linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6#include <linux/sched/prio.h>
   7
   8
   9struct sched_param {
  10        int sched_priority;
  11};
  12
  13#include <asm/param.h>  /* for HZ */
  14
  15#include <linux/capability.h>
  16#include <linux/threads.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/timex.h>
  20#include <linux/jiffies.h>
  21#include <linux/plist.h>
  22#include <linux/rbtree.h>
  23#include <linux/thread_info.h>
  24#include <linux/cpumask.h>
  25#include <linux/errno.h>
  26#include <linux/nodemask.h>
  27#include <linux/mm_types.h>
  28#include <linux/preempt.h>
  29
  30#include <asm/page.h>
  31#include <asm/ptrace.h>
  32#include <linux/cputime.h>
  33
  34#include <linux/smp.h>
  35#include <linux/sem.h>
  36#include <linux/shm.h>
  37#include <linux/signal.h>
  38#include <linux/compiler.h>
  39#include <linux/completion.h>
  40#include <linux/pid.h>
  41#include <linux/percpu.h>
  42#include <linux/topology.h>
  43#include <linux/seccomp.h>
  44#include <linux/rcupdate.h>
  45#include <linux/rculist.h>
  46#include <linux/rtmutex.h>
  47
  48#include <linux/time.h>
  49#include <linux/param.h>
  50#include <linux/resource.h>
  51#include <linux/timer.h>
  52#include <linux/hrtimer.h>
  53#include <linux/kcov.h>
  54#include <linux/task_io_accounting.h>
  55#include <linux/latencytop.h>
  56#include <linux/cred.h>
  57#include <linux/llist.h>
  58#include <linux/uidgid.h>
  59#include <linux/gfp.h>
  60#include <linux/magic.h>
  61#include <linux/cgroup-defs.h>
  62
  63#include <asm/processor.h>
  64
  65#define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
  66
  67/*
  68 * Extended scheduling parameters data structure.
  69 *
  70 * This is needed because the original struct sched_param can not be
  71 * altered without introducing ABI issues with legacy applications
  72 * (e.g., in sched_getparam()).
  73 *
  74 * However, the possibility of specifying more than just a priority for
  75 * the tasks may be useful for a wide variety of application fields, e.g.,
  76 * multimedia, streaming, automation and control, and many others.
  77 *
  78 * This variant (sched_attr) is meant at describing a so-called
  79 * sporadic time-constrained task. In such model a task is specified by:
  80 *  - the activation period or minimum instance inter-arrival time;
  81 *  - the maximum (or average, depending on the actual scheduling
  82 *    discipline) computation time of all instances, a.k.a. runtime;
  83 *  - the deadline (relative to the actual activation time) of each
  84 *    instance.
  85 * Very briefly, a periodic (sporadic) task asks for the execution of
  86 * some specific computation --which is typically called an instance--
  87 * (at most) every period. Moreover, each instance typically lasts no more
  88 * than the runtime and must be completed by time instant t equal to
  89 * the instance activation time + the deadline.
  90 *
  91 * This is reflected by the actual fields of the sched_attr structure:
  92 *
  93 *  @size               size of the structure, for fwd/bwd compat.
  94 *
  95 *  @sched_policy       task's scheduling policy
  96 *  @sched_flags        for customizing the scheduler behaviour
  97 *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
  98 *  @sched_priority     task's static priority (SCHED_FIFO/RR)
  99 *  @sched_deadline     representative of the task's deadline
 100 *  @sched_runtime      representative of the task's runtime
 101 *  @sched_period       representative of the task's period
 102 *
 103 * Given this task model, there are a multiplicity of scheduling algorithms
 104 * and policies, that can be used to ensure all the tasks will make their
 105 * timing constraints.
 106 *
 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 108 * only user of this new interface. More information about the algorithm
 109 * available in the scheduling class file or in Documentation/.
 110 */
 111struct sched_attr {
 112        u32 size;
 113
 114        u32 sched_policy;
 115        u64 sched_flags;
 116
 117        /* SCHED_NORMAL, SCHED_BATCH */
 118        s32 sched_nice;
 119
 120        /* SCHED_FIFO, SCHED_RR */
 121        u32 sched_priority;
 122
 123        /* SCHED_DEADLINE */
 124        u64 sched_runtime;
 125        u64 sched_deadline;
 126        u64 sched_period;
 127};
 128
 129struct futex_pi_state;
 130struct robust_list_head;
 131struct bio_list;
 132struct fs_struct;
 133struct perf_event_context;
 134struct blk_plug;
 135struct filename;
 136struct nameidata;
 137
 138#define VMACACHE_BITS 2
 139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
 140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
 141
 142/*
 143 * These are the constant used to fake the fixed-point load-average
 144 * counting. Some notes:
 145 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 146 *    a load-average precision of 10 bits integer + 11 bits fractional
 147 *  - if you want to count load-averages more often, you need more
 148 *    precision, or rounding will get you. With 2-second counting freq,
 149 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 150 *    11 bit fractions.
 151 */
 152extern unsigned long avenrun[];         /* Load averages */
 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 154
 155#define FSHIFT          11              /* nr of bits of precision */
 156#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 157#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 158#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 159#define EXP_5           2014            /* 1/exp(5sec/5min) */
 160#define EXP_15          2037            /* 1/exp(5sec/15min) */
 161
 162#define CALC_LOAD(load,exp,n) \
 163        load *= exp; \
 164        load += n*(FIXED_1-exp); \
 165        load >>= FSHIFT;
 166
 167extern unsigned long total_forks;
 168extern int nr_threads;
 169DECLARE_PER_CPU(unsigned long, process_counts);
 170extern int nr_processes(void);
 171extern unsigned long nr_running(void);
 172extern bool single_task_running(void);
 173extern unsigned long nr_iowait(void);
 174extern unsigned long nr_iowait_cpu(int cpu);
 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
 176
 177extern void calc_global_load(unsigned long ticks);
 178
 179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 180extern void cpu_load_update_nohz_start(void);
 181extern void cpu_load_update_nohz_stop(void);
 182#else
 183static inline void cpu_load_update_nohz_start(void) { }
 184static inline void cpu_load_update_nohz_stop(void) { }
 185#endif
 186
 187extern void dump_cpu_task(int cpu);
 188
 189struct seq_file;
 190struct cfs_rq;
 191struct task_group;
 192#ifdef CONFIG_SCHED_DEBUG
 193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 194extern void proc_sched_set_task(struct task_struct *p);
 195#endif
 196
 197/*
 198 * Task state bitmask. NOTE! These bits are also
 199 * encoded in fs/proc/array.c: get_task_state().
 200 *
 201 * We have two separate sets of flags: task->state
 202 * is about runnability, while task->exit_state are
 203 * about the task exiting. Confusing, but this way
 204 * modifying one set can't modify the other one by
 205 * mistake.
 206 */
 207#define TASK_RUNNING            0
 208#define TASK_INTERRUPTIBLE      1
 209#define TASK_UNINTERRUPTIBLE    2
 210#define __TASK_STOPPED          4
 211#define __TASK_TRACED           8
 212/* in tsk->exit_state */
 213#define EXIT_DEAD               16
 214#define EXIT_ZOMBIE             32
 215#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
 216/* in tsk->state again */
 217#define TASK_DEAD               64
 218#define TASK_WAKEKILL           128
 219#define TASK_WAKING             256
 220#define TASK_PARKED             512
 221#define TASK_NOLOAD             1024
 222#define TASK_NEW                2048
 223#define TASK_STATE_MAX          4096
 224
 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
 226
 227extern char ___assert_task_state[1 - 2*!!(
 228                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 229
 230/* Convenience macros for the sake of set_task_state */
 231#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 232#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 233#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 234
 235#define TASK_IDLE               (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 236
 237/* Convenience macros for the sake of wake_up */
 238#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 239#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 240
 241/* get_task_state() */
 242#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 243                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 244                                 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
 245
 246#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 247#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 248#define task_is_stopped_or_traced(task) \
 249                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 250#define task_contributes_to_load(task)  \
 251                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 252                                 (task->flags & PF_FROZEN) == 0 && \
 253                                 (task->state & TASK_NOLOAD) == 0)
 254
 255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 256
 257#define __set_task_state(tsk, state_value)                      \
 258        do {                                                    \
 259                (tsk)->task_state_change = _THIS_IP_;           \
 260                (tsk)->state = (state_value);                   \
 261        } while (0)
 262#define set_task_state(tsk, state_value)                        \
 263        do {                                                    \
 264                (tsk)->task_state_change = _THIS_IP_;           \
 265                smp_store_mb((tsk)->state, (state_value));              \
 266        } while (0)
 267
 268/*
 269 * set_current_state() includes a barrier so that the write of current->state
 270 * is correctly serialised wrt the caller's subsequent test of whether to
 271 * actually sleep:
 272 *
 273 *      set_current_state(TASK_UNINTERRUPTIBLE);
 274 *      if (do_i_need_to_sleep())
 275 *              schedule();
 276 *
 277 * If the caller does not need such serialisation then use __set_current_state()
 278 */
 279#define __set_current_state(state_value)                        \
 280        do {                                                    \
 281                current->task_state_change = _THIS_IP_;         \
 282                current->state = (state_value);                 \
 283        } while (0)
 284#define set_current_state(state_value)                          \
 285        do {                                                    \
 286                current->task_state_change = _THIS_IP_;         \
 287                smp_store_mb(current->state, (state_value));            \
 288        } while (0)
 289
 290#else
 291
 292#define __set_task_state(tsk, state_value)              \
 293        do { (tsk)->state = (state_value); } while (0)
 294#define set_task_state(tsk, state_value)                \
 295        smp_store_mb((tsk)->state, (state_value))
 296
 297/*
 298 * set_current_state() includes a barrier so that the write of current->state
 299 * is correctly serialised wrt the caller's subsequent test of whether to
 300 * actually sleep:
 301 *
 302 *      set_current_state(TASK_UNINTERRUPTIBLE);
 303 *      if (do_i_need_to_sleep())
 304 *              schedule();
 305 *
 306 * If the caller does not need such serialisation then use __set_current_state()
 307 */
 308#define __set_current_state(state_value)                \
 309        do { current->state = (state_value); } while (0)
 310#define set_current_state(state_value)                  \
 311        smp_store_mb(current->state, (state_value))
 312
 313#endif
 314
 315/* Task command name length */
 316#define TASK_COMM_LEN 16
 317
 318#include <linux/spinlock.h>
 319
 320/*
 321 * This serializes "schedule()" and also protects
 322 * the run-queue from deletions/modifications (but
 323 * _adding_ to the beginning of the run-queue has
 324 * a separate lock).
 325 */
 326extern rwlock_t tasklist_lock;
 327extern spinlock_t mmlist_lock;
 328
 329struct task_struct;
 330
 331#ifdef CONFIG_PROVE_RCU
 332extern int lockdep_tasklist_lock_is_held(void);
 333#endif /* #ifdef CONFIG_PROVE_RCU */
 334
 335extern void sched_init(void);
 336extern void sched_init_smp(void);
 337extern asmlinkage void schedule_tail(struct task_struct *prev);
 338extern void init_idle(struct task_struct *idle, int cpu);
 339extern void init_idle_bootup_task(struct task_struct *idle);
 340
 341extern cpumask_var_t cpu_isolated_map;
 342
 343extern int runqueue_is_locked(int cpu);
 344
 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 346extern void nohz_balance_enter_idle(int cpu);
 347extern void set_cpu_sd_state_idle(void);
 348extern int get_nohz_timer_target(void);
 349#else
 350static inline void nohz_balance_enter_idle(int cpu) { }
 351static inline void set_cpu_sd_state_idle(void) { }
 352#endif
 353
 354/*
 355 * Only dump TASK_* tasks. (0 for all tasks)
 356 */
 357extern void show_state_filter(unsigned long state_filter);
 358
 359static inline void show_state(void)
 360{
 361        show_state_filter(0);
 362}
 363
 364extern void show_regs(struct pt_regs *);
 365
 366/*
 367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 368 * task), SP is the stack pointer of the first frame that should be shown in the back
 369 * trace (or NULL if the entire call-chain of the task should be shown).
 370 */
 371extern void show_stack(struct task_struct *task, unsigned long *sp);
 372
 373extern void cpu_init (void);
 374extern void trap_init(void);
 375extern void update_process_times(int user);
 376extern void scheduler_tick(void);
 377extern int sched_cpu_starting(unsigned int cpu);
 378extern int sched_cpu_activate(unsigned int cpu);
 379extern int sched_cpu_deactivate(unsigned int cpu);
 380
 381#ifdef CONFIG_HOTPLUG_CPU
 382extern int sched_cpu_dying(unsigned int cpu);
 383#else
 384# define sched_cpu_dying        NULL
 385#endif
 386
 387extern void sched_show_task(struct task_struct *p);
 388
 389#ifdef CONFIG_LOCKUP_DETECTOR
 390extern void touch_softlockup_watchdog_sched(void);
 391extern void touch_softlockup_watchdog(void);
 392extern void touch_softlockup_watchdog_sync(void);
 393extern void touch_all_softlockup_watchdogs(void);
 394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 395                                  void __user *buffer,
 396                                  size_t *lenp, loff_t *ppos);
 397extern unsigned int  softlockup_panic;
 398extern unsigned int  hardlockup_panic;
 399void lockup_detector_init(void);
 400#else
 401static inline void touch_softlockup_watchdog_sched(void)
 402{
 403}
 404static inline void touch_softlockup_watchdog(void)
 405{
 406}
 407static inline void touch_softlockup_watchdog_sync(void)
 408{
 409}
 410static inline void touch_all_softlockup_watchdogs(void)
 411{
 412}
 413static inline void lockup_detector_init(void)
 414{
 415}
 416#endif
 417
 418#ifdef CONFIG_DETECT_HUNG_TASK
 419void reset_hung_task_detector(void);
 420#else
 421static inline void reset_hung_task_detector(void)
 422{
 423}
 424#endif
 425
 426/* Attach to any functions which should be ignored in wchan output. */
 427#define __sched         __attribute__((__section__(".sched.text")))
 428
 429/* Linker adds these: start and end of __sched functions */
 430extern char __sched_text_start[], __sched_text_end[];
 431
 432/* Is this address in the __sched functions? */
 433extern int in_sched_functions(unsigned long addr);
 434
 435#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 436extern signed long schedule_timeout(signed long timeout);
 437extern signed long schedule_timeout_interruptible(signed long timeout);
 438extern signed long schedule_timeout_killable(signed long timeout);
 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
 440extern signed long schedule_timeout_idle(signed long timeout);
 441asmlinkage void schedule(void);
 442extern void schedule_preempt_disabled(void);
 443
 444extern long io_schedule_timeout(long timeout);
 445
 446static inline void io_schedule(void)
 447{
 448        io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
 449}
 450
 451void __noreturn do_task_dead(void);
 452
 453struct nsproxy;
 454struct user_namespace;
 455
 456#ifdef CONFIG_MMU
 457extern void arch_pick_mmap_layout(struct mm_struct *mm);
 458extern unsigned long
 459arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 460                       unsigned long, unsigned long);
 461extern unsigned long
 462arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 463                          unsigned long len, unsigned long pgoff,
 464                          unsigned long flags);
 465#else
 466static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 467#endif
 468
 469#define SUID_DUMP_DISABLE       0       /* No setuid dumping */
 470#define SUID_DUMP_USER          1       /* Dump as user of process */
 471#define SUID_DUMP_ROOT          2       /* Dump as root */
 472
 473/* mm flags */
 474
 475/* for SUID_DUMP_* above */
 476#define MMF_DUMPABLE_BITS 2
 477#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 478
 479extern void set_dumpable(struct mm_struct *mm, int value);
 480/*
 481 * This returns the actual value of the suid_dumpable flag. For things
 482 * that are using this for checking for privilege transitions, it must
 483 * test against SUID_DUMP_USER rather than treating it as a boolean
 484 * value.
 485 */
 486static inline int __get_dumpable(unsigned long mm_flags)
 487{
 488        return mm_flags & MMF_DUMPABLE_MASK;
 489}
 490
 491static inline int get_dumpable(struct mm_struct *mm)
 492{
 493        return __get_dumpable(mm->flags);
 494}
 495
 496/* coredump filter bits */
 497#define MMF_DUMP_ANON_PRIVATE   2
 498#define MMF_DUMP_ANON_SHARED    3
 499#define MMF_DUMP_MAPPED_PRIVATE 4
 500#define MMF_DUMP_MAPPED_SHARED  5
 501#define MMF_DUMP_ELF_HEADERS    6
 502#define MMF_DUMP_HUGETLB_PRIVATE 7
 503#define MMF_DUMP_HUGETLB_SHARED  8
 504#define MMF_DUMP_DAX_PRIVATE    9
 505#define MMF_DUMP_DAX_SHARED     10
 506
 507#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 508#define MMF_DUMP_FILTER_BITS    9
 509#define MMF_DUMP_FILTER_MASK \
 510        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 511#define MMF_DUMP_FILTER_DEFAULT \
 512        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 513         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 514
 515#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 516# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 517#else
 518# define MMF_DUMP_MASK_DEFAULT_ELF      0
 519#endif
 520                                        /* leave room for more dump flags */
 521#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 522#define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
 523#define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
 524
 525#define MMF_HAS_UPROBES         19      /* has uprobes */
 526#define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
 527#define MMF_OOM_SKIP            21      /* mm is of no interest for the OOM killer */
 528#define MMF_UNSTABLE            22      /* mm is unstable for copy_from_user */
 529#define MMF_HUGE_ZERO_PAGE      23      /* mm has ever used the global huge zero page */
 530
 531#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 532
 533struct sighand_struct {
 534        atomic_t                count;
 535        struct k_sigaction      action[_NSIG];
 536        spinlock_t              siglock;
 537        wait_queue_head_t       signalfd_wqh;
 538};
 539
 540struct pacct_struct {
 541        int                     ac_flag;
 542        long                    ac_exitcode;
 543        unsigned long           ac_mem;
 544        cputime_t               ac_utime, ac_stime;
 545        unsigned long           ac_minflt, ac_majflt;
 546};
 547
 548struct cpu_itimer {
 549        cputime_t expires;
 550        cputime_t incr;
 551        u32 error;
 552        u32 incr_error;
 553};
 554
 555/**
 556 * struct prev_cputime - snaphsot of system and user cputime
 557 * @utime: time spent in user mode
 558 * @stime: time spent in system mode
 559 * @lock: protects the above two fields
 560 *
 561 * Stores previous user/system time values such that we can guarantee
 562 * monotonicity.
 563 */
 564struct prev_cputime {
 565#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 566        cputime_t utime;
 567        cputime_t stime;
 568        raw_spinlock_t lock;
 569#endif
 570};
 571
 572static inline void prev_cputime_init(struct prev_cputime *prev)
 573{
 574#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 575        prev->utime = prev->stime = 0;
 576        raw_spin_lock_init(&prev->lock);
 577#endif
 578}
 579
 580/**
 581 * struct task_cputime - collected CPU time counts
 582 * @utime:              time spent in user mode, in &cputime_t units
 583 * @stime:              time spent in kernel mode, in &cputime_t units
 584 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 585 *
 586 * This structure groups together three kinds of CPU time that are tracked for
 587 * threads and thread groups.  Most things considering CPU time want to group
 588 * these counts together and treat all three of them in parallel.
 589 */
 590struct task_cputime {
 591        cputime_t utime;
 592        cputime_t stime;
 593        unsigned long long sum_exec_runtime;
 594};
 595
 596/* Alternate field names when used to cache expirations. */
 597#define virt_exp        utime
 598#define prof_exp        stime
 599#define sched_exp       sum_exec_runtime
 600
 601#define INIT_CPUTIME    \
 602        (struct task_cputime) {                                 \
 603                .utime = 0,                                     \
 604                .stime = 0,                                     \
 605                .sum_exec_runtime = 0,                          \
 606        }
 607
 608/*
 609 * This is the atomic variant of task_cputime, which can be used for
 610 * storing and updating task_cputime statistics without locking.
 611 */
 612struct task_cputime_atomic {
 613        atomic64_t utime;
 614        atomic64_t stime;
 615        atomic64_t sum_exec_runtime;
 616};
 617
 618#define INIT_CPUTIME_ATOMIC \
 619        (struct task_cputime_atomic) {                          \
 620                .utime = ATOMIC64_INIT(0),                      \
 621                .stime = ATOMIC64_INIT(0),                      \
 622                .sum_exec_runtime = ATOMIC64_INIT(0),           \
 623        }
 624
 625#define PREEMPT_DISABLED        (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 626
 627/*
 628 * Disable preemption until the scheduler is running -- use an unconditional
 629 * value so that it also works on !PREEMPT_COUNT kernels.
 630 *
 631 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
 632 */
 633#define INIT_PREEMPT_COUNT      PREEMPT_OFFSET
 634
 635/*
 636 * Initial preempt_count value; reflects the preempt_count schedule invariant
 637 * which states that during context switches:
 638 *
 639 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
 640 *
 641 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
 642 * Note: See finish_task_switch().
 643 */
 644#define FORK_PREEMPT_COUNT      (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 645
 646/**
 647 * struct thread_group_cputimer - thread group interval timer counts
 648 * @cputime_atomic:     atomic thread group interval timers.
 649 * @running:            true when there are timers running and
 650 *                      @cputime_atomic receives updates.
 651 * @checking_timer:     true when a thread in the group is in the
 652 *                      process of checking for thread group timers.
 653 *
 654 * This structure contains the version of task_cputime, above, that is
 655 * used for thread group CPU timer calculations.
 656 */
 657struct thread_group_cputimer {
 658        struct task_cputime_atomic cputime_atomic;
 659        bool running;
 660        bool checking_timer;
 661};
 662
 663#include <linux/rwsem.h>
 664struct autogroup;
 665
 666/*
 667 * NOTE! "signal_struct" does not have its own
 668 * locking, because a shared signal_struct always
 669 * implies a shared sighand_struct, so locking
 670 * sighand_struct is always a proper superset of
 671 * the locking of signal_struct.
 672 */
 673struct signal_struct {
 674        atomic_t                sigcnt;
 675        atomic_t                live;
 676        int                     nr_threads;
 677        struct list_head        thread_head;
 678
 679        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 680
 681        /* current thread group signal load-balancing target: */
 682        struct task_struct      *curr_target;
 683
 684        /* shared signal handling: */
 685        struct sigpending       shared_pending;
 686
 687        /* thread group exit support */
 688        int                     group_exit_code;
 689        /* overloaded:
 690         * - notify group_exit_task when ->count is equal to notify_count
 691         * - everyone except group_exit_task is stopped during signal delivery
 692         *   of fatal signals, group_exit_task processes the signal.
 693         */
 694        int                     notify_count;
 695        struct task_struct      *group_exit_task;
 696
 697        /* thread group stop support, overloads group_exit_code too */
 698        int                     group_stop_count;
 699        unsigned int            flags; /* see SIGNAL_* flags below */
 700
 701        /*
 702         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 703         * manager, to re-parent orphan (double-forking) child processes
 704         * to this process instead of 'init'. The service manager is
 705         * able to receive SIGCHLD signals and is able to investigate
 706         * the process until it calls wait(). All children of this
 707         * process will inherit a flag if they should look for a
 708         * child_subreaper process at exit.
 709         */
 710        unsigned int            is_child_subreaper:1;
 711        unsigned int            has_child_subreaper:1;
 712
 713        /* POSIX.1b Interval Timers */
 714        int                     posix_timer_id;
 715        struct list_head        posix_timers;
 716
 717        /* ITIMER_REAL timer for the process */
 718        struct hrtimer real_timer;
 719        struct pid *leader_pid;
 720        ktime_t it_real_incr;
 721
 722        /*
 723         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 724         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 725         * values are defined to 0 and 1 respectively
 726         */
 727        struct cpu_itimer it[2];
 728
 729        /*
 730         * Thread group totals for process CPU timers.
 731         * See thread_group_cputimer(), et al, for details.
 732         */
 733        struct thread_group_cputimer cputimer;
 734
 735        /* Earliest-expiration cache. */
 736        struct task_cputime cputime_expires;
 737
 738#ifdef CONFIG_NO_HZ_FULL
 739        atomic_t tick_dep_mask;
 740#endif
 741
 742        struct list_head cpu_timers[3];
 743
 744        struct pid *tty_old_pgrp;
 745
 746        /* boolean value for session group leader */
 747        int leader;
 748
 749        struct tty_struct *tty; /* NULL if no tty */
 750
 751#ifdef CONFIG_SCHED_AUTOGROUP
 752        struct autogroup *autogroup;
 753#endif
 754        /*
 755         * Cumulative resource counters for dead threads in the group,
 756         * and for reaped dead child processes forked by this group.
 757         * Live threads maintain their own counters and add to these
 758         * in __exit_signal, except for the group leader.
 759         */
 760        seqlock_t stats_lock;
 761        cputime_t utime, stime, cutime, cstime;
 762        cputime_t gtime;
 763        cputime_t cgtime;
 764        struct prev_cputime prev_cputime;
 765        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 766        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 767        unsigned long inblock, oublock, cinblock, coublock;
 768        unsigned long maxrss, cmaxrss;
 769        struct task_io_accounting ioac;
 770
 771        /*
 772         * Cumulative ns of schedule CPU time fo dead threads in the
 773         * group, not including a zombie group leader, (This only differs
 774         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 775         * other than jiffies.)
 776         */
 777        unsigned long long sum_sched_runtime;
 778
 779        /*
 780         * We don't bother to synchronize most readers of this at all,
 781         * because there is no reader checking a limit that actually needs
 782         * to get both rlim_cur and rlim_max atomically, and either one
 783         * alone is a single word that can safely be read normally.
 784         * getrlimit/setrlimit use task_lock(current->group_leader) to
 785         * protect this instead of the siglock, because they really
 786         * have no need to disable irqs.
 787         */
 788        struct rlimit rlim[RLIM_NLIMITS];
 789
 790#ifdef CONFIG_BSD_PROCESS_ACCT
 791        struct pacct_struct pacct;      /* per-process accounting information */
 792#endif
 793#ifdef CONFIG_TASKSTATS
 794        struct taskstats *stats;
 795#endif
 796#ifdef CONFIG_AUDIT
 797        unsigned audit_tty;
 798        struct tty_audit_buf *tty_audit_buf;
 799#endif
 800
 801        /*
 802         * Thread is the potential origin of an oom condition; kill first on
 803         * oom
 804         */
 805        bool oom_flag_origin;
 806        short oom_score_adj;            /* OOM kill score adjustment */
 807        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 808                                         * Only settable by CAP_SYS_RESOURCE. */
 809        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 810                                         * killed by the oom killer */
 811
 812        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 813                                         * credential calculations
 814                                         * (notably. ptrace) */
 815};
 816
 817/*
 818 * Bits in flags field of signal_struct.
 819 */
 820#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 821#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 822#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 823#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 824/*
 825 * Pending notifications to parent.
 826 */
 827#define SIGNAL_CLD_STOPPED      0x00000010
 828#define SIGNAL_CLD_CONTINUED    0x00000020
 829#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 830
 831#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 832
 833/* If true, all threads except ->group_exit_task have pending SIGKILL */
 834static inline int signal_group_exit(const struct signal_struct *sig)
 835{
 836        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 837                (sig->group_exit_task != NULL);
 838}
 839
 840/*
 841 * Some day this will be a full-fledged user tracking system..
 842 */
 843struct user_struct {
 844        atomic_t __count;       /* reference count */
 845        atomic_t processes;     /* How many processes does this user have? */
 846        atomic_t sigpending;    /* How many pending signals does this user have? */
 847#ifdef CONFIG_INOTIFY_USER
 848        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 849        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 850#endif
 851#ifdef CONFIG_FANOTIFY
 852        atomic_t fanotify_listeners;
 853#endif
 854#ifdef CONFIG_EPOLL
 855        atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 856#endif
 857#ifdef CONFIG_POSIX_MQUEUE
 858        /* protected by mq_lock */
 859        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 860#endif
 861        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 862        unsigned long unix_inflight;    /* How many files in flight in unix sockets */
 863        atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
 864
 865#ifdef CONFIG_KEYS
 866        struct key *uid_keyring;        /* UID specific keyring */
 867        struct key *session_keyring;    /* UID's default session keyring */
 868#endif
 869
 870        /* Hash table maintenance information */
 871        struct hlist_node uidhash_node;
 872        kuid_t uid;
 873
 874#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
 875        atomic_long_t locked_vm;
 876#endif
 877};
 878
 879extern int uids_sysfs_init(void);
 880
 881extern struct user_struct *find_user(kuid_t);
 882
 883extern struct user_struct root_user;
 884#define INIT_USER (&root_user)
 885
 886
 887struct backing_dev_info;
 888struct reclaim_state;
 889
 890#ifdef CONFIG_SCHED_INFO
 891struct sched_info {
 892        /* cumulative counters */
 893        unsigned long pcount;         /* # of times run on this cpu */
 894        unsigned long long run_delay; /* time spent waiting on a runqueue */
 895
 896        /* timestamps */
 897        unsigned long long last_arrival,/* when we last ran on a cpu */
 898                           last_queued; /* when we were last queued to run */
 899};
 900#endif /* CONFIG_SCHED_INFO */
 901
 902#ifdef CONFIG_TASK_DELAY_ACCT
 903struct task_delay_info {
 904        spinlock_t      lock;
 905        unsigned int    flags;  /* Private per-task flags */
 906
 907        /* For each stat XXX, add following, aligned appropriately
 908         *
 909         * struct timespec XXX_start, XXX_end;
 910         * u64 XXX_delay;
 911         * u32 XXX_count;
 912         *
 913         * Atomicity of updates to XXX_delay, XXX_count protected by
 914         * single lock above (split into XXX_lock if contention is an issue).
 915         */
 916
 917        /*
 918         * XXX_count is incremented on every XXX operation, the delay
 919         * associated with the operation is added to XXX_delay.
 920         * XXX_delay contains the accumulated delay time in nanoseconds.
 921         */
 922        u64 blkio_start;        /* Shared by blkio, swapin */
 923        u64 blkio_delay;        /* wait for sync block io completion */
 924        u64 swapin_delay;       /* wait for swapin block io completion */
 925        u32 blkio_count;        /* total count of the number of sync block */
 926                                /* io operations performed */
 927        u32 swapin_count;       /* total count of the number of swapin block */
 928                                /* io operations performed */
 929
 930        u64 freepages_start;
 931        u64 freepages_delay;    /* wait for memory reclaim */
 932        u32 freepages_count;    /* total count of memory reclaim */
 933};
 934#endif  /* CONFIG_TASK_DELAY_ACCT */
 935
 936static inline int sched_info_on(void)
 937{
 938#ifdef CONFIG_SCHEDSTATS
 939        return 1;
 940#elif defined(CONFIG_TASK_DELAY_ACCT)
 941        extern int delayacct_on;
 942        return delayacct_on;
 943#else
 944        return 0;
 945#endif
 946}
 947
 948#ifdef CONFIG_SCHEDSTATS
 949void force_schedstat_enabled(void);
 950#endif
 951
 952enum cpu_idle_type {
 953        CPU_IDLE,
 954        CPU_NOT_IDLE,
 955        CPU_NEWLY_IDLE,
 956        CPU_MAX_IDLE_TYPES
 957};
 958
 959/*
 960 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 961 * has a few: load, load_avg, util_avg, freq, and capacity.
 962 *
 963 * We define a basic fixed point arithmetic range, and then formalize
 964 * all these metrics based on that basic range.
 965 */
 966# define SCHED_FIXEDPOINT_SHIFT 10
 967# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
 968
 969/*
 970 * Increase resolution of cpu_capacity calculations
 971 */
 972#define SCHED_CAPACITY_SHIFT    SCHED_FIXEDPOINT_SHIFT
 973#define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
 974
 975/*
 976 * Wake-queues are lists of tasks with a pending wakeup, whose
 977 * callers have already marked the task as woken internally,
 978 * and can thus carry on. A common use case is being able to
 979 * do the wakeups once the corresponding user lock as been
 980 * released.
 981 *
 982 * We hold reference to each task in the list across the wakeup,
 983 * thus guaranteeing that the memory is still valid by the time
 984 * the actual wakeups are performed in wake_up_q().
 985 *
 986 * One per task suffices, because there's never a need for a task to be
 987 * in two wake queues simultaneously; it is forbidden to abandon a task
 988 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
 989 * already in a wake queue, the wakeup will happen soon and the second
 990 * waker can just skip it.
 991 *
 992 * The WAKE_Q macro declares and initializes the list head.
 993 * wake_up_q() does NOT reinitialize the list; it's expected to be
 994 * called near the end of a function, where the fact that the queue is
 995 * not used again will be easy to see by inspection.
 996 *
 997 * Note that this can cause spurious wakeups. schedule() callers
 998 * must ensure the call is done inside a loop, confirming that the
 999 * wakeup condition has in fact occurred.
1000 */
1001struct wake_q_node {
1002        struct wake_q_node *next;
1003};
1004
1005struct wake_q_head {
1006        struct wake_q_node *first;
1007        struct wake_q_node **lastp;
1008};
1009
1010#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1011
1012#define WAKE_Q(name)                                    \
1013        struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1014
1015extern void wake_q_add(struct wake_q_head *head,
1016                       struct task_struct *task);
1017extern void wake_up_q(struct wake_q_head *head);
1018
1019/*
1020 * sched-domains (multiprocessor balancing) declarations:
1021 */
1022#ifdef CONFIG_SMP
1023#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
1024#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
1025#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
1026#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
1027#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
1028#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
1029#define SD_ASYM_CPUCAPACITY     0x0040  /* Groups have different max cpu capacities */
1030#define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu capacity */
1031#define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
1032#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
1033#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
1034#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
1035#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
1036#define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
1037#define SD_NUMA                 0x4000  /* cross-node balancing */
1038
1039#ifdef CONFIG_SCHED_SMT
1040static inline int cpu_smt_flags(void)
1041{
1042        return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1043}
1044#endif
1045
1046#ifdef CONFIG_SCHED_MC
1047static inline int cpu_core_flags(void)
1048{
1049        return SD_SHARE_PKG_RESOURCES;
1050}
1051#endif
1052
1053#ifdef CONFIG_NUMA
1054static inline int cpu_numa_flags(void)
1055{
1056        return SD_NUMA;
1057}
1058#endif
1059
1060struct sched_domain_attr {
1061        int relax_domain_level;
1062};
1063
1064#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
1065        .relax_domain_level = -1,                       \
1066}
1067
1068extern int sched_domain_level_max;
1069
1070struct sched_group;
1071
1072struct sched_domain_shared {
1073        atomic_t        ref;
1074        atomic_t        nr_busy_cpus;
1075        int             has_idle_cores;
1076};
1077
1078struct sched_domain {
1079        /* These fields must be setup */
1080        struct sched_domain *parent;    /* top domain must be null terminated */
1081        struct sched_domain *child;     /* bottom domain must be null terminated */
1082        struct sched_group *groups;     /* the balancing groups of the domain */
1083        unsigned long min_interval;     /* Minimum balance interval ms */
1084        unsigned long max_interval;     /* Maximum balance interval ms */
1085        unsigned int busy_factor;       /* less balancing by factor if busy */
1086        unsigned int imbalance_pct;     /* No balance until over watermark */
1087        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
1088        unsigned int busy_idx;
1089        unsigned int idle_idx;
1090        unsigned int newidle_idx;
1091        unsigned int wake_idx;
1092        unsigned int forkexec_idx;
1093        unsigned int smt_gain;
1094
1095        int nohz_idle;                  /* NOHZ IDLE status */
1096        int flags;                      /* See SD_* */
1097        int level;
1098
1099        /* Runtime fields. */
1100        unsigned long last_balance;     /* init to jiffies. units in jiffies */
1101        unsigned int balance_interval;  /* initialise to 1. units in ms. */
1102        unsigned int nr_balance_failed; /* initialise to 0 */
1103
1104        /* idle_balance() stats */
1105        u64 max_newidle_lb_cost;
1106        unsigned long next_decay_max_lb_cost;
1107
1108        u64 avg_scan_cost;              /* select_idle_sibling */
1109
1110#ifdef CONFIG_SCHEDSTATS
1111        /* load_balance() stats */
1112        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1113        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1114        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1115        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1116        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1117        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1118        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1119        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1120
1121        /* Active load balancing */
1122        unsigned int alb_count;
1123        unsigned int alb_failed;
1124        unsigned int alb_pushed;
1125
1126        /* SD_BALANCE_EXEC stats */
1127        unsigned int sbe_count;
1128        unsigned int sbe_balanced;
1129        unsigned int sbe_pushed;
1130
1131        /* SD_BALANCE_FORK stats */
1132        unsigned int sbf_count;
1133        unsigned int sbf_balanced;
1134        unsigned int sbf_pushed;
1135
1136        /* try_to_wake_up() stats */
1137        unsigned int ttwu_wake_remote;
1138        unsigned int ttwu_move_affine;
1139        unsigned int ttwu_move_balance;
1140#endif
1141#ifdef CONFIG_SCHED_DEBUG
1142        char *name;
1143#endif
1144        union {
1145                void *private;          /* used during construction */
1146                struct rcu_head rcu;    /* used during destruction */
1147        };
1148        struct sched_domain_shared *shared;
1149
1150        unsigned int span_weight;
1151        /*
1152         * Span of all CPUs in this domain.
1153         *
1154         * NOTE: this field is variable length. (Allocated dynamically
1155         * by attaching extra space to the end of the structure,
1156         * depending on how many CPUs the kernel has booted up with)
1157         */
1158        unsigned long span[0];
1159};
1160
1161static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1162{
1163        return to_cpumask(sd->span);
1164}
1165
1166extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1167                                    struct sched_domain_attr *dattr_new);
1168
1169/* Allocate an array of sched domains, for partition_sched_domains(). */
1170cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1171void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1172
1173bool cpus_share_cache(int this_cpu, int that_cpu);
1174
1175typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1176typedef int (*sched_domain_flags_f)(void);
1177
1178#define SDTL_OVERLAP    0x01
1179
1180struct sd_data {
1181        struct sched_domain **__percpu sd;
1182        struct sched_domain_shared **__percpu sds;
1183        struct sched_group **__percpu sg;
1184        struct sched_group_capacity **__percpu sgc;
1185};
1186
1187struct sched_domain_topology_level {
1188        sched_domain_mask_f mask;
1189        sched_domain_flags_f sd_flags;
1190        int                 flags;
1191        int                 numa_level;
1192        struct sd_data      data;
1193#ifdef CONFIG_SCHED_DEBUG
1194        char                *name;
1195#endif
1196};
1197
1198extern void set_sched_topology(struct sched_domain_topology_level *tl);
1199extern void wake_up_if_idle(int cpu);
1200
1201#ifdef CONFIG_SCHED_DEBUG
1202# define SD_INIT_NAME(type)             .name = #type
1203#else
1204# define SD_INIT_NAME(type)
1205#endif
1206
1207#else /* CONFIG_SMP */
1208
1209struct sched_domain_attr;
1210
1211static inline void
1212partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1213                        struct sched_domain_attr *dattr_new)
1214{
1215}
1216
1217static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1218{
1219        return true;
1220}
1221
1222#endif  /* !CONFIG_SMP */
1223
1224
1225struct io_context;                      /* See blkdev.h */
1226
1227
1228#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1229extern void prefetch_stack(struct task_struct *t);
1230#else
1231static inline void prefetch_stack(struct task_struct *t) { }
1232#endif
1233
1234struct audit_context;           /* See audit.c */
1235struct mempolicy;
1236struct pipe_inode_info;
1237struct uts_namespace;
1238
1239struct load_weight {
1240        unsigned long weight;
1241        u32 inv_weight;
1242};
1243
1244/*
1245 * The load_avg/util_avg accumulates an infinite geometric series
1246 * (see __update_load_avg() in kernel/sched/fair.c).
1247 *
1248 * [load_avg definition]
1249 *
1250 *   load_avg = runnable% * scale_load_down(load)
1251 *
1252 * where runnable% is the time ratio that a sched_entity is runnable.
1253 * For cfs_rq, it is the aggregated load_avg of all runnable and
1254 * blocked sched_entities.
1255 *
1256 * load_avg may also take frequency scaling into account:
1257 *
1258 *   load_avg = runnable% * scale_load_down(load) * freq%
1259 *
1260 * where freq% is the CPU frequency normalized to the highest frequency.
1261 *
1262 * [util_avg definition]
1263 *
1264 *   util_avg = running% * SCHED_CAPACITY_SCALE
1265 *
1266 * where running% is the time ratio that a sched_entity is running on
1267 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1268 * and blocked sched_entities.
1269 *
1270 * util_avg may also factor frequency scaling and CPU capacity scaling:
1271 *
1272 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1273 *
1274 * where freq% is the same as above, and capacity% is the CPU capacity
1275 * normalized to the greatest capacity (due to uarch differences, etc).
1276 *
1277 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1278 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1279 * we therefore scale them to as large a range as necessary. This is for
1280 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1281 *
1282 * [Overflow issue]
1283 *
1284 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1285 * with the highest load (=88761), always runnable on a single cfs_rq,
1286 * and should not overflow as the number already hits PID_MAX_LIMIT.
1287 *
1288 * For all other cases (including 32-bit kernels), struct load_weight's
1289 * weight will overflow first before we do, because:
1290 *
1291 *    Max(load_avg) <= Max(load.weight)
1292 *
1293 * Then it is the load_weight's responsibility to consider overflow
1294 * issues.
1295 */
1296struct sched_avg {
1297        u64 last_update_time, load_sum;
1298        u32 util_sum, period_contrib;
1299        unsigned long load_avg, util_avg;
1300};
1301
1302#ifdef CONFIG_SCHEDSTATS
1303struct sched_statistics {
1304        u64                     wait_start;
1305        u64                     wait_max;
1306        u64                     wait_count;
1307        u64                     wait_sum;
1308        u64                     iowait_count;
1309        u64                     iowait_sum;
1310
1311        u64                     sleep_start;
1312        u64                     sleep_max;
1313        s64                     sum_sleep_runtime;
1314
1315        u64                     block_start;
1316        u64                     block_max;
1317        u64                     exec_max;
1318        u64                     slice_max;
1319
1320        u64                     nr_migrations_cold;
1321        u64                     nr_failed_migrations_affine;
1322        u64                     nr_failed_migrations_running;
1323        u64                     nr_failed_migrations_hot;
1324        u64                     nr_forced_migrations;
1325
1326        u64                     nr_wakeups;
1327        u64                     nr_wakeups_sync;
1328        u64                     nr_wakeups_migrate;
1329        u64                     nr_wakeups_local;
1330        u64                     nr_wakeups_remote;
1331        u64                     nr_wakeups_affine;
1332        u64                     nr_wakeups_affine_attempts;
1333        u64                     nr_wakeups_passive;
1334        u64                     nr_wakeups_idle;
1335};
1336#endif
1337
1338struct sched_entity {
1339        struct load_weight      load;           /* for load-balancing */
1340        struct rb_node          run_node;
1341        struct list_head        group_node;
1342        unsigned int            on_rq;
1343
1344        u64                     exec_start;
1345        u64                     sum_exec_runtime;
1346        u64                     vruntime;
1347        u64                     prev_sum_exec_runtime;
1348
1349        u64                     nr_migrations;
1350
1351#ifdef CONFIG_SCHEDSTATS
1352        struct sched_statistics statistics;
1353#endif
1354
1355#ifdef CONFIG_FAIR_GROUP_SCHED
1356        int                     depth;
1357        struct sched_entity     *parent;
1358        /* rq on which this entity is (to be) queued: */
1359        struct cfs_rq           *cfs_rq;
1360        /* rq "owned" by this entity/group: */
1361        struct cfs_rq           *my_q;
1362#endif
1363
1364#ifdef CONFIG_SMP
1365        /*
1366         * Per entity load average tracking.
1367         *
1368         * Put into separate cache line so it does not
1369         * collide with read-mostly values above.
1370         */
1371        struct sched_avg        avg ____cacheline_aligned_in_smp;
1372#endif
1373};
1374
1375struct sched_rt_entity {
1376        struct list_head run_list;
1377        unsigned long timeout;
1378        unsigned long watchdog_stamp;
1379        unsigned int time_slice;
1380        unsigned short on_rq;
1381        unsigned short on_list;
1382
1383        struct sched_rt_entity *back;
1384#ifdef CONFIG_RT_GROUP_SCHED
1385        struct sched_rt_entity  *parent;
1386        /* rq on which this entity is (to be) queued: */
1387        struct rt_rq            *rt_rq;
1388        /* rq "owned" by this entity/group: */
1389        struct rt_rq            *my_q;
1390#endif
1391};
1392
1393struct sched_dl_entity {
1394        struct rb_node  rb_node;
1395
1396        /*
1397         * Original scheduling parameters. Copied here from sched_attr
1398         * during sched_setattr(), they will remain the same until
1399         * the next sched_setattr().
1400         */
1401        u64 dl_runtime;         /* maximum runtime for each instance    */
1402        u64 dl_deadline;        /* relative deadline of each instance   */
1403        u64 dl_period;          /* separation of two instances (period) */
1404        u64 dl_bw;              /* dl_runtime / dl_deadline             */
1405
1406        /*
1407         * Actual scheduling parameters. Initialized with the values above,
1408         * they are continously updated during task execution. Note that
1409         * the remaining runtime could be < 0 in case we are in overrun.
1410         */
1411        s64 runtime;            /* remaining runtime for this instance  */
1412        u64 deadline;           /* absolute deadline for this instance  */
1413        unsigned int flags;     /* specifying the scheduler behaviour   */
1414
1415        /*
1416         * Some bool flags:
1417         *
1418         * @dl_throttled tells if we exhausted the runtime. If so, the
1419         * task has to wait for a replenishment to be performed at the
1420         * next firing of dl_timer.
1421         *
1422         * @dl_boosted tells if we are boosted due to DI. If so we are
1423         * outside bandwidth enforcement mechanism (but only until we
1424         * exit the critical section);
1425         *
1426         * @dl_yielded tells if task gave up the cpu before consuming
1427         * all its available runtime during the last job.
1428         */
1429        int dl_throttled, dl_boosted, dl_yielded;
1430
1431        /*
1432         * Bandwidth enforcement timer. Each -deadline task has its
1433         * own bandwidth to be enforced, thus we need one timer per task.
1434         */
1435        struct hrtimer dl_timer;
1436};
1437
1438union rcu_special {
1439        struct {
1440                u8 blocked;
1441                u8 need_qs;
1442                u8 exp_need_qs;
1443                u8 pad; /* Otherwise the compiler can store garbage here. */
1444        } b; /* Bits. */
1445        u32 s; /* Set of bits. */
1446};
1447struct rcu_node;
1448
1449enum perf_event_task_context {
1450        perf_invalid_context = -1,
1451        perf_hw_context = 0,
1452        perf_sw_context,
1453        perf_nr_task_contexts,
1454};
1455
1456/* Track pages that require TLB flushes */
1457struct tlbflush_unmap_batch {
1458        /*
1459         * Each bit set is a CPU that potentially has a TLB entry for one of
1460         * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1461         */
1462        struct cpumask cpumask;
1463
1464        /* True if any bit in cpumask is set */
1465        bool flush_required;
1466
1467        /*
1468         * If true then the PTE was dirty when unmapped. The entry must be
1469         * flushed before IO is initiated or a stale TLB entry potentially
1470         * allows an update without redirtying the page.
1471         */
1472        bool writable;
1473};
1474
1475struct task_struct {
1476#ifdef CONFIG_THREAD_INFO_IN_TASK
1477        /*
1478         * For reasons of header soup (see current_thread_info()), this
1479         * must be the first element of task_struct.
1480         */
1481        struct thread_info thread_info;
1482#endif
1483        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1484        void *stack;
1485        atomic_t usage;
1486        unsigned int flags;     /* per process flags, defined below */
1487        unsigned int ptrace;
1488
1489#ifdef CONFIG_SMP
1490        struct llist_node wake_entry;
1491        int on_cpu;
1492#ifdef CONFIG_THREAD_INFO_IN_TASK
1493        unsigned int cpu;       /* current CPU */
1494#endif
1495        unsigned int wakee_flips;
1496        unsigned long wakee_flip_decay_ts;
1497        struct task_struct *last_wakee;
1498
1499        int wake_cpu;
1500#endif
1501        int on_rq;
1502
1503        int prio, static_prio, normal_prio;
1504        unsigned int rt_priority;
1505        const struct sched_class *sched_class;
1506        struct sched_entity se;
1507        struct sched_rt_entity rt;
1508#ifdef CONFIG_CGROUP_SCHED
1509        struct task_group *sched_task_group;
1510#endif
1511        struct sched_dl_entity dl;
1512
1513#ifdef CONFIG_PREEMPT_NOTIFIERS
1514        /* list of struct preempt_notifier: */
1515        struct hlist_head preempt_notifiers;
1516#endif
1517
1518#ifdef CONFIG_BLK_DEV_IO_TRACE
1519        unsigned int btrace_seq;
1520#endif
1521
1522        unsigned int policy;
1523        int nr_cpus_allowed;
1524        cpumask_t cpus_allowed;
1525
1526#ifdef CONFIG_PREEMPT_RCU
1527        int rcu_read_lock_nesting;
1528        union rcu_special rcu_read_unlock_special;
1529        struct list_head rcu_node_entry;
1530        struct rcu_node *rcu_blocked_node;
1531#endif /* #ifdef CONFIG_PREEMPT_RCU */
1532#ifdef CONFIG_TASKS_RCU
1533        unsigned long rcu_tasks_nvcsw;
1534        bool rcu_tasks_holdout;
1535        struct list_head rcu_tasks_holdout_list;
1536        int rcu_tasks_idle_cpu;
1537#endif /* #ifdef CONFIG_TASKS_RCU */
1538
1539#ifdef CONFIG_SCHED_INFO
1540        struct sched_info sched_info;
1541#endif
1542
1543        struct list_head tasks;
1544#ifdef CONFIG_SMP
1545        struct plist_node pushable_tasks;
1546        struct rb_node pushable_dl_tasks;
1547#endif
1548
1549        struct mm_struct *mm, *active_mm;
1550        /* per-thread vma caching */
1551        u32 vmacache_seqnum;
1552        struct vm_area_struct *vmacache[VMACACHE_SIZE];
1553#if defined(SPLIT_RSS_COUNTING)
1554        struct task_rss_stat    rss_stat;
1555#endif
1556/* task state */
1557        int exit_state;
1558        int exit_code, exit_signal;
1559        int pdeath_signal;  /*  The signal sent when the parent dies  */
1560        unsigned long jobctl;   /* JOBCTL_*, siglock protected */
1561
1562        /* Used for emulating ABI behavior of previous Linux versions */
1563        unsigned int personality;
1564
1565        /* scheduler bits, serialized by scheduler locks */
1566        unsigned sched_reset_on_fork:1;
1567        unsigned sched_contributes_to_load:1;
1568        unsigned sched_migrated:1;
1569        unsigned sched_remote_wakeup:1;
1570        unsigned :0; /* force alignment to the next boundary */
1571
1572        /* unserialized, strictly 'current' */
1573        unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1574        unsigned in_iowait:1;
1575#if !defined(TIF_RESTORE_SIGMASK)
1576        unsigned restore_sigmask:1;
1577#endif
1578#ifdef CONFIG_MEMCG
1579        unsigned memcg_may_oom:1;
1580#ifndef CONFIG_SLOB
1581        unsigned memcg_kmem_skip_account:1;
1582#endif
1583#endif
1584#ifdef CONFIG_COMPAT_BRK
1585        unsigned brk_randomized:1;
1586#endif
1587
1588        unsigned long atomic_flags; /* Flags needing atomic access. */
1589
1590        struct restart_block restart_block;
1591
1592        pid_t pid;
1593        pid_t tgid;
1594
1595#ifdef CONFIG_CC_STACKPROTECTOR
1596        /* Canary value for the -fstack-protector gcc feature */
1597        unsigned long stack_canary;
1598#endif
1599        /*
1600         * pointers to (original) parent process, youngest child, younger sibling,
1601         * older sibling, respectively.  (p->father can be replaced with
1602         * p->real_parent->pid)
1603         */
1604        struct task_struct __rcu *real_parent; /* real parent process */
1605        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1606        /*
1607         * children/sibling forms the list of my natural children
1608         */
1609        struct list_head children;      /* list of my children */
1610        struct list_head sibling;       /* linkage in my parent's children list */
1611        struct task_struct *group_leader;       /* threadgroup leader */
1612
1613        /*
1614         * ptraced is the list of tasks this task is using ptrace on.
1615         * This includes both natural children and PTRACE_ATTACH targets.
1616         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1617         */
1618        struct list_head ptraced;
1619        struct list_head ptrace_entry;
1620
1621        /* PID/PID hash table linkage. */
1622        struct pid_link pids[PIDTYPE_MAX];
1623        struct list_head thread_group;
1624        struct list_head thread_node;
1625
1626        struct completion *vfork_done;          /* for vfork() */
1627        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1628        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1629
1630        cputime_t utime, stime, utimescaled, stimescaled;
1631        cputime_t gtime;
1632        struct prev_cputime prev_cputime;
1633#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1634        seqcount_t vtime_seqcount;
1635        unsigned long long vtime_snap;
1636        enum {
1637                /* Task is sleeping or running in a CPU with VTIME inactive */
1638                VTIME_INACTIVE = 0,
1639                /* Task runs in userspace in a CPU with VTIME active */
1640                VTIME_USER,
1641                /* Task runs in kernelspace in a CPU with VTIME active */
1642                VTIME_SYS,
1643        } vtime_snap_whence;
1644#endif
1645
1646#ifdef CONFIG_NO_HZ_FULL
1647        atomic_t tick_dep_mask;
1648#endif
1649        unsigned long nvcsw, nivcsw; /* context switch counts */
1650        u64 start_time;         /* monotonic time in nsec */
1651        u64 real_start_time;    /* boot based time in nsec */
1652/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1653        unsigned long min_flt, maj_flt;
1654
1655        struct task_cputime cputime_expires;
1656        struct list_head cpu_timers[3];
1657
1658/* process credentials */
1659        const struct cred __rcu *real_cred; /* objective and real subjective task
1660                                         * credentials (COW) */
1661        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1662                                         * credentials (COW) */
1663        char comm[TASK_COMM_LEN]; /* executable name excluding path
1664                                     - access with [gs]et_task_comm (which lock
1665                                       it with task_lock())
1666                                     - initialized normally by setup_new_exec */
1667/* file system info */
1668        struct nameidata *nameidata;
1669#ifdef CONFIG_SYSVIPC
1670/* ipc stuff */
1671        struct sysv_sem sysvsem;
1672        struct sysv_shm sysvshm;
1673#endif
1674#ifdef CONFIG_DETECT_HUNG_TASK
1675/* hung task detection */
1676        unsigned long last_switch_count;
1677#endif
1678/* filesystem information */
1679        struct fs_struct *fs;
1680/* open file information */
1681        struct files_struct *files;
1682/* namespaces */
1683        struct nsproxy *nsproxy;
1684/* signal handlers */
1685        struct signal_struct *signal;
1686        struct sighand_struct *sighand;
1687
1688        sigset_t blocked, real_blocked;
1689        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1690        struct sigpending pending;
1691
1692        unsigned long sas_ss_sp;
1693        size_t sas_ss_size;
1694        unsigned sas_ss_flags;
1695
1696        struct callback_head *task_works;
1697
1698        struct audit_context *audit_context;
1699#ifdef CONFIG_AUDITSYSCALL
1700        kuid_t loginuid;
1701        unsigned int sessionid;
1702#endif
1703        struct seccomp seccomp;
1704
1705/* Thread group tracking */
1706        u32 parent_exec_id;
1707        u32 self_exec_id;
1708/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1709 * mempolicy */
1710        spinlock_t alloc_lock;
1711
1712        /* Protection of the PI data structures: */
1713        raw_spinlock_t pi_lock;
1714
1715        struct wake_q_node wake_q;
1716
1717#ifdef CONFIG_RT_MUTEXES
1718        /* PI waiters blocked on a rt_mutex held by this task */
1719        struct rb_root pi_waiters;
1720        struct rb_node *pi_waiters_leftmost;
1721        /* Deadlock detection and priority inheritance handling */
1722        struct rt_mutex_waiter *pi_blocked_on;
1723#endif
1724
1725#ifdef CONFIG_DEBUG_MUTEXES
1726        /* mutex deadlock detection */
1727        struct mutex_waiter *blocked_on;
1728#endif
1729#ifdef CONFIG_TRACE_IRQFLAGS
1730        unsigned int irq_events;
1731        unsigned long hardirq_enable_ip;
1732        unsigned long hardirq_disable_ip;
1733        unsigned int hardirq_enable_event;
1734        unsigned int hardirq_disable_event;
1735        int hardirqs_enabled;
1736        int hardirq_context;
1737        unsigned long softirq_disable_ip;
1738        unsigned long softirq_enable_ip;
1739        unsigned int softirq_disable_event;
1740        unsigned int softirq_enable_event;
1741        int softirqs_enabled;
1742        int softirq_context;
1743#endif
1744#ifdef CONFIG_LOCKDEP
1745# define MAX_LOCK_DEPTH 48UL
1746        u64 curr_chain_key;
1747        int lockdep_depth;
1748        unsigned int lockdep_recursion;
1749        struct held_lock held_locks[MAX_LOCK_DEPTH];
1750        gfp_t lockdep_reclaim_gfp;
1751#endif
1752#ifdef CONFIG_UBSAN
1753        unsigned int in_ubsan;
1754#endif
1755
1756/* journalling filesystem info */
1757        void *journal_info;
1758
1759/* stacked block device info */
1760        struct bio_list *bio_list;
1761
1762#ifdef CONFIG_BLOCK
1763/* stack plugging */
1764        struct blk_plug *plug;
1765#endif
1766
1767/* VM state */
1768        struct reclaim_state *reclaim_state;
1769
1770        struct backing_dev_info *backing_dev_info;
1771
1772        struct io_context *io_context;
1773
1774        unsigned long ptrace_message;
1775        siginfo_t *last_siginfo; /* For ptrace use.  */
1776        struct task_io_accounting ioac;
1777#if defined(CONFIG_TASK_XACCT)
1778        u64 acct_rss_mem1;      /* accumulated rss usage */
1779        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1780        cputime_t acct_timexpd; /* stime + utime since last update */
1781#endif
1782#ifdef CONFIG_CPUSETS
1783        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1784        seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1785        int cpuset_mem_spread_rotor;
1786        int cpuset_slab_spread_rotor;
1787#endif
1788#ifdef CONFIG_CGROUPS
1789        /* Control Group info protected by css_set_lock */
1790        struct css_set __rcu *cgroups;
1791        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1792        struct list_head cg_list;
1793#endif
1794#ifdef CONFIG_FUTEX
1795        struct robust_list_head __user *robust_list;
1796#ifdef CONFIG_COMPAT
1797        struct compat_robust_list_head __user *compat_robust_list;
1798#endif
1799        struct list_head pi_state_list;
1800        struct futex_pi_state *pi_state_cache;
1801#endif
1802#ifdef CONFIG_PERF_EVENTS
1803        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1804        struct mutex perf_event_mutex;
1805        struct list_head perf_event_list;
1806#endif
1807#ifdef CONFIG_DEBUG_PREEMPT
1808        unsigned long preempt_disable_ip;
1809#endif
1810#ifdef CONFIG_NUMA
1811        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1812        short il_next;
1813        short pref_node_fork;
1814#endif
1815#ifdef CONFIG_NUMA_BALANCING
1816        int numa_scan_seq;
1817        unsigned int numa_scan_period;
1818        unsigned int numa_scan_period_max;
1819        int numa_preferred_nid;
1820        unsigned long numa_migrate_retry;
1821        u64 node_stamp;                 /* migration stamp  */
1822        u64 last_task_numa_placement;
1823        u64 last_sum_exec_runtime;
1824        struct callback_head numa_work;
1825
1826        struct list_head numa_entry;
1827        struct numa_group *numa_group;
1828
1829        /*
1830         * numa_faults is an array split into four regions:
1831         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1832         * in this precise order.
1833         *
1834         * faults_memory: Exponential decaying average of faults on a per-node
1835         * basis. Scheduling placement decisions are made based on these
1836         * counts. The values remain static for the duration of a PTE scan.
1837         * faults_cpu: Track the nodes the process was running on when a NUMA
1838         * hinting fault was incurred.
1839         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1840         * during the current scan window. When the scan completes, the counts
1841         * in faults_memory and faults_cpu decay and these values are copied.
1842         */
1843        unsigned long *numa_faults;
1844        unsigned long total_numa_faults;
1845
1846        /*
1847         * numa_faults_locality tracks if faults recorded during the last
1848         * scan window were remote/local or failed to migrate. The task scan
1849         * period is adapted based on the locality of the faults with different
1850         * weights depending on whether they were shared or private faults
1851         */
1852        unsigned long numa_faults_locality[3];
1853
1854        unsigned long numa_pages_migrated;
1855#endif /* CONFIG_NUMA_BALANCING */
1856
1857#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1858        struct tlbflush_unmap_batch tlb_ubc;
1859#endif
1860
1861        struct rcu_head rcu;
1862
1863        /*
1864         * cache last used pipe for splice
1865         */
1866        struct pipe_inode_info *splice_pipe;
1867
1868        struct page_frag task_frag;
1869
1870#ifdef  CONFIG_TASK_DELAY_ACCT
1871        struct task_delay_info *delays;
1872#endif
1873#ifdef CONFIG_FAULT_INJECTION
1874        int make_it_fail;
1875#endif
1876        /*
1877         * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1878         * balance_dirty_pages() for some dirty throttling pause
1879         */
1880        int nr_dirtied;
1881        int nr_dirtied_pause;
1882        unsigned long dirty_paused_when; /* start of a write-and-pause period */
1883
1884#ifdef CONFIG_LATENCYTOP
1885        int latency_record_count;
1886        struct latency_record latency_record[LT_SAVECOUNT];
1887#endif
1888        /*
1889         * time slack values; these are used to round up poll() and
1890         * select() etc timeout values. These are in nanoseconds.
1891         */
1892        u64 timer_slack_ns;
1893        u64 default_timer_slack_ns;
1894
1895#ifdef CONFIG_KASAN
1896        unsigned int kasan_depth;
1897#endif
1898#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1899        /* Index of current stored address in ret_stack */
1900        int curr_ret_stack;
1901        /* Stack of return addresses for return function tracing */
1902        struct ftrace_ret_stack *ret_stack;
1903        /* time stamp for last schedule */
1904        unsigned long long ftrace_timestamp;
1905        /*
1906         * Number of functions that haven't been traced
1907         * because of depth overrun.
1908         */
1909        atomic_t trace_overrun;
1910        /* Pause for the tracing */
1911        atomic_t tracing_graph_pause;
1912#endif
1913#ifdef CONFIG_TRACING
1914        /* state flags for use by tracers */
1915        unsigned long trace;
1916        /* bitmask and counter of trace recursion */
1917        unsigned long trace_recursion;
1918#endif /* CONFIG_TRACING */
1919#ifdef CONFIG_KCOV
1920        /* Coverage collection mode enabled for this task (0 if disabled). */
1921        enum kcov_mode kcov_mode;
1922        /* Size of the kcov_area. */
1923        unsigned        kcov_size;
1924        /* Buffer for coverage collection. */
1925        void            *kcov_area;
1926        /* kcov desciptor wired with this task or NULL. */
1927        struct kcov     *kcov;
1928#endif
1929#ifdef CONFIG_MEMCG
1930        struct mem_cgroup *memcg_in_oom;
1931        gfp_t memcg_oom_gfp_mask;
1932        int memcg_oom_order;
1933
1934        /* number of pages to reclaim on returning to userland */
1935        unsigned int memcg_nr_pages_over_high;
1936#endif
1937#ifdef CONFIG_UPROBES
1938        struct uprobe_task *utask;
1939#endif
1940#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1941        unsigned int    sequential_io;
1942        unsigned int    sequential_io_avg;
1943#endif
1944#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1945        unsigned long   task_state_change;
1946#endif
1947        int pagefault_disabled;
1948#ifdef CONFIG_MMU
1949        struct task_struct *oom_reaper_list;
1950#endif
1951#ifdef CONFIG_VMAP_STACK
1952        struct vm_struct *stack_vm_area;
1953#endif
1954#ifdef CONFIG_THREAD_INFO_IN_TASK
1955        /* A live task holds one reference. */
1956        atomic_t stack_refcount;
1957#endif
1958/* CPU-specific state of this task */
1959        struct thread_struct thread;
1960/*
1961 * WARNING: on x86, 'thread_struct' contains a variable-sized
1962 * structure.  It *MUST* be at the end of 'task_struct'.
1963 *
1964 * Do not put anything below here!
1965 */
1966};
1967
1968#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1969extern int arch_task_struct_size __read_mostly;
1970#else
1971# define arch_task_struct_size (sizeof(struct task_struct))
1972#endif
1973
1974#ifdef CONFIG_VMAP_STACK
1975static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1976{
1977        return t->stack_vm_area;
1978}
1979#else
1980static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1981{
1982        return NULL;
1983}
1984#endif
1985
1986/* Future-safe accessor for struct task_struct's cpus_allowed. */
1987#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1988
1989static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1990{
1991        return p->nr_cpus_allowed;
1992}
1993
1994#define TNF_MIGRATED    0x01
1995#define TNF_NO_GROUP    0x02
1996#define TNF_SHARED      0x04
1997#define TNF_FAULT_LOCAL 0x08
1998#define TNF_MIGRATE_FAIL 0x10
1999
2000static inline bool in_vfork(struct task_struct *tsk)
2001{
2002        bool ret;
2003
2004        /*
2005         * need RCU to access ->real_parent if CLONE_VM was used along with
2006         * CLONE_PARENT.
2007         *
2008         * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2009         * imply CLONE_VM
2010         *
2011         * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2012         * ->real_parent is not necessarily the task doing vfork(), so in
2013         * theory we can't rely on task_lock() if we want to dereference it.
2014         *
2015         * And in this case we can't trust the real_parent->mm == tsk->mm
2016         * check, it can be false negative. But we do not care, if init or
2017         * another oom-unkillable task does this it should blame itself.
2018         */
2019        rcu_read_lock();
2020        ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2021        rcu_read_unlock();
2022
2023        return ret;
2024}
2025
2026#ifdef CONFIG_NUMA_BALANCING
2027extern void task_numa_fault(int last_node, int node, int pages, int flags);
2028extern pid_t task_numa_group_id(struct task_struct *p);
2029extern void set_numabalancing_state(bool enabled);
2030extern void task_numa_free(struct task_struct *p);
2031extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2032                                        int src_nid, int dst_cpu);
2033#else
2034static inline void task_numa_fault(int last_node, int node, int pages,
2035                                   int flags)
2036{
2037}
2038static inline pid_t task_numa_group_id(struct task_struct *p)
2039{
2040        return 0;
2041}
2042static inline void set_numabalancing_state(bool enabled)
2043{
2044}
2045static inline void task_numa_free(struct task_struct *p)
2046{
2047}
2048static inline bool should_numa_migrate_memory(struct task_struct *p,
2049                                struct page *page, int src_nid, int dst_cpu)
2050{
2051        return true;
2052}
2053#endif
2054
2055static inline struct pid *task_pid(struct task_struct *task)
2056{
2057        return task->pids[PIDTYPE_PID].pid;
2058}
2059
2060static inline struct pid *task_tgid(struct task_struct *task)
2061{
2062        return task->group_leader->pids[PIDTYPE_PID].pid;
2063}
2064
2065/*
2066 * Without tasklist or rcu lock it is not safe to dereference
2067 * the result of task_pgrp/task_session even if task == current,
2068 * we can race with another thread doing sys_setsid/sys_setpgid.
2069 */
2070static inline struct pid *task_pgrp(struct task_struct *task)
2071{
2072        return task->group_leader->pids[PIDTYPE_PGID].pid;
2073}
2074
2075static inline struct pid *task_session(struct task_struct *task)
2076{
2077        return task->group_leader->pids[PIDTYPE_SID].pid;
2078}
2079
2080struct pid_namespace;
2081
2082/*
2083 * the helpers to get the task's different pids as they are seen
2084 * from various namespaces
2085 *
2086 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2087 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2088 *                     current.
2089 * task_xid_nr_ns()  : id seen from the ns specified;
2090 *
2091 * set_task_vxid()   : assigns a virtual id to a task;
2092 *
2093 * see also pid_nr() etc in include/linux/pid.h
2094 */
2095pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2096                        struct pid_namespace *ns);
2097
2098static inline pid_t task_pid_nr(struct task_struct *tsk)
2099{
2100        return tsk->pid;
2101}
2102
2103static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2104                                        struct pid_namespace *ns)
2105{
2106        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2107}
2108
2109static inline pid_t task_pid_vnr(struct task_struct *tsk)
2110{
2111        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2112}
2113
2114
2115static inline pid_t task_tgid_nr(struct task_struct *tsk)
2116{
2117        return tsk->tgid;
2118}
2119
2120pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2121
2122static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2123{
2124        return pid_vnr(task_tgid(tsk));
2125}
2126
2127
2128static inline int pid_alive(const struct task_struct *p);
2129static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2130{
2131        pid_t pid = 0;
2132
2133        rcu_read_lock();
2134        if (pid_alive(tsk))
2135                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2136        rcu_read_unlock();
2137
2138        return pid;
2139}
2140
2141static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2142{
2143        return task_ppid_nr_ns(tsk, &init_pid_ns);
2144}
2145
2146static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2147                                        struct pid_namespace *ns)
2148{
2149        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2150}
2151
2152static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2153{
2154        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2155}
2156
2157
2158static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2159                                        struct pid_namespace *ns)
2160{
2161        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2162}
2163
2164static inline pid_t task_session_vnr(struct task_struct *tsk)
2165{
2166        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2167}
2168
2169/* obsolete, do not use */
2170static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2171{
2172        return task_pgrp_nr_ns(tsk, &init_pid_ns);
2173}
2174
2175/**
2176 * pid_alive - check that a task structure is not stale
2177 * @p: Task structure to be checked.
2178 *
2179 * Test if a process is not yet dead (at most zombie state)
2180 * If pid_alive fails, then pointers within the task structure
2181 * can be stale and must not be dereferenced.
2182 *
2183 * Return: 1 if the process is alive. 0 otherwise.
2184 */
2185static inline int pid_alive(const struct task_struct *p)
2186{
2187        return p->pids[PIDTYPE_PID].pid != NULL;
2188}
2189
2190/**
2191 * is_global_init - check if a task structure is init. Since init
2192 * is free to have sub-threads we need to check tgid.
2193 * @tsk: Task structure to be checked.
2194 *
2195 * Check if a task structure is the first user space task the kernel created.
2196 *
2197 * Return: 1 if the task structure is init. 0 otherwise.
2198 */
2199static inline int is_global_init(struct task_struct *tsk)
2200{
2201        return task_tgid_nr(tsk) == 1;
2202}
2203
2204extern struct pid *cad_pid;
2205
2206extern void free_task(struct task_struct *tsk);
2207#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2208
2209extern void __put_task_struct(struct task_struct *t);
2210
2211static inline void put_task_struct(struct task_struct *t)
2212{
2213        if (atomic_dec_and_test(&t->usage))
2214                __put_task_struct(t);
2215}
2216
2217struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2218struct task_struct *try_get_task_struct(struct task_struct **ptask);
2219
2220#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2221extern void task_cputime(struct task_struct *t,
2222                         cputime_t *utime, cputime_t *stime);
2223extern void task_cputime_scaled(struct task_struct *t,
2224                                cputime_t *utimescaled, cputime_t *stimescaled);
2225extern cputime_t task_gtime(struct task_struct *t);
2226#else
2227static inline void task_cputime(struct task_struct *t,
2228                                cputime_t *utime, cputime_t *stime)
2229{
2230        if (utime)
2231                *utime = t->utime;
2232        if (stime)
2233                *stime = t->stime;
2234}
2235
2236static inline void task_cputime_scaled(struct task_struct *t,
2237                                       cputime_t *utimescaled,
2238                                       cputime_t *stimescaled)
2239{
2240        if (utimescaled)
2241                *utimescaled = t->utimescaled;
2242        if (stimescaled)
2243                *stimescaled = t->stimescaled;
2244}
2245
2246static inline cputime_t task_gtime(struct task_struct *t)
2247{
2248        return t->gtime;
2249}
2250#endif
2251extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2252extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2253
2254/*
2255 * Per process flags
2256 */
2257#define PF_EXITING      0x00000004      /* getting shut down */
2258#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
2259#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
2260#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
2261#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
2262#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2263#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
2264#define PF_DUMPCORE     0x00000200      /* dumped core */
2265#define PF_SIGNALED     0x00000400      /* killed by a signal */
2266#define PF_MEMALLOC     0x00000800      /* Allocating memory */
2267#define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
2268#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
2269#define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
2270#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
2271#define PF_FROZEN       0x00010000      /* frozen for system suspend */
2272#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
2273#define PF_KSWAPD       0x00040000      /* I am kswapd */
2274#define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
2275#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
2276#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
2277#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
2278#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
2279#define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
2280#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2281#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
2282#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
2283#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2284
2285/*
2286 * Only the _current_ task can read/write to tsk->flags, but other
2287 * tasks can access tsk->flags in readonly mode for example
2288 * with tsk_used_math (like during threaded core dumping).
2289 * There is however an exception to this rule during ptrace
2290 * or during fork: the ptracer task is allowed to write to the
2291 * child->flags of its traced child (same goes for fork, the parent
2292 * can write to the child->flags), because we're guaranteed the
2293 * child is not running and in turn not changing child->flags
2294 * at the same time the parent does it.
2295 */
2296#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2297#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2298#define clear_used_math() clear_stopped_child_used_math(current)
2299#define set_used_math() set_stopped_child_used_math(current)
2300#define conditional_stopped_child_used_math(condition, child) \
2301        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2302#define conditional_used_math(condition) \
2303        conditional_stopped_child_used_math(condition, current)
2304#define copy_to_stopped_child_used_math(child) \
2305        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2306/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2307#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2308#define used_math() tsk_used_math(current)
2309
2310/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2311 * __GFP_FS is also cleared as it implies __GFP_IO.
2312 */
2313static inline gfp_t memalloc_noio_flags(gfp_t flags)
2314{
2315        if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2316                flags &= ~(__GFP_IO | __GFP_FS);
2317        return flags;
2318}
2319
2320static inline unsigned int memalloc_noio_save(void)
2321{
2322        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2323        current->flags |= PF_MEMALLOC_NOIO;
2324        return flags;
2325}
2326
2327static inline void memalloc_noio_restore(unsigned int flags)
2328{
2329        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2330}
2331
2332/* Per-process atomic flags. */
2333#define PFA_NO_NEW_PRIVS 0      /* May not gain new privileges. */
2334#define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2335#define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2336#define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */
2337
2338
2339#define TASK_PFA_TEST(name, func)                                       \
2340        static inline bool task_##func(struct task_struct *p)           \
2341        { return test_bit(PFA_##name, &p->atomic_flags); }
2342#define TASK_PFA_SET(name, func)                                        \
2343        static inline void task_set_##func(struct task_struct *p)       \
2344        { set_bit(PFA_##name, &p->atomic_flags); }
2345#define TASK_PFA_CLEAR(name, func)                                      \
2346        static inline void task_clear_##func(struct task_struct *p)     \
2347        { clear_bit(PFA_##name, &p->atomic_flags); }
2348
2349TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2350TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2351
2352TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2353TASK_PFA_SET(SPREAD_PAGE, spread_page)
2354TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2355
2356TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2357TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2358TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2359
2360TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2361TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2362
2363/*
2364 * task->jobctl flags
2365 */
2366#define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
2367
2368#define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
2369#define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
2370#define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
2371#define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
2372#define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
2373#define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
2374#define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
2375
2376#define JOBCTL_STOP_DEQUEUED    (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2377#define JOBCTL_STOP_PENDING     (1UL << JOBCTL_STOP_PENDING_BIT)
2378#define JOBCTL_STOP_CONSUME     (1UL << JOBCTL_STOP_CONSUME_BIT)
2379#define JOBCTL_TRAP_STOP        (1UL << JOBCTL_TRAP_STOP_BIT)
2380#define JOBCTL_TRAP_NOTIFY      (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2381#define JOBCTL_TRAPPING         (1UL << JOBCTL_TRAPPING_BIT)
2382#define JOBCTL_LISTENING        (1UL << JOBCTL_LISTENING_BIT)
2383
2384#define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2385#define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2386
2387extern bool task_set_jobctl_pending(struct task_struct *task,
2388                                    unsigned long mask);
2389extern void task_clear_jobctl_trapping(struct task_struct *task);
2390extern void task_clear_jobctl_pending(struct task_struct *task,
2391                                      unsigned long mask);
2392
2393static inline void rcu_copy_process(struct task_struct *p)
2394{
2395#ifdef CONFIG_PREEMPT_RCU
2396        p->rcu_read_lock_nesting = 0;
2397        p->rcu_read_unlock_special.s = 0;
2398        p->rcu_blocked_node = NULL;
2399        INIT_LIST_HEAD(&p->rcu_node_entry);
2400#endif /* #ifdef CONFIG_PREEMPT_RCU */
2401#ifdef CONFIG_TASKS_RCU
2402        p->rcu_tasks_holdout = false;
2403        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2404        p->rcu_tasks_idle_cpu = -1;
2405#endif /* #ifdef CONFIG_TASKS_RCU */
2406}
2407
2408static inline void tsk_restore_flags(struct task_struct *task,
2409                                unsigned long orig_flags, unsigned long flags)
2410{
2411        task->flags &= ~flags;
2412        task->flags |= orig_flags & flags;
2413}
2414
2415extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2416                                     const struct cpumask *trial);
2417extern int task_can_attach(struct task_struct *p,
2418                           const struct cpumask *cs_cpus_allowed);
2419#ifdef CONFIG_SMP
2420extern void do_set_cpus_allowed(struct task_struct *p,
2421                               const struct cpumask *new_mask);
2422
2423extern int set_cpus_allowed_ptr(struct task_struct *p,
2424                                const struct cpumask *new_mask);
2425#else
2426static inline void do_set_cpus_allowed(struct task_struct *p,
2427                                      const struct cpumask *new_mask)
2428{
2429}
2430static inline int set_cpus_allowed_ptr(struct task_struct *p,
2431                                       const struct cpumask *new_mask)
2432{
2433        if (!cpumask_test_cpu(0, new_mask))
2434                return -EINVAL;
2435        return 0;
2436}
2437#endif
2438
2439#ifdef CONFIG_NO_HZ_COMMON
2440void calc_load_enter_idle(void);
2441void calc_load_exit_idle(void);
2442#else
2443static inline void calc_load_enter_idle(void) { }
2444static inline void calc_load_exit_idle(void) { }
2445#endif /* CONFIG_NO_HZ_COMMON */
2446
2447/*
2448 * Do not use outside of architecture code which knows its limitations.
2449 *
2450 * sched_clock() has no promise of monotonicity or bounded drift between
2451 * CPUs, use (which you should not) requires disabling IRQs.
2452 *
2453 * Please use one of the three interfaces below.
2454 */
2455extern unsigned long long notrace sched_clock(void);
2456/*
2457 * See the comment in kernel/sched/clock.c
2458 */
2459extern u64 running_clock(void);
2460extern u64 sched_clock_cpu(int cpu);
2461
2462
2463extern void sched_clock_init(void);
2464
2465#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2466static inline void sched_clock_tick(void)
2467{
2468}
2469
2470static inline void sched_clock_idle_sleep_event(void)
2471{
2472}
2473
2474static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2475{
2476}
2477
2478static inline u64 cpu_clock(int cpu)
2479{
2480        return sched_clock();
2481}
2482
2483static inline u64 local_clock(void)
2484{
2485        return sched_clock();
2486}
2487#else
2488/*
2489 * Architectures can set this to 1 if they have specified
2490 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2491 * but then during bootup it turns out that sched_clock()
2492 * is reliable after all:
2493 */
2494extern int sched_clock_stable(void);
2495extern void set_sched_clock_stable(void);
2496extern void clear_sched_clock_stable(void);
2497
2498extern void sched_clock_tick(void);
2499extern void sched_clock_idle_sleep_event(void);
2500extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2501
2502/*
2503 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2504 * time source that is monotonic per cpu argument and has bounded drift
2505 * between cpus.
2506 *
2507 * ######################### BIG FAT WARNING ##########################
2508 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2509 * # go backwards !!                                                  #
2510 * ####################################################################
2511 */
2512static inline u64 cpu_clock(int cpu)
2513{
2514        return sched_clock_cpu(cpu);
2515}
2516
2517static inline u64 local_clock(void)
2518{
2519        return sched_clock_cpu(raw_smp_processor_id());
2520}
2521#endif
2522
2523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2524/*
2525 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2526 * The reason for this explicit opt-in is not to have perf penalty with
2527 * slow sched_clocks.
2528 */
2529extern void enable_sched_clock_irqtime(void);
2530extern void disable_sched_clock_irqtime(void);
2531#else
2532static inline void enable_sched_clock_irqtime(void) {}
2533static inline void disable_sched_clock_irqtime(void) {}
2534#endif
2535
2536extern unsigned long long
2537task_sched_runtime(struct task_struct *task);
2538
2539/* sched_exec is called by processes performing an exec */
2540#ifdef CONFIG_SMP
2541extern void sched_exec(void);
2542#else
2543#define sched_exec()   {}
2544#endif
2545
2546extern void sched_clock_idle_sleep_event(void);
2547extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2548
2549#ifdef CONFIG_HOTPLUG_CPU
2550extern void idle_task_exit(void);
2551#else
2552static inline void idle_task_exit(void) {}
2553#endif
2554
2555#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2556extern void wake_up_nohz_cpu(int cpu);
2557#else
2558static inline void wake_up_nohz_cpu(int cpu) { }
2559#endif
2560
2561#ifdef CONFIG_NO_HZ_FULL
2562extern u64 scheduler_tick_max_deferment(void);
2563#endif
2564
2565#ifdef CONFIG_SCHED_AUTOGROUP
2566extern void sched_autogroup_create_attach(struct task_struct *p);
2567extern void sched_autogroup_detach(struct task_struct *p);
2568extern void sched_autogroup_fork(struct signal_struct *sig);
2569extern void sched_autogroup_exit(struct signal_struct *sig);
2570extern void sched_autogroup_exit_task(struct task_struct *p);
2571#ifdef CONFIG_PROC_FS
2572extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2573extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2574#endif
2575#else
2576static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2577static inline void sched_autogroup_detach(struct task_struct *p) { }
2578static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2579static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2580static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2581#endif
2582
2583extern int yield_to(struct task_struct *p, bool preempt);
2584extern void set_user_nice(struct task_struct *p, long nice);
2585extern int task_prio(const struct task_struct *p);
2586/**
2587 * task_nice - return the nice value of a given task.
2588 * @p: the task in question.
2589 *
2590 * Return: The nice value [ -20 ... 0 ... 19 ].
2591 */
2592static inline int task_nice(const struct task_struct *p)
2593{
2594        return PRIO_TO_NICE((p)->static_prio);
2595}
2596extern int can_nice(const struct task_struct *p, const int nice);
2597extern int task_curr(const struct task_struct *p);
2598extern int idle_cpu(int cpu);
2599extern int sched_setscheduler(struct task_struct *, int,
2600                              const struct sched_param *);
2601extern int sched_setscheduler_nocheck(struct task_struct *, int,
2602                                      const struct sched_param *);
2603extern int sched_setattr(struct task_struct *,
2604                         const struct sched_attr *);
2605extern struct task_struct *idle_task(int cpu);
2606/**
2607 * is_idle_task - is the specified task an idle task?
2608 * @p: the task in question.
2609 *
2610 * Return: 1 if @p is an idle task. 0 otherwise.
2611 */
2612static inline bool is_idle_task(const struct task_struct *p)
2613{
2614        return p->pid == 0;
2615}
2616extern struct task_struct *curr_task(int cpu);
2617extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2618
2619void yield(void);
2620
2621union thread_union {
2622#ifndef CONFIG_THREAD_INFO_IN_TASK
2623        struct thread_info thread_info;
2624#endif
2625        unsigned long stack[THREAD_SIZE/sizeof(long)];
2626};
2627
2628#ifndef __HAVE_ARCH_KSTACK_END
2629static inline int kstack_end(void *addr)
2630{
2631        /* Reliable end of stack detection:
2632         * Some APM bios versions misalign the stack
2633         */
2634        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2635}
2636#endif
2637
2638extern union thread_union init_thread_union;
2639extern struct task_struct init_task;
2640
2641extern struct   mm_struct init_mm;
2642
2643extern struct pid_namespace init_pid_ns;
2644
2645/*
2646 * find a task by one of its numerical ids
2647 *
2648 * find_task_by_pid_ns():
2649 *      finds a task by its pid in the specified namespace
2650 * find_task_by_vpid():
2651 *      finds a task by its virtual pid
2652 *
2653 * see also find_vpid() etc in include/linux/pid.h
2654 */
2655
2656extern struct task_struct *find_task_by_vpid(pid_t nr);
2657extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2658                struct pid_namespace *ns);
2659
2660/* per-UID process charging. */
2661extern struct user_struct * alloc_uid(kuid_t);
2662static inline struct user_struct *get_uid(struct user_struct *u)
2663{
2664        atomic_inc(&u->__count);
2665        return u;
2666}
2667extern void free_uid(struct user_struct *);
2668
2669#include <asm/current.h>
2670
2671extern void xtime_update(unsigned long ticks);
2672
2673extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2674extern int wake_up_process(struct task_struct *tsk);
2675extern void wake_up_new_task(struct task_struct *tsk);
2676#ifdef CONFIG_SMP
2677 extern void kick_process(struct task_struct *tsk);
2678#else
2679 static inline void kick_process(struct task_struct *tsk) { }
2680#endif
2681extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2682extern void sched_dead(struct task_struct *p);
2683
2684extern void proc_caches_init(void);
2685extern void flush_signals(struct task_struct *);
2686extern void ignore_signals(struct task_struct *);
2687extern void flush_signal_handlers(struct task_struct *, int force_default);
2688extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2689
2690static inline int kernel_dequeue_signal(siginfo_t *info)
2691{
2692        struct task_struct *tsk = current;
2693        siginfo_t __info;
2694        int ret;
2695
2696        spin_lock_irq(&tsk->sighand->siglock);
2697        ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2698        spin_unlock_irq(&tsk->sighand->siglock);
2699
2700        return ret;
2701}
2702
2703static inline void kernel_signal_stop(void)
2704{
2705        spin_lock_irq(&current->sighand->siglock);
2706        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2707                __set_current_state(TASK_STOPPED);
2708        spin_unlock_irq(&current->sighand->siglock);
2709
2710        schedule();
2711}
2712
2713extern void release_task(struct task_struct * p);
2714extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2715extern int force_sigsegv(int, struct task_struct *);
2716extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2717extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2718extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2719extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2720                                const struct cred *, u32);
2721extern int kill_pgrp(struct pid *pid, int sig, int priv);
2722extern int kill_pid(struct pid *pid, int sig, int priv);
2723extern int kill_proc_info(int, struct siginfo *, pid_t);
2724extern __must_check bool do_notify_parent(struct task_struct *, int);
2725extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2726extern void force_sig(int, struct task_struct *);
2727extern int send_sig(int, struct task_struct *, int);
2728extern int zap_other_threads(struct task_struct *p);
2729extern struct sigqueue *sigqueue_alloc(void);
2730extern void sigqueue_free(struct sigqueue *);
2731extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2732extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2733
2734#ifdef TIF_RESTORE_SIGMASK
2735/*
2736 * Legacy restore_sigmask accessors.  These are inefficient on
2737 * SMP architectures because they require atomic operations.
2738 */
2739
2740/**
2741 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2742 *
2743 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2744 * will run before returning to user mode, to process the flag.  For
2745 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2746 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
2747 * arch code will notice on return to user mode, in case those bits
2748 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
2749 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2750 */
2751static inline void set_restore_sigmask(void)
2752{
2753        set_thread_flag(TIF_RESTORE_SIGMASK);
2754        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2755}
2756static inline void clear_restore_sigmask(void)
2757{
2758        clear_thread_flag(TIF_RESTORE_SIGMASK);
2759}
2760static inline bool test_restore_sigmask(void)
2761{
2762        return test_thread_flag(TIF_RESTORE_SIGMASK);
2763}
2764static inline bool test_and_clear_restore_sigmask(void)
2765{
2766        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2767}
2768
2769#else   /* TIF_RESTORE_SIGMASK */
2770
2771/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2772static inline void set_restore_sigmask(void)
2773{
2774        current->restore_sigmask = true;
2775        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2776}
2777static inline void clear_restore_sigmask(void)
2778{
2779        current->restore_sigmask = false;
2780}
2781static inline bool test_restore_sigmask(void)
2782{
2783        return current->restore_sigmask;
2784}
2785static inline bool test_and_clear_restore_sigmask(void)
2786{
2787        if (!current->restore_sigmask)
2788                return false;
2789        current->restore_sigmask = false;
2790        return true;
2791}
2792#endif
2793
2794static inline void restore_saved_sigmask(void)
2795{
2796        if (test_and_clear_restore_sigmask())
2797                __set_current_blocked(&current->saved_sigmask);
2798}
2799
2800static inline sigset_t *sigmask_to_save(void)
2801{
2802        sigset_t *res = &current->blocked;
2803        if (unlikely(test_restore_sigmask()))
2804                res = &current->saved_sigmask;
2805        return res;
2806}
2807
2808static inline int kill_cad_pid(int sig, int priv)
2809{
2810        return kill_pid(cad_pid, sig, priv);
2811}
2812
2813/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2814#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2815#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2816#define SEND_SIG_FORCED ((struct siginfo *) 2)
2817
2818/*
2819 * True if we are on the alternate signal stack.
2820 */
2821static inline int on_sig_stack(unsigned long sp)
2822{
2823        /*
2824         * If the signal stack is SS_AUTODISARM then, by construction, we
2825         * can't be on the signal stack unless user code deliberately set
2826         * SS_AUTODISARM when we were already on it.
2827         *
2828         * This improves reliability: if user state gets corrupted such that
2829         * the stack pointer points very close to the end of the signal stack,
2830         * then this check will enable the signal to be handled anyway.
2831         */
2832        if (current->sas_ss_flags & SS_AUTODISARM)
2833                return 0;
2834
2835#ifdef CONFIG_STACK_GROWSUP
2836        return sp >= current->sas_ss_sp &&
2837                sp - current->sas_ss_sp < current->sas_ss_size;
2838#else
2839        return sp > current->sas_ss_sp &&
2840                sp - current->sas_ss_sp <= current->sas_ss_size;
2841#endif
2842}
2843
2844static inline int sas_ss_flags(unsigned long sp)
2845{
2846        if (!current->sas_ss_size)
2847                return SS_DISABLE;
2848
2849        return on_sig_stack(sp) ? SS_ONSTACK : 0;
2850}
2851
2852static inline void sas_ss_reset(struct task_struct *p)
2853{
2854        p->sas_ss_sp = 0;
2855        p->sas_ss_size = 0;
2856        p->sas_ss_flags = SS_DISABLE;
2857}
2858
2859static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2860{
2861        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2862#ifdef CONFIG_STACK_GROWSUP
2863                return current->sas_ss_sp;
2864#else
2865                return current->sas_ss_sp + current->sas_ss_size;
2866#endif
2867        return sp;
2868}
2869
2870/*
2871 * Routines for handling mm_structs
2872 */
2873extern struct mm_struct * mm_alloc(void);
2874
2875/* mmdrop drops the mm and the page tables */
2876extern void __mmdrop(struct mm_struct *);
2877static inline void mmdrop(struct mm_struct *mm)
2878{
2879        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2880                __mmdrop(mm);
2881}
2882
2883static inline void mmdrop_async_fn(struct work_struct *work)
2884{
2885        struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2886        __mmdrop(mm);
2887}
2888
2889static inline void mmdrop_async(struct mm_struct *mm)
2890{
2891        if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2892                INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2893                schedule_work(&mm->async_put_work);
2894        }
2895}
2896
2897static inline bool mmget_not_zero(struct mm_struct *mm)
2898{
2899        return atomic_inc_not_zero(&mm->mm_users);
2900}
2901
2902/* mmput gets rid of the mappings and all user-space */
2903extern void mmput(struct mm_struct *);
2904#ifdef CONFIG_MMU
2905/* same as above but performs the slow path from the async context. Can
2906 * be called from the atomic context as well
2907 */
2908extern void mmput_async(struct mm_struct *);
2909#endif
2910
2911/* Grab a reference to a task's mm, if it is not already going away */
2912extern struct mm_struct *get_task_mm(struct task_struct *task);
2913/*
2914 * Grab a reference to a task's mm, if it is not already going away
2915 * and ptrace_may_access with the mode parameter passed to it
2916 * succeeds.
2917 */
2918extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2919/* Remove the current tasks stale references to the old mm_struct */
2920extern void mm_release(struct task_struct *, struct mm_struct *);
2921
2922#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2923extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2924                        struct task_struct *, unsigned long);
2925#else
2926extern int copy_thread(unsigned long, unsigned long, unsigned long,
2927                        struct task_struct *);
2928
2929/* Architectures that haven't opted into copy_thread_tls get the tls argument
2930 * via pt_regs, so ignore the tls argument passed via C. */
2931static inline int copy_thread_tls(
2932                unsigned long clone_flags, unsigned long sp, unsigned long arg,
2933                struct task_struct *p, unsigned long tls)
2934{
2935        return copy_thread(clone_flags, sp, arg, p);
2936}
2937#endif
2938extern void flush_thread(void);
2939
2940#ifdef CONFIG_HAVE_EXIT_THREAD
2941extern void exit_thread(struct task_struct *tsk);
2942#else
2943static inline void exit_thread(struct task_struct *tsk)
2944{
2945}
2946#endif
2947
2948extern void exit_files(struct task_struct *);
2949extern void __cleanup_sighand(struct sighand_struct *);
2950
2951extern void exit_itimers(struct signal_struct *);
2952extern void flush_itimer_signals(void);
2953
2954extern void do_group_exit(int);
2955
2956extern int do_execve(struct filename *,
2957                     const char __user * const __user *,
2958                     const char __user * const __user *);
2959extern int do_execveat(int, struct filename *,
2960                       const char __user * const __user *,
2961                       const char __user * const __user *,
2962                       int);
2963extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2964extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2965struct task_struct *fork_idle(int);
2966extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2967
2968extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2969static inline void set_task_comm(struct task_struct *tsk, const char *from)
2970{
2971        __set_task_comm(tsk, from, false);
2972}
2973extern char *get_task_comm(char *to, struct task_struct *tsk);
2974
2975#ifdef CONFIG_SMP
2976void scheduler_ipi(void);
2977extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2978#else
2979static inline void scheduler_ipi(void) { }
2980static inline unsigned long wait_task_inactive(struct task_struct *p,
2981                                               long match_state)
2982{
2983        return 1;
2984}
2985#endif
2986
2987#define tasklist_empty() \
2988        list_empty(&init_task.tasks)
2989
2990#define next_task(p) \
2991        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2992
2993#define for_each_process(p) \
2994        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2995
2996extern bool current_is_single_threaded(void);
2997
2998/*
2999 * Careful: do_each_thread/while_each_thread is a double loop so
3000 *          'break' will not work as expected - use goto instead.
3001 */
3002#define do_each_thread(g, t) \
3003        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3004
3005#define while_each_thread(g, t) \
3006        while ((t = next_thread(t)) != g)
3007
3008#define __for_each_thread(signal, t)    \
3009        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3010
3011#define for_each_thread(p, t)           \
3012        __for_each_thread((p)->signal, t)
3013
3014/* Careful: this is a double loop, 'break' won't work as expected. */
3015#define for_each_process_thread(p, t)   \
3016        for_each_process(p) for_each_thread(p, t)
3017
3018static inline int get_nr_threads(struct task_struct *tsk)
3019{
3020        return tsk->signal->nr_threads;
3021}
3022
3023static inline bool thread_group_leader(struct task_struct *p)
3024{
3025        return p->exit_signal >= 0;
3026}
3027
3028/* Do to the insanities of de_thread it is possible for a process
3029 * to have the pid of the thread group leader without actually being
3030 * the thread group leader.  For iteration through the pids in proc
3031 * all we care about is that we have a task with the appropriate
3032 * pid, we don't actually care if we have the right task.
3033 */
3034static inline bool has_group_leader_pid(struct task_struct *p)
3035{
3036        return task_pid(p) == p->signal->leader_pid;
3037}
3038
3039static inline
3040bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3041{
3042        return p1->signal == p2->signal;
3043}
3044
3045static inline struct task_struct *next_thread(const struct task_struct *p)
3046{
3047        return list_entry_rcu(p->thread_group.next,
3048                              struct task_struct, thread_group);
3049}
3050
3051static inline int thread_group_empty(struct task_struct *p)
3052{
3053        return list_empty(&p->thread_group);
3054}
3055
3056#define delay_group_leader(p) \
3057                (thread_group_leader(p) && !thread_group_empty(p))
3058
3059/*
3060 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3061 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
3062 * pins the final release of task.io_context.  Also protects ->cpuset and
3063 * ->cgroup.subsys[]. And ->vfork_done.
3064 *
3065 * Nests both inside and outside of read_lock(&tasklist_lock).
3066 * It must not be nested with write_lock_irq(&tasklist_lock),
3067 * neither inside nor outside.
3068 */
3069static inline void task_lock(struct task_struct *p)
3070{
3071        spin_lock(&p->alloc_lock);
3072}
3073
3074static inline void task_unlock(struct task_struct *p)
3075{
3076        spin_unlock(&p->alloc_lock);
3077}
3078
3079extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3080                                                        unsigned long *flags);
3081
3082static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3083                                                       unsigned long *flags)
3084{
3085        struct sighand_struct *ret;
3086
3087        ret = __lock_task_sighand(tsk, flags);
3088        (void)__cond_lock(&tsk->sighand->siglock, ret);
3089        return ret;
3090}
3091
3092static inline void unlock_task_sighand(struct task_struct *tsk,
3093                                                unsigned long *flags)
3094{
3095        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3096}
3097
3098/**
3099 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3100 * @tsk: task causing the changes
3101 *
3102 * All operations which modify a threadgroup - a new thread joining the
3103 * group, death of a member thread (the assertion of PF_EXITING) and
3104 * exec(2) dethreading the process and replacing the leader - are wrapped
3105 * by threadgroup_change_{begin|end}().  This is to provide a place which
3106 * subsystems needing threadgroup stability can hook into for
3107 * synchronization.
3108 */
3109static inline void threadgroup_change_begin(struct task_struct *tsk)
3110{
3111        might_sleep();
3112        cgroup_threadgroup_change_begin(tsk);
3113}
3114
3115/**
3116 * threadgroup_change_end - mark the end of changes to a threadgroup
3117 * @tsk: task causing the changes
3118 *
3119 * See threadgroup_change_begin().
3120 */
3121static inline void threadgroup_change_end(struct task_struct *tsk)
3122{
3123        cgroup_threadgroup_change_end(tsk);
3124}
3125
3126#ifdef CONFIG_THREAD_INFO_IN_TASK
3127
3128static inline struct thread_info *task_thread_info(struct task_struct *task)
3129{
3130        return &task->thread_info;
3131}
3132
3133/*
3134 * When accessing the stack of a non-current task that might exit, use
3135 * try_get_task_stack() instead.  task_stack_page will return a pointer
3136 * that could get freed out from under you.
3137 */
3138static inline void *task_stack_page(const struct task_struct *task)
3139{
3140        return task->stack;
3141}
3142
3143#define setup_thread_stack(new,old)     do { } while(0)
3144
3145static inline unsigned long *end_of_stack(const struct task_struct *task)
3146{
3147        return task->stack;
3148}
3149
3150#elif !defined(__HAVE_THREAD_FUNCTIONS)
3151
3152#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
3153#define task_stack_page(task)   ((void *)(task)->stack)
3154
3155static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3156{
3157        *task_thread_info(p) = *task_thread_info(org);
3158        task_thread_info(p)->task = p;
3159}
3160
3161/*
3162 * Return the address of the last usable long on the stack.
3163 *
3164 * When the stack grows down, this is just above the thread
3165 * info struct. Going any lower will corrupt the threadinfo.
3166 *
3167 * When the stack grows up, this is the highest address.
3168 * Beyond that position, we corrupt data on the next page.
3169 */
3170static inline unsigned long *end_of_stack(struct task_struct *p)
3171{
3172#ifdef CONFIG_STACK_GROWSUP
3173        return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3174#else
3175        return (unsigned long *)(task_thread_info(p) + 1);
3176#endif
3177}
3178
3179#endif
3180
3181#ifdef CONFIG_THREAD_INFO_IN_TASK
3182static inline void *try_get_task_stack(struct task_struct *tsk)
3183{
3184        return atomic_inc_not_zero(&tsk->stack_refcount) ?
3185                task_stack_page(tsk) : NULL;
3186}
3187
3188extern void put_task_stack(struct task_struct *tsk);
3189#else
3190static inline void *try_get_task_stack(struct task_struct *tsk)
3191{
3192        return task_stack_page(tsk);
3193}
3194
3195static inline void put_task_stack(struct task_struct *tsk) {}
3196#endif
3197
3198#define task_stack_end_corrupted(task) \
3199                (*(end_of_stack(task)) != STACK_END_MAGIC)
3200
3201static inline int object_is_on_stack(void *obj)
3202{
3203        void *stack = task_stack_page(current);
3204
3205        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3206}
3207
3208extern void thread_stack_cache_init(void);
3209
3210#ifdef CONFIG_DEBUG_STACK_USAGE
3211static inline unsigned long stack_not_used(struct task_struct *p)
3212{
3213        unsigned long *n = end_of_stack(p);
3214
3215        do {    /* Skip over canary */
3216# ifdef CONFIG_STACK_GROWSUP
3217                n--;
3218# else
3219                n++;
3220# endif
3221        } while (!*n);
3222
3223# ifdef CONFIG_STACK_GROWSUP
3224        return (unsigned long)end_of_stack(p) - (unsigned long)n;
3225# else
3226        return (unsigned long)n - (unsigned long)end_of_stack(p);
3227# endif
3228}
3229#endif
3230extern void set_task_stack_end_magic(struct task_struct *tsk);
3231
3232/* set thread flags in other task's structures
3233 * - see asm/thread_info.h for TIF_xxxx flags available
3234 */
3235static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3236{
3237        set_ti_thread_flag(task_thread_info(tsk), flag);
3238}
3239
3240static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3241{
3242        clear_ti_thread_flag(task_thread_info(tsk), flag);
3243}
3244
3245static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3246{
3247        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3248}
3249
3250static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3251{
3252        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3253}
3254
3255static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3256{
3257        return test_ti_thread_flag(task_thread_info(tsk), flag);
3258}
3259
3260static inline void set_tsk_need_resched(struct task_struct *tsk)
3261{
3262        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3263}
3264
3265static inline void clear_tsk_need_resched(struct task_struct *tsk)
3266{
3267        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3268}
3269
3270static inline int test_tsk_need_resched(struct task_struct *tsk)
3271{
3272        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3273}
3274
3275static inline int restart_syscall(void)
3276{
3277        set_tsk_thread_flag(current, TIF_SIGPENDING);
3278        return -ERESTARTNOINTR;
3279}
3280
3281static inline int signal_pending(struct task_struct *p)
3282{
3283        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3284}
3285
3286static inline int __fatal_signal_pending(struct task_struct *p)
3287{
3288        return unlikely(sigismember(&p->pending.signal, SIGKILL));
3289}
3290
3291static inline int fatal_signal_pending(struct task_struct *p)
3292{
3293        return signal_pending(p) && __fatal_signal_pending(p);
3294}
3295
3296static inline int signal_pending_state(long state, struct task_struct *p)
3297{
3298        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3299                return 0;
3300        if (!signal_pending(p))
3301                return 0;
3302
3303        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3304}
3305
3306/*
3307 * cond_resched() and cond_resched_lock(): latency reduction via
3308 * explicit rescheduling in places that are safe. The return
3309 * value indicates whether a reschedule was done in fact.
3310 * cond_resched_lock() will drop the spinlock before scheduling,
3311 * cond_resched_softirq() will enable bhs before scheduling.
3312 */
3313#ifndef CONFIG_PREEMPT
3314extern int _cond_resched(void);
3315#else
3316static inline int _cond_resched(void) { return 0; }
3317#endif
3318
3319#define cond_resched() ({                       \
3320        ___might_sleep(__FILE__, __LINE__, 0);  \
3321        _cond_resched();                        \
3322})
3323
3324extern int __cond_resched_lock(spinlock_t *lock);
3325
3326#define cond_resched_lock(lock) ({                              \
3327        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3328        __cond_resched_lock(lock);                              \
3329})
3330
3331extern int __cond_resched_softirq(void);
3332
3333#define cond_resched_softirq() ({                                       \
3334        ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
3335        __cond_resched_softirq();                                       \
3336})
3337
3338static inline void cond_resched_rcu(void)
3339{
3340#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3341        rcu_read_unlock();
3342        cond_resched();
3343        rcu_read_lock();
3344#endif
3345}
3346
3347static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3348{
3349#ifdef CONFIG_DEBUG_PREEMPT
3350        return p->preempt_disable_ip;
3351#else
3352        return 0;
3353#endif
3354}
3355
3356/*
3357 * Does a critical section need to be broken due to another
3358 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3359 * but a general need for low latency)
3360 */
3361static inline int spin_needbreak(spinlock_t *lock)
3362{
3363#ifdef CONFIG_PREEMPT
3364        return spin_is_contended(lock);
3365#else
3366        return 0;
3367#endif
3368}
3369
3370/*
3371 * Idle thread specific functions to determine the need_resched
3372 * polling state.
3373 */
3374#ifdef TIF_POLLING_NRFLAG
3375static inline int tsk_is_polling(struct task_struct *p)
3376{
3377        return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3378}
3379
3380static inline void __current_set_polling(void)
3381{
3382        set_thread_flag(TIF_POLLING_NRFLAG);
3383}
3384
3385static inline bool __must_check current_set_polling_and_test(void)
3386{
3387        __current_set_polling();
3388
3389        /*
3390         * Polling state must be visible before we test NEED_RESCHED,
3391         * paired by resched_curr()
3392         */
3393        smp_mb__after_atomic();
3394
3395        return unlikely(tif_need_resched());
3396}
3397
3398static inline void __current_clr_polling(void)
3399{
3400        clear_thread_flag(TIF_POLLING_NRFLAG);
3401}
3402
3403static inline bool __must_check current_clr_polling_and_test(void)
3404{
3405        __current_clr_polling();
3406
3407        /*
3408         * Polling state must be visible before we test NEED_RESCHED,
3409         * paired by resched_curr()
3410         */
3411        smp_mb__after_atomic();
3412
3413        return unlikely(tif_need_resched());
3414}
3415
3416#else
3417static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3418static inline void __current_set_polling(void) { }
3419static inline void __current_clr_polling(void) { }
3420
3421static inline bool __must_check current_set_polling_and_test(void)
3422{
3423        return unlikely(tif_need_resched());
3424}
3425static inline bool __must_check current_clr_polling_and_test(void)
3426{
3427        return unlikely(tif_need_resched());
3428}
3429#endif
3430
3431static inline void current_clr_polling(void)
3432{
3433        __current_clr_polling();
3434
3435        /*
3436         * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3437         * Once the bit is cleared, we'll get IPIs with every new
3438         * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3439         * fold.
3440         */
3441        smp_mb(); /* paired with resched_curr() */
3442
3443        preempt_fold_need_resched();
3444}
3445
3446static __always_inline bool need_resched(void)
3447{
3448        return unlikely(tif_need_resched());
3449}
3450
3451/*
3452 * Thread group CPU time accounting.
3453 */
3454void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3455void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3456
3457/*
3458 * Reevaluate whether the task has signals pending delivery.
3459 * Wake the task if so.
3460 * This is required every time the blocked sigset_t changes.
3461 * callers must hold sighand->siglock.
3462 */
3463extern void recalc_sigpending_and_wake(struct task_struct *t);
3464extern void recalc_sigpending(void);
3465
3466extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3467
3468static inline void signal_wake_up(struct task_struct *t, bool resume)
3469{
3470        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3471}
3472static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3473{
3474        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3475}
3476
3477/*
3478 * Wrappers for p->thread_info->cpu access. No-op on UP.
3479 */
3480#ifdef CONFIG_SMP
3481
3482static inline unsigned int task_cpu(const struct task_struct *p)
3483{
3484#ifdef CONFIG_THREAD_INFO_IN_TASK
3485        return p->cpu;
3486#else
3487        return task_thread_info(p)->cpu;
3488#endif
3489}
3490
3491static inline int task_node(const struct task_struct *p)
3492{
3493        return cpu_to_node(task_cpu(p));
3494}
3495
3496extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3497
3498#else
3499
3500static inline unsigned int task_cpu(const struct task_struct *p)
3501{
3502        return 0;
3503}
3504
3505static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3506{
3507}
3508
3509#endif /* CONFIG_SMP */
3510
3511extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3512extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3513
3514#ifdef CONFIG_CGROUP_SCHED
3515extern struct task_group root_task_group;
3516#endif /* CONFIG_CGROUP_SCHED */
3517
3518extern int task_can_switch_user(struct user_struct *up,
3519                                        struct task_struct *tsk);
3520
3521#ifdef CONFIG_TASK_XACCT
3522static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3523{
3524        tsk->ioac.rchar += amt;
3525}
3526
3527static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3528{
3529        tsk->ioac.wchar += amt;
3530}
3531
3532static inline void inc_syscr(struct task_struct *tsk)
3533{
3534        tsk->ioac.syscr++;
3535}
3536
3537static inline void inc_syscw(struct task_struct *tsk)
3538{
3539        tsk->ioac.syscw++;
3540}
3541#else
3542static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3543{
3544}
3545
3546static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3547{
3548}
3549
3550static inline void inc_syscr(struct task_struct *tsk)
3551{
3552}
3553
3554static inline void inc_syscw(struct task_struct *tsk)
3555{
3556}
3557#endif
3558
3559#ifndef TASK_SIZE_OF
3560#define TASK_SIZE_OF(tsk)       TASK_SIZE
3561#endif
3562
3563#ifdef CONFIG_MEMCG
3564extern void mm_update_next_owner(struct mm_struct *mm);
3565#else
3566static inline void mm_update_next_owner(struct mm_struct *mm)
3567{
3568}
3569#endif /* CONFIG_MEMCG */
3570
3571static inline unsigned long task_rlimit(const struct task_struct *tsk,
3572                unsigned int limit)
3573{
3574        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3575}
3576
3577static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3578                unsigned int limit)
3579{
3580        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3581}
3582
3583static inline unsigned long rlimit(unsigned int limit)
3584{
3585        return task_rlimit(current, limit);
3586}
3587
3588static inline unsigned long rlimit_max(unsigned int limit)
3589{
3590        return task_rlimit_max(current, limit);
3591}
3592
3593#define SCHED_CPUFREQ_RT        (1U << 0)
3594#define SCHED_CPUFREQ_DL        (1U << 1)
3595#define SCHED_CPUFREQ_IOWAIT    (1U << 2)
3596
3597#define SCHED_CPUFREQ_RT_DL     (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3598
3599#ifdef CONFIG_CPU_FREQ
3600struct update_util_data {
3601       void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3602};
3603
3604void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3605                       void (*func)(struct update_util_data *data, u64 time,
3606                                    unsigned int flags));
3607void cpufreq_remove_update_util_hook(int cpu);
3608#endif /* CONFIG_CPU_FREQ */
3609
3610#endif
3611