linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_format.h"
  38#include "xfs_log_format.h"
  39#include "xfs_trans_resv.h"
  40#include "xfs_sb.h"
  41#include "xfs_mount.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
  44
  45static kmem_zone_t *xfs_buf_zone;
  46
  47#ifdef XFS_BUF_LOCK_TRACKING
  48# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  49# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  50# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  51#else
  52# define XB_SET_OWNER(bp)       do { } while (0)
  53# define XB_CLEAR_OWNER(bp)     do { } while (0)
  54# define XB_GET_OWNER(bp)       do { } while (0)
  55#endif
  56
  57#define xb_to_gfp(flags) \
  58        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  59
  60
  61static inline int
  62xfs_buf_is_vmapped(
  63        struct xfs_buf  *bp)
  64{
  65        /*
  66         * Return true if the buffer is vmapped.
  67         *
  68         * b_addr is null if the buffer is not mapped, but the code is clever
  69         * enough to know it doesn't have to map a single page, so the check has
  70         * to be both for b_addr and bp->b_page_count > 1.
  71         */
  72        return bp->b_addr && bp->b_page_count > 1;
  73}
  74
  75static inline int
  76xfs_buf_vmap_len(
  77        struct xfs_buf  *bp)
  78{
  79        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  80}
  81
  82/*
  83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  84 * this buffer. The count is incremented once per buffer (per hold cycle)
  85 * because the corresponding decrement is deferred to buffer release. Buffers
  86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  87 * tracking adds unnecessary overhead. This is used for sychronization purposes
  88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
  89 * in-flight buffers.
  90 *
  91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
  92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  93 * never reaches zero and unmount hangs indefinitely.
  94 */
  95static inline void
  96xfs_buf_ioacct_inc(
  97        struct xfs_buf  *bp)
  98{
  99        if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
 100                return;
 101
 102        ASSERT(bp->b_flags & XBF_ASYNC);
 103        bp->b_flags |= _XBF_IN_FLIGHT;
 104        percpu_counter_inc(&bp->b_target->bt_io_count);
 105}
 106
 107/*
 108 * Clear the in-flight state on a buffer about to be released to the LRU or
 109 * freed and unaccount from the buftarg.
 110 */
 111static inline void
 112xfs_buf_ioacct_dec(
 113        struct xfs_buf  *bp)
 114{
 115        if (!(bp->b_flags & _XBF_IN_FLIGHT))
 116                return;
 117
 118        bp->b_flags &= ~_XBF_IN_FLIGHT;
 119        percpu_counter_dec(&bp->b_target->bt_io_count);
 120}
 121
 122/*
 123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 124 * b_lru_ref count so that the buffer is freed immediately when the buffer
 125 * reference count falls to zero. If the buffer is already on the LRU, we need
 126 * to remove the reference that LRU holds on the buffer.
 127 *
 128 * This prevents build-up of stale buffers on the LRU.
 129 */
 130void
 131xfs_buf_stale(
 132        struct xfs_buf  *bp)
 133{
 134        ASSERT(xfs_buf_islocked(bp));
 135
 136        bp->b_flags |= XBF_STALE;
 137
 138        /*
 139         * Clear the delwri status so that a delwri queue walker will not
 140         * flush this buffer to disk now that it is stale. The delwri queue has
 141         * a reference to the buffer, so this is safe to do.
 142         */
 143        bp->b_flags &= ~_XBF_DELWRI_Q;
 144
 145        /*
 146         * Once the buffer is marked stale and unlocked, a subsequent lookup
 147         * could reset b_flags. There is no guarantee that the buffer is
 148         * unaccounted (released to LRU) before that occurs. Drop in-flight
 149         * status now to preserve accounting consistency.
 150         */
 151        xfs_buf_ioacct_dec(bp);
 152
 153        spin_lock(&bp->b_lock);
 154        atomic_set(&bp->b_lru_ref, 0);
 155        if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 156            (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 157                atomic_dec(&bp->b_hold);
 158
 159        ASSERT(atomic_read(&bp->b_hold) >= 1);
 160        spin_unlock(&bp->b_lock);
 161}
 162
 163static int
 164xfs_buf_get_maps(
 165        struct xfs_buf          *bp,
 166        int                     map_count)
 167{
 168        ASSERT(bp->b_maps == NULL);
 169        bp->b_map_count = map_count;
 170
 171        if (map_count == 1) {
 172                bp->b_maps = &bp->__b_map;
 173                return 0;
 174        }
 175
 176        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 177                                KM_NOFS);
 178        if (!bp->b_maps)
 179                return -ENOMEM;
 180        return 0;
 181}
 182
 183/*
 184 *      Frees b_pages if it was allocated.
 185 */
 186static void
 187xfs_buf_free_maps(
 188        struct xfs_buf  *bp)
 189{
 190        if (bp->b_maps != &bp->__b_map) {
 191                kmem_free(bp->b_maps);
 192                bp->b_maps = NULL;
 193        }
 194}
 195
 196struct xfs_buf *
 197_xfs_buf_alloc(
 198        struct xfs_buftarg      *target,
 199        struct xfs_buf_map      *map,
 200        int                     nmaps,
 201        xfs_buf_flags_t         flags)
 202{
 203        struct xfs_buf          *bp;
 204        int                     error;
 205        int                     i;
 206
 207        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 208        if (unlikely(!bp))
 209                return NULL;
 210
 211        /*
 212         * We don't want certain flags to appear in b_flags unless they are
 213         * specifically set by later operations on the buffer.
 214         */
 215        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 216
 217        atomic_set(&bp->b_hold, 1);
 218        atomic_set(&bp->b_lru_ref, 1);
 219        init_completion(&bp->b_iowait);
 220        INIT_LIST_HEAD(&bp->b_lru);
 221        INIT_LIST_HEAD(&bp->b_list);
 222        RB_CLEAR_NODE(&bp->b_rbnode);
 223        sema_init(&bp->b_sema, 0); /* held, no waiters */
 224        spin_lock_init(&bp->b_lock);
 225        XB_SET_OWNER(bp);
 226        bp->b_target = target;
 227        bp->b_flags = flags;
 228
 229        /*
 230         * Set length and io_length to the same value initially.
 231         * I/O routines should use io_length, which will be the same in
 232         * most cases but may be reset (e.g. XFS recovery).
 233         */
 234        error = xfs_buf_get_maps(bp, nmaps);
 235        if (error)  {
 236                kmem_zone_free(xfs_buf_zone, bp);
 237                return NULL;
 238        }
 239
 240        bp->b_bn = map[0].bm_bn;
 241        bp->b_length = 0;
 242        for (i = 0; i < nmaps; i++) {
 243                bp->b_maps[i].bm_bn = map[i].bm_bn;
 244                bp->b_maps[i].bm_len = map[i].bm_len;
 245                bp->b_length += map[i].bm_len;
 246        }
 247        bp->b_io_length = bp->b_length;
 248
 249        atomic_set(&bp->b_pin_count, 0);
 250        init_waitqueue_head(&bp->b_waiters);
 251
 252        XFS_STATS_INC(target->bt_mount, xb_create);
 253        trace_xfs_buf_init(bp, _RET_IP_);
 254
 255        return bp;
 256}
 257
 258/*
 259 *      Allocate a page array capable of holding a specified number
 260 *      of pages, and point the page buf at it.
 261 */
 262STATIC int
 263_xfs_buf_get_pages(
 264        xfs_buf_t               *bp,
 265        int                     page_count)
 266{
 267        /* Make sure that we have a page list */
 268        if (bp->b_pages == NULL) {
 269                bp->b_page_count = page_count;
 270                if (page_count <= XB_PAGES) {
 271                        bp->b_pages = bp->b_page_array;
 272                } else {
 273                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 274                                                 page_count, KM_NOFS);
 275                        if (bp->b_pages == NULL)
 276                                return -ENOMEM;
 277                }
 278                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 279        }
 280        return 0;
 281}
 282
 283/*
 284 *      Frees b_pages if it was allocated.
 285 */
 286STATIC void
 287_xfs_buf_free_pages(
 288        xfs_buf_t       *bp)
 289{
 290        if (bp->b_pages != bp->b_page_array) {
 291                kmem_free(bp->b_pages);
 292                bp->b_pages = NULL;
 293        }
 294}
 295
 296/*
 297 *      Releases the specified buffer.
 298 *
 299 *      The modification state of any associated pages is left unchanged.
 300 *      The buffer must not be on any hash - use xfs_buf_rele instead for
 301 *      hashed and refcounted buffers
 302 */
 303void
 304xfs_buf_free(
 305        xfs_buf_t               *bp)
 306{
 307        trace_xfs_buf_free(bp, _RET_IP_);
 308
 309        ASSERT(list_empty(&bp->b_lru));
 310
 311        if (bp->b_flags & _XBF_PAGES) {
 312                uint            i;
 313
 314                if (xfs_buf_is_vmapped(bp))
 315                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 316                                        bp->b_page_count);
 317
 318                for (i = 0; i < bp->b_page_count; i++) {
 319                        struct page     *page = bp->b_pages[i];
 320
 321                        __free_page(page);
 322                }
 323        } else if (bp->b_flags & _XBF_KMEM)
 324                kmem_free(bp->b_addr);
 325        _xfs_buf_free_pages(bp);
 326        xfs_buf_free_maps(bp);
 327        kmem_zone_free(xfs_buf_zone, bp);
 328}
 329
 330/*
 331 * Allocates all the pages for buffer in question and builds it's page list.
 332 */
 333STATIC int
 334xfs_buf_allocate_memory(
 335        xfs_buf_t               *bp,
 336        uint                    flags)
 337{
 338        size_t                  size;
 339        size_t                  nbytes, offset;
 340        gfp_t                   gfp_mask = xb_to_gfp(flags);
 341        unsigned short          page_count, i;
 342        xfs_off_t               start, end;
 343        int                     error;
 344
 345        /*
 346         * for buffers that are contained within a single page, just allocate
 347         * the memory from the heap - there's no need for the complexity of
 348         * page arrays to keep allocation down to order 0.
 349         */
 350        size = BBTOB(bp->b_length);
 351        if (size < PAGE_SIZE) {
 352                bp->b_addr = kmem_alloc(size, KM_NOFS);
 353                if (!bp->b_addr) {
 354                        /* low memory - use alloc_page loop instead */
 355                        goto use_alloc_page;
 356                }
 357
 358                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 359                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 360                        /* b_addr spans two pages - use alloc_page instead */
 361                        kmem_free(bp->b_addr);
 362                        bp->b_addr = NULL;
 363                        goto use_alloc_page;
 364                }
 365                bp->b_offset = offset_in_page(bp->b_addr);
 366                bp->b_pages = bp->b_page_array;
 367                bp->b_pages[0] = virt_to_page(bp->b_addr);
 368                bp->b_page_count = 1;
 369                bp->b_flags |= _XBF_KMEM;
 370                return 0;
 371        }
 372
 373use_alloc_page:
 374        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 375        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 376                                                                >> PAGE_SHIFT;
 377        page_count = end - start;
 378        error = _xfs_buf_get_pages(bp, page_count);
 379        if (unlikely(error))
 380                return error;
 381
 382        offset = bp->b_offset;
 383        bp->b_flags |= _XBF_PAGES;
 384
 385        for (i = 0; i < bp->b_page_count; i++) {
 386                struct page     *page;
 387                uint            retries = 0;
 388retry:
 389                page = alloc_page(gfp_mask);
 390                if (unlikely(page == NULL)) {
 391                        if (flags & XBF_READ_AHEAD) {
 392                                bp->b_page_count = i;
 393                                error = -ENOMEM;
 394                                goto out_free_pages;
 395                        }
 396
 397                        /*
 398                         * This could deadlock.
 399                         *
 400                         * But until all the XFS lowlevel code is revamped to
 401                         * handle buffer allocation failures we can't do much.
 402                         */
 403                        if (!(++retries % 100))
 404                                xfs_err(NULL,
 405                "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 406                                        current->comm, current->pid,
 407                                        __func__, gfp_mask);
 408
 409                        XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
 410                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 411                        goto retry;
 412                }
 413
 414                XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
 415
 416                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 417                size -= nbytes;
 418                bp->b_pages[i] = page;
 419                offset = 0;
 420        }
 421        return 0;
 422
 423out_free_pages:
 424        for (i = 0; i < bp->b_page_count; i++)
 425                __free_page(bp->b_pages[i]);
 426        return error;
 427}
 428
 429/*
 430 *      Map buffer into kernel address-space if necessary.
 431 */
 432STATIC int
 433_xfs_buf_map_pages(
 434        xfs_buf_t               *bp,
 435        uint                    flags)
 436{
 437        ASSERT(bp->b_flags & _XBF_PAGES);
 438        if (bp->b_page_count == 1) {
 439                /* A single page buffer is always mappable */
 440                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 441        } else if (flags & XBF_UNMAPPED) {
 442                bp->b_addr = NULL;
 443        } else {
 444                int retried = 0;
 445                unsigned noio_flag;
 446
 447                /*
 448                 * vm_map_ram() will allocate auxillary structures (e.g.
 449                 * pagetables) with GFP_KERNEL, yet we are likely to be under
 450                 * GFP_NOFS context here. Hence we need to tell memory reclaim
 451                 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
 452                 * memory reclaim re-entering the filesystem here and
 453                 * potentially deadlocking.
 454                 */
 455                noio_flag = memalloc_noio_save();
 456                do {
 457                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 458                                                -1, PAGE_KERNEL);
 459                        if (bp->b_addr)
 460                                break;
 461                        vm_unmap_aliases();
 462                } while (retried++ <= 1);
 463                memalloc_noio_restore(noio_flag);
 464
 465                if (!bp->b_addr)
 466                        return -ENOMEM;
 467                bp->b_addr += bp->b_offset;
 468        }
 469
 470        return 0;
 471}
 472
 473/*
 474 *      Finding and Reading Buffers
 475 */
 476
 477/*
 478 *      Look up, and creates if absent, a lockable buffer for
 479 *      a given range of an inode.  The buffer is returned
 480 *      locked. No I/O is implied by this call.
 481 */
 482xfs_buf_t *
 483_xfs_buf_find(
 484        struct xfs_buftarg      *btp,
 485        struct xfs_buf_map      *map,
 486        int                     nmaps,
 487        xfs_buf_flags_t         flags,
 488        xfs_buf_t               *new_bp)
 489{
 490        struct xfs_perag        *pag;
 491        struct rb_node          **rbp;
 492        struct rb_node          *parent;
 493        xfs_buf_t               *bp;
 494        xfs_daddr_t             blkno = map[0].bm_bn;
 495        xfs_daddr_t             eofs;
 496        int                     numblks = 0;
 497        int                     i;
 498
 499        for (i = 0; i < nmaps; i++)
 500                numblks += map[i].bm_len;
 501
 502        /* Check for IOs smaller than the sector size / not sector aligned */
 503        ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
 504        ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
 505
 506        /*
 507         * Corrupted block numbers can get through to here, unfortunately, so we
 508         * have to check that the buffer falls within the filesystem bounds.
 509         */
 510        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 511        if (blkno < 0 || blkno >= eofs) {
 512                /*
 513                 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
 514                 * but none of the higher level infrastructure supports
 515                 * returning a specific error on buffer lookup failures.
 516                 */
 517                xfs_alert(btp->bt_mount,
 518                          "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 519                          __func__, blkno, eofs);
 520                WARN_ON(1);
 521                return NULL;
 522        }
 523
 524        /* get tree root */
 525        pag = xfs_perag_get(btp->bt_mount,
 526                                xfs_daddr_to_agno(btp->bt_mount, blkno));
 527
 528        /* walk tree */
 529        spin_lock(&pag->pag_buf_lock);
 530        rbp = &pag->pag_buf_tree.rb_node;
 531        parent = NULL;
 532        bp = NULL;
 533        while (*rbp) {
 534                parent = *rbp;
 535                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 536
 537                if (blkno < bp->b_bn)
 538                        rbp = &(*rbp)->rb_left;
 539                else if (blkno > bp->b_bn)
 540                        rbp = &(*rbp)->rb_right;
 541                else {
 542                        /*
 543                         * found a block number match. If the range doesn't
 544                         * match, the only way this is allowed is if the buffer
 545                         * in the cache is stale and the transaction that made
 546                         * it stale has not yet committed. i.e. we are
 547                         * reallocating a busy extent. Skip this buffer and
 548                         * continue searching to the right for an exact match.
 549                         */
 550                        if (bp->b_length != numblks) {
 551                                ASSERT(bp->b_flags & XBF_STALE);
 552                                rbp = &(*rbp)->rb_right;
 553                                continue;
 554                        }
 555                        atomic_inc(&bp->b_hold);
 556                        goto found;
 557                }
 558        }
 559
 560        /* No match found */
 561        if (new_bp) {
 562                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 563                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 564                /* the buffer keeps the perag reference until it is freed */
 565                new_bp->b_pag = pag;
 566                spin_unlock(&pag->pag_buf_lock);
 567        } else {
 568                XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 569                spin_unlock(&pag->pag_buf_lock);
 570                xfs_perag_put(pag);
 571        }
 572        return new_bp;
 573
 574found:
 575        spin_unlock(&pag->pag_buf_lock);
 576        xfs_perag_put(pag);
 577
 578        if (!xfs_buf_trylock(bp)) {
 579                if (flags & XBF_TRYLOCK) {
 580                        xfs_buf_rele(bp);
 581                        XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 582                        return NULL;
 583                }
 584                xfs_buf_lock(bp);
 585                XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 586        }
 587
 588        /*
 589         * if the buffer is stale, clear all the external state associated with
 590         * it. We need to keep flags such as how we allocated the buffer memory
 591         * intact here.
 592         */
 593        if (bp->b_flags & XBF_STALE) {
 594                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 595                ASSERT(bp->b_iodone == NULL);
 596                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 597                bp->b_ops = NULL;
 598        }
 599
 600        trace_xfs_buf_find(bp, flags, _RET_IP_);
 601        XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 602        return bp;
 603}
 604
 605/*
 606 * Assembles a buffer covering the specified range. The code is optimised for
 607 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 608 * more hits than misses.
 609 */
 610struct xfs_buf *
 611xfs_buf_get_map(
 612        struct xfs_buftarg      *target,
 613        struct xfs_buf_map      *map,
 614        int                     nmaps,
 615        xfs_buf_flags_t         flags)
 616{
 617        struct xfs_buf          *bp;
 618        struct xfs_buf          *new_bp;
 619        int                     error = 0;
 620
 621        bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 622        if (likely(bp))
 623                goto found;
 624
 625        new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 626        if (unlikely(!new_bp))
 627                return NULL;
 628
 629        error = xfs_buf_allocate_memory(new_bp, flags);
 630        if (error) {
 631                xfs_buf_free(new_bp);
 632                return NULL;
 633        }
 634
 635        bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 636        if (!bp) {
 637                xfs_buf_free(new_bp);
 638                return NULL;
 639        }
 640
 641        if (bp != new_bp)
 642                xfs_buf_free(new_bp);
 643
 644found:
 645        if (!bp->b_addr) {
 646                error = _xfs_buf_map_pages(bp, flags);
 647                if (unlikely(error)) {
 648                        xfs_warn(target->bt_mount,
 649                                "%s: failed to map pagesn", __func__);
 650                        xfs_buf_relse(bp);
 651                        return NULL;
 652                }
 653        }
 654
 655        /*
 656         * Clear b_error if this is a lookup from a caller that doesn't expect
 657         * valid data to be found in the buffer.
 658         */
 659        if (!(flags & XBF_READ))
 660                xfs_buf_ioerror(bp, 0);
 661
 662        XFS_STATS_INC(target->bt_mount, xb_get);
 663        trace_xfs_buf_get(bp, flags, _RET_IP_);
 664        return bp;
 665}
 666
 667STATIC int
 668_xfs_buf_read(
 669        xfs_buf_t               *bp,
 670        xfs_buf_flags_t         flags)
 671{
 672        ASSERT(!(flags & XBF_WRITE));
 673        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 674
 675        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 676        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 677
 678        if (flags & XBF_ASYNC) {
 679                xfs_buf_submit(bp);
 680                return 0;
 681        }
 682        return xfs_buf_submit_wait(bp);
 683}
 684
 685xfs_buf_t *
 686xfs_buf_read_map(
 687        struct xfs_buftarg      *target,
 688        struct xfs_buf_map      *map,
 689        int                     nmaps,
 690        xfs_buf_flags_t         flags,
 691        const struct xfs_buf_ops *ops)
 692{
 693        struct xfs_buf          *bp;
 694
 695        flags |= XBF_READ;
 696
 697        bp = xfs_buf_get_map(target, map, nmaps, flags);
 698        if (bp) {
 699                trace_xfs_buf_read(bp, flags, _RET_IP_);
 700
 701                if (!(bp->b_flags & XBF_DONE)) {
 702                        XFS_STATS_INC(target->bt_mount, xb_get_read);
 703                        bp->b_ops = ops;
 704                        _xfs_buf_read(bp, flags);
 705                } else if (flags & XBF_ASYNC) {
 706                        /*
 707                         * Read ahead call which is already satisfied,
 708                         * drop the buffer
 709                         */
 710                        xfs_buf_relse(bp);
 711                        return NULL;
 712                } else {
 713                        /* We do not want read in the flags */
 714                        bp->b_flags &= ~XBF_READ;
 715                }
 716        }
 717
 718        return bp;
 719}
 720
 721/*
 722 *      If we are not low on memory then do the readahead in a deadlock
 723 *      safe manner.
 724 */
 725void
 726xfs_buf_readahead_map(
 727        struct xfs_buftarg      *target,
 728        struct xfs_buf_map      *map,
 729        int                     nmaps,
 730        const struct xfs_buf_ops *ops)
 731{
 732        if (bdi_read_congested(target->bt_bdi))
 733                return;
 734
 735        xfs_buf_read_map(target, map, nmaps,
 736                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 737}
 738
 739/*
 740 * Read an uncached buffer from disk. Allocates and returns a locked
 741 * buffer containing the disk contents or nothing.
 742 */
 743int
 744xfs_buf_read_uncached(
 745        struct xfs_buftarg      *target,
 746        xfs_daddr_t             daddr,
 747        size_t                  numblks,
 748        int                     flags,
 749        struct xfs_buf          **bpp,
 750        const struct xfs_buf_ops *ops)
 751{
 752        struct xfs_buf          *bp;
 753
 754        *bpp = NULL;
 755
 756        bp = xfs_buf_get_uncached(target, numblks, flags);
 757        if (!bp)
 758                return -ENOMEM;
 759
 760        /* set up the buffer for a read IO */
 761        ASSERT(bp->b_map_count == 1);
 762        bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 763        bp->b_maps[0].bm_bn = daddr;
 764        bp->b_flags |= XBF_READ;
 765        bp->b_ops = ops;
 766
 767        xfs_buf_submit_wait(bp);
 768        if (bp->b_error) {
 769                int     error = bp->b_error;
 770                xfs_buf_relse(bp);
 771                return error;
 772        }
 773
 774        *bpp = bp;
 775        return 0;
 776}
 777
 778/*
 779 * Return a buffer allocated as an empty buffer and associated to external
 780 * memory via xfs_buf_associate_memory() back to it's empty state.
 781 */
 782void
 783xfs_buf_set_empty(
 784        struct xfs_buf          *bp,
 785        size_t                  numblks)
 786{
 787        if (bp->b_pages)
 788                _xfs_buf_free_pages(bp);
 789
 790        bp->b_pages = NULL;
 791        bp->b_page_count = 0;
 792        bp->b_addr = NULL;
 793        bp->b_length = numblks;
 794        bp->b_io_length = numblks;
 795
 796        ASSERT(bp->b_map_count == 1);
 797        bp->b_bn = XFS_BUF_DADDR_NULL;
 798        bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 799        bp->b_maps[0].bm_len = bp->b_length;
 800}
 801
 802static inline struct page *
 803mem_to_page(
 804        void                    *addr)
 805{
 806        if ((!is_vmalloc_addr(addr))) {
 807                return virt_to_page(addr);
 808        } else {
 809                return vmalloc_to_page(addr);
 810        }
 811}
 812
 813int
 814xfs_buf_associate_memory(
 815        xfs_buf_t               *bp,
 816        void                    *mem,
 817        size_t                  len)
 818{
 819        int                     rval;
 820        int                     i = 0;
 821        unsigned long           pageaddr;
 822        unsigned long           offset;
 823        size_t                  buflen;
 824        int                     page_count;
 825
 826        pageaddr = (unsigned long)mem & PAGE_MASK;
 827        offset = (unsigned long)mem - pageaddr;
 828        buflen = PAGE_ALIGN(len + offset);
 829        page_count = buflen >> PAGE_SHIFT;
 830
 831        /* Free any previous set of page pointers */
 832        if (bp->b_pages)
 833                _xfs_buf_free_pages(bp);
 834
 835        bp->b_pages = NULL;
 836        bp->b_addr = mem;
 837
 838        rval = _xfs_buf_get_pages(bp, page_count);
 839        if (rval)
 840                return rval;
 841
 842        bp->b_offset = offset;
 843
 844        for (i = 0; i < bp->b_page_count; i++) {
 845                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 846                pageaddr += PAGE_SIZE;
 847        }
 848
 849        bp->b_io_length = BTOBB(len);
 850        bp->b_length = BTOBB(buflen);
 851
 852        return 0;
 853}
 854
 855xfs_buf_t *
 856xfs_buf_get_uncached(
 857        struct xfs_buftarg      *target,
 858        size_t                  numblks,
 859        int                     flags)
 860{
 861        unsigned long           page_count;
 862        int                     error, i;
 863        struct xfs_buf          *bp;
 864        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 865
 866        /* flags might contain irrelevant bits, pass only what we care about */
 867        bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
 868        if (unlikely(bp == NULL))
 869                goto fail;
 870
 871        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 872        error = _xfs_buf_get_pages(bp, page_count);
 873        if (error)
 874                goto fail_free_buf;
 875
 876        for (i = 0; i < page_count; i++) {
 877                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 878                if (!bp->b_pages[i])
 879                        goto fail_free_mem;
 880        }
 881        bp->b_flags |= _XBF_PAGES;
 882
 883        error = _xfs_buf_map_pages(bp, 0);
 884        if (unlikely(error)) {
 885                xfs_warn(target->bt_mount,
 886                        "%s: failed to map pages", __func__);
 887                goto fail_free_mem;
 888        }
 889
 890        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 891        return bp;
 892
 893 fail_free_mem:
 894        while (--i >= 0)
 895                __free_page(bp->b_pages[i]);
 896        _xfs_buf_free_pages(bp);
 897 fail_free_buf:
 898        xfs_buf_free_maps(bp);
 899        kmem_zone_free(xfs_buf_zone, bp);
 900 fail:
 901        return NULL;
 902}
 903
 904/*
 905 *      Increment reference count on buffer, to hold the buffer concurrently
 906 *      with another thread which may release (free) the buffer asynchronously.
 907 *      Must hold the buffer already to call this function.
 908 */
 909void
 910xfs_buf_hold(
 911        xfs_buf_t               *bp)
 912{
 913        trace_xfs_buf_hold(bp, _RET_IP_);
 914        atomic_inc(&bp->b_hold);
 915}
 916
 917/*
 918 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
 919 * placed on LRU or freed (depending on b_lru_ref).
 920 */
 921void
 922xfs_buf_rele(
 923        xfs_buf_t               *bp)
 924{
 925        struct xfs_perag        *pag = bp->b_pag;
 926        bool                    release;
 927        bool                    freebuf = false;
 928
 929        trace_xfs_buf_rele(bp, _RET_IP_);
 930
 931        if (!pag) {
 932                ASSERT(list_empty(&bp->b_lru));
 933                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 934                if (atomic_dec_and_test(&bp->b_hold)) {
 935                        xfs_buf_ioacct_dec(bp);
 936                        xfs_buf_free(bp);
 937                }
 938                return;
 939        }
 940
 941        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 942
 943        ASSERT(atomic_read(&bp->b_hold) > 0);
 944
 945        release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
 946        spin_lock(&bp->b_lock);
 947        if (!release) {
 948                /*
 949                 * Drop the in-flight state if the buffer is already on the LRU
 950                 * and it holds the only reference. This is racy because we
 951                 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
 952                 * ensures the decrement occurs only once per-buf.
 953                 */
 954                if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
 955                        xfs_buf_ioacct_dec(bp);
 956                goto out_unlock;
 957        }
 958
 959        /* the last reference has been dropped ... */
 960        xfs_buf_ioacct_dec(bp);
 961        if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
 962                /*
 963                 * If the buffer is added to the LRU take a new reference to the
 964                 * buffer for the LRU and clear the (now stale) dispose list
 965                 * state flag
 966                 */
 967                if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
 968                        bp->b_state &= ~XFS_BSTATE_DISPOSE;
 969                        atomic_inc(&bp->b_hold);
 970                }
 971                spin_unlock(&pag->pag_buf_lock);
 972        } else {
 973                /*
 974                 * most of the time buffers will already be removed from the
 975                 * LRU, so optimise that case by checking for the
 976                 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
 977                 * was on was the disposal list
 978                 */
 979                if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
 980                        list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
 981                } else {
 982                        ASSERT(list_empty(&bp->b_lru));
 983                }
 984
 985                ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 986                rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 987                spin_unlock(&pag->pag_buf_lock);
 988                xfs_perag_put(pag);
 989                freebuf = true;
 990        }
 991
 992out_unlock:
 993        spin_unlock(&bp->b_lock);
 994
 995        if (freebuf)
 996                xfs_buf_free(bp);
 997}
 998
 999
1000/*
1001 *      Lock a buffer object, if it is not already locked.
1002 *
1003 *      If we come across a stale, pinned, locked buffer, we know that we are
1004 *      being asked to lock a buffer that has been reallocated. Because it is
1005 *      pinned, we know that the log has not been pushed to disk and hence it
1006 *      will still be locked.  Rather than continuing to have trylock attempts
1007 *      fail until someone else pushes the log, push it ourselves before
1008 *      returning.  This means that the xfsaild will not get stuck trying
1009 *      to push on stale inode buffers.
1010 */
1011int
1012xfs_buf_trylock(
1013        struct xfs_buf          *bp)
1014{
1015        int                     locked;
1016
1017        locked = down_trylock(&bp->b_sema) == 0;
1018        if (locked) {
1019                XB_SET_OWNER(bp);
1020                trace_xfs_buf_trylock(bp, _RET_IP_);
1021        } else {
1022                trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1023        }
1024        return locked;
1025}
1026
1027/*
1028 *      Lock a buffer object.
1029 *
1030 *      If we come across a stale, pinned, locked buffer, we know that we
1031 *      are being asked to lock a buffer that has been reallocated. Because
1032 *      it is pinned, we know that the log has not been pushed to disk and
1033 *      hence it will still be locked. Rather than sleeping until someone
1034 *      else pushes the log, push it ourselves before trying to get the lock.
1035 */
1036void
1037xfs_buf_lock(
1038        struct xfs_buf          *bp)
1039{
1040        trace_xfs_buf_lock(bp, _RET_IP_);
1041
1042        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1043                xfs_log_force(bp->b_target->bt_mount, 0);
1044        down(&bp->b_sema);
1045        XB_SET_OWNER(bp);
1046
1047        trace_xfs_buf_lock_done(bp, _RET_IP_);
1048}
1049
1050void
1051xfs_buf_unlock(
1052        struct xfs_buf          *bp)
1053{
1054        XB_CLEAR_OWNER(bp);
1055        up(&bp->b_sema);
1056
1057        trace_xfs_buf_unlock(bp, _RET_IP_);
1058}
1059
1060STATIC void
1061xfs_buf_wait_unpin(
1062        xfs_buf_t               *bp)
1063{
1064        DECLARE_WAITQUEUE       (wait, current);
1065
1066        if (atomic_read(&bp->b_pin_count) == 0)
1067                return;
1068
1069        add_wait_queue(&bp->b_waiters, &wait);
1070        for (;;) {
1071                set_current_state(TASK_UNINTERRUPTIBLE);
1072                if (atomic_read(&bp->b_pin_count) == 0)
1073                        break;
1074                io_schedule();
1075        }
1076        remove_wait_queue(&bp->b_waiters, &wait);
1077        set_current_state(TASK_RUNNING);
1078}
1079
1080/*
1081 *      Buffer Utility Routines
1082 */
1083
1084void
1085xfs_buf_ioend(
1086        struct xfs_buf  *bp)
1087{
1088        bool            read = bp->b_flags & XBF_READ;
1089
1090        trace_xfs_buf_iodone(bp, _RET_IP_);
1091
1092        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1093
1094        /*
1095         * Pull in IO completion errors now. We are guaranteed to be running
1096         * single threaded, so we don't need the lock to read b_io_error.
1097         */
1098        if (!bp->b_error && bp->b_io_error)
1099                xfs_buf_ioerror(bp, bp->b_io_error);
1100
1101        /* Only validate buffers that were read without errors */
1102        if (read && !bp->b_error && bp->b_ops) {
1103                ASSERT(!bp->b_iodone);
1104                bp->b_ops->verify_read(bp);
1105        }
1106
1107        if (!bp->b_error)
1108                bp->b_flags |= XBF_DONE;
1109
1110        if (bp->b_iodone)
1111                (*(bp->b_iodone))(bp);
1112        else if (bp->b_flags & XBF_ASYNC)
1113                xfs_buf_relse(bp);
1114        else
1115                complete(&bp->b_iowait);
1116}
1117
1118static void
1119xfs_buf_ioend_work(
1120        struct work_struct      *work)
1121{
1122        struct xfs_buf          *bp =
1123                container_of(work, xfs_buf_t, b_ioend_work);
1124
1125        xfs_buf_ioend(bp);
1126}
1127
1128static void
1129xfs_buf_ioend_async(
1130        struct xfs_buf  *bp)
1131{
1132        INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1133        queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1134}
1135
1136void
1137xfs_buf_ioerror(
1138        xfs_buf_t               *bp,
1139        int                     error)
1140{
1141        ASSERT(error <= 0 && error >= -1000);
1142        bp->b_error = error;
1143        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1144}
1145
1146void
1147xfs_buf_ioerror_alert(
1148        struct xfs_buf          *bp,
1149        const char              *func)
1150{
1151        xfs_alert(bp->b_target->bt_mount,
1152"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1153                (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1154}
1155
1156int
1157xfs_bwrite(
1158        struct xfs_buf          *bp)
1159{
1160        int                     error;
1161
1162        ASSERT(xfs_buf_islocked(bp));
1163
1164        bp->b_flags |= XBF_WRITE;
1165        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1166                         XBF_WRITE_FAIL | XBF_DONE);
1167
1168        error = xfs_buf_submit_wait(bp);
1169        if (error) {
1170                xfs_force_shutdown(bp->b_target->bt_mount,
1171                                   SHUTDOWN_META_IO_ERROR);
1172        }
1173        return error;
1174}
1175
1176static void
1177xfs_buf_bio_end_io(
1178        struct bio              *bio)
1179{
1180        struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1181
1182        /*
1183         * don't overwrite existing errors - otherwise we can lose errors on
1184         * buffers that require multiple bios to complete.
1185         */
1186        if (bio->bi_error)
1187                cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1188
1189        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1190                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1191
1192        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1193                xfs_buf_ioend_async(bp);
1194        bio_put(bio);
1195}
1196
1197static void
1198xfs_buf_ioapply_map(
1199        struct xfs_buf  *bp,
1200        int             map,
1201        int             *buf_offset,
1202        int             *count,
1203        int             op,
1204        int             op_flags)
1205{
1206        int             page_index;
1207        int             total_nr_pages = bp->b_page_count;
1208        int             nr_pages;
1209        struct bio      *bio;
1210        sector_t        sector =  bp->b_maps[map].bm_bn;
1211        int             size;
1212        int             offset;
1213
1214        total_nr_pages = bp->b_page_count;
1215
1216        /* skip the pages in the buffer before the start offset */
1217        page_index = 0;
1218        offset = *buf_offset;
1219        while (offset >= PAGE_SIZE) {
1220                page_index++;
1221                offset -= PAGE_SIZE;
1222        }
1223
1224        /*
1225         * Limit the IO size to the length of the current vector, and update the
1226         * remaining IO count for the next time around.
1227         */
1228        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1229        *count -= size;
1230        *buf_offset += size;
1231
1232next_chunk:
1233        atomic_inc(&bp->b_io_remaining);
1234        nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1235
1236        bio = bio_alloc(GFP_NOIO, nr_pages);
1237        bio->bi_bdev = bp->b_target->bt_bdev;
1238        bio->bi_iter.bi_sector = sector;
1239        bio->bi_end_io = xfs_buf_bio_end_io;
1240        bio->bi_private = bp;
1241        bio_set_op_attrs(bio, op, op_flags);
1242
1243        for (; size && nr_pages; nr_pages--, page_index++) {
1244                int     rbytes, nbytes = PAGE_SIZE - offset;
1245
1246                if (nbytes > size)
1247                        nbytes = size;
1248
1249                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1250                                      offset);
1251                if (rbytes < nbytes)
1252                        break;
1253
1254                offset = 0;
1255                sector += BTOBB(nbytes);
1256                size -= nbytes;
1257                total_nr_pages--;
1258        }
1259
1260        if (likely(bio->bi_iter.bi_size)) {
1261                if (xfs_buf_is_vmapped(bp)) {
1262                        flush_kernel_vmap_range(bp->b_addr,
1263                                                xfs_buf_vmap_len(bp));
1264                }
1265                submit_bio(bio);
1266                if (size)
1267                        goto next_chunk;
1268        } else {
1269                /*
1270                 * This is guaranteed not to be the last io reference count
1271                 * because the caller (xfs_buf_submit) holds a count itself.
1272                 */
1273                atomic_dec(&bp->b_io_remaining);
1274                xfs_buf_ioerror(bp, -EIO);
1275                bio_put(bio);
1276        }
1277
1278}
1279
1280STATIC void
1281_xfs_buf_ioapply(
1282        struct xfs_buf  *bp)
1283{
1284        struct blk_plug plug;
1285        int             op;
1286        int             op_flags = 0;
1287        int             offset;
1288        int             size;
1289        int             i;
1290
1291        /*
1292         * Make sure we capture only current IO errors rather than stale errors
1293         * left over from previous use of the buffer (e.g. failed readahead).
1294         */
1295        bp->b_error = 0;
1296
1297        /*
1298         * Initialize the I/O completion workqueue if we haven't yet or the
1299         * submitter has not opted to specify a custom one.
1300         */
1301        if (!bp->b_ioend_wq)
1302                bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1303
1304        if (bp->b_flags & XBF_WRITE) {
1305                op = REQ_OP_WRITE;
1306                if (bp->b_flags & XBF_SYNCIO)
1307                        op_flags = WRITE_SYNC;
1308                if (bp->b_flags & XBF_FUA)
1309                        op_flags |= REQ_FUA;
1310                if (bp->b_flags & XBF_FLUSH)
1311                        op_flags |= REQ_PREFLUSH;
1312
1313                /*
1314                 * Run the write verifier callback function if it exists. If
1315                 * this function fails it will mark the buffer with an error and
1316                 * the IO should not be dispatched.
1317                 */
1318                if (bp->b_ops) {
1319                        bp->b_ops->verify_write(bp);
1320                        if (bp->b_error) {
1321                                xfs_force_shutdown(bp->b_target->bt_mount,
1322                                                   SHUTDOWN_CORRUPT_INCORE);
1323                                return;
1324                        }
1325                } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1326                        struct xfs_mount *mp = bp->b_target->bt_mount;
1327
1328                        /*
1329                         * non-crc filesystems don't attach verifiers during
1330                         * log recovery, so don't warn for such filesystems.
1331                         */
1332                        if (xfs_sb_version_hascrc(&mp->m_sb)) {
1333                                xfs_warn(mp,
1334                                        "%s: no ops on block 0x%llx/0x%x",
1335                                        __func__, bp->b_bn, bp->b_length);
1336                                xfs_hex_dump(bp->b_addr, 64);
1337                                dump_stack();
1338                        }
1339                }
1340        } else if (bp->b_flags & XBF_READ_AHEAD) {
1341                op = REQ_OP_READ;
1342                op_flags = REQ_RAHEAD;
1343        } else {
1344                op = REQ_OP_READ;
1345        }
1346
1347        /* we only use the buffer cache for meta-data */
1348        op_flags |= REQ_META;
1349
1350        /*
1351         * Walk all the vectors issuing IO on them. Set up the initial offset
1352         * into the buffer and the desired IO size before we start -
1353         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1354         * subsequent call.
1355         */
1356        offset = bp->b_offset;
1357        size = BBTOB(bp->b_io_length);
1358        blk_start_plug(&plug);
1359        for (i = 0; i < bp->b_map_count; i++) {
1360                xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1361                if (bp->b_error)
1362                        break;
1363                if (size <= 0)
1364                        break;  /* all done */
1365        }
1366        blk_finish_plug(&plug);
1367}
1368
1369/*
1370 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1371 * the current reference to the IO. It is not safe to reference the buffer after
1372 * a call to this function unless the caller holds an additional reference
1373 * itself.
1374 */
1375void
1376xfs_buf_submit(
1377        struct xfs_buf  *bp)
1378{
1379        trace_xfs_buf_submit(bp, _RET_IP_);
1380
1381        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1382        ASSERT(bp->b_flags & XBF_ASYNC);
1383
1384        /* on shutdown we stale and complete the buffer immediately */
1385        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1386                xfs_buf_ioerror(bp, -EIO);
1387                bp->b_flags &= ~XBF_DONE;
1388                xfs_buf_stale(bp);
1389                xfs_buf_ioend(bp);
1390                return;
1391        }
1392
1393        if (bp->b_flags & XBF_WRITE)
1394                xfs_buf_wait_unpin(bp);
1395
1396        /* clear the internal error state to avoid spurious errors */
1397        bp->b_io_error = 0;
1398
1399        /*
1400         * The caller's reference is released during I/O completion.
1401         * This occurs some time after the last b_io_remaining reference is
1402         * released, so after we drop our Io reference we have to have some
1403         * other reference to ensure the buffer doesn't go away from underneath
1404         * us. Take a direct reference to ensure we have safe access to the
1405         * buffer until we are finished with it.
1406         */
1407        xfs_buf_hold(bp);
1408
1409        /*
1410         * Set the count to 1 initially, this will stop an I/O completion
1411         * callout which happens before we have started all the I/O from calling
1412         * xfs_buf_ioend too early.
1413         */
1414        atomic_set(&bp->b_io_remaining, 1);
1415        xfs_buf_ioacct_inc(bp);
1416        _xfs_buf_ioapply(bp);
1417
1418        /*
1419         * If _xfs_buf_ioapply failed, we can get back here with only the IO
1420         * reference we took above. If we drop it to zero, run completion so
1421         * that we don't return to the caller with completion still pending.
1422         */
1423        if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1424                if (bp->b_error)
1425                        xfs_buf_ioend(bp);
1426                else
1427                        xfs_buf_ioend_async(bp);
1428        }
1429
1430        xfs_buf_rele(bp);
1431        /* Note: it is not safe to reference bp now we've dropped our ref */
1432}
1433
1434/*
1435 * Synchronous buffer IO submission path, read or write.
1436 */
1437int
1438xfs_buf_submit_wait(
1439        struct xfs_buf  *bp)
1440{
1441        int             error;
1442
1443        trace_xfs_buf_submit_wait(bp, _RET_IP_);
1444
1445        ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1446
1447        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1448                xfs_buf_ioerror(bp, -EIO);
1449                xfs_buf_stale(bp);
1450                bp->b_flags &= ~XBF_DONE;
1451                return -EIO;
1452        }
1453
1454        if (bp->b_flags & XBF_WRITE)
1455                xfs_buf_wait_unpin(bp);
1456
1457        /* clear the internal error state to avoid spurious errors */
1458        bp->b_io_error = 0;
1459
1460        /*
1461         * For synchronous IO, the IO does not inherit the submitters reference
1462         * count, nor the buffer lock. Hence we cannot release the reference we
1463         * are about to take until we've waited for all IO completion to occur,
1464         * including any xfs_buf_ioend_async() work that may be pending.
1465         */
1466        xfs_buf_hold(bp);
1467
1468        /*
1469         * Set the count to 1 initially, this will stop an I/O completion
1470         * callout which happens before we have started all the I/O from calling
1471         * xfs_buf_ioend too early.
1472         */
1473        atomic_set(&bp->b_io_remaining, 1);
1474        _xfs_buf_ioapply(bp);
1475
1476        /*
1477         * make sure we run completion synchronously if it raced with us and is
1478         * already complete.
1479         */
1480        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1481                xfs_buf_ioend(bp);
1482
1483        /* wait for completion before gathering the error from the buffer */
1484        trace_xfs_buf_iowait(bp, _RET_IP_);
1485        wait_for_completion(&bp->b_iowait);
1486        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1487        error = bp->b_error;
1488
1489        /*
1490         * all done now, we can release the hold that keeps the buffer
1491         * referenced for the entire IO.
1492         */
1493        xfs_buf_rele(bp);
1494        return error;
1495}
1496
1497void *
1498xfs_buf_offset(
1499        struct xfs_buf          *bp,
1500        size_t                  offset)
1501{
1502        struct page             *page;
1503
1504        if (bp->b_addr)
1505                return bp->b_addr + offset;
1506
1507        offset += bp->b_offset;
1508        page = bp->b_pages[offset >> PAGE_SHIFT];
1509        return page_address(page) + (offset & (PAGE_SIZE-1));
1510}
1511
1512/*
1513 *      Move data into or out of a buffer.
1514 */
1515void
1516xfs_buf_iomove(
1517        xfs_buf_t               *bp,    /* buffer to process            */
1518        size_t                  boff,   /* starting buffer offset       */
1519        size_t                  bsize,  /* length to copy               */
1520        void                    *data,  /* data address                 */
1521        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1522{
1523        size_t                  bend;
1524
1525        bend = boff + bsize;
1526        while (boff < bend) {
1527                struct page     *page;
1528                int             page_index, page_offset, csize;
1529
1530                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1531                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1532                page = bp->b_pages[page_index];
1533                csize = min_t(size_t, PAGE_SIZE - page_offset,
1534                                      BBTOB(bp->b_io_length) - boff);
1535
1536                ASSERT((csize + page_offset) <= PAGE_SIZE);
1537
1538                switch (mode) {
1539                case XBRW_ZERO:
1540                        memset(page_address(page) + page_offset, 0, csize);
1541                        break;
1542                case XBRW_READ:
1543                        memcpy(data, page_address(page) + page_offset, csize);
1544                        break;
1545                case XBRW_WRITE:
1546                        memcpy(page_address(page) + page_offset, data, csize);
1547                }
1548
1549                boff += csize;
1550                data += csize;
1551        }
1552}
1553
1554/*
1555 *      Handling of buffer targets (buftargs).
1556 */
1557
1558/*
1559 * Wait for any bufs with callbacks that have been submitted but have not yet
1560 * returned. These buffers will have an elevated hold count, so wait on those
1561 * while freeing all the buffers only held by the LRU.
1562 */
1563static enum lru_status
1564xfs_buftarg_wait_rele(
1565        struct list_head        *item,
1566        struct list_lru_one     *lru,
1567        spinlock_t              *lru_lock,
1568        void                    *arg)
1569
1570{
1571        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1572        struct list_head        *dispose = arg;
1573
1574        if (atomic_read(&bp->b_hold) > 1) {
1575                /* need to wait, so skip it this pass */
1576                trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1577                return LRU_SKIP;
1578        }
1579        if (!spin_trylock(&bp->b_lock))
1580                return LRU_SKIP;
1581
1582        /*
1583         * clear the LRU reference count so the buffer doesn't get
1584         * ignored in xfs_buf_rele().
1585         */
1586        atomic_set(&bp->b_lru_ref, 0);
1587        bp->b_state |= XFS_BSTATE_DISPOSE;
1588        list_lru_isolate_move(lru, item, dispose);
1589        spin_unlock(&bp->b_lock);
1590        return LRU_REMOVED;
1591}
1592
1593void
1594xfs_wait_buftarg(
1595        struct xfs_buftarg      *btp)
1596{
1597        LIST_HEAD(dispose);
1598        int loop = 0;
1599
1600        /*
1601         * First wait on the buftarg I/O count for all in-flight buffers to be
1602         * released. This is critical as new buffers do not make the LRU until
1603         * they are released.
1604         *
1605         * Next, flush the buffer workqueue to ensure all completion processing
1606         * has finished. Just waiting on buffer locks is not sufficient for
1607         * async IO as the reference count held over IO is not released until
1608         * after the buffer lock is dropped. Hence we need to ensure here that
1609         * all reference counts have been dropped before we start walking the
1610         * LRU list.
1611         */
1612        while (percpu_counter_sum(&btp->bt_io_count))
1613                delay(100);
1614        flush_workqueue(btp->bt_mount->m_buf_workqueue);
1615
1616        /* loop until there is nothing left on the lru list. */
1617        while (list_lru_count(&btp->bt_lru)) {
1618                list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1619                              &dispose, LONG_MAX);
1620
1621                while (!list_empty(&dispose)) {
1622                        struct xfs_buf *bp;
1623                        bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1624                        list_del_init(&bp->b_lru);
1625                        if (bp->b_flags & XBF_WRITE_FAIL) {
1626                                xfs_alert(btp->bt_mount,
1627"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1628                                        (long long)bp->b_bn);
1629                                xfs_alert(btp->bt_mount,
1630"Please run xfs_repair to determine the extent of the problem.");
1631                        }
1632                        xfs_buf_rele(bp);
1633                }
1634                if (loop++ != 0)
1635                        delay(100);
1636        }
1637}
1638
1639static enum lru_status
1640xfs_buftarg_isolate(
1641        struct list_head        *item,
1642        struct list_lru_one     *lru,
1643        spinlock_t              *lru_lock,
1644        void                    *arg)
1645{
1646        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1647        struct list_head        *dispose = arg;
1648
1649        /*
1650         * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1651         * If we fail to get the lock, just skip it.
1652         */
1653        if (!spin_trylock(&bp->b_lock))
1654                return LRU_SKIP;
1655        /*
1656         * Decrement the b_lru_ref count unless the value is already
1657         * zero. If the value is already zero, we need to reclaim the
1658         * buffer, otherwise it gets another trip through the LRU.
1659         */
1660        if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1661                spin_unlock(&bp->b_lock);
1662                return LRU_ROTATE;
1663        }
1664
1665        bp->b_state |= XFS_BSTATE_DISPOSE;
1666        list_lru_isolate_move(lru, item, dispose);
1667        spin_unlock(&bp->b_lock);
1668        return LRU_REMOVED;
1669}
1670
1671static unsigned long
1672xfs_buftarg_shrink_scan(
1673        struct shrinker         *shrink,
1674        struct shrink_control   *sc)
1675{
1676        struct xfs_buftarg      *btp = container_of(shrink,
1677                                        struct xfs_buftarg, bt_shrinker);
1678        LIST_HEAD(dispose);
1679        unsigned long           freed;
1680
1681        freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1682                                     xfs_buftarg_isolate, &dispose);
1683
1684        while (!list_empty(&dispose)) {
1685                struct xfs_buf *bp;
1686                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1687                list_del_init(&bp->b_lru);
1688                xfs_buf_rele(bp);
1689        }
1690
1691        return freed;
1692}
1693
1694static unsigned long
1695xfs_buftarg_shrink_count(
1696        struct shrinker         *shrink,
1697        struct shrink_control   *sc)
1698{
1699        struct xfs_buftarg      *btp = container_of(shrink,
1700                                        struct xfs_buftarg, bt_shrinker);
1701        return list_lru_shrink_count(&btp->bt_lru, sc);
1702}
1703
1704void
1705xfs_free_buftarg(
1706        struct xfs_mount        *mp,
1707        struct xfs_buftarg      *btp)
1708{
1709        unregister_shrinker(&btp->bt_shrinker);
1710        ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1711        percpu_counter_destroy(&btp->bt_io_count);
1712        list_lru_destroy(&btp->bt_lru);
1713
1714        if (mp->m_flags & XFS_MOUNT_BARRIER)
1715                xfs_blkdev_issue_flush(btp);
1716
1717        kmem_free(btp);
1718}
1719
1720int
1721xfs_setsize_buftarg(
1722        xfs_buftarg_t           *btp,
1723        unsigned int            sectorsize)
1724{
1725        /* Set up metadata sector size info */
1726        btp->bt_meta_sectorsize = sectorsize;
1727        btp->bt_meta_sectormask = sectorsize - 1;
1728
1729        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1730                xfs_warn(btp->bt_mount,
1731                        "Cannot set_blocksize to %u on device %pg",
1732                        sectorsize, btp->bt_bdev);
1733                return -EINVAL;
1734        }
1735
1736        /* Set up device logical sector size mask */
1737        btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1738        btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1739
1740        return 0;
1741}
1742
1743/*
1744 * When allocating the initial buffer target we have not yet
1745 * read in the superblock, so don't know what sized sectors
1746 * are being used at this early stage.  Play safe.
1747 */
1748STATIC int
1749xfs_setsize_buftarg_early(
1750        xfs_buftarg_t           *btp,
1751        struct block_device     *bdev)
1752{
1753        return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1754}
1755
1756xfs_buftarg_t *
1757xfs_alloc_buftarg(
1758        struct xfs_mount        *mp,
1759        struct block_device     *bdev)
1760{
1761        xfs_buftarg_t           *btp;
1762
1763        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1764
1765        btp->bt_mount = mp;
1766        btp->bt_dev =  bdev->bd_dev;
1767        btp->bt_bdev = bdev;
1768        btp->bt_bdi = blk_get_backing_dev_info(bdev);
1769
1770        if (xfs_setsize_buftarg_early(btp, bdev))
1771                goto error;
1772
1773        if (list_lru_init(&btp->bt_lru))
1774                goto error;
1775
1776        if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1777                goto error;
1778
1779        btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1780        btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1781        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1782        btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1783        register_shrinker(&btp->bt_shrinker);
1784        return btp;
1785
1786error:
1787        kmem_free(btp);
1788        return NULL;
1789}
1790
1791/*
1792 * Add a buffer to the delayed write list.
1793 *
1794 * This queues a buffer for writeout if it hasn't already been.  Note that
1795 * neither this routine nor the buffer list submission functions perform
1796 * any internal synchronization.  It is expected that the lists are thread-local
1797 * to the callers.
1798 *
1799 * Returns true if we queued up the buffer, or false if it already had
1800 * been on the buffer list.
1801 */
1802bool
1803xfs_buf_delwri_queue(
1804        struct xfs_buf          *bp,
1805        struct list_head        *list)
1806{
1807        ASSERT(xfs_buf_islocked(bp));
1808        ASSERT(!(bp->b_flags & XBF_READ));
1809
1810        /*
1811         * If the buffer is already marked delwri it already is queued up
1812         * by someone else for imediate writeout.  Just ignore it in that
1813         * case.
1814         */
1815        if (bp->b_flags & _XBF_DELWRI_Q) {
1816                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1817                return false;
1818        }
1819
1820        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1821
1822        /*
1823         * If a buffer gets written out synchronously or marked stale while it
1824         * is on a delwri list we lazily remove it. To do this, the other party
1825         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1826         * It remains referenced and on the list.  In a rare corner case it
1827         * might get readded to a delwri list after the synchronous writeout, in
1828         * which case we need just need to re-add the flag here.
1829         */
1830        bp->b_flags |= _XBF_DELWRI_Q;
1831        if (list_empty(&bp->b_list)) {
1832                atomic_inc(&bp->b_hold);
1833                list_add_tail(&bp->b_list, list);
1834        }
1835
1836        return true;
1837}
1838
1839/*
1840 * Compare function is more complex than it needs to be because
1841 * the return value is only 32 bits and we are doing comparisons
1842 * on 64 bit values
1843 */
1844static int
1845xfs_buf_cmp(
1846        void            *priv,
1847        struct list_head *a,
1848        struct list_head *b)
1849{
1850        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1851        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1852        xfs_daddr_t             diff;
1853
1854        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1855        if (diff < 0)
1856                return -1;
1857        if (diff > 0)
1858                return 1;
1859        return 0;
1860}
1861
1862/*
1863 * submit buffers for write.
1864 *
1865 * When we have a large buffer list, we do not want to hold all the buffers
1866 * locked while we block on the request queue waiting for IO dispatch. To avoid
1867 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1868 * the lock hold times for lists which may contain thousands of objects.
1869 *
1870 * To do this, we sort the buffer list before we walk the list to lock and
1871 * submit buffers, and we plug and unplug around each group of buffers we
1872 * submit.
1873 */
1874static int
1875xfs_buf_delwri_submit_buffers(
1876        struct list_head        *buffer_list,
1877        struct list_head        *wait_list)
1878{
1879        struct xfs_buf          *bp, *n;
1880        LIST_HEAD               (submit_list);
1881        int                     pinned = 0;
1882        struct blk_plug         plug;
1883
1884        list_sort(NULL, buffer_list, xfs_buf_cmp);
1885
1886        blk_start_plug(&plug);
1887        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1888                if (!wait_list) {
1889                        if (xfs_buf_ispinned(bp)) {
1890                                pinned++;
1891                                continue;
1892                        }
1893                        if (!xfs_buf_trylock(bp))
1894                                continue;
1895                } else {
1896                        xfs_buf_lock(bp);
1897                }
1898
1899                /*
1900                 * Someone else might have written the buffer synchronously or
1901                 * marked it stale in the meantime.  In that case only the
1902                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1903                 * reference and remove it from the list here.
1904                 */
1905                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1906                        list_del_init(&bp->b_list);
1907                        xfs_buf_relse(bp);
1908                        continue;
1909                }
1910
1911                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1912
1913                /*
1914                 * We do all IO submission async. This means if we need
1915                 * to wait for IO completion we need to take an extra
1916                 * reference so the buffer is still valid on the other
1917                 * side. We need to move the buffer onto the io_list
1918                 * at this point so the caller can still access it.
1919                 */
1920                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1921                bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1922                if (wait_list) {
1923                        xfs_buf_hold(bp);
1924                        list_move_tail(&bp->b_list, wait_list);
1925                } else
1926                        list_del_init(&bp->b_list);
1927
1928                xfs_buf_submit(bp);
1929        }
1930        blk_finish_plug(&plug);
1931
1932        return pinned;
1933}
1934
1935/*
1936 * Write out a buffer list asynchronously.
1937 *
1938 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1939 * out and not wait for I/O completion on any of the buffers.  This interface
1940 * is only safely useable for callers that can track I/O completion by higher
1941 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1942 * function.
1943 */
1944int
1945xfs_buf_delwri_submit_nowait(
1946        struct list_head        *buffer_list)
1947{
1948        return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1949}
1950
1951/*
1952 * Write out a buffer list synchronously.
1953 *
1954 * This will take the @buffer_list, write all buffers out and wait for I/O
1955 * completion on all of the buffers. @buffer_list is consumed by the function,
1956 * so callers must have some other way of tracking buffers if they require such
1957 * functionality.
1958 */
1959int
1960xfs_buf_delwri_submit(
1961        struct list_head        *buffer_list)
1962{
1963        LIST_HEAD               (wait_list);
1964        int                     error = 0, error2;
1965        struct xfs_buf          *bp;
1966
1967        xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1968
1969        /* Wait for IO to complete. */
1970        while (!list_empty(&wait_list)) {
1971                bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1972
1973                list_del_init(&bp->b_list);
1974
1975                /* locking the buffer will wait for async IO completion. */
1976                xfs_buf_lock(bp);
1977                error2 = bp->b_error;
1978                xfs_buf_relse(bp);
1979                if (!error)
1980                        error = error2;
1981        }
1982
1983        return error;
1984}
1985
1986int __init
1987xfs_buf_init(void)
1988{
1989        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1990                                                KM_ZONE_HWALIGN, NULL);
1991        if (!xfs_buf_zone)
1992                goto out;
1993
1994        return 0;
1995
1996 out:
1997        return -ENOMEM;
1998}
1999
2000void
2001xfs_buf_terminate(void)
2002{
2003        kmem_zone_destroy(xfs_buf_zone);
2004}
2005