the left and right sibling blocks to
3865         * see if we can re-balance by moving only one record.
3866         */
3867        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3868        xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3869
3870        if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871                /*
3872                 * One child of root, need to get a chance to copy its contents
3873                 * into the root and delete it. Can't go up to next level,
3874                 * there's nothing to delete there.
3875                 */
3876                if (xfs_btree_ptr_is_null(cur, &rptr) &&
3877                    xfs_btree_ptr_is_null(cur, &lptr) &&
3878                    level == cur->bc_nlevels - 2) {
3879                        error = xfs_btree_kill_iroot(cur);
3880                        if (!error)
3881                                error = xfs_btree_dec_cursor(cur, level, stat);
3882                        if (error)
3883                                goto error0;
3884                        return 0;
3885                }
3886        }
3887
3888        ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3889               !xfs_btree_ptr_is_null(cur, &lptr));
3890
3891        /*
3892         * Duplicate the cursor so our btree manipulations here won't
3893         * disrupt the next level up.
3894         */
3895        error = xfs_btree_dup_cursor(cur, &tcur);
3896        if (error)
3897                goto error0;
3898
3899        /*
3900         * If there's a right sibling, see if it's ok to shift an entry
3901         * out of it.
3902         */
3903        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3904                /*
3905                 * Move the temp cursor to the last entry in the next block.
3906                 * Actually any entry but the first would suffice.
3907                 */
3908                i = xfs_btree_lastrec(tcur, level);
3909                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3910
3911                error = xfs_btree_increment(tcur, level, &i);
3912                if (error)
3913                        goto error0;
3914                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3915
3916                i = xfs_btree_lastrec(tcur, level);
3917                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3918
3919                /* Grab a pointer to the block. */
3920                right = xfs_btree_get_block(tcur, level, &rbp);
3921#ifdef DEBUG
3922                error = xfs_btree_check_block(tcur, right, level, rbp);
3923                if (error)
3924                        goto error0;
3925#endif
3926                /* Grab the current block number, for future use. */
3927                xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3928
3929                /*
3930                 * If right block is full enough so that removing one entry
3931                 * won't make it too empty, and left-shifting an entry out
3932                 * of right to us works, we're done.
3933                 */
3934                if (xfs_btree_get_numrecs(right) - 1 >=
3935                    cur->bc_ops->get_minrecs(tcur, level)) {
3936                        error = xfs_btree_lshift(tcur, level, &i);
3937                        if (error)
3938                                goto error0;
3939                        if (i) {
3940                                ASSERT(xfs_btree_get_numrecs(block) >=
3941                                       cur->bc_ops->get_minrecs(tcur, level));
3942
3943                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3944                                tcur = NULL;
3945
3946                                error = xfs_btree_dec_cursor(cur, level, stat);
3947                                if (error)
3948                                        goto error0;
3949                                return 0;
3950                        }
3951                }
3952
3953                /*
3954                 * Otherwise, grab the number of records in right for
3955                 * future reference, and fix up the temp cursor to point
3956                 * to our block again (last record).
3957                 */
3958                rrecs = xfs_btree_get_numrecs(right);
3959                if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3960                        i = xfs_btree_firstrec(tcur, level);
3961                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3962
3963                        error = xfs_btree_decrement(tcur, level, &i);
3964                        if (error)
3965                                goto error0;
3966                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3967                }
3968        }
3969
3970        /*
3971         * If there's a left sibling, see if it's ok to shift an entry
3972         * out of it.
3973         */
3974        if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3975                /*
3976                 * Move the temp cursor to the first entry in the
3977                 * previous block.
3978                 */
3979                i = xfs_btree_firstrec(tcur, level);
3980                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3981
3982                error = xfs_btree_decrement(tcur, level, &i);
3983                if (error)
3984                        goto error0;
3985                i = xfs_btree_firstrec(tcur, level);
3986                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987
3988                /* Grab a pointer to the block. */
3989                left = xfs_btree_get_block(tcur, level, &lbp);
3990#ifdef DEBUG
3991                error = xfs_btree_check_block(cur, left, level, lbp);
3992                if (error)
3993                        goto error0;
3994#endif
3995                /* Grab the current block number, for future use. */
3996                xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3997
3998                /*
3999                 * If left block is full enough so that removing one entry
4000                 * won't make it too empty, and right-shifting an entry out
4001                 * of left to us works, we're done.
4002                 */
4003                if (xfs_btree_get_numrecs(left) - 1 >=
4004                    cur->bc_ops->get_minrecs(tcur, level)) {
4005                        error = xfs_btree_rshift(tcur, level, &i);
4006                        if (error)
4007                                goto error0;
4008                        if (i) {
4009                                ASSERT(xfs_btree_get_numrecs(block) >=
4010                                       cur->bc_ops->get_minrecs(tcur, level));
4011                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012                                tcur = NULL;
4013                                if (level == 0)
4014                                        cur->bc_ptrs[0]++;
4015                                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4016                                *stat = 1;
4017                                return 0;
4018                        }
4019                }
4020
4021                /*
4022                 * Otherwise, grab the number of records in right for
4023                 * future reference.
4024                 */
4025                lrecs = xfs_btree_get_numrecs(left);
4026        }
4027
4028        /* Delete the temp cursor, we're done with it. */
4029        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4030        tcur = NULL;
4031
4032        /* If here, we need to do a join to keep the tree balanced. */
4033        ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4034
4035        if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4036            lrecs + xfs_btree_get_numrecs(block) <=
4037                        cur->bc_ops->get_maxrecs(cur, level)) {
4038                /*
4039                 * Set "right" to be the starting block,
4040                 * "left" to be the left neighbor.
4041                 */
4042                rptr = cptr;
4043                right = block;
4044                rbp = bp;
4045                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4046                if (error)
4047                        goto error0;
4048
4049        /*
4050         * If that won't work, see if we can join with the right neighbor block.
4051         */
4052        } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4053                   rrecs + xfs_btree_get_numrecs(block) <=
4054                        cur->bc_ops->get_maxrecs(cur, level)) {
4055                /*
4056                 * Set "left" to be the starting block,
4057                 * "right" to be the right neighbor.
4058                 */
4059                lptr = cptr;
4060                left = block;
4061                lbp = bp;
4062                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4063                if (error)
4064                        goto error0;
4065
4066        /*
4067         * Otherwise, we can't fix the imbalance.
4068         * Just return.  This is probably a logic error, but it's not fatal.
4069         */
4070        } else {
4071                error = xfs_btree_dec_cursor(cur, level, stat);
4072                if (error)
4073                        goto error0;
4074                return 0;
4075        }
4076
4077        rrecs = xfs_btree_get_numrecs(right);
4078        lrecs = xfs_btree_get_numrecs(left);
4079
4080        /*
4081         * We're now going to join "left" and "right" by moving all the stuff
4082         * in "right" to "left" and deleting "right".
4083         */
4084        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4085        if (level > 0) {
4086                /* It's a non-leaf.  Move keys and pointers. */
4087                union xfs_btree_key     *lkp;   /* left btree key */
4088                union xfs_btree_ptr     *lpp;   /* left address pointer */
4089                union xfs_btree_key     *rkp;   /* right btree key */
4090                union xfs_btree_ptr     *rpp;   /* right address pointer */
4091
4092                lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4093                lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4094                rkp = xfs_btree_key_addr(cur, 1, right);
4095                rpp = xfs_btree_ptr_addr(cur, 1, right);
4096#ifdef DEBUG
4097                for (i = 1; i < rrecs; i++) {
4098                        error = xfs_btree_check_ptr(cur, rpp, i, level);
4099                        if (error)
4100                                goto error0;
4101                }
4102#endif
4103                xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4104                xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4105
4106                xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4107                xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4108        } else {
4109                /* It's a leaf.  Move records.  */
4110                union xfs_btree_rec     *lrp;   /* left record pointer */
4111                union xfs_btree_rec     *rrp;   /* right record pointer */
4112
4113                lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4114                rrp = xfs_btree_rec_addr(cur, 1, right);
4115
4116                xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4117                xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4118        }
4119
4120        XFS_BTREE_STATS_INC(cur, join);
4121
4122        /*
4123         * Fix up the number of records and right block pointer in the
4124         * surviving block, and log it.
4125         */
4126        xfs_btree_set_numrecs(left, lrecs + rrecs);
4127        xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4128        xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4129        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4130
4131        /* If there is a right sibling, point it to the remaining block. */
4132        xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4133        if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4134                error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4135                if (error)
4136                        goto error0;
4137                xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4138                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4139        }
4140
4141        /* Free the deleted block. */
4142        error = xfs_btree_free_block(cur, rbp);
4143        if (error)
4144                goto error0;
4145
4146        /*
4147         * If we joined with the left neighbor, set the buffer in the
4148         * cursor to the left block, and fix up the index.
4149         */
4150        if (bp != lbp) {
4151                cur->bc_bufs[level] = lbp;
4152                cur->bc_ptrs[level] += lrecs;
4153                cur->bc_ra[level] = 0;
4154        }
4155        /*
4156         * If we joined with the right neighbor and there's a level above
4157         * us, increment the cursor at that level.
4158         */
4159        else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4160                   (level + 1 < cur->bc_nlevels)) {
4161                error = xfs_btree_increment(cur, level + 1, &i);
4162                if (error)
4163                        goto error0;
4164        }
4165
4166        /*
4167         * Readjust the ptr at this level if it's not a leaf, since it's
4168         * still pointing at the deletion point, which makes the cursor
4169         * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4170         * We can't use decrement because it would change the next level up.
4171         */
4172        if (level > 0)
4173                cur->bc_ptrs[level]--;
4174
4175        /*
4176         * We combined blocks, so we have to update the parent keys if the
4177         * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4178         * points to the old block so that the caller knows which record to
4179         * delete.  Therefore, the caller must be savvy enough to call updkeys
4180         * for us if we return stat == 2.  The other exit points from this
4181         * function don't require deletions further up the tree, so they can
4182         * call updkeys directly.
4183         */
4184
4185        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4186        /* Return value means the next level up has something to do. */
4187        *stat = 2;
4188        return 0;
4189
4190error0:
4191        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4192        if (tcur)
4193                xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4194        return error;
4195}
4196
4197/*
4198 * Delete the record pointed to by cur.
4199 * The cursor refers to the place where the record was (could be inserted)
4200 * when the operation returns.
4201 */
4202int                                     /* error */
4203xfs_btree_delete(
4204        struct xfs_btree_cur    *cur,
4205        int                     *stat)  /* success/failure */
4206{
4207        int                     error;  /* error return value */
4208        int                     level;
4209        int                     i;
4210        bool                    joined = false;
4211
4212        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4213
4214        /*
4215         * Go up the tree, starting at leaf level.
4216         *
4217         * If 2 is returned then a join was done; go to the next level.
4218         * Otherwise we are done.
4219         */
4220        for (level = 0, i = 2; i == 2; level++) {
4221                error = xfs_btree_delrec(cur, level, &i);
4222                if (error)
4223                        goto error0;
4224                if (i == 2)
4225                        joined = true;
4226        }
4227
4228        /*
4229         * If we combined blocks as part of deleting the record, delrec won't
4230         * have updated the parent high keys so we have to do that here.
4231         */
4232        if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4233                error = xfs_btree_updkeys_force(cur, 0);
4234                if (error)
4235                        goto error0;
4236        }
4237
4238        if (i == 0) {
4239                for (level = 1; level < cur->bc_nlevels; level++) {
4240                        if (cur->bc_ptrs[level] == 0) {
4241                                error = xfs_btree_decrement(cur, level, &i);
4242                                if (error)
4243                                        goto error0;
4244                                break;
4245                        }
4246                }
4247        }
4248
4249        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4250        *stat = i;
4251        return 0;
4252error0:
4253        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4254        return error;
4255}
4256
4257/*
4258 * Get the data from the pointed-to record.
4259 */
4260int                                     /* error */
4261xfs_btree_get_rec(
4262        struct xfs_btree_cur    *cur,   /* btree cursor */
4263        union xfs_btree_rec     **recp, /* output: btree record */
4264        int                     *stat)  /* output: success/failure */
4265{
4266        struct xfs_btree_block  *block; /* btree block */
4267        struct xfs_buf          *bp;    /* buffer pointer */
4268        int                     ptr;    /* record number */
4269#ifdef DEBUG
4270        int                     error;  /* error return value */
4271#endif
4272
4273        ptr = cur->bc_ptrs[0];
4274        block = xfs_btree_get_block(cur, 0, &bp);
4275
4276#ifdef DEBUG
4277        error = xfs_btree_check_block(cur, block, 0, bp);
4278        if (error)
4279                return error;
4280#endif
4281
4282        /*
4283         * Off the right end or left end, return failure.
4284         */
4285        if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4286                *stat = 0;
4287                return 0;
4288        }
4289
4290        /*
4291         * Point to the record and extract its data.
4292         */
4293        *recp = xfs_btree_rec_addr(cur, ptr, block);
4294        *stat = 1;
4295        return 0;
4296}
4297
4298/* Visit a block in a btree. */
4299STATIC int
4300xfs_btree_visit_block(
4301        struct xfs_btree_cur            *cur,
4302        int                             level,
4303        xfs_btree_visit_blocks_fn       fn,
4304        void                            *data)
4305{
4306        struct xfs_btree_block          *block;
4307        struct xfs_buf                  *bp;
4308        union xfs_btree_ptr             rptr;
4309        int                             error;
4310
4311        /* do right sibling readahead */
4312        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4313        block = xfs_btree_get_block(cur, level, &bp);
4314
4315        /* process the block */
4316        error = fn(cur, level, data);
4317        if (error)
4318                return error;
4319
4320        /* now read rh sibling block for next iteration */
4321        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4322        if (xfs_btree_ptr_is_null(cur, &rptr))
4323                return -ENOENT;
4324
4325        return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4326}
4327
4328
4329/* Visit every block in a btree. */
4330int
4331xfs_btree_visit_blocks(
4332        struct xfs_btree_cur            *cur,
4333        xfs_btree_visit_blocks_fn       fn,
4334        void                            *data)
4335{
4336        union xfs_btree_ptr             lptr;
4337        int                             level;
4338        struct xfs_btree_block          *block = NULL;
4339        int                             error = 0;
4340
4341        cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4342
4343        /* for each level */
4344        for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4345                /* grab the left hand block */
4346                error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4347                if (error)
4348                        return error;
4349
4350                /* readahead the left most block for the next level down */
4351                if (level > 0) {
4352                        union xfs_btree_ptr     *ptr;
4353
4354                        ptr = xfs_btree_ptr_addr(cur, 1, block);
4355                        xfs_btree_readahead_ptr(cur, ptr, 1);
4356
4357                        /* save for the next iteration of the loop */
4358                        lptr = *ptr;
4359                }
4360
4361                /* for each buffer in the level */
4362                do {
4363                        error = xfs_btree_visit_block(cur, level, fn, data);
4364                } while (!error);
4365
4366                if (error != -ENOENT)
4367                        return error;
4368        }
4369
4370        return 0;
4371}
4372
4373/*
4374 * Change the owner of a btree.
4375 *
4376 * The mechanism we use here is ordered buffer logging. Because we don't know
4377 * how many buffers were are going to need to modify, we don't really want to
4378 * have to make transaction reservations for the worst case of every buffer in a
4379 * full size btree as that may be more space that we can fit in the log....
4380 *
4381 * We do the btree walk in the most optimal manner possible - we have sibling
4382 * pointers so we can just walk all the blocks on each level from left to right
4383 * in a single pass, and then move to the next level and do the same. We can
4384 * also do readahead on the sibling pointers to get IO moving more quickly,
4385 * though for slow disks this is unlikely to make much difference to performance
4386 * as the amount of CPU work we have to do before moving to the next block is
4387 * relatively small.
4388 *
4389 * For each btree block that we load, modify the owner appropriately, set the
4390 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4391 * we mark the region we change dirty so that if the buffer is relogged in
4392 * a subsequent transaction the changes we make here as an ordered buffer are
4393 * correctly relogged in that transaction.  If we are in recovery context, then
4394 * just queue the modified buffer as delayed write buffer so the transaction
4395 * recovery completion writes the changes to disk.
4396 */
4397struct xfs_btree_block_change_owner_info {
4398        __uint64_t              new_owner;
4399        struct list_head        *buffer_list;
4400};
4401
4402static int
4403xfs_btree_block_change_owner(
4404        struct xfs_btree_cur    *cur,
4405        int                     level,
4406        void                    *data)
4407{
4408        struct xfs_btree_block_change_owner_info        *bbcoi = data;
4409        struct xfs_btree_block  *block;
4410        struct xfs_buf          *bp;
4411
4412        /* modify the owner */
4413        block = xfs_btree_get_block(cur, level, &bp);
4414        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4415                block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4416        else
4417                block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4418
4419        /*
4420         * If the block is a root block hosted in an inode, we might not have a
4421         * buffer pointer here and we shouldn't attempt to log the change as the
4422         * information is already held in the inode and discarded when the root
4423         * block is formatted into the on-disk inode fork. We still change it,
4424         * though, so everything is consistent in memory.
4425         */
4426        if (bp) {
4427                if (cur->bc_tp) {
4428                        xfs_trans_ordered_buf(cur->bc_tp, bp);
4429                        xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4430                } else {
4431                        xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4432                }
4433        } else {
4434                ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4435                ASSERT(level == cur->bc_nlevels - 1);
4436        }
4437
4438        return 0;
4439}
4440
4441int
4442xfs_btree_change_owner(
4443        struct xfs_btree_cur    *cur,
4444        __uint64_t              new_owner,
4445        struct list_head        *buffer_list)
4446{
4447        struct xfs_btree_block_change_owner_info        bbcoi;
4448
4449        bbcoi.new_owner = new_owner;
4450        bbcoi.buffer_list = buffer_list;
4451
4452        return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4453                        &bbcoi);
4454}
4455
4456/**
4457 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4458 *                                    btree block
4459 *
4460 * @bp: buffer containing the btree block
4461 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4462 * @pag_max_level: pointer to the per-ag max level field
4463 */
4464bool
4465xfs_btree_sblock_v5hdr_verify(
4466        struct xfs_buf          *bp)
4467{
4468        struct xfs_mount        *mp = bp->b_target->bt_mount;
4469        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4470        struct xfs_perag        *pag = bp->b_pag;
4471
4472        if (!xfs_sb_version_hascrc(&mp->m_sb))
4473                return false;
4474        if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4475                return false;
4476        if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4477                return false;
4478        if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4479                return false;
4480        return true;
4481}
4482
4483/**
4484 * xfs_btree_sblock_verify() -- verify a short-format btree block
4485 *
4486 * @bp: buffer containing the btree block
4487 * @max_recs: maximum records allowed in this btree node
4488 */
4489bool
4490xfs_btree_sblock_verify(
4491        struct xfs_buf          *bp,
4492        unsigned int            max_recs)
4493{
4494        struct xfs_mount        *mp = bp->b_target->bt_mount;
4495        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4496
4497        /* numrecs verification */
4498        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4499                return false;
4500
4501        /* sibling pointer verification */
4502        if (!block->bb_u.s.bb_leftsib ||
4503            (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4504             block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4505                return false;
4506        if (!block->bb_u.s.bb_rightsib ||
4507            (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4508             block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4509                return false;
4510
4511        return true;
4512}
4513
4514/*
4515 * Calculate the number of btree levels needed to store a given number of
4516 * records in a short-format btree.
4517 */
4518uint
4519xfs_btree_compute_maxlevels(
4520        struct xfs_mount        *mp,
4521        uint                    *limits,
4522        unsigned long           len)
4523{
4524        uint                    level;
4525        unsigned long           maxblocks;
4526
4527        maxblocks = (len + limits[0] - 1) / limits[0];
4528        for (level = 1; maxblocks > 1; level++)
4529                maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4530        return level;
4531}
4532
4533/*
4534 * Query a regular btree for all records overlapping a given interval.
4535 * Start with a LE lookup of the key of low_rec and return all records
4536 * until we find a record with a key greater than the key of high_rec.
4537 */
4538STATIC int
4539xfs_btree_simple_query_range(
4540        struct xfs_btree_cur            *cur,
4541        union xfs_btree_key             *low_key,
4542        union xfs_btree_key             *high_key,
4543        xfs_btree_query_range_fn        fn,
4544        void                            *priv)
4545{
4546        union xfs_btree_rec             *recp;
4547        union xfs_btree_key             rec_key;
4548        __int64_t                       diff;
4549        int                             stat;
4550        bool                            firstrec = true;
4551        int                             error;
4552
4553        ASSERT(cur->bc_ops->init_high_key_from_rec);
4554        ASSERT(cur->bc_ops->diff_two_keys);
4555
4556        /*
4557         * Find the leftmost record.  The btree cursor must be set
4558         * to the low record used to generate low_key.
4559         */
4560        stat = 0;
4561        error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4562        if (error)
4563                goto out;
4564
4565        /* Nothing?  See if there's anything to the right. */
4566        if (!stat) {
4567                error = xfs_btree_increment(cur, 0, &stat);
4568                if (error)
4569                        goto out;
4570        }
4571
4572        while (stat) {
4573                /* Find the record. */
4574                error = xfs_btree_get_rec(cur, &recp, &stat);
4575                if (error || !stat)
4576                        break;
4577
4578                /* Skip if high_key(rec) < low_key. */
4579                if (firstrec) {
4580                        cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4581                        firstrec = false;
4582                        diff = cur->bc_ops->diff_two_keys(cur, low_key,
4583                                        &rec_key);
4584                        if (diff > 0)
4585                                goto advloop;
4586                }
4587
4588                /* Stop if high_key < low_key(rec). */
4589                cur->bc_ops->init_key_from_rec(&rec_key, recp);
4590                diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4591                if (diff > 0)
4592                        break;
4593
4594                /* Callback */
4595                error = fn(cur, recp, priv);
4596                if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4597                        break;
4598
4599advloop:
4600                /* Move on to the next record. */
4601                error = xfs_btree_increment(cur, 0, &stat);
4602                if (error)
4603                        break;
4604        }
4605
4606out:
4607        return error;
4608}
4609
4610/*
4611 * Query an overlapped interval btree for all records overlapping a given
4612 * interval.  This function roughly follows the algorithm given in
4613 * "Interval Trees" of _Introduction to Algorithms_, which is section
4614 * 14.3 in the 2nd and 3rd editions.
4615 *
4616 * First, generate keys for the low and high records passed in.
4617 *
4618 * For any leaf node, generate the high and low keys for the record.
4619 * If the record keys overlap with the query low/high keys, pass the
4620 * record to the function iterator.
4621 *
4622 * For any internal node, compare the low and high keys of each
4623 * pointer against the query low/high keys.  If there's an overlap,
4624 * follow the pointer.
4625 *
4626 * As an optimization, we stop scanning a block when we find a low key
4627 * that is greater than the query's high key.
4628 */
4629STATIC int
4630xfs_btree_overlapped_query_range(
4631        struct xfs_btree_cur            *cur,
4632        union xfs_btree_key             *low_key,
4633        union xfs_btree_key             *high_key,
4634        xfs_btree_query_range_fn        fn,
4635        void                            *priv)
4636{
4637        union xfs_btree_ptr             ptr;
4638        union xfs_btree_ptr             *pp;
4639        union xfs_btree_key             rec_key;
4640        union xfs_btree_key             rec_hkey;
4641        union xfs_btree_key             *lkp;
4642        union xfs_btree_key             *hkp;
4643        union xfs_btree_rec             *recp;
4644        struct xfs_btree_block          *block;
4645        __int64_t                       ldiff;
4646        __int64_t                       hdiff;
4647        int                             level;
4648        struct xfs_buf                  *bp;
4649        int                             i;
4650        int                             error;
4651
4652        /* Load the root of the btree. */
4653        level = cur->bc_nlevels - 1;
4654        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4655        error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4656        if (error)
4657                return error;
4658        xfs_btree_get_block(cur, level, &bp);
4659        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4660#ifdef DEBUG
4661        error = xfs_btree_check_block(cur, block, level, bp);
4662        if (error)
4663                goto out;
4664#endif
4665        cur->bc_ptrs[level] = 1;
4666
4667        while (level < cur->bc_nlevels) {
4668                block = xfs_btree_get_block(cur, level, &bp);
4669
4670                /* End of node, pop back towards the root. */
4671                if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4672pop_up:
4673                        if (level < cur->bc_nlevels - 1)
4674                                cur->bc_ptrs[level + 1]++;
4675                        level++;
4676                        continue;
4677                }
4678
4679                if (level == 0) {
4680                        /* Handle a leaf node. */
4681                        recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4682
4683                        cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4684                        ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4685                                        low_key);
4686
4687                        cur->bc_ops->init_key_from_rec(&rec_key, recp);
4688                        hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4689                                        &rec_key);
4690
4691                        /*
4692                         * If (record's high key >= query's low key) and
4693                         *    (query's high key >= record's low key), then
4694                         * this record overlaps the query range; callback.
4695                         */
4696                        if (ldiff >= 0 && hdiff >= 0) {
4697                                error = fn(cur, recp, priv);
4698                                if (error < 0 ||
4699                                    error == XFS_BTREE_QUERY_RANGE_ABORT)
4700                                        break;
4701                        } else if (hdiff < 0) {
4702                                /* Record is larger than high key; pop. */
4703                                goto pop_up;
4704                        }
4705                        cur->bc_ptrs[level]++;
4706                        continue;
4707                }
4708
4709                /* Handle an internal node. */
4710                lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4711                hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4712                pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4713
4714                ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4715                hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4716
4717                /*
4718                 * If (pointer's high key >= query's low key) and
4719                 *    (query's high key >= pointer's low key), then
4720                 * this record overlaps the query range; follow pointer.
4721                 */
4722                if (ldiff >= 0 && hdiff >= 0) {
4723                        level--;
4724                        error = xfs_btree_lookup_get_block(cur, level, pp,
4725                                        &block);
4726                        if (error)
4727                                goto out;
4728                        xfs_btree_get_block(cur, level, &bp);
4729                        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4730#ifdef DEBUG
4731                        error = xfs_btree_check_block(cur, block, level, bp);
4732                        if (error)
4733                                goto out;
4734#endif
4735                        cur->bc_ptrs[level] = 1;
4736                        continue;
4737                } else if (hdiff < 0) {
4738                        /* The low key is larger than the upper range; pop. */
4739                        goto pop_up;
4740                }
4741                cur->bc_ptrs[level]++;
4742        }
4743
4744out:
4745        /*
4746         * If we don't end this function with the cursor pointing at a record
4747         * block, a subsequent non-error cursor deletion will not release
4748         * node-level buffers, causing a buffer leak.  This is quite possible
4749         * with a zero-results range query, so release the buffers if we
4750         * failed to return any results.
4751         */
4752        if (cur->bc_bufs[0] == NULL) {
4753                for (i = 0; i < cur->bc_nlevels; i++) {
4754                        if (cur->bc_bufs[i]) {
4755                                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4756                                cur->bc_bufs[i] = NULL;
4757                                cur->bc_ptrs[i] = 0;
4758                                cur->bc_ra[i] = 0;
4759                        }
4760                }
4761        }
4762
4763        return error;
4764}
4765
4766/*
4767 * Query a btree for all records overlapping a given interval of keys.  The
4768 * supplied function will be called with each record found; return one of the
4769 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4770 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4771 * negative error code.
4772 */
4773int
4774xfs_btree_query_range(
4775        struct xfs_btree_cur            *cur,
4776        union xfs_btree_irec            *low_rec,
4777        union xfs_btree_irec            *high_rec,
4778        xfs_btree_query_range_fn        fn,
4779        void                            *priv)
4780{
4781        union xfs_btree_rec             rec;
4782        union xfs_btree_key             low_key;
4783        union xfs_btree_key             high_key;
4784
4785        /* Find the keys of both ends of the interval. */
4786        cur->bc_rec = *high_rec;
4787        cur->bc_ops->init_rec_from_cur(cur, &rec);
4788        cur->bc_ops->init_key_from_rec(&high_key, &rec);
4789
4790        cur->bc_rec = *low_rec;
4791        cur->bc_ops->init_rec_from_cur(cur, &rec);
4792        cur->bc_ops->init_key_from_rec(&low_key, &rec);
4793
4794        /* Enforce low key < high key. */
4795        if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4796                return -EINVAL;
4797
4798        if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4799                return xfs_btree_simple_query_range(cur, &low_key,
4800                                &high_key, fn, priv);
4801        return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4802                        fn, priv);
4803}
4804
4805/*
4806 * Calculate the number of blocks needed to store a given number of records
4807 * in a short-format (per-AG metadata) btree.
4808 */
4809xfs_extlen_t
4810xfs_btree_calc_size(
4811        struct xfs_mount        *mp,
4812        uint                    *limits,
4813        unsigned long long      len)
4814{
4815        int                     level;
4816        int                     maxrecs;
4817        xfs_extlen_t            rval;
4818
4819        maxrecs = limits[0];
4820        for (level = 0, rval = 0; len > 1; level++) {
4821                len += maxrecs - 1;
4822                do_div(len, maxrecs);
4823                maxrecs = limits[1];
4824                rval += len;
4825        }
4826        return rval;
4827}
4828
4829static int
4830xfs_btree_count_blocks_helper(
4831        struct xfs_btree_cur    *cur,
4832        int                     level,
4833        void                    *data)
4834{
4835        xfs_extlen_t            *blocks = data;
4836        (*blocks)++;
4837
4838        return 0;
4839}
4840
4841/* Count the blocks in a btree and return the result in *blocks. */
4842int
4843xfs_btree_count_blocks(
4844        struct xfs_btree_cur    *cur,
4845        xfs_extlen_t            *blocks)
4846{
4847        *blocks = 0;
4848        return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4849                        blocks);
4850}
4851