linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/*
   2 * Symmetric key ciphers.
   3 * 
   4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_SKCIPHER_H
  14#define _CRYPTO_SKCIPHER_H
  15
  16#include <linux/crypto.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19
  20/**
  21 *      struct skcipher_request - Symmetric key cipher request
  22 *      @cryptlen: Number of bytes to encrypt or decrypt
  23 *      @iv: Initialisation Vector
  24 *      @src: Source SG list
  25 *      @dst: Destination SG list
  26 *      @base: Underlying async request request
  27 *      @__ctx: Start of private context data
  28 */
  29struct skcipher_request {
  30        unsigned int cryptlen;
  31
  32        u8 *iv;
  33
  34        struct scatterlist *src;
  35        struct scatterlist *dst;
  36
  37        struct crypto_async_request base;
  38
  39        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  40};
  41
  42/**
  43 *      struct skcipher_givcrypt_request - Crypto request with IV generation
  44 *      @seq: Sequence number for IV generation
  45 *      @giv: Space for generated IV
  46 *      @creq: The crypto request itself
  47 */
  48struct skcipher_givcrypt_request {
  49        u64 seq;
  50        u8 *giv;
  51
  52        struct ablkcipher_request creq;
  53};
  54
  55struct crypto_skcipher {
  56        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  57                      unsigned int keylen);
  58        int (*encrypt)(struct skcipher_request *req);
  59        int (*decrypt)(struct skcipher_request *req);
  60
  61        unsigned int ivsize;
  62        unsigned int reqsize;
  63        unsigned int keysize;
  64
  65        struct crypto_tfm base;
  66};
  67
  68/**
  69 * struct skcipher_alg - symmetric key cipher definition
  70 * @min_keysize: Minimum key size supported by the transformation. This is the
  71 *               smallest key length supported by this transformation algorithm.
  72 *               This must be set to one of the pre-defined values as this is
  73 *               not hardware specific. Possible values for this field can be
  74 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  75 * @max_keysize: Maximum key size supported by the transformation. This is the
  76 *               largest key length supported by this transformation algorithm.
  77 *               This must be set to one of the pre-defined values as this is
  78 *               not hardware specific. Possible values for this field can be
  79 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  80 * @setkey: Set key for the transformation. This function is used to either
  81 *          program a supplied key into the hardware or store the key in the
  82 *          transformation context for programming it later. Note that this
  83 *          function does modify the transformation context. This function can
  84 *          be called multiple times during the existence of the transformation
  85 *          object, so one must make sure the key is properly reprogrammed into
  86 *          the hardware. This function is also responsible for checking the key
  87 *          length for validity. In case a software fallback was put in place in
  88 *          the @cra_init call, this function might need to use the fallback if
  89 *          the algorithm doesn't support all of the key sizes.
  90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  91 *           the supplied scatterlist containing the blocks of data. The crypto
  92 *           API consumer is responsible for aligning the entries of the
  93 *           scatterlist properly and making sure the chunks are correctly
  94 *           sized. In case a software fallback was put in place in the
  95 *           @cra_init call, this function might need to use the fallback if
  96 *           the algorithm doesn't support all of the key sizes. In case the
  97 *           key was stored in transformation context, the key might need to be
  98 *           re-programmed into the hardware in this function. This function
  99 *           shall not modify the transformation context, as this function may
 100 *           be called in parallel with the same transformation object.
 101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 102 *           and the conditions are exactly the same.
 103 * @init: Initialize the cryptographic transformation object. This function
 104 *        is used to initialize the cryptographic transformation object.
 105 *        This function is called only once at the instantiation time, right
 106 *        after the transformation context was allocated. In case the
 107 *        cryptographic hardware has some special requirements which need to
 108 *        be handled by software, this function shall check for the precise
 109 *        requirement of the transformation and put any software fallbacks
 110 *        in place.
 111 * @exit: Deinitialize the cryptographic transformation object. This is a
 112 *        counterpart to @init, used to remove various changes set in
 113 *        @init.
 114 * @ivsize: IV size applicable for transformation. The consumer must provide an
 115 *          IV of exactly that size to perform the encrypt or decrypt operation.
 116 * @chunksize: Equal to the block size except for stream ciphers such as
 117 *             CTR where it is set to the underlying block size.
 118 * @base: Definition of a generic crypto algorithm.
 119 *
 120 * All fields except @ivsize are mandatory and must be filled.
 121 */
 122struct skcipher_alg {
 123        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 124                      unsigned int keylen);
 125        int (*encrypt)(struct skcipher_request *req);
 126        int (*decrypt)(struct skcipher_request *req);
 127        int (*init)(struct crypto_skcipher *tfm);
 128        void (*exit)(struct crypto_skcipher *tfm);
 129
 130        unsigned int min_keysize;
 131        unsigned int max_keysize;
 132        unsigned int ivsize;
 133        unsigned int chunksize;
 134
 135        struct crypto_alg base;
 136};
 137
 138#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 139        char __##name##_desc[sizeof(struct skcipher_request) + \
 140                crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
 141        struct skcipher_request *name = (void *)__##name##_desc
 142
 143/**
 144 * DOC: Symmetric Key Cipher API
 145 *
 146 * Symmetric key cipher API is used with the ciphers of type
 147 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 148 *
 149 * Asynchronous cipher operations imply that the function invocation for a
 150 * cipher request returns immediately before the completion of the operation.
 151 * The cipher request is scheduled as a separate kernel thread and therefore
 152 * load-balanced on the different CPUs via the process scheduler. To allow
 153 * the kernel crypto API to inform the caller about the completion of a cipher
 154 * request, the caller must provide a callback function. That function is
 155 * invoked with the cipher handle when the request completes.
 156 *
 157 * To support the asynchronous operation, additional information than just the
 158 * cipher handle must be supplied to the kernel crypto API. That additional
 159 * information is given by filling in the skcipher_request data structure.
 160 *
 161 * For the symmetric key cipher API, the state is maintained with the tfm
 162 * cipher handle. A single tfm can be used across multiple calls and in
 163 * parallel. For asynchronous block cipher calls, context data supplied and
 164 * only used by the caller can be referenced the request data structure in
 165 * addition to the IV used for the cipher request. The maintenance of such
 166 * state information would be important for a crypto driver implementer to
 167 * have, because when calling the callback function upon completion of the
 168 * cipher operation, that callback function may need some information about
 169 * which operation just finished if it invoked multiple in parallel. This
 170 * state information is unused by the kernel crypto API.
 171 */
 172
 173static inline struct crypto_skcipher *__crypto_skcipher_cast(
 174        struct crypto_tfm *tfm)
 175{
 176        return container_of(tfm, struct crypto_skcipher, base);
 177}
 178
 179/**
 180 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 181 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 182 *            skcipher cipher
 183 * @type: specifies the type of the cipher
 184 * @mask: specifies the mask for the cipher
 185 *
 186 * Allocate a cipher handle for an skcipher. The returned struct
 187 * crypto_skcipher is the cipher handle that is required for any subsequent
 188 * API invocation for that skcipher.
 189 *
 190 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 191 *         of an error, PTR_ERR() returns the error code.
 192 */
 193struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 194                                              u32 type, u32 mask);
 195
 196static inline struct crypto_tfm *crypto_skcipher_tfm(
 197        struct crypto_skcipher *tfm)
 198{
 199        return &tfm->base;
 200}
 201
 202/**
 203 * crypto_free_skcipher() - zeroize and free cipher handle
 204 * @tfm: cipher handle to be freed
 205 */
 206static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 207{
 208        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 209}
 210
 211/**
 212 * crypto_has_skcipher() - Search for the availability of an skcipher.
 213 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 214 *            skcipher
 215 * @type: specifies the type of the cipher
 216 * @mask: specifies the mask for the cipher
 217 *
 218 * Return: true when the skcipher is known to the kernel crypto API; false
 219 *         otherwise
 220 */
 221static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 222                                        u32 mask)
 223{
 224        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 225                              crypto_skcipher_mask(mask));
 226}
 227
 228/**
 229 * crypto_has_skcipher2() - Search for the availability of an skcipher.
 230 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 231 *            skcipher
 232 * @type: specifies the type of the skcipher
 233 * @mask: specifies the mask for the skcipher
 234 *
 235 * Return: true when the skcipher is known to the kernel crypto API; false
 236 *         otherwise
 237 */
 238int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
 239
 240static inline const char *crypto_skcipher_driver_name(
 241        struct crypto_skcipher *tfm)
 242{
 243        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 244}
 245
 246static inline struct skcipher_alg *crypto_skcipher_alg(
 247        struct crypto_skcipher *tfm)
 248{
 249        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 250                            struct skcipher_alg, base);
 251}
 252
 253static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 254{
 255        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 256            CRYPTO_ALG_TYPE_BLKCIPHER)
 257                return alg->base.cra_blkcipher.ivsize;
 258
 259        if (alg->base.cra_ablkcipher.encrypt)
 260                return alg->base.cra_ablkcipher.ivsize;
 261
 262        return alg->ivsize;
 263}
 264
 265/**
 266 * crypto_skcipher_ivsize() - obtain IV size
 267 * @tfm: cipher handle
 268 *
 269 * The size of the IV for the skcipher referenced by the cipher handle is
 270 * returned. This IV size may be zero if the cipher does not need an IV.
 271 *
 272 * Return: IV size in bytes
 273 */
 274static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 275{
 276        return tfm->ivsize;
 277}
 278
 279static inline unsigned int crypto_skcipher_alg_chunksize(
 280        struct skcipher_alg *alg)
 281{
 282        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 283            CRYPTO_ALG_TYPE_BLKCIPHER)
 284                return alg->base.cra_blocksize;
 285
 286        if (alg->base.cra_ablkcipher.encrypt)
 287                return alg->base.cra_blocksize;
 288
 289        return alg->chunksize;
 290}
 291
 292/**
 293 * crypto_skcipher_chunksize() - obtain chunk size
 294 * @tfm: cipher handle
 295 *
 296 * The block size is set to one for ciphers such as CTR.  However,
 297 * you still need to provide incremental updates in multiples of
 298 * the underlying block size as the IV does not have sub-block
 299 * granularity.  This is known in this API as the chunk size.
 300 *
 301 * Return: chunk size in bytes
 302 */
 303static inline unsigned int crypto_skcipher_chunksize(
 304        struct crypto_skcipher *tfm)
 305{
 306        return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
 307}
 308
 309/**
 310 * crypto_skcipher_blocksize() - obtain block size of cipher
 311 * @tfm: cipher handle
 312 *
 313 * The block size for the skcipher referenced with the cipher handle is
 314 * returned. The caller may use that information to allocate appropriate
 315 * memory for the data returned by the encryption or decryption operation
 316 *
 317 * Return: block size of cipher
 318 */
 319static inline unsigned int crypto_skcipher_blocksize(
 320        struct crypto_skcipher *tfm)
 321{
 322        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 323}
 324
 325static inline unsigned int crypto_skcipher_alignmask(
 326        struct crypto_skcipher *tfm)
 327{
 328        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 329}
 330
 331static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 332{
 333        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 334}
 335
 336static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 337                                               u32 flags)
 338{
 339        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 340}
 341
 342static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 343                                                 u32 flags)
 344{
 345        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 346}
 347
 348/**
 349 * crypto_skcipher_setkey() - set key for cipher
 350 * @tfm: cipher handle
 351 * @key: buffer holding the key
 352 * @keylen: length of the key in bytes
 353 *
 354 * The caller provided key is set for the skcipher referenced by the cipher
 355 * handle.
 356 *
 357 * Note, the key length determines the cipher type. Many block ciphers implement
 358 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 359 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 360 * is performed.
 361 *
 362 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 363 */
 364static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 365                                         const u8 *key, unsigned int keylen)
 366{
 367        return tfm->setkey(tfm, key, keylen);
 368}
 369
 370static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
 371{
 372        return tfm->keysize;
 373}
 374
 375static inline unsigned int crypto_skcipher_default_keysize(
 376        struct crypto_skcipher *tfm)
 377{
 378        return tfm->keysize;
 379}
 380
 381/**
 382 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 383 * @req: skcipher_request out of which the cipher handle is to be obtained
 384 *
 385 * Return the crypto_skcipher handle when furnishing an skcipher_request
 386 * data structure.
 387 *
 388 * Return: crypto_skcipher handle
 389 */
 390static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 391        struct skcipher_request *req)
 392{
 393        return __crypto_skcipher_cast(req->base.tfm);
 394}
 395
 396/**
 397 * crypto_skcipher_encrypt() - encrypt plaintext
 398 * @req: reference to the skcipher_request handle that holds all information
 399 *       needed to perform the cipher operation
 400 *
 401 * Encrypt plaintext data using the skcipher_request handle. That data
 402 * structure and how it is filled with data is discussed with the
 403 * skcipher_request_* functions.
 404 *
 405 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 406 */
 407static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
 408{
 409        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 410
 411        return tfm->encrypt(req);
 412}
 413
 414/**
 415 * crypto_skcipher_decrypt() - decrypt ciphertext
 416 * @req: reference to the skcipher_request handle that holds all information
 417 *       needed to perform the cipher operation
 418 *
 419 * Decrypt ciphertext data using the skcipher_request handle. That data
 420 * structure and how it is filled with data is discussed with the
 421 * skcipher_request_* functions.
 422 *
 423 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 424 */
 425static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
 426{
 427        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 428
 429        return tfm->decrypt(req);
 430}
 431
 432/**
 433 * DOC: Symmetric Key Cipher Request Handle
 434 *
 435 * The skcipher_request data structure contains all pointers to data
 436 * required for the symmetric key cipher operation. This includes the cipher
 437 * handle (which can be used by multiple skcipher_request instances), pointer
 438 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 439 * as a handle to the skcipher_request_* API calls in a similar way as
 440 * skcipher handle to the crypto_skcipher_* API calls.
 441 */
 442
 443/**
 444 * crypto_skcipher_reqsize() - obtain size of the request data structure
 445 * @tfm: cipher handle
 446 *
 447 * Return: number of bytes
 448 */
 449static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 450{
 451        return tfm->reqsize;
 452}
 453
 454/**
 455 * skcipher_request_set_tfm() - update cipher handle reference in request
 456 * @req: request handle to be modified
 457 * @tfm: cipher handle that shall be added to the request handle
 458 *
 459 * Allow the caller to replace the existing skcipher handle in the request
 460 * data structure with a different one.
 461 */
 462static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 463                                            struct crypto_skcipher *tfm)
 464{
 465        req->base.tfm = crypto_skcipher_tfm(tfm);
 466}
 467
 468static inline struct skcipher_request *skcipher_request_cast(
 469        struct crypto_async_request *req)
 470{
 471        return container_of(req, struct skcipher_request, base);
 472}
 473
 474/**
 475 * skcipher_request_alloc() - allocate request data structure
 476 * @tfm: cipher handle to be registered with the request
 477 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 478 *
 479 * Allocate the request data structure that must be used with the skcipher
 480 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 481 * handle is registered in the request data structure.
 482 *
 483 * Return: allocated request handle in case of success, or NULL if out of memory
 484 */
 485static inline struct skcipher_request *skcipher_request_alloc(
 486        struct crypto_skcipher *tfm, gfp_t gfp)
 487{
 488        struct skcipher_request *req;
 489
 490        req = kmalloc(sizeof(struct skcipher_request) +
 491                      crypto_skcipher_reqsize(tfm), gfp);
 492
 493        if (likely(req))
 494                skcipher_request_set_tfm(req, tfm);
 495
 496        return req;
 497}
 498
 499/**
 500 * skcipher_request_free() - zeroize and free request data structure
 501 * @req: request data structure cipher handle to be freed
 502 */
 503static inline void skcipher_request_free(struct skcipher_request *req)
 504{
 505        kzfree(req);
 506}
 507
 508static inline void skcipher_request_zero(struct skcipher_request *req)
 509{
 510        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 511
 512        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 513}
 514
 515/**
 516 * skcipher_request_set_callback() - set asynchronous callback function
 517 * @req: request handle
 518 * @flags: specify zero or an ORing of the flags
 519 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 520 *         increase the wait queue beyond the initial maximum size;
 521 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 522 * @compl: callback function pointer to be registered with the request handle
 523 * @data: The data pointer refers to memory that is not used by the kernel
 524 *        crypto API, but provided to the callback function for it to use. Here,
 525 *        the caller can provide a reference to memory the callback function can
 526 *        operate on. As the callback function is invoked asynchronously to the
 527 *        related functionality, it may need to access data structures of the
 528 *        related functionality which can be referenced using this pointer. The
 529 *        callback function can access the memory via the "data" field in the
 530 *        crypto_async_request data structure provided to the callback function.
 531 *
 532 * This function allows setting the callback function that is triggered once the
 533 * cipher operation completes.
 534 *
 535 * The callback function is registered with the skcipher_request handle and
 536 * must comply with the following template
 537 *
 538 *      void callback_function(struct crypto_async_request *req, int error)
 539 */
 540static inline void skcipher_request_set_callback(struct skcipher_request *req,
 541                                                 u32 flags,
 542                                                 crypto_completion_t compl,
 543                                                 void *data)
 544{
 545        req->base.complete = compl;
 546        req->base.data = data;
 547        req->base.flags = flags;
 548}
 549
 550/**
 551 * skcipher_request_set_crypt() - set data buffers
 552 * @req: request handle
 553 * @src: source scatter / gather list
 554 * @dst: destination scatter / gather list
 555 * @cryptlen: number of bytes to process from @src
 556 * @iv: IV for the cipher operation which must comply with the IV size defined
 557 *      by crypto_skcipher_ivsize
 558 *
 559 * This function allows setting of the source data and destination data
 560 * scatter / gather lists.
 561 *
 562 * For encryption, the source is treated as the plaintext and the
 563 * destination is the ciphertext. For a decryption operation, the use is
 564 * reversed - the source is the ciphertext and the destination is the plaintext.
 565 */
 566static inline void skcipher_request_set_crypt(
 567        struct skcipher_request *req,
 568        struct scatterlist *src, struct scatterlist *dst,
 569        unsigned int cryptlen, void *iv)
 570{
 571        req->src = src;
 572        req->dst = dst;
 573        req->cryptlen = cryptlen;
 574        req->iv = iv;
 575}
 576
 577#endif  /* _CRYPTO_SKCIPHER_H */
 578
 579