linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_sysfs.h"
  45#include "xfs_rmap_btree.h"
  46#include "xfs_refcount_btree.h"
  47#include "xfs_reflink.h"
  48
  49
  50static DEFINE_MUTEX(xfs_uuid_table_mutex);
  51static int xfs_uuid_table_size;
  52static uuid_t *xfs_uuid_table;
  53
  54void
  55xfs_uuid_table_free(void)
  56{
  57        if (xfs_uuid_table_size == 0)
  58                return;
  59        kmem_free(xfs_uuid_table);
  60        xfs_uuid_table = NULL;
  61        xfs_uuid_table_size = 0;
  62}
  63
  64/*
  65 * See if the UUID is unique among mounted XFS filesystems.
  66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  67 */
  68STATIC int
  69xfs_uuid_mount(
  70        struct xfs_mount        *mp)
  71{
  72        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  73        int                     hole, i;
  74
  75        if (mp->m_flags & XFS_MOUNT_NOUUID)
  76                return 0;
  77
  78        if (uuid_is_nil(uuid)) {
  79                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  80                return -EINVAL;
  81        }
  82
  83        mutex_lock(&xfs_uuid_table_mutex);
  84        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  85                if (uuid_is_nil(&xfs_uuid_table[i])) {
  86                        hole = i;
  87                        continue;
  88                }
  89                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  90                        goto out_duplicate;
  91        }
  92
  93        if (hole < 0) {
  94                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  95                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  96                        KM_SLEEP);
  97                hole = xfs_uuid_table_size++;
  98        }
  99        xfs_uuid_table[hole] = *uuid;
 100        mutex_unlock(&xfs_uuid_table_mutex);
 101
 102        return 0;
 103
 104 out_duplicate:
 105        mutex_unlock(&xfs_uuid_table_mutex);
 106        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 107        return -EINVAL;
 108}
 109
 110STATIC void
 111xfs_uuid_unmount(
 112        struct xfs_mount        *mp)
 113{
 114        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 115        int                     i;
 116
 117        if (mp->m_flags & XFS_MOUNT_NOUUID)
 118                return;
 119
 120        mutex_lock(&xfs_uuid_table_mutex);
 121        for (i = 0; i < xfs_uuid_table_size; i++) {
 122                if (uuid_is_nil(&xfs_uuid_table[i]))
 123                        continue;
 124                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 125                        continue;
 126                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 127                break;
 128        }
 129        ASSERT(i < xfs_uuid_table_size);
 130        mutex_unlock(&xfs_uuid_table_mutex);
 131}
 132
 133
 134STATIC void
 135__xfs_free_perag(
 136        struct rcu_head *head)
 137{
 138        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 139
 140        ASSERT(atomic_read(&pag->pag_ref) == 0);
 141        kmem_free(pag);
 142}
 143
 144/*
 145 * Free up the per-ag resources associated with the mount structure.
 146 */
 147STATIC void
 148xfs_free_perag(
 149        xfs_mount_t     *mp)
 150{
 151        xfs_agnumber_t  agno;
 152        struct xfs_perag *pag;
 153
 154        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 155                spin_lock(&mp->m_perag_lock);
 156                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 157                spin_unlock(&mp->m_perag_lock);
 158                ASSERT(pag);
 159                ASSERT(atomic_read(&pag->pag_ref) == 0);
 160                call_rcu(&pag->rcu_head, __xfs_free_perag);
 161        }
 162}
 163
 164/*
 165 * Check size of device based on the (data/realtime) block count.
 166 * Note: this check is used by the growfs code as well as mount.
 167 */
 168int
 169xfs_sb_validate_fsb_count(
 170        xfs_sb_t        *sbp,
 171        __uint64_t      nblocks)
 172{
 173        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 174        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 175
 176        /* Limited by ULONG_MAX of page cache index */
 177        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 178                return -EFBIG;
 179        return 0;
 180}
 181
 182int
 183xfs_initialize_perag(
 184        xfs_mount_t     *mp,
 185        xfs_agnumber_t  agcount,
 186        xfs_agnumber_t  *maxagi)
 187{
 188        xfs_agnumber_t  index;
 189        xfs_agnumber_t  first_initialised = 0;
 190        xfs_perag_t     *pag;
 191        int             error = -ENOMEM;
 192
 193        /*
 194         * Walk the current per-ag tree so we don't try to initialise AGs
 195         * that already exist (growfs case). Allocate and insert all the
 196         * AGs we don't find ready for initialisation.
 197         */
 198        for (index = 0; index < agcount; index++) {
 199                pag = xfs_perag_get(mp, index);
 200                if (pag) {
 201                        xfs_perag_put(pag);
 202                        continue;
 203                }
 204                if (!first_initialised)
 205                        first_initialised = index;
 206
 207                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 208                if (!pag)
 209                        goto out_unwind;
 210                pag->pag_agno = index;
 211                pag->pag_mount = mp;
 212                spin_lock_init(&pag->pag_ici_lock);
 213                mutex_init(&pag->pag_ici_reclaim_lock);
 214                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 215                spin_lock_init(&pag->pag_buf_lock);
 216                pag->pag_buf_tree = RB_ROOT;
 217
 218                if (radix_tree_preload(GFP_NOFS))
 219                        goto out_unwind;
 220
 221                spin_lock(&mp->m_perag_lock);
 222                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 223                        BUG();
 224                        spin_unlock(&mp->m_perag_lock);
 225                        radix_tree_preload_end();
 226                        error = -EEXIST;
 227                        goto out_unwind;
 228                }
 229                spin_unlock(&mp->m_perag_lock);
 230                radix_tree_preload_end();
 231        }
 232
 233        index = xfs_set_inode_alloc(mp, agcount);
 234
 235        if (maxagi)
 236                *maxagi = index;
 237
 238        mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 239        return 0;
 240
 241out_unwind:
 242        kmem_free(pag);
 243        for (; index > first_initialised; index--) {
 244                pag = radix_tree_delete(&mp->m_perag_tree, index);
 245                kmem_free(pag);
 246        }
 247        return error;
 248}
 249
 250/*
 251 * xfs_readsb
 252 *
 253 * Does the initial read of the superblock.
 254 */
 255int
 256xfs_readsb(
 257        struct xfs_mount *mp,
 258        int             flags)
 259{
 260        unsigned int    sector_size;
 261        struct xfs_buf  *bp;
 262        struct xfs_sb   *sbp = &mp->m_sb;
 263        int             error;
 264        int             loud = !(flags & XFS_MFSI_QUIET);
 265        const struct xfs_buf_ops *buf_ops;
 266
 267        ASSERT(mp->m_sb_bp == NULL);
 268        ASSERT(mp->m_ddev_targp != NULL);
 269
 270        /*
 271         * For the initial read, we must guess at the sector
 272         * size based on the block device.  It's enough to
 273         * get the sb_sectsize out of the superblock and
 274         * then reread with the proper length.
 275         * We don't verify it yet, because it may not be complete.
 276         */
 277        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 278        buf_ops = NULL;
 279
 280        /*
 281         * Allocate a (locked) buffer to hold the superblock. This will be kept
 282         * around at all times to optimize access to the superblock. Therefore,
 283         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 284         * elevated.
 285         */
 286reread:
 287        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 288                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 289                                      buf_ops);
 290        if (error) {
 291                if (loud)
 292                        xfs_warn(mp, "SB validate failed with error %d.", error);
 293                /* bad CRC means corrupted metadata */
 294                if (error == -EFSBADCRC)
 295                        error = -EFSCORRUPTED;
 296                return error;
 297        }
 298
 299        /*
 300         * Initialize the mount structure from the superblock.
 301         */
 302        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 303
 304        /*
 305         * If we haven't validated the superblock, do so now before we try
 306         * to check the sector size and reread the superblock appropriately.
 307         */
 308        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 309                if (loud)
 310                        xfs_warn(mp, "Invalid superblock magic number");
 311                error = -EINVAL;
 312                goto release_buf;
 313        }
 314
 315        /*
 316         * We must be able to do sector-sized and sector-aligned IO.
 317         */
 318        if (sector_size > sbp->sb_sectsize) {
 319                if (loud)
 320                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 321                                sector_size, sbp->sb_sectsize);
 322                error = -ENOSYS;
 323                goto release_buf;
 324        }
 325
 326        if (buf_ops == NULL) {
 327                /*
 328                 * Re-read the superblock so the buffer is correctly sized,
 329                 * and properly verified.
 330                 */
 331                xfs_buf_relse(bp);
 332                sector_size = sbp->sb_sectsize;
 333                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 334                goto reread;
 335        }
 336
 337        xfs_reinit_percpu_counters(mp);
 338
 339        /* no need to be quiet anymore, so reset the buf ops */
 340        bp->b_ops = &xfs_sb_buf_ops;
 341
 342        mp->m_sb_bp = bp;
 343        xfs_buf_unlock(bp);
 344        return 0;
 345
 346release_buf:
 347        xfs_buf_relse(bp);
 348        return error;
 349}
 350
 351/*
 352 * Update alignment values based on mount options and sb values
 353 */
 354STATIC int
 355xfs_update_alignment(xfs_mount_t *mp)
 356{
 357        xfs_sb_t        *sbp = &(mp->m_sb);
 358
 359        if (mp->m_dalign) {
 360                /*
 361                 * If stripe unit and stripe width are not multiples
 362                 * of the fs blocksize turn off alignment.
 363                 */
 364                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 365                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 366                        xfs_warn(mp,
 367                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 368                                sbp->sb_blocksize);
 369                        return -EINVAL;
 370                } else {
 371                        /*
 372                         * Convert the stripe unit and width to FSBs.
 373                         */
 374                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 375                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 376                                xfs_warn(mp,
 377                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 378                                         sbp->sb_agblocks);
 379                                return -EINVAL;
 380                        } else if (mp->m_dalign) {
 381                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 382                        } else {
 383                                xfs_warn(mp,
 384                        "alignment check failed: sunit(%d) less than bsize(%d)",
 385                                         mp->m_dalign, sbp->sb_blocksize);
 386                                return -EINVAL;
 387                        }
 388                }
 389
 390                /*
 391                 * Update superblock with new values
 392                 * and log changes
 393                 */
 394                if (xfs_sb_version_hasdalign(sbp)) {
 395                        if (sbp->sb_unit != mp->m_dalign) {
 396                                sbp->sb_unit = mp->m_dalign;
 397                                mp->m_update_sb = true;
 398                        }
 399                        if (sbp->sb_width != mp->m_swidth) {
 400                                sbp->sb_width = mp->m_swidth;
 401                                mp->m_update_sb = true;
 402                        }
 403                } else {
 404                        xfs_warn(mp,
 405        "cannot change alignment: superblock does not support data alignment");
 406                        return -EINVAL;
 407                }
 408        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 409                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 410                        mp->m_dalign = sbp->sb_unit;
 411                        mp->m_swidth = sbp->sb_width;
 412        }
 413
 414        return 0;
 415}
 416
 417/*
 418 * Set the maximum inode count for this filesystem
 419 */
 420STATIC void
 421xfs_set_maxicount(xfs_mount_t *mp)
 422{
 423        xfs_sb_t        *sbp = &(mp->m_sb);
 424        __uint64_t      icount;
 425
 426        if (sbp->sb_imax_pct) {
 427                /*
 428                 * Make sure the maximum inode count is a multiple
 429                 * of the units we allocate inodes in.
 430                 */
 431                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 432                do_div(icount, 100);
 433                do_div(icount, mp->m_ialloc_blks);
 434                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 435                                   sbp->sb_inopblog;
 436        } else {
 437                mp->m_maxicount = 0;
 438        }
 439}
 440
 441/*
 442 * Set the default minimum read and write sizes unless
 443 * already specified in a mount option.
 444 * We use smaller I/O sizes when the file system
 445 * is being used for NFS service (wsync mount option).
 446 */
 447STATIC void
 448xfs_set_rw_sizes(xfs_mount_t *mp)
 449{
 450        xfs_sb_t        *sbp = &(mp->m_sb);
 451        int             readio_log, writeio_log;
 452
 453        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 454                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 455                        readio_log = XFS_WSYNC_READIO_LOG;
 456                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 457                } else {
 458                        readio_log = XFS_READIO_LOG_LARGE;
 459                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 460                }
 461        } else {
 462                readio_log = mp->m_readio_log;
 463                writeio_log = mp->m_writeio_log;
 464        }
 465
 466        if (sbp->sb_blocklog > readio_log) {
 467                mp->m_readio_log = sbp->sb_blocklog;
 468        } else {
 469                mp->m_readio_log = readio_log;
 470        }
 471        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 472        if (sbp->sb_blocklog > writeio_log) {
 473                mp->m_writeio_log = sbp->sb_blocklog;
 474        } else {
 475                mp->m_writeio_log = writeio_log;
 476        }
 477        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 478}
 479
 480/*
 481 * precalculate the low space thresholds for dynamic speculative preallocation.
 482 */
 483void
 484xfs_set_low_space_thresholds(
 485        struct xfs_mount        *mp)
 486{
 487        int i;
 488
 489        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 490                __uint64_t space = mp->m_sb.sb_dblocks;
 491
 492                do_div(space, 100);
 493                mp->m_low_space[i] = space * (i + 1);
 494        }
 495}
 496
 497
 498/*
 499 * Set whether we're using inode alignment.
 500 */
 501STATIC void
 502xfs_set_inoalignment(xfs_mount_t *mp)
 503{
 504        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 505            mp->m_sb.sb_inoalignmt >=
 506            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 507                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 508        else
 509                mp->m_inoalign_mask = 0;
 510        /*
 511         * If we are using stripe alignment, check whether
 512         * the stripe unit is a multiple of the inode alignment
 513         */
 514        if (mp->m_dalign && mp->m_inoalign_mask &&
 515            !(mp->m_dalign & mp->m_inoalign_mask))
 516                mp->m_sinoalign = mp->m_dalign;
 517        else
 518                mp->m_sinoalign = 0;
 519}
 520
 521/*
 522 * Check that the data (and log if separate) is an ok size.
 523 */
 524STATIC int
 525xfs_check_sizes(
 526        struct xfs_mount *mp)
 527{
 528        struct xfs_buf  *bp;
 529        xfs_daddr_t     d;
 530        int             error;
 531
 532        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 533        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 534                xfs_warn(mp, "filesystem size mismatch detected");
 535                return -EFBIG;
 536        }
 537        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 538                                        d - XFS_FSS_TO_BB(mp, 1),
 539                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 540        if (error) {
 541                xfs_warn(mp, "last sector read failed");
 542                return error;
 543        }
 544        xfs_buf_relse(bp);
 545
 546        if (mp->m_logdev_targp == mp->m_ddev_targp)
 547                return 0;
 548
 549        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 550        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 551                xfs_warn(mp, "log size mismatch detected");
 552                return -EFBIG;
 553        }
 554        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 555                                        d - XFS_FSB_TO_BB(mp, 1),
 556                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 557        if (error) {
 558                xfs_warn(mp, "log device read failed");
 559                return error;
 560        }
 561        xfs_buf_relse(bp);
 562        return 0;
 563}
 564
 565/*
 566 * Clear the quotaflags in memory and in the superblock.
 567 */
 568int
 569xfs_mount_reset_sbqflags(
 570        struct xfs_mount        *mp)
 571{
 572        mp->m_qflags = 0;
 573
 574        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 575        if (mp->m_sb.sb_qflags == 0)
 576                return 0;
 577        spin_lock(&mp->m_sb_lock);
 578        mp->m_sb.sb_qflags = 0;
 579        spin_unlock(&mp->m_sb_lock);
 580
 581        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 582                return 0;
 583
 584        return xfs_sync_sb(mp, false);
 585}
 586
 587__uint64_t
 588xfs_default_resblks(xfs_mount_t *mp)
 589{
 590        __uint64_t resblks;
 591
 592        /*
 593         * We default to 5% or 8192 fsbs of space reserved, whichever is
 594         * smaller.  This is intended to cover concurrent allocation
 595         * transactions when we initially hit enospc. These each require a 4
 596         * block reservation. Hence by default we cover roughly 2000 concurrent
 597         * allocation reservations.
 598         */
 599        resblks = mp->m_sb.sb_dblocks;
 600        do_div(resblks, 20);
 601        resblks = min_t(__uint64_t, resblks, 8192);
 602        return resblks;
 603}
 604
 605/*
 606 * This function does the following on an initial mount of a file system:
 607 *      - reads the superblock from disk and init the mount struct
 608 *      - if we're a 32-bit kernel, do a size check on the superblock
 609 *              so we don't mount terabyte filesystems
 610 *      - init mount struct realtime fields
 611 *      - allocate inode hash table for fs
 612 *      - init directory manager
 613 *      - perform recovery and init the log manager
 614 */
 615int
 616xfs_mountfs(
 617        struct xfs_mount        *mp)
 618{
 619        struct xfs_sb           *sbp = &(mp->m_sb);
 620        struct xfs_inode        *rip;
 621        __uint64_t              resblks;
 622        uint                    quotamount = 0;
 623        uint                    quotaflags = 0;
 624        int                     error = 0;
 625
 626        xfs_sb_mount_common(mp, sbp);
 627
 628        /*
 629         * Check for a mismatched features2 values.  Older kernels read & wrote
 630         * into the wrong sb offset for sb_features2 on some platforms due to
 631         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 632         * which made older superblock reading/writing routines swap it as a
 633         * 64-bit value.
 634         *
 635         * For backwards compatibility, we make both slots equal.
 636         *
 637         * If we detect a mismatched field, we OR the set bits into the existing
 638         * features2 field in case it has already been modified; we don't want
 639         * to lose any features.  We then update the bad location with the ORed
 640         * value so that older kernels will see any features2 flags. The
 641         * superblock writeback code ensures the new sb_features2 is copied to
 642         * sb_bad_features2 before it is logged or written to disk.
 643         */
 644        if (xfs_sb_has_mismatched_features2(sbp)) {
 645                xfs_warn(mp, "correcting sb_features alignment problem");
 646                sbp->sb_features2 |= sbp->sb_bad_features2;
 647                mp->m_update_sb = true;
 648
 649                /*
 650                 * Re-check for ATTR2 in case it was found in bad_features2
 651                 * slot.
 652                 */
 653                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 654                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 655                        mp->m_flags |= XFS_MOUNT_ATTR2;
 656        }
 657
 658        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 659           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 660                xfs_sb_version_removeattr2(&mp->m_sb);
 661                mp->m_update_sb = true;
 662
 663                /* update sb_versionnum for the clearing of the morebits */
 664                if (!sbp->sb_features2)
 665                        mp->m_update_sb = true;
 666        }
 667
 668        /* always use v2 inodes by default now */
 669        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 670                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 671                mp->m_update_sb = true;
 672        }
 673
 674        /*
 675         * Check if sb_agblocks is aligned at stripe boundary
 676         * If sb_agblocks is NOT aligned turn off m_dalign since
 677         * allocator alignment is within an ag, therefore ag has
 678         * to be aligned at stripe boundary.
 679         */
 680        error = xfs_update_alignment(mp);
 681        if (error)
 682                goto out;
 683
 684        xfs_alloc_compute_maxlevels(mp);
 685        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 686        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 687        xfs_ialloc_compute_maxlevels(mp);
 688        xfs_rmapbt_compute_maxlevels(mp);
 689        xfs_refcountbt_compute_maxlevels(mp);
 690
 691        xfs_set_maxicount(mp);
 692
 693        /* enable fail_at_unmount as default */
 694        mp->m_fail_unmount = 1;
 695
 696        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 697        if (error)
 698                goto out;
 699
 700        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 701                               &mp->m_kobj, "stats");
 702        if (error)
 703                goto out_remove_sysfs;
 704
 705        error = xfs_error_sysfs_init(mp);
 706        if (error)
 707                goto out_del_stats;
 708
 709
 710        error = xfs_uuid_mount(mp);
 711        if (error)
 712                goto out_remove_error_sysfs;
 713
 714        /*
 715         * Set the minimum read and write sizes
 716         */
 717        xfs_set_rw_sizes(mp);
 718
 719        /* set the low space thresholds for dynamic preallocation */
 720        xfs_set_low_space_thresholds(mp);
 721
 722        /*
 723         * Set the inode cluster size.
 724         * This may still be overridden by the file system
 725         * block size if it is larger than the chosen cluster size.
 726         *
 727         * For v5 filesystems, scale the cluster size with the inode size to
 728         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 729         * has set the inode alignment value appropriately for larger cluster
 730         * sizes.
 731         */
 732        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 733        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 734                int     new_size = mp->m_inode_cluster_size;
 735
 736                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 737                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 738                        mp->m_inode_cluster_size = new_size;
 739        }
 740
 741        /*
 742         * If enabled, sparse inode chunk alignment is expected to match the
 743         * cluster size. Full inode chunk alignment must match the chunk size,
 744         * but that is checked on sb read verification...
 745         */
 746        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 747            mp->m_sb.sb_spino_align !=
 748                        XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 749                xfs_warn(mp,
 750        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 751                         mp->m_sb.sb_spino_align,
 752                         XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 753                error = -EINVAL;
 754                goto out_remove_uuid;
 755        }
 756
 757        /*
 758         * Set inode alignment fields
 759         */
 760        xfs_set_inoalignment(mp);
 761
 762        /*
 763         * Check that the data (and log if separate) is an ok size.
 764         */
 765        error = xfs_check_sizes(mp);
 766        if (error)
 767                goto out_remove_uuid;
 768
 769        /*
 770         * Initialize realtime fields in the mount structure
 771         */
 772        error = xfs_rtmount_init(mp);
 773        if (error) {
 774                xfs_warn(mp, "RT mount failed");
 775                goto out_remove_uuid;
 776        }
 777
 778        /*
 779         *  Copies the low order bits of the timestamp and the randomly
 780         *  set "sequence" number out of a UUID.
 781         */
 782        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 783
 784        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 785
 786        error = xfs_da_mount(mp);
 787        if (error) {
 788                xfs_warn(mp, "Failed dir/attr init: %d", error);
 789                goto out_remove_uuid;
 790        }
 791
 792        /*
 793         * Initialize the precomputed transaction reservations values.
 794         */
 795        xfs_trans_init(mp);
 796
 797        /*
 798         * Allocate and initialize the per-ag data.
 799         */
 800        spin_lock_init(&mp->m_perag_lock);
 801        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 802        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 803        if (error) {
 804                xfs_warn(mp, "Failed per-ag init: %d", error);
 805                goto out_free_dir;
 806        }
 807
 808        if (!sbp->sb_logblocks) {
 809                xfs_warn(mp, "no log defined");
 810                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 811                error = -EFSCORRUPTED;
 812                goto out_free_perag;
 813        }
 814
 815        /*
 816         * Log's mount-time initialization. The first part of recovery can place
 817         * some items on the AIL, to be handled when recovery is finished or
 818         * cancelled.
 819         */
 820        error = xfs_log_mount(mp, mp->m_logdev_targp,
 821                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 822                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 823        if (error) {
 824                xfs_warn(mp, "log mount failed");
 825                goto out_fail_wait;
 826        }
 827
 828        /*
 829         * Now the log is mounted, we know if it was an unclean shutdown or
 830         * not. If it was, with the first phase of recovery has completed, we
 831         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 832         * but they are recovered transactionally in the second recovery phase
 833         * later.
 834         *
 835         * Hence we can safely re-initialise incore superblock counters from
 836         * the per-ag data. These may not be correct if the filesystem was not
 837         * cleanly unmounted, so we need to wait for recovery to finish before
 838         * doing this.
 839         *
 840         * If the filesystem was cleanly unmounted, then we can trust the
 841         * values in the superblock to be correct and we don't need to do
 842         * anything here.
 843         *
 844         * If we are currently making the filesystem, the initialisation will
 845         * fail as the perag data is in an undefined state.
 846         */
 847        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 848            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 849             !mp->m_sb.sb_inprogress) {
 850                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 851                if (error)
 852                        goto out_log_dealloc;
 853        }
 854
 855        /*
 856         * Get and sanity-check the root inode.
 857         * Save the pointer to it in the mount structure.
 858         */
 859        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 860        if (error) {
 861                xfs_warn(mp, "failed to read root inode");
 862                goto out_log_dealloc;
 863        }
 864
 865        ASSERT(rip != NULL);
 866
 867        if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 868                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 869                        (unsigned long long)rip->i_ino);
 870                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 871                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 872                                 mp);
 873                error = -EFSCORRUPTED;
 874                goto out_rele_rip;
 875        }
 876        mp->m_rootip = rip;     /* save it */
 877
 878        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 879
 880        /*
 881         * Initialize realtime inode pointers in the mount structure
 882         */
 883        error = xfs_rtmount_inodes(mp);
 884        if (error) {
 885                /*
 886                 * Free up the root inode.
 887                 */
 888                xfs_warn(mp, "failed to read RT inodes");
 889                goto out_rele_rip;
 890        }
 891
 892        /*
 893         * If this is a read-only mount defer the superblock updates until
 894         * the next remount into writeable mode.  Otherwise we would never
 895         * perform the update e.g. for the root filesystem.
 896         */
 897        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 898                error = xfs_sync_sb(mp, false);
 899                if (error) {
 900                        xfs_warn(mp, "failed to write sb changes");
 901                        goto out_rtunmount;
 902                }
 903        }
 904
 905        /*
 906         * Initialise the XFS quota management subsystem for this mount
 907         */
 908        if (XFS_IS_QUOTA_RUNNING(mp)) {
 909                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 910                if (error)
 911                        goto out_rtunmount;
 912        } else {
 913                ASSERT(!XFS_IS_QUOTA_ON(mp));
 914
 915                /*
 916                 * If a file system had quotas running earlier, but decided to
 917                 * mount without -o uquota/pquota/gquota options, revoke the
 918                 * quotachecked license.
 919                 */
 920                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 921                        xfs_notice(mp, "resetting quota flags");
 922                        error = xfs_mount_reset_sbqflags(mp);
 923                        if (error)
 924                                goto out_rtunmount;
 925                }
 926        }
 927
 928        /*
 929         * During the second phase of log recovery, we need iget and
 930         * iput to behave like they do for an active filesystem.
 931         * xfs_fs_drop_inode needs to be able to prevent the deletion
 932         * of inodes before we're done replaying log items on those
 933         * inodes.
 934         */
 935        mp->m_super->s_flags |= MS_ACTIVE;
 936
 937        /*
 938         * Finish recovering the file system.  This part needed to be delayed
 939         * until after the root and real-time bitmap inodes were consistently
 940         * read in.
 941         */
 942        error = xfs_log_mount_finish(mp);
 943        if (error) {
 944                xfs_warn(mp, "log mount finish failed");
 945                goto out_rtunmount;
 946        }
 947
 948        /*
 949         * Now the log is fully replayed, we can transition to full read-only
 950         * mode for read-only mounts. This will sync all the metadata and clean
 951         * the log so that the recovery we just performed does not have to be
 952         * replayed again on the next mount.
 953         *
 954         * We use the same quiesce mechanism as the rw->ro remount, as they are
 955         * semantically identical operations.
 956         */
 957        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 958                                                        XFS_MOUNT_RDONLY) {
 959                xfs_quiesce_attr(mp);
 960        }
 961
 962        /*
 963         * Complete the quota initialisation, post-log-replay component.
 964         */
 965        if (quotamount) {
 966                ASSERT(mp->m_qflags == 0);
 967                mp->m_qflags = quotaflags;
 968
 969                xfs_qm_mount_quotas(mp);
 970        }
 971
 972        /*
 973         * Now we are mounted, reserve a small amount of unused space for
 974         * privileged transactions. This is needed so that transaction
 975         * space required for critical operations can dip into this pool
 976         * when at ENOSPC. This is needed for operations like create with
 977         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 978         * are not allowed to use this reserved space.
 979         *
 980         * This may drive us straight to ENOSPC on mount, but that implies
 981         * we were already there on the last unmount. Warn if this occurs.
 982         */
 983        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 984                resblks = xfs_default_resblks(mp);
 985                error = xfs_reserve_blocks(mp, &resblks, NULL);
 986                if (error)
 987                        xfs_warn(mp,
 988        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 989
 990                /* Recover any CoW blocks that never got remapped. */
 991                error = xfs_reflink_recover_cow(mp);
 992                if (error) {
 993                        xfs_err(mp,
 994        "Error %d recovering leftover CoW allocations.", error);
 995                        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 996                        goto out_quota;
 997                }
 998
 999                /* Reserve AG blocks for future btree expansion. */
1000                error = xfs_fs_reserve_ag_blocks(mp);
1001                if (error && error != -ENOSPC)
1002                        goto out_agresv;
1003        }
1004
1005        return 0;
1006
1007 out_agresv:
1008        xfs_fs_unreserve_ag_blocks(mp);
1009 out_quota:
1010        xfs_qm_unmount_quotas(mp);
1011 out_rtunmount:
1012        mp->m_super->s_flags &= ~MS_ACTIVE;
1013        xfs_rtunmount_inodes(mp);
1014 out_rele_rip:
1015        IRELE(rip);
1016        cancel_delayed_work_sync(&mp->m_reclaim_work);
1017        xfs_reclaim_inodes(mp, SYNC_WAIT);
1018 out_log_dealloc:
1019        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1020        xfs_log_mount_cancel(mp);
1021 out_fail_wait:
1022        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1023                xfs_wait_buftarg(mp->m_logdev_targp);
1024        xfs_wait_buftarg(mp->m_ddev_targp);
1025 out_free_perag:
1026        xfs_free_perag(mp);
1027 out_free_dir:
1028        xfs_da_unmount(mp);
1029 out_remove_uuid:
1030        xfs_uuid_unmount(mp);
1031 out_remove_error_sysfs:
1032        xfs_error_sysfs_del(mp);
1033 out_del_stats:
1034        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035 out_remove_sysfs:
1036        xfs_sysfs_del(&mp->m_kobj);
1037 out:
1038        return error;
1039}
1040
1041/*
1042 * This flushes out the inodes,dquots and the superblock, unmounts the
1043 * log and makes sure that incore structures are freed.
1044 */
1045void
1046xfs_unmountfs(
1047        struct xfs_mount        *mp)
1048{
1049        __uint64_t              resblks;
1050        int                     error;
1051
1052        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1053        cancel_delayed_work_sync(&mp->m_cowblocks_work);
1054
1055        xfs_fs_unreserve_ag_blocks(mp);
1056        xfs_qm_unmount_quotas(mp);
1057        xfs_rtunmount_inodes(mp);
1058        IRELE(mp->m_rootip);
1059
1060        /*
1061         * We can potentially deadlock here if we have an inode cluster
1062         * that has been freed has its buffer still pinned in memory because
1063         * the transaction is still sitting in a iclog. The stale inodes
1064         * on that buffer will have their flush locks held until the
1065         * transaction hits the disk and the callbacks run. the inode
1066         * flush takes the flush lock unconditionally and with nothing to
1067         * push out the iclog we will never get that unlocked. hence we
1068         * need to force the log first.
1069         */
1070        xfs_log_force(mp, XFS_LOG_SYNC);
1071
1072        /*
1073         * We now need to tell the world we are unmounting. This will allow
1074         * us to detect that the filesystem is going away and we should error
1075         * out anything that we have been retrying in the background. This will
1076         * prevent neverending retries in AIL pushing from hanging the unmount.
1077         */
1078        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1079
1080        /*
1081         * Flush all pending changes from the AIL.
1082         */
1083        xfs_ail_push_all_sync(mp->m_ail);
1084
1085        /*
1086         * And reclaim all inodes.  At this point there should be no dirty
1087         * inodes and none should be pinned or locked, but use synchronous
1088         * reclaim just to be sure. We can stop background inode reclaim
1089         * here as well if it is still running.
1090         */
1091        cancel_delayed_work_sync(&mp->m_reclaim_work);
1092        xfs_reclaim_inodes(mp, SYNC_WAIT);
1093
1094        xfs_qm_unmount(mp);
1095
1096        /*
1097         * Unreserve any blocks we have so that when we unmount we don't account
1098         * the reserved free space as used. This is really only necessary for
1099         * lazy superblock counting because it trusts the incore superblock
1100         * counters to be absolutely correct on clean unmount.
1101         *
1102         * We don't bother correcting this elsewhere for lazy superblock
1103         * counting because on mount of an unclean filesystem we reconstruct the
1104         * correct counter value and this is irrelevant.
1105         *
1106         * For non-lazy counter filesystems, this doesn't matter at all because
1107         * we only every apply deltas to the superblock and hence the incore
1108         * value does not matter....
1109         */
1110        resblks = 0;
1111        error = xfs_reserve_blocks(mp, &resblks, NULL);
1112        if (error)
1113                xfs_warn(mp, "Unable to free reserved block pool. "
1114                                "Freespace may not be correct on next mount.");
1115
1116        error = xfs_log_sbcount(mp);
1117        if (error)
1118                xfs_warn(mp, "Unable to update superblock counters. "
1119                                "Freespace may not be correct on next mount.");
1120
1121
1122        xfs_log_unmount(mp);
1123        xfs_da_unmount(mp);
1124        xfs_uuid_unmount(mp);
1125
1126#if defined(DEBUG)
1127        xfs_errortag_clearall(mp, 0);
1128#endif
1129        xfs_free_perag(mp);
1130
1131        xfs_error_sysfs_del(mp);
1132        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1133        xfs_sysfs_del(&mp->m_kobj);
1134}
1135
1136/*
1137 * Determine whether modifications can proceed. The caller specifies the minimum
1138 * freeze level for which modifications should not be allowed. This allows
1139 * certain operations to proceed while the freeze sequence is in progress, if
1140 * necessary.
1141 */
1142bool
1143xfs_fs_writable(
1144        struct xfs_mount        *mp,
1145        int                     level)
1146{
1147        ASSERT(level > SB_UNFROZEN);
1148        if ((mp->m_super->s_writers.frozen >= level) ||
1149            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1150                return false;
1151
1152        return true;
1153}
1154
1155/*
1156 * xfs_log_sbcount
1157 *
1158 * Sync the superblock counters to disk.
1159 *
1160 * Note this code can be called during the process of freezing, so we use the
1161 * transaction allocator that does not block when the transaction subsystem is
1162 * in its frozen state.
1163 */
1164int
1165xfs_log_sbcount(xfs_mount_t *mp)
1166{
1167        /* allow this to proceed during the freeze sequence... */
1168        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1169                return 0;
1170
1171        /*
1172         * we don't need to do this if we are updating the superblock
1173         * counters on every modification.
1174         */
1175        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1176                return 0;
1177
1178        return xfs_sync_sb(mp, true);
1179}
1180
1181/*
1182 * Deltas for the inode count are +/-64, hence we use a large batch size
1183 * of 128 so we don't need to take the counter lock on every update.
1184 */
1185#define XFS_ICOUNT_BATCH        128
1186int
1187xfs_mod_icount(
1188        struct xfs_mount        *mp,
1189        int64_t                 delta)
1190{
1191        __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1192        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1193                ASSERT(0);
1194                percpu_counter_add(&mp->m_icount, -delta);
1195                return -EINVAL;
1196        }
1197        return 0;
1198}
1199
1200int
1201xfs_mod_ifree(
1202        struct xfs_mount        *mp,
1203        int64_t                 delta)
1204{
1205        percpu_counter_add(&mp->m_ifree, delta);
1206        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1207                ASSERT(0);
1208                percpu_counter_add(&mp->m_ifree, -delta);
1209                return -EINVAL;
1210        }
1211        return 0;
1212}
1213
1214/*
1215 * Deltas for the block count can vary from 1 to very large, but lock contention
1216 * only occurs on frequent small block count updates such as in the delayed
1217 * allocation path for buffered writes (page a time updates). Hence we set
1218 * a large batch count (1024) to minimise global counter updates except when
1219 * we get near to ENOSPC and we have to be very accurate with our updates.
1220 */
1221#define XFS_FDBLOCKS_BATCH      1024
1222int
1223xfs_mod_fdblocks(
1224        struct xfs_mount        *mp,
1225        int64_t                 delta,
1226        bool                    rsvd)
1227{
1228        int64_t                 lcounter;
1229        long long               res_used;
1230        s32                     batch;
1231
1232        if (delta > 0) {
1233                /*
1234                 * If the reserve pool is depleted, put blocks back into it
1235                 * first. Most of the time the pool is full.
1236                 */
1237                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1238                        percpu_counter_add(&mp->m_fdblocks, delta);
1239                        return 0;
1240                }
1241
1242                spin_lock(&mp->m_sb_lock);
1243                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1244
1245                if (res_used > delta) {
1246                        mp->m_resblks_avail += delta;
1247                } else {
1248                        delta -= res_used;
1249                        mp->m_resblks_avail = mp->m_resblks;
1250                        percpu_counter_add(&mp->m_fdblocks, delta);
1251                }
1252                spin_unlock(&mp->m_sb_lock);
1253                return 0;
1254        }
1255
1256        /*
1257         * Taking blocks away, need to be more accurate the closer we
1258         * are to zero.
1259         *
1260         * If the counter has a value of less than 2 * max batch size,
1261         * then make everything serialise as we are real close to
1262         * ENOSPC.
1263         */
1264        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1265                                     XFS_FDBLOCKS_BATCH) < 0)
1266                batch = 1;
1267        else
1268                batch = XFS_FDBLOCKS_BATCH;
1269
1270        __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1271        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1272                                     XFS_FDBLOCKS_BATCH) >= 0) {
1273                /* we had space! */
1274                return 0;
1275        }
1276
1277        /*
1278         * lock up the sb for dipping into reserves before releasing the space
1279         * that took us to ENOSPC.
1280         */
1281        spin_lock(&mp->m_sb_lock);
1282        percpu_counter_add(&mp->m_fdblocks, -delta);
1283        if (!rsvd)
1284                goto fdblocks_enospc;
1285
1286        lcounter = (long long)mp->m_resblks_avail + delta;
1287        if (lcounter >= 0) {
1288                mp->m_resblks_avail = lcounter;
1289                spin_unlock(&mp->m_sb_lock);
1290                return 0;
1291        }
1292        printk_once(KERN_WARNING
1293                "Filesystem \"%s\": reserve blocks depleted! "
1294                "Consider increasing reserve pool size.",
1295                mp->m_fsname);
1296fdblocks_enospc:
1297        spin_unlock(&mp->m_sb_lock);
1298        return -ENOSPC;
1299}
1300
1301int
1302xfs_mod_frextents(
1303        struct xfs_mount        *mp,
1304        int64_t                 delta)
1305{
1306        int64_t                 lcounter;
1307        int                     ret = 0;
1308
1309        spin_lock(&mp->m_sb_lock);
1310        lcounter = mp->m_sb.sb_frextents + delta;
1311        if (lcounter < 0)
1312                ret = -ENOSPC;
1313        else
1314                mp->m_sb.sb_frextents = lcounter;
1315        spin_unlock(&mp->m_sb_lock);
1316        return ret;
1317}
1318
1319/*
1320 * xfs_getsb() is called to obtain the buffer for the superblock.
1321 * The buffer is returned locked and read in from disk.
1322 * The buffer should be released with a call to xfs_brelse().
1323 *
1324 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1325 * the superblock buffer if it can be locked without sleeping.
1326 * If it can't then we'll return NULL.
1327 */
1328struct xfs_buf *
1329xfs_getsb(
1330        struct xfs_mount        *mp,
1331        int                     flags)
1332{
1333        struct xfs_buf          *bp = mp->m_sb_bp;
1334
1335        if (!xfs_buf_trylock(bp)) {
1336                if (flags & XBF_TRYLOCK)
1337                        return NULL;
1338                xfs_buf_lock(bp);
1339        }
1340
1341        xfs_buf_hold(bp);
1342        ASSERT(bp->b_flags & XBF_DONE);
1343        return bp;
1344}
1345
1346/*
1347 * Used to free the superblock along various error paths.
1348 */
1349void
1350xfs_freesb(
1351        struct xfs_mount        *mp)
1352{
1353        struct xfs_buf          *bp = mp->m_sb_bp;
1354
1355        xfs_buf_lock(bp);
1356        mp->m_sb_bp = NULL;
1357        xfs_buf_relse(bp);
1358}
1359
1360/*
1361 * If the underlying (data/log/rt) device is readonly, there are some
1362 * operations that cannot proceed.
1363 */
1364int
1365xfs_dev_is_read_only(
1366        struct xfs_mount        *mp,
1367        char                    *message)
1368{
1369        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1370            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1371            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1372                xfs_notice(mp, "%s required on read-only device.", message);
1373                xfs_notice(mp, "write access unavailable, cannot proceed.");
1374                return -EROFS;
1375        }
1376        return 0;
1377}
1378