linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <net/flow_dissector.h>
  38#include <linux/splice.h>
  39#include <linux/in6.h>
  40#include <linux/if_packet.h>
  41#include <net/flow.h>
  42
  43/* The interface for checksum offload between the stack and networking drivers
  44 * is as follows...
  45 *
  46 * A. IP checksum related features
  47 *
  48 * Drivers advertise checksum offload capabilities in the features of a device.
  49 * From the stack's point of view these are capabilities offered by the driver,
  50 * a driver typically only advertises features that it is capable of offloading
  51 * to its device.
  52 *
  53 * The checksum related features are:
  54 *
  55 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  56 *                        IP (one's complement) checksum for any combination
  57 *                        of protocols or protocol layering. The checksum is
  58 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  59 *                        interface (see below).
  60 *
  61 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  62 *                        TCP or UDP packets over IPv4. These are specifically
  63 *                        unencapsulated packets of the form IPv4|TCP or
  64 *                        IPv4|UDP where the Protocol field in the IPv4 header
  65 *                        is TCP or UDP. The IPv4 header may contain IP options
  66 *                        This feature cannot be set in features for a device
  67 *                        with NETIF_F_HW_CSUM also set. This feature is being
  68 *                        DEPRECATED (see below).
  69 *
  70 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  71 *                        TCP or UDP packets over IPv6. These are specifically
  72 *                        unencapsulated packets of the form IPv6|TCP or
  73 *                        IPv4|UDP where the Next Header field in the IPv6
  74 *                        header is either TCP or UDP. IPv6 extension headers
  75 *                        are not supported with this feature. This feature
  76 *                        cannot be set in features for a device with
  77 *                        NETIF_F_HW_CSUM also set. This feature is being
  78 *                        DEPRECATED (see below).
  79 *
  80 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  81 *                       This flag is used only used to disable the RX checksum
  82 *                       feature for a device. The stack will accept receive
  83 *                       checksum indication in packets received on a device
  84 *                       regardless of whether NETIF_F_RXCSUM is set.
  85 *
  86 * B. Checksumming of received packets by device. Indication of checksum
  87 *    verification is in set skb->ip_summed. Possible values are:
  88 *
  89 * CHECKSUM_NONE:
  90 *
  91 *   Device did not checksum this packet e.g. due to lack of capabilities.
  92 *   The packet contains full (though not verified) checksum in packet but
  93 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  94 *
  95 * CHECKSUM_UNNECESSARY:
  96 *
  97 *   The hardware you're dealing with doesn't calculate the full checksum
  98 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  99 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 100 *   if their checksums are okay. skb->csum is still undefined in this case
 101 *   though. A driver or device must never modify the checksum field in the
 102 *   packet even if checksum is verified.
 103 *
 104 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 105 *     TCP: IPv6 and IPv4.
 106 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 107 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 108 *       may perform further validation in this case.
 109 *     GRE: only if the checksum is present in the header.
 110 *     SCTP: indicates the CRC in SCTP header has been validated.
 111 *
 112 *   skb->csum_level indicates the number of consecutive checksums found in
 113 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 114 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 115 *   and a device is able to verify the checksums for UDP (possibly zero),
 116 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 117 *   two. If the device were only able to verify the UDP checksum and not
 118 *   GRE, either because it doesn't support GRE checksum of because GRE
 119 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 120 *   not considered in this case).
 121 *
 122 * CHECKSUM_COMPLETE:
 123 *
 124 *   This is the most generic way. The device supplied checksum of the _whole_
 125 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 126 *   hardware doesn't need to parse L3/L4 headers to implement this.
 127 *
 128 *   Note: Even if device supports only some protocols, but is able to produce
 129 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 130 *
 131 * CHECKSUM_PARTIAL:
 132 *
 133 *   A checksum is set up to be offloaded to a device as described in the
 134 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 135 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 136 *   on the same host, or it may be set in the input path in GRO or remote
 137 *   checksum offload. For the purposes of checksum verification, the checksum
 138 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 139 *   checksums in the packet are considered verified. Any checksums in the
 140 *   packet that are after the checksum being offloaded are not considered to
 141 *   be verified.
 142 *
 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 144 *    in the skb->ip_summed for a packet. Values are:
 145 *
 146 * CHECKSUM_PARTIAL:
 147 *
 148 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 149 *   from skb->csum_start up to the end, and to record/write the checksum at
 150 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 151 *   csum_start and csum_offset values are valid values given the length and
 152 *   offset of the packet, however they should not attempt to validate that the
 153 *   checksum refers to a legitimate transport layer checksum-- it is the
 154 *   purview of the stack to validate that csum_start and csum_offset are set
 155 *   correctly.
 156 *
 157 *   When the stack requests checksum offload for a packet, the driver MUST
 158 *   ensure that the checksum is set correctly. A driver can either offload the
 159 *   checksum calculation to the device, or call skb_checksum_help (in the case
 160 *   that the device does not support offload for a particular checksum).
 161 *
 162 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 163 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 164 *   checksum offload capability. If a  device has limited checksum capabilities
 165 *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
 166 *   described above) a helper function can be called to resolve
 167 *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
 168 *   function takes a spec argument that describes the protocol layer that is
 169 *   supported for checksum offload and can be called for each packet. If a
 170 *   packet does not match the specification for offload, skb_checksum_help
 171 *   is called to resolve the checksum.
 172 *
 173 * CHECKSUM_NONE:
 174 *
 175 *   The skb was already checksummed by the protocol, or a checksum is not
 176 *   required.
 177 *
 178 * CHECKSUM_UNNECESSARY:
 179 *
 180 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 181 *   output.
 182 *
 183 * CHECKSUM_COMPLETE:
 184 *   Not used in checksum output. If a driver observes a packet with this value
 185 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 186 *
 187 * D. Non-IP checksum (CRC) offloads
 188 *
 189 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 190 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 191 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 192 *     accordingly. Note the there is no indication in the skbuff that the
 193 *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
 194 *     both IP checksum offload and SCTP CRC offload must verify which offload
 195 *     is configured for a packet presumably by inspecting packet headers.
 196 *
 197 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 198 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 199 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 200 *     accordingly. Note the there is no indication in the skbuff that the
 201 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 202 *     both IP checksum offload and FCOE CRC offload must verify which offload
 203 *     is configured for a packet presumably by inspecting packet headers.
 204 *
 205 * E. Checksumming on output with GSO.
 206 *
 207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 210 * part of the GSO operation is implied. If a checksum is being offloaded
 211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 212 * are set to refer to the outermost checksum being offload (two offloaded
 213 * checksums are possible with UDP encapsulation).
 214 */
 215
 216/* Don't change this without changing skb_csum_unnecessary! */
 217#define CHECKSUM_NONE           0
 218#define CHECKSUM_UNNECESSARY    1
 219#define CHECKSUM_COMPLETE       2
 220#define CHECKSUM_PARTIAL        3
 221
 222/* Maximum value in skb->csum_level */
 223#define SKB_MAX_CSUM_LEVEL      3
 224
 225#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 226#define SKB_WITH_OVERHEAD(X)    \
 227        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 228#define SKB_MAX_ORDER(X, ORDER) \
 229        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 230#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 231#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 232
 233/* return minimum truesize of one skb containing X bytes of data */
 234#define SKB_TRUESIZE(X) ((X) +                                          \
 235                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 236                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 237
 238struct net_device;
 239struct scatterlist;
 240struct pipe_inode_info;
 241struct iov_iter;
 242struct napi_struct;
 243
 244#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 245struct nf_conntrack {
 246        atomic_t use;
 247};
 248#endif
 249
 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 251struct nf_bridge_info {
 252        atomic_t                use;
 253        enum {
 254                BRNF_PROTO_UNCHANGED,
 255                BRNF_PROTO_8021Q,
 256                BRNF_PROTO_PPPOE
 257        } orig_proto:8;
 258        u8                      pkt_otherhost:1;
 259        u8                      in_prerouting:1;
 260        u8                      bridged_dnat:1;
 261        __u16                   frag_max_size;
 262        struct net_device       *physindev;
 263
 264        /* always valid & non-NULL from FORWARD on, for physdev match */
 265        struct net_device       *physoutdev;
 266        union {
 267                /* prerouting: detect dnat in orig/reply direction */
 268                __be32          ipv4_daddr;
 269                struct in6_addr ipv6_daddr;
 270
 271                /* after prerouting + nat detected: store original source
 272                 * mac since neigh resolution overwrites it, only used while
 273                 * skb is out in neigh layer.
 274                 */
 275                char neigh_header[8];
 276        };
 277};
 278#endif
 279
 280struct sk_buff_head {
 281        /* These two members must be first. */
 282        struct sk_buff  *next;
 283        struct sk_buff  *prev;
 284
 285        __u32           qlen;
 286        spinlock_t      lock;
 287};
 288
 289struct sk_buff;
 290
 291/* To allow 64K frame to be packed as single skb without frag_list we
 292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 293 * buffers which do not start on a page boundary.
 294 *
 295 * Since GRO uses frags we allocate at least 16 regardless of page
 296 * size.
 297 */
 298#if (65536/PAGE_SIZE + 1) < 16
 299#define MAX_SKB_FRAGS 16UL
 300#else
 301#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 302#endif
 303extern int sysctl_max_skb_frags;
 304
 305/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 306 * segment using its current segmentation instead.
 307 */
 308#define GSO_BY_FRAGS    0xFFFF
 309
 310typedef struct skb_frag_struct skb_frag_t;
 311
 312struct skb_frag_struct {
 313        struct {
 314                struct page *p;
 315        } page;
 316#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 317        __u32 page_offset;
 318        __u32 size;
 319#else
 320        __u16 page_offset;
 321        __u16 size;
 322#endif
 323};
 324
 325static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 326{
 327        return frag->size;
 328}
 329
 330static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 331{
 332        frag->size = size;
 333}
 334
 335static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 336{
 337        frag->size += delta;
 338}
 339
 340static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 341{
 342        frag->size -= delta;
 343}
 344
 345#define HAVE_HW_TIME_STAMP
 346
 347/**
 348 * struct skb_shared_hwtstamps - hardware time stamps
 349 * @hwtstamp:   hardware time stamp transformed into duration
 350 *              since arbitrary point in time
 351 *
 352 * Software time stamps generated by ktime_get_real() are stored in
 353 * skb->tstamp.
 354 *
 355 * hwtstamps can only be compared against other hwtstamps from
 356 * the same device.
 357 *
 358 * This structure is attached to packets as part of the
 359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 360 */
 361struct skb_shared_hwtstamps {
 362        ktime_t hwtstamp;
 363};
 364
 365/* Definitions for tx_flags in struct skb_shared_info */
 366enum {
 367        /* generate hardware time stamp */
 368        SKBTX_HW_TSTAMP = 1 << 0,
 369
 370        /* generate software time stamp when queueing packet to NIC */
 371        SKBTX_SW_TSTAMP = 1 << 1,
 372
 373        /* device driver is going to provide hardware time stamp */
 374        SKBTX_IN_PROGRESS = 1 << 2,
 375
 376        /* device driver supports TX zero-copy buffers */
 377        SKBTX_DEV_ZEROCOPY = 1 << 3,
 378
 379        /* generate wifi status information (where possible) */
 380        SKBTX_WIFI_STATUS = 1 << 4,
 381
 382        /* This indicates at least one fragment might be overwritten
 383         * (as in vmsplice(), sendfile() ...)
 384         * If we need to compute a TX checksum, we'll need to copy
 385         * all frags to avoid possible bad checksum
 386         */
 387        SKBTX_SHARED_FRAG = 1 << 5,
 388
 389        /* generate software time stamp when entering packet scheduling */
 390        SKBTX_SCHED_TSTAMP = 1 << 6,
 391};
 392
 393#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 394                                 SKBTX_SCHED_TSTAMP)
 395#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 396
 397/*
 398 * The callback notifies userspace to release buffers when skb DMA is done in
 399 * lower device, the skb last reference should be 0 when calling this.
 400 * The zerocopy_success argument is true if zero copy transmit occurred,
 401 * false on data copy or out of memory error caused by data copy attempt.
 402 * The ctx field is used to track device context.
 403 * The desc field is used to track userspace buffer index.
 404 */
 405struct ubuf_info {
 406        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 407        void *ctx;
 408        unsigned long desc;
 409};
 410
 411/* This data is invariant across clones and lives at
 412 * the end of the header data, ie. at skb->end.
 413 */
 414struct skb_shared_info {
 415        unsigned char   nr_frags;
 416        __u8            tx_flags;
 417        unsigned short  gso_size;
 418        /* Warning: this field is not always filled in (UFO)! */
 419        unsigned short  gso_segs;
 420        unsigned short  gso_type;
 421        struct sk_buff  *frag_list;
 422        struct skb_shared_hwtstamps hwtstamps;
 423        u32             tskey;
 424        __be32          ip6_frag_id;
 425
 426        /*
 427         * Warning : all fields before dataref are cleared in __alloc_skb()
 428         */
 429        atomic_t        dataref;
 430
 431        /* Intermediate layers must ensure that destructor_arg
 432         * remains valid until skb destructor */
 433        void *          destructor_arg;
 434
 435        /* must be last field, see pskb_expand_head() */
 436        skb_frag_t      frags[MAX_SKB_FRAGS];
 437};
 438
 439/* We divide dataref into two halves.  The higher 16 bits hold references
 440 * to the payload part of skb->data.  The lower 16 bits hold references to
 441 * the entire skb->data.  A clone of a headerless skb holds the length of
 442 * the header in skb->hdr_len.
 443 *
 444 * All users must obey the rule that the skb->data reference count must be
 445 * greater than or equal to the payload reference count.
 446 *
 447 * Holding a reference to the payload part means that the user does not
 448 * care about modifications to the header part of skb->data.
 449 */
 450#define SKB_DATAREF_SHIFT 16
 451#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 452
 453
 454enum {
 455        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 456        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 457        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 458};
 459
 460enum {
 461        SKB_GSO_TCPV4 = 1 << 0,
 462        SKB_GSO_UDP = 1 << 1,
 463
 464        /* This indicates the skb is from an untrusted source. */
 465        SKB_GSO_DODGY = 1 << 2,
 466
 467        /* This indicates the tcp segment has CWR set. */
 468        SKB_GSO_TCP_ECN = 1 << 3,
 469
 470        SKB_GSO_TCP_FIXEDID = 1 << 4,
 471
 472        SKB_GSO_TCPV6 = 1 << 5,
 473
 474        SKB_GSO_FCOE = 1 << 6,
 475
 476        SKB_GSO_GRE = 1 << 7,
 477
 478        SKB_GSO_GRE_CSUM = 1 << 8,
 479
 480        SKB_GSO_IPXIP4 = 1 << 9,
 481
 482        SKB_GSO_IPXIP6 = 1 << 10,
 483
 484        SKB_GSO_UDP_TUNNEL = 1 << 11,
 485
 486        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
 487
 488        SKB_GSO_PARTIAL = 1 << 13,
 489
 490        SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
 491
 492        SKB_GSO_SCTP = 1 << 15,
 493};
 494
 495#if BITS_PER_LONG > 32
 496#define NET_SKBUFF_DATA_USES_OFFSET 1
 497#endif
 498
 499#ifdef NET_SKBUFF_DATA_USES_OFFSET
 500typedef unsigned int sk_buff_data_t;
 501#else
 502typedef unsigned char *sk_buff_data_t;
 503#endif
 504
 505/**
 506 * struct skb_mstamp - multi resolution time stamps
 507 * @stamp_us: timestamp in us resolution
 508 * @stamp_jiffies: timestamp in jiffies
 509 */
 510struct skb_mstamp {
 511        union {
 512                u64             v64;
 513                struct {
 514                        u32     stamp_us;
 515                        u32     stamp_jiffies;
 516                };
 517        };
 518};
 519
 520/**
 521 * skb_mstamp_get - get current timestamp
 522 * @cl: place to store timestamps
 523 */
 524static inline void skb_mstamp_get(struct skb_mstamp *cl)
 525{
 526        u64 val = local_clock();
 527
 528        do_div(val, NSEC_PER_USEC);
 529        cl->stamp_us = (u32)val;
 530        cl->stamp_jiffies = (u32)jiffies;
 531}
 532
 533/**
 534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 535 * @t1: pointer to newest sample
 536 * @t0: pointer to oldest sample
 537 */
 538static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
 539                                      const struct skb_mstamp *t0)
 540{
 541        s32 delta_us = t1->stamp_us - t0->stamp_us;
 542        u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
 543
 544        /* If delta_us is negative, this might be because interval is too big,
 545         * or local_clock() drift is too big : fallback using jiffies.
 546         */
 547        if (delta_us <= 0 ||
 548            delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
 549
 550                delta_us = jiffies_to_usecs(delta_jiffies);
 551
 552        return delta_us;
 553}
 554
 555static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
 556                                    const struct skb_mstamp *t0)
 557{
 558        s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
 559
 560        if (!diff)
 561                diff = t1->stamp_us - t0->stamp_us;
 562        return diff > 0;
 563}
 564
 565/** 
 566 *      struct sk_buff - socket buffer
 567 *      @next: Next buffer in list
 568 *      @prev: Previous buffer in list
 569 *      @tstamp: Time we arrived/left
 570 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 571 *      @sk: Socket we are owned by
 572 *      @dev: Device we arrived on/are leaving by
 573 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 574 *      @_skb_refdst: destination entry (with norefcount bit)
 575 *      @sp: the security path, used for xfrm
 576 *      @len: Length of actual data
 577 *      @data_len: Data length
 578 *      @mac_len: Length of link layer header
 579 *      @hdr_len: writable header length of cloned skb
 580 *      @csum: Checksum (must include start/offset pair)
 581 *      @csum_start: Offset from skb->head where checksumming should start
 582 *      @csum_offset: Offset from csum_start where checksum should be stored
 583 *      @priority: Packet queueing priority
 584 *      @ignore_df: allow local fragmentation
 585 *      @cloned: Head may be cloned (check refcnt to be sure)
 586 *      @ip_summed: Driver fed us an IP checksum
 587 *      @nohdr: Payload reference only, must not modify header
 588 *      @nfctinfo: Relationship of this skb to the connection
 589 *      @pkt_type: Packet class
 590 *      @fclone: skbuff clone status
 591 *      @ipvs_property: skbuff is owned by ipvs
 592 *      @peeked: this packet has been seen already, so stats have been
 593 *              done for it, don't do them again
 594 *      @nf_trace: netfilter packet trace flag
 595 *      @protocol: Packet protocol from driver
 596 *      @destructor: Destruct function
 597 *      @nfct: Associated connection, if any
 598 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 599 *      @skb_iif: ifindex of device we arrived on
 600 *      @tc_index: Traffic control index
 601 *      @tc_verd: traffic control verdict
 602 *      @hash: the packet hash
 603 *      @queue_mapping: Queue mapping for multiqueue devices
 604 *      @xmit_more: More SKBs are pending for this queue
 605 *      @ndisc_nodetype: router type (from link layer)
 606 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 607 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 608 *              ports.
 609 *      @sw_hash: indicates hash was computed in software stack
 610 *      @wifi_acked_valid: wifi_acked was set
 611 *      @wifi_acked: whether frame was acked on wifi or not
 612 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 613  *     @napi_id: id of the NAPI struct this skb came from
 614 *      @secmark: security marking
 615 *      @mark: Generic packet mark
 616 *      @vlan_proto: vlan encapsulation protocol
 617 *      @vlan_tci: vlan tag control information
 618 *      @inner_protocol: Protocol (encapsulation)
 619 *      @inner_transport_header: Inner transport layer header (encapsulation)
 620 *      @inner_network_header: Network layer header (encapsulation)
 621 *      @inner_mac_header: Link layer header (encapsulation)
 622 *      @transport_header: Transport layer header
 623 *      @network_header: Network layer header
 624 *      @mac_header: Link layer header
 625 *      @tail: Tail pointer
 626 *      @end: End pointer
 627 *      @head: Head of buffer
 628 *      @data: Data head pointer
 629 *      @truesize: Buffer size
 630 *      @users: User count - see {datagram,tcp}.c
 631 */
 632
 633struct sk_buff {
 634        union {
 635                struct {
 636                        /* These two members must be first. */
 637                        struct sk_buff          *next;
 638                        struct sk_buff          *prev;
 639
 640                        union {
 641                                ktime_t         tstamp;
 642                                struct skb_mstamp skb_mstamp;
 643                        };
 644                };
 645                struct rb_node  rbnode; /* used in netem & tcp stack */
 646        };
 647        struct sock             *sk;
 648        struct net_device       *dev;
 649
 650        /*
 651         * This is the control buffer. It is free to use for every
 652         * layer. Please put your private variables there. If you
 653         * want to keep them across layers you have to do a skb_clone()
 654         * first. This is owned by whoever has the skb queued ATM.
 655         */
 656        char                    cb[48] __aligned(8);
 657
 658        unsigned long           _skb_refdst;
 659        void                    (*destructor)(struct sk_buff *skb);
 660#ifdef CONFIG_XFRM
 661        struct  sec_path        *sp;
 662#endif
 663#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 664        struct nf_conntrack     *nfct;
 665#endif
 666#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 667        struct nf_bridge_info   *nf_bridge;
 668#endif
 669        unsigned int            len,
 670                                data_len;
 671        __u16                   mac_len,
 672                                hdr_len;
 673
 674        /* Following fields are _not_ copied in __copy_skb_header()
 675         * Note that queue_mapping is here mostly to fill a hole.
 676         */
 677        kmemcheck_bitfield_begin(flags1);
 678        __u16                   queue_mapping;
 679
 680/* if you move cloned around you also must adapt those constants */
 681#ifdef __BIG_ENDIAN_BITFIELD
 682#define CLONED_MASK     (1 << 7)
 683#else
 684#define CLONED_MASK     1
 685#endif
 686#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 687
 688        __u8                    __cloned_offset[0];
 689        __u8                    cloned:1,
 690                                nohdr:1,
 691                                fclone:2,
 692                                peeked:1,
 693                                head_frag:1,
 694                                xmit_more:1,
 695                                __unused:1; /* one bit hole */
 696        kmemcheck_bitfield_end(flags1);
 697
 698        /* fields enclosed in headers_start/headers_end are copied
 699         * using a single memcpy() in __copy_skb_header()
 700         */
 701        /* private: */
 702        __u32                   headers_start[0];
 703        /* public: */
 704
 705/* if you move pkt_type around you also must adapt those constants */
 706#ifdef __BIG_ENDIAN_BITFIELD
 707#define PKT_TYPE_MAX    (7 << 5)
 708#else
 709#define PKT_TYPE_MAX    7
 710#endif
 711#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 712
 713        __u8                    __pkt_type_offset[0];
 714        __u8                    pkt_type:3;
 715        __u8                    pfmemalloc:1;
 716        __u8                    ignore_df:1;
 717        __u8                    nfctinfo:3;
 718
 719        __u8                    nf_trace:1;
 720        __u8                    ip_summed:2;
 721        __u8                    ooo_okay:1;
 722        __u8                    l4_hash:1;
 723        __u8                    sw_hash:1;
 724        __u8                    wifi_acked_valid:1;
 725        __u8                    wifi_acked:1;
 726
 727        __u8                    no_fcs:1;
 728        /* Indicates the inner headers are valid in the skbuff. */
 729        __u8                    encapsulation:1;
 730        __u8                    encap_hdr_csum:1;
 731        __u8                    csum_valid:1;
 732        __u8                    csum_complete_sw:1;
 733        __u8                    csum_level:2;
 734        __u8                    csum_bad:1;
 735
 736#ifdef CONFIG_IPV6_NDISC_NODETYPE
 737        __u8                    ndisc_nodetype:2;
 738#endif
 739        __u8                    ipvs_property:1;
 740        __u8                    inner_protocol_type:1;
 741        __u8                    remcsum_offload:1;
 742#ifdef CONFIG_NET_SWITCHDEV
 743        __u8                    offload_fwd_mark:1;
 744#endif
 745        /* 2, 4 or 5 bit hole */
 746
 747#ifdef CONFIG_NET_SCHED
 748        __u16                   tc_index;       /* traffic control index */
 749#ifdef CONFIG_NET_CLS_ACT
 750        __u16                   tc_verd;        /* traffic control verdict */
 751#endif
 752#endif
 753
 754        union {
 755                __wsum          csum;
 756                struct {
 757                        __u16   csum_start;
 758                        __u16   csum_offset;
 759                };
 760        };
 761        __u32                   priority;
 762        int                     skb_iif;
 763        __u32                   hash;
 764        __be16                  vlan_proto;
 765        __u16                   vlan_tci;
 766#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 767        union {
 768                unsigned int    napi_id;
 769                unsigned int    sender_cpu;
 770        };
 771#endif
 772#ifdef CONFIG_NETWORK_SECMARK
 773        __u32           secmark;
 774#endif
 775
 776        union {
 777                __u32           mark;
 778                __u32           reserved_tailroom;
 779        };
 780
 781        union {
 782                __be16          inner_protocol;
 783                __u8            inner_ipproto;
 784        };
 785
 786        __u16                   inner_transport_header;
 787        __u16                   inner_network_header;
 788        __u16                   inner_mac_header;
 789
 790        __be16                  protocol;
 791        __u16                   transport_header;
 792        __u16                   network_header;
 793        __u16                   mac_header;
 794
 795        /* private: */
 796        __u32                   headers_end[0];
 797        /* public: */
 798
 799        /* These elements must be at the end, see alloc_skb() for details.  */
 800        sk_buff_data_t          tail;
 801        sk_buff_data_t          end;
 802        unsigned char           *head,
 803                                *data;
 804        unsigned int            truesize;
 805        atomic_t                users;
 806};
 807
 808#ifdef __KERNEL__
 809/*
 810 *      Handling routines are only of interest to the kernel
 811 */
 812#include <linux/slab.h>
 813
 814
 815#define SKB_ALLOC_FCLONE        0x01
 816#define SKB_ALLOC_RX            0x02
 817#define SKB_ALLOC_NAPI          0x04
 818
 819/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 820static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 821{
 822        return unlikely(skb->pfmemalloc);
 823}
 824
 825/*
 826 * skb might have a dst pointer attached, refcounted or not.
 827 * _skb_refdst low order bit is set if refcount was _not_ taken
 828 */
 829#define SKB_DST_NOREF   1UL
 830#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 831
 832/**
 833 * skb_dst - returns skb dst_entry
 834 * @skb: buffer
 835 *
 836 * Returns skb dst_entry, regardless of reference taken or not.
 837 */
 838static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 839{
 840        /* If refdst was not refcounted, check we still are in a 
 841         * rcu_read_lock section
 842         */
 843        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 844                !rcu_read_lock_held() &&
 845                !rcu_read_lock_bh_held());
 846        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 847}
 848
 849/**
 850 * skb_dst_set - sets skb dst
 851 * @skb: buffer
 852 * @dst: dst entry
 853 *
 854 * Sets skb dst, assuming a reference was taken on dst and should
 855 * be released by skb_dst_drop()
 856 */
 857static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 858{
 859        skb->_skb_refdst = (unsigned long)dst;
 860}
 861
 862/**
 863 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 864 * @skb: buffer
 865 * @dst: dst entry
 866 *
 867 * Sets skb dst, assuming a reference was not taken on dst.
 868 * If dst entry is cached, we do not take reference and dst_release
 869 * will be avoided by refdst_drop. If dst entry is not cached, we take
 870 * reference, so that last dst_release can destroy the dst immediately.
 871 */
 872static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 873{
 874        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 875        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 876}
 877
 878/**
 879 * skb_dst_is_noref - Test if skb dst isn't refcounted
 880 * @skb: buffer
 881 */
 882static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 883{
 884        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 885}
 886
 887static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 888{
 889        return (struct rtable *)skb_dst(skb);
 890}
 891
 892/* For mangling skb->pkt_type from user space side from applications
 893 * such as nft, tc, etc, we only allow a conservative subset of
 894 * possible pkt_types to be set.
 895*/
 896static inline bool skb_pkt_type_ok(u32 ptype)
 897{
 898        return ptype <= PACKET_OTHERHOST;
 899}
 900
 901void kfree_skb(struct sk_buff *skb);
 902void kfree_skb_list(struct sk_buff *segs);
 903void skb_tx_error(struct sk_buff *skb);
 904void consume_skb(struct sk_buff *skb);
 905void  __kfree_skb(struct sk_buff *skb);
 906extern struct kmem_cache *skbuff_head_cache;
 907
 908void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 909bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 910                      bool *fragstolen, int *delta_truesize);
 911
 912struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 913                            int node);
 914struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 915struct sk_buff *build_skb(void *data, unsigned int frag_size);
 916static inline struct sk_buff *alloc_skb(unsigned int size,
 917                                        gfp_t priority)
 918{
 919        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 920}
 921
 922struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 923                                     unsigned long data_len,
 924                                     int max_page_order,
 925                                     int *errcode,
 926                                     gfp_t gfp_mask);
 927
 928/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 929struct sk_buff_fclones {
 930        struct sk_buff  skb1;
 931
 932        struct sk_buff  skb2;
 933
 934        atomic_t        fclone_ref;
 935};
 936
 937/**
 938 *      skb_fclone_busy - check if fclone is busy
 939 *      @sk: socket
 940 *      @skb: buffer
 941 *
 942 * Returns true if skb is a fast clone, and its clone is not freed.
 943 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 944 * so we also check that this didnt happen.
 945 */
 946static inline bool skb_fclone_busy(const struct sock *sk,
 947                                   const struct sk_buff *skb)
 948{
 949        const struct sk_buff_fclones *fclones;
 950
 951        fclones = container_of(skb, struct sk_buff_fclones, skb1);
 952
 953        return skb->fclone == SKB_FCLONE_ORIG &&
 954               atomic_read(&fclones->fclone_ref) > 1 &&
 955               fclones->skb2.sk == sk;
 956}
 957
 958static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 959                                               gfp_t priority)
 960{
 961        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 962}
 963
 964struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 965static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 966{
 967        return __alloc_skb_head(priority, -1);
 968}
 969
 970struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 971int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 972struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
 973struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
 974struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 975                                   gfp_t gfp_mask, bool fclone);
 976static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
 977                                          gfp_t gfp_mask)
 978{
 979        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
 980}
 981
 982int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
 983struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 984                                     unsigned int headroom);
 985struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
 986                                int newtailroom, gfp_t priority);
 987int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 988                        int offset, int len);
 989int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
 990                 int len);
 991int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
 992int skb_pad(struct sk_buff *skb, int pad);
 993#define dev_kfree_skb(a)        consume_skb(a)
 994
 995int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 996                            int getfrag(void *from, char *to, int offset,
 997                                        int len, int odd, struct sk_buff *skb),
 998                            void *from, int length);
 999
1000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1001                         int offset, size_t size);
1002
1003struct skb_seq_state {
1004        __u32           lower_offset;
1005        __u32           upper_offset;
1006        __u32           frag_idx;
1007        __u32           stepped_offset;
1008        struct sk_buff  *root_skb;
1009        struct sk_buff  *cur_skb;
1010        __u8            *frag_data;
1011};
1012
1013void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1014                          unsigned int to, struct skb_seq_state *st);
1015unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1016                          struct skb_seq_state *st);
1017void skb_abort_seq_read(struct skb_seq_state *st);
1018
1019unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1020                           unsigned int to, struct ts_config *config);
1021
1022/*
1023 * Packet hash types specify the type of hash in skb_set_hash.
1024 *
1025 * Hash types refer to the protocol layer addresses which are used to
1026 * construct a packet's hash. The hashes are used to differentiate or identify
1027 * flows of the protocol layer for the hash type. Hash types are either
1028 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1029 *
1030 * Properties of hashes:
1031 *
1032 * 1) Two packets in different flows have different hash values
1033 * 2) Two packets in the same flow should have the same hash value
1034 *
1035 * A hash at a higher layer is considered to be more specific. A driver should
1036 * set the most specific hash possible.
1037 *
1038 * A driver cannot indicate a more specific hash than the layer at which a hash
1039 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1040 *
1041 * A driver may indicate a hash level which is less specific than the
1042 * actual layer the hash was computed on. For instance, a hash computed
1043 * at L4 may be considered an L3 hash. This should only be done if the
1044 * driver can't unambiguously determine that the HW computed the hash at
1045 * the higher layer. Note that the "should" in the second property above
1046 * permits this.
1047 */
1048enum pkt_hash_types {
1049        PKT_HASH_TYPE_NONE,     /* Undefined type */
1050        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1051        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1052        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1053};
1054
1055static inline void skb_clear_hash(struct sk_buff *skb)
1056{
1057        skb->hash = 0;
1058        skb->sw_hash = 0;
1059        skb->l4_hash = 0;
1060}
1061
1062static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1063{
1064        if (!skb->l4_hash)
1065                skb_clear_hash(skb);
1066}
1067
1068static inline void
1069__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1070{
1071        skb->l4_hash = is_l4;
1072        skb->sw_hash = is_sw;
1073        skb->hash = hash;
1074}
1075
1076static inline void
1077skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1078{
1079        /* Used by drivers to set hash from HW */
1080        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1081}
1082
1083static inline void
1084__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1085{
1086        __skb_set_hash(skb, hash, true, is_l4);
1087}
1088
1089void __skb_get_hash(struct sk_buff *skb);
1090u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1091u32 skb_get_poff(const struct sk_buff *skb);
1092u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1093                   const struct flow_keys *keys, int hlen);
1094__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1095                            void *data, int hlen_proto);
1096
1097static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1098                                        int thoff, u8 ip_proto)
1099{
1100        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1101}
1102
1103void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1104                             const struct flow_dissector_key *key,
1105                             unsigned int key_count);
1106
1107bool __skb_flow_dissect(const struct sk_buff *skb,
1108                        struct flow_dissector *flow_dissector,
1109                        void *target_container,
1110                        void *data, __be16 proto, int nhoff, int hlen,
1111                        unsigned int flags);
1112
1113static inline bool skb_flow_dissect(const struct sk_buff *skb,
1114                                    struct flow_dissector *flow_dissector,
1115                                    void *target_container, unsigned int flags)
1116{
1117        return __skb_flow_dissect(skb, flow_dissector, target_container,
1118                                  NULL, 0, 0, 0, flags);
1119}
1120
1121static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1122                                              struct flow_keys *flow,
1123                                              unsigned int flags)
1124{
1125        memset(flow, 0, sizeof(*flow));
1126        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1127                                  NULL, 0, 0, 0, flags);
1128}
1129
1130static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1131                                                  void *data, __be16 proto,
1132                                                  int nhoff, int hlen,
1133                                                  unsigned int flags)
1134{
1135        memset(flow, 0, sizeof(*flow));
1136        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1137                                  data, proto, nhoff, hlen, flags);
1138}
1139
1140static inline __u32 skb_get_hash(struct sk_buff *skb)
1141{
1142        if (!skb->l4_hash && !skb->sw_hash)
1143                __skb_get_hash(skb);
1144
1145        return skb->hash;
1146}
1147
1148__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1149
1150static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1151{
1152        if (!skb->l4_hash && !skb->sw_hash) {
1153                struct flow_keys keys;
1154                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1155
1156                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1157        }
1158
1159        return skb->hash;
1160}
1161
1162__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1163
1164static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1165{
1166        if (!skb->l4_hash && !skb->sw_hash) {
1167                struct flow_keys keys;
1168                __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1169
1170                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1171        }
1172
1173        return skb->hash;
1174}
1175
1176__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1177
1178static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1179{
1180        return skb->hash;
1181}
1182
1183static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1184{
1185        to->hash = from->hash;
1186        to->sw_hash = from->sw_hash;
1187        to->l4_hash = from->l4_hash;
1188};
1189
1190#ifdef NET_SKBUFF_DATA_USES_OFFSET
1191static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1192{
1193        return skb->head + skb->end;
1194}
1195
1196static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1197{
1198        return skb->end;
1199}
1200#else
1201static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1202{
1203        return skb->end;
1204}
1205
1206static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1207{
1208        return skb->end - skb->head;
1209}
1210#endif
1211
1212/* Internal */
1213#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1214
1215static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1216{
1217        return &skb_shinfo(skb)->hwtstamps;
1218}
1219
1220/**
1221 *      skb_queue_empty - check if a queue is empty
1222 *      @list: queue head
1223 *
1224 *      Returns true if the queue is empty, false otherwise.
1225 */
1226static inline int skb_queue_empty(const struct sk_buff_head *list)
1227{
1228        return list->next == (const struct sk_buff *) list;
1229}
1230
1231/**
1232 *      skb_queue_is_last - check if skb is the last entry in the queue
1233 *      @list: queue head
1234 *      @skb: buffer
1235 *
1236 *      Returns true if @skb is the last buffer on the list.
1237 */
1238static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1239                                     const struct sk_buff *skb)
1240{
1241        return skb->next == (const struct sk_buff *) list;
1242}
1243
1244/**
1245 *      skb_queue_is_first - check if skb is the first entry in the queue
1246 *      @list: queue head
1247 *      @skb: buffer
1248 *
1249 *      Returns true if @skb is the first buffer on the list.
1250 */
1251static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1252                                      const struct sk_buff *skb)
1253{
1254        return skb->prev == (const struct sk_buff *) list;
1255}
1256
1257/**
1258 *      skb_queue_next - return the next packet in the queue
1259 *      @list: queue head
1260 *      @skb: current buffer
1261 *
1262 *      Return the next packet in @list after @skb.  It is only valid to
1263 *      call this if skb_queue_is_last() evaluates to false.
1264 */
1265static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1266                                             const struct sk_buff *skb)
1267{
1268        /* This BUG_ON may seem severe, but if we just return then we
1269         * are going to dereference garbage.
1270         */
1271        BUG_ON(skb_queue_is_last(list, skb));
1272        return skb->next;
1273}
1274
1275/**
1276 *      skb_queue_prev - return the prev packet in the queue
1277 *      @list: queue head
1278 *      @skb: current buffer
1279 *
1280 *      Return the prev packet in @list before @skb.  It is only valid to
1281 *      call this if skb_queue_is_first() evaluates to false.
1282 */
1283static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1284                                             const struct sk_buff *skb)
1285{
1286        /* This BUG_ON may seem severe, but if we just return then we
1287         * are going to dereference garbage.
1288         */
1289        BUG_ON(skb_queue_is_first(list, skb));
1290        return skb->prev;
1291}
1292
1293/**
1294 *      skb_get - reference buffer
1295 *      @skb: buffer to reference
1296 *
1297 *      Makes another reference to a socket buffer and returns a pointer
1298 *      to the buffer.
1299 */
1300static inline struct sk_buff *skb_get(struct sk_buff *skb)
1301{
1302        atomic_inc(&skb->users);
1303        return skb;
1304}
1305
1306/*
1307 * If users == 1, we are the only owner and are can avoid redundant
1308 * atomic change.
1309 */
1310
1311/**
1312 *      skb_cloned - is the buffer a clone
1313 *      @skb: buffer to check
1314 *
1315 *      Returns true if the buffer was generated with skb_clone() and is
1316 *      one of multiple shared copies of the buffer. Cloned buffers are
1317 *      shared data so must not be written to under normal circumstances.
1318 */
1319static inline int skb_cloned(const struct sk_buff *skb)
1320{
1321        return skb->cloned &&
1322               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1323}
1324
1325static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1326{
1327        might_sleep_if(gfpflags_allow_blocking(pri));
1328
1329        if (skb_cloned(skb))
1330                return pskb_expand_head(skb, 0, 0, pri);
1331
1332        return 0;
1333}
1334
1335/**
1336 *      skb_header_cloned - is the header a clone
1337 *      @skb: buffer to check
1338 *
1339 *      Returns true if modifying the header part of the buffer requires
1340 *      the data to be copied.
1341 */
1342static inline int skb_header_cloned(const struct sk_buff *skb)
1343{
1344        int dataref;
1345
1346        if (!skb->cloned)
1347                return 0;
1348
1349        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1350        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1351        return dataref != 1;
1352}
1353
1354static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1355{
1356        might_sleep_if(gfpflags_allow_blocking(pri));
1357
1358        if (skb_header_cloned(skb))
1359                return pskb_expand_head(skb, 0, 0, pri);
1360
1361        return 0;
1362}
1363
1364/**
1365 *      skb_header_release - release reference to header
1366 *      @skb: buffer to operate on
1367 *
1368 *      Drop a reference to the header part of the buffer.  This is done
1369 *      by acquiring a payload reference.  You must not read from the header
1370 *      part of skb->data after this.
1371 *      Note : Check if you can use __skb_header_release() instead.
1372 */
1373static inline void skb_header_release(struct sk_buff *skb)
1374{
1375        BUG_ON(skb->nohdr);
1376        skb->nohdr = 1;
1377        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1378}
1379
1380/**
1381 *      __skb_header_release - release reference to header
1382 *      @skb: buffer to operate on
1383 *
1384 *      Variant of skb_header_release() assuming skb is private to caller.
1385 *      We can avoid one atomic operation.
1386 */
1387static inline void __skb_header_release(struct sk_buff *skb)
1388{
1389        skb->nohdr = 1;
1390        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1391}
1392
1393
1394/**
1395 *      skb_shared - is the buffer shared
1396 *      @skb: buffer to check
1397 *
1398 *      Returns true if more than one person has a reference to this
1399 *      buffer.
1400 */
1401static inline int skb_shared(const struct sk_buff *skb)
1402{
1403        return atomic_read(&skb->users) != 1;
1404}
1405
1406/**
1407 *      skb_share_check - check if buffer is shared and if so clone it
1408 *      @skb: buffer to check
1409 *      @pri: priority for memory allocation
1410 *
1411 *      If the buffer is shared the buffer is cloned and the old copy
1412 *      drops a reference. A new clone with a single reference is returned.
1413 *      If the buffer is not shared the original buffer is returned. When
1414 *      being called from interrupt status or with spinlocks held pri must
1415 *      be GFP_ATOMIC.
1416 *
1417 *      NULL is returned on a memory allocation failure.
1418 */
1419static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1420{
1421        might_sleep_if(gfpflags_allow_blocking(pri));
1422        if (skb_shared(skb)) {
1423                struct sk_buff *nskb = skb_clone(skb, pri);
1424
1425                if (likely(nskb))
1426                        consume_skb(skb);
1427                else
1428                        kfree_skb(skb);
1429                skb = nskb;
1430        }
1431        return skb;
1432}
1433
1434/*
1435 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1436 *      packets to handle cases where we have a local reader and forward
1437 *      and a couple of other messy ones. The normal one is tcpdumping
1438 *      a packet thats being forwarded.
1439 */
1440
1441/**
1442 *      skb_unshare - make a copy of a shared buffer
1443 *      @skb: buffer to check
1444 *      @pri: priority for memory allocation
1445 *
1446 *      If the socket buffer is a clone then this function creates a new
1447 *      copy of the data, drops a reference count on the old copy and returns
1448 *      the new copy with the reference count at 1. If the buffer is not a clone
1449 *      the original buffer is returned. When called with a spinlock held or
1450 *      from interrupt state @pri must be %GFP_ATOMIC
1451 *
1452 *      %NULL is returned on a memory allocation failure.
1453 */
1454static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1455                                          gfp_t pri)
1456{
1457        might_sleep_if(gfpflags_allow_blocking(pri));
1458        if (skb_cloned(skb)) {
1459                struct sk_buff *nskb = skb_copy(skb, pri);
1460
1461                /* Free our shared copy */
1462                if (likely(nskb))
1463                        consume_skb(skb);
1464                else
1465                        kfree_skb(skb);
1466                skb = nskb;
1467        }
1468        return skb;
1469}
1470
1471/**
1472 *      skb_peek - peek at the head of an &sk_buff_head
1473 *      @list_: list to peek at
1474 *
1475 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1476 *      be careful with this one. A peek leaves the buffer on the
1477 *      list and someone else may run off with it. You must hold
1478 *      the appropriate locks or have a private queue to do this.
1479 *
1480 *      Returns %NULL for an empty list or a pointer to the head element.
1481 *      The reference count is not incremented and the reference is therefore
1482 *      volatile. Use with caution.
1483 */
1484static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1485{
1486        struct sk_buff *skb = list_->next;
1487
1488        if (skb == (struct sk_buff *)list_)
1489                skb = NULL;
1490        return skb;
1491}
1492
1493/**
1494 *      skb_peek_next - peek skb following the given one from a queue
1495 *      @skb: skb to start from
1496 *      @list_: list to peek at
1497 *
1498 *      Returns %NULL when the end of the list is met or a pointer to the
1499 *      next element. The reference count is not incremented and the
1500 *      reference is therefore volatile. Use with caution.
1501 */
1502static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1503                const struct sk_buff_head *list_)
1504{
1505        struct sk_buff *next = skb->next;
1506
1507        if (next == (struct sk_buff *)list_)
1508                next = NULL;
1509        return next;
1510}
1511
1512/**
1513 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1514 *      @list_: list to peek at
1515 *
1516 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1517 *      be careful with this one. A peek leaves the buffer on the
1518 *      list and someone else may run off with it. You must hold
1519 *      the appropriate locks or have a private queue to do this.
1520 *
1521 *      Returns %NULL for an empty list or a pointer to the tail element.
1522 *      The reference count is not incremented and the reference is therefore
1523 *      volatile. Use with caution.
1524 */
1525static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1526{
1527        struct sk_buff *skb = list_->prev;
1528
1529        if (skb == (struct sk_buff *)list_)
1530                skb = NULL;
1531        return skb;
1532
1533}
1534
1535/**
1536 *      skb_queue_len   - get queue length
1537 *      @list_: list to measure
1538 *
1539 *      Return the length of an &sk_buff queue.
1540 */
1541static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1542{
1543        return list_->qlen;
1544}
1545
1546/**
1547 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1548 *      @list: queue to initialize
1549 *
1550 *      This initializes only the list and queue length aspects of
1551 *      an sk_buff_head object.  This allows to initialize the list
1552 *      aspects of an sk_buff_head without reinitializing things like
1553 *      the spinlock.  It can also be used for on-stack sk_buff_head
1554 *      objects where the spinlock is known to not be used.
1555 */
1556static inline void __skb_queue_head_init(struct sk_buff_head *list)
1557{
1558        list->prev = list->next = (struct sk_buff *)list;
1559        list->qlen = 0;
1560}
1561
1562/*
1563 * This function creates a split out lock class for each invocation;
1564 * this is needed for now since a whole lot of users of the skb-queue
1565 * infrastructure in drivers have different locking usage (in hardirq)
1566 * than the networking core (in softirq only). In the long run either the
1567 * network layer or drivers should need annotation to consolidate the
1568 * main types of usage into 3 classes.
1569 */
1570static inline void skb_queue_head_init(struct sk_buff_head *list)
1571{
1572        spin_lock_init(&list->lock);
1573        __skb_queue_head_init(list);
1574}
1575
1576static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1577                struct lock_class_key *class)
1578{
1579        skb_queue_head_init(list);
1580        lockdep_set_class(&list->lock, class);
1581}
1582
1583/*
1584 *      Insert an sk_buff on a list.
1585 *
1586 *      The "__skb_xxxx()" functions are the non-atomic ones that
1587 *      can only be called with interrupts disabled.
1588 */
1589void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1590                struct sk_buff_head *list);
1591static inline void __skb_insert(struct sk_buff *newsk,
1592                                struct sk_buff *prev, struct sk_buff *next,
1593                                struct sk_buff_head *list)
1594{
1595        newsk->next = next;
1596        newsk->prev = prev;
1597        next->prev  = prev->next = newsk;
1598        list->qlen++;
1599}
1600
1601static inline void __skb_queue_splice(const struct sk_buff_head *list,
1602                                      struct sk_buff *prev,
1603                                      struct sk_buff *next)
1604{
1605        struct sk_buff *first = list->next;
1606        struct sk_buff *last = list->prev;
1607
1608        first->prev = prev;
1609        prev->next = first;
1610
1611        last->next = next;
1612        next->prev = last;
1613}
1614
1615/**
1616 *      skb_queue_splice - join two skb lists, this is designed for stacks
1617 *      @list: the new list to add
1618 *      @head: the place to add it in the first list
1619 */
1620static inline void skb_queue_splice(const struct sk_buff_head *list,
1621                                    struct sk_buff_head *head)
1622{
1623        if (!skb_queue_empty(list)) {
1624                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1625                head->qlen += list->qlen;
1626        }
1627}
1628
1629/**
1630 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1631 *      @list: the new list to add
1632 *      @head: the place to add it in the first list
1633 *
1634 *      The list at @list is reinitialised
1635 */
1636static inline void skb_queue_splice_init(struct sk_buff_head *list,
1637                                         struct sk_buff_head *head)
1638{
1639        if (!skb_queue_empty(list)) {
1640                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1641                head->qlen += list->qlen;
1642                __skb_queue_head_init(list);
1643        }
1644}
1645
1646/**
1647 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1648 *      @list: the new list to add
1649 *      @head: the place to add it in the first list
1650 */
1651static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1652                                         struct sk_buff_head *head)
1653{
1654        if (!skb_queue_empty(list)) {
1655                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1656                head->qlen += list->qlen;
1657        }
1658}
1659
1660/**
1661 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1662 *      @list: the new list to add
1663 *      @head: the place to add it in the first list
1664 *
1665 *      Each of the lists is a queue.
1666 *      The list at @list is reinitialised
1667 */
1668static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1669                                              struct sk_buff_head *head)
1670{
1671        if (!skb_queue_empty(list)) {
1672                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1673                head->qlen += list->qlen;
1674                __skb_queue_head_init(list);
1675        }
1676}
1677
1678/**
1679 *      __skb_queue_after - queue a buffer at the list head
1680 *      @list: list to use
1681 *      @prev: place after this buffer
1682 *      @newsk: buffer to queue
1683 *
1684 *      Queue a buffer int the middle of a list. This function takes no locks
1685 *      and you must therefore hold required locks before calling it.
1686 *
1687 *      A buffer cannot be placed on two lists at the same time.
1688 */
1689static inline void __skb_queue_after(struct sk_buff_head *list,
1690                                     struct sk_buff *prev,
1691                                     struct sk_buff *newsk)
1692{
1693        __skb_insert(newsk, prev, prev->next, list);
1694}
1695
1696void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1697                struct sk_buff_head *list);
1698
1699static inline void __skb_queue_before(struct sk_buff_head *list,
1700                                      struct sk_buff *next,
1701                                      struct sk_buff *newsk)
1702{
1703        __skb_insert(newsk, next->prev, next, list);
1704}
1705
1706/**
1707 *      __skb_queue_head - queue a buffer at the list head
1708 *      @list: list to use
1709 *      @newsk: buffer to queue
1710 *
1711 *      Queue a buffer at the start of a list. This function takes no locks
1712 *      and you must therefore hold required locks before calling it.
1713 *
1714 *      A buffer cannot be placed on two lists at the same time.
1715 */
1716void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1717static inline void __skb_queue_head(struct sk_buff_head *list,
1718                                    struct sk_buff *newsk)
1719{
1720        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1721}
1722
1723/**
1724 *      __skb_queue_tail - queue a buffer at the list tail
1725 *      @list: list to use
1726 *      @newsk: buffer to queue
1727 *
1728 *      Queue a buffer at the end of a list. This function takes no locks
1729 *      and you must therefore hold required locks before calling it.
1730 *
1731 *      A buffer cannot be placed on two lists at the same time.
1732 */
1733void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1734static inline void __skb_queue_tail(struct sk_buff_head *list,
1735                                   struct sk_buff *newsk)
1736{
1737        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1738}
1739
1740/*
1741 * remove sk_buff from list. _Must_ be called atomically, and with
1742 * the list known..
1743 */
1744void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1745static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1746{
1747        struct sk_buff *next, *prev;
1748
1749        list->qlen--;
1750        next       = skb->next;
1751        prev       = skb->prev;
1752        skb->next  = skb->prev = NULL;
1753        next->prev = prev;
1754        prev->next = next;
1755}
1756
1757/**
1758 *      __skb_dequeue - remove from the head of the queue
1759 *      @list: list to dequeue from
1760 *
1761 *      Remove the head of the list. This function does not take any locks
1762 *      so must be used with appropriate locks held only. The head item is
1763 *      returned or %NULL if the list is empty.
1764 */
1765struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1766static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1767{
1768        struct sk_buff *skb = skb_peek(list);
1769        if (skb)
1770                __skb_unlink(skb, list);
1771        return skb;
1772}
1773
1774/**
1775 *      __skb_dequeue_tail - remove from the tail of the queue
1776 *      @list: list to dequeue from
1777 *
1778 *      Remove the tail of the list. This function does not take any locks
1779 *      so must be used with appropriate locks held only. The tail item is
1780 *      returned or %NULL if the list is empty.
1781 */
1782struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1783static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1784{
1785        struct sk_buff *skb = skb_peek_tail(list);
1786        if (skb)
1787                __skb_unlink(skb, list);
1788        return skb;
1789}
1790
1791
1792static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1793{
1794        return skb->data_len;
1795}
1796
1797static inline unsigned int skb_headlen(const struct sk_buff *skb)
1798{
1799        return skb->len - skb->data_len;
1800}
1801
1802static inline int skb_pagelen(const struct sk_buff *skb)
1803{
1804        int i, len = 0;
1805
1806        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1807                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1808        return len + skb_headlen(skb);
1809}
1810
1811/**
1812 * __skb_fill_page_desc - initialise a paged fragment in an skb
1813 * @skb: buffer containing fragment to be initialised
1814 * @i: paged fragment index to initialise
1815 * @page: the page to use for this fragment
1816 * @off: the offset to the data with @page
1817 * @size: the length of the data
1818 *
1819 * Initialises the @i'th fragment of @skb to point to &size bytes at
1820 * offset @off within @page.
1821 *
1822 * Does not take any additional reference on the fragment.
1823 */
1824static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1825                                        struct page *page, int off, int size)
1826{
1827        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1828
1829        /*
1830         * Propagate page pfmemalloc to the skb if we can. The problem is
1831         * that not all callers have unique ownership of the page but rely
1832         * on page_is_pfmemalloc doing the right thing(tm).
1833         */
1834        frag->page.p              = page;
1835        frag->page_offset         = off;
1836        skb_frag_size_set(frag, size);
1837
1838        page = compound_head(page);
1839        if (page_is_pfmemalloc(page))
1840                skb->pfmemalloc = true;
1841}
1842
1843/**
1844 * skb_fill_page_desc - initialise a paged fragment in an skb
1845 * @skb: buffer containing fragment to be initialised
1846 * @i: paged fragment index to initialise
1847 * @page: the page to use for this fragment
1848 * @off: the offset to the data with @page
1849 * @size: the length of the data
1850 *
1851 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1852 * @skb to point to @size bytes at offset @off within @page. In
1853 * addition updates @skb such that @i is the last fragment.
1854 *
1855 * Does not take any additional reference on the fragment.
1856 */
1857static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1858                                      struct page *page, int off, int size)
1859{
1860        __skb_fill_page_desc(skb, i, page, off, size);
1861        skb_shinfo(skb)->nr_frags = i + 1;
1862}
1863
1864void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1865                     int size, unsigned int truesize);
1866
1867void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1868                          unsigned int truesize);
1869
1870#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1871#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1872#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1873
1874#ifdef NET_SKBUFF_DATA_USES_OFFSET
1875static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1876{
1877        return skb->head + skb->tail;
1878}
1879
1880static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1881{
1882        skb->tail = skb->data - skb->head;
1883}
1884
1885static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1886{
1887        skb_reset_tail_pointer(skb);
1888        skb->tail += offset;
1889}
1890
1891#else /* NET_SKBUFF_DATA_USES_OFFSET */
1892static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1893{
1894        return skb->tail;
1895}
1896
1897static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1898{
1899        skb->tail = skb->data;
1900}
1901
1902static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1903{
1904        skb->tail = skb->data + offset;
1905}
1906
1907#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1908
1909/*
1910 *      Add data to an sk_buff
1911 */
1912unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1913unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1914static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1915{
1916        unsigned char *tmp = skb_tail_pointer(skb);
1917        SKB_LINEAR_ASSERT(skb);
1918        skb->tail += len;
1919        skb->len  += len;
1920        return tmp;
1921}
1922
1923unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1924static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1925{
1926        skb->data -= len;
1927        skb->len  += len;
1928        return skb->data;
1929}
1930
1931unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1932static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1933{
1934        skb->len -= len;
1935        BUG_ON(skb->len < skb->data_len);
1936        return skb->data += len;
1937}
1938
1939static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1940{
1941        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1942}
1943
1944unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1945
1946static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1947{
1948        if (len > skb_headlen(skb) &&
1949            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1950                return NULL;
1951        skb->len -= len;
1952        return skb->data += len;
1953}
1954
1955static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1956{
1957        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1958}
1959
1960static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1961{
1962        if (likely(len <= skb_headlen(skb)))
1963                return 1;
1964        if (unlikely(len > skb->len))
1965                return 0;
1966        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1967}
1968
1969/**
1970 *      skb_headroom - bytes at buffer head
1971 *      @skb: buffer to check
1972 *
1973 *      Return the number of bytes of free space at the head of an &sk_buff.
1974 */
1975static inline unsigned int skb_headroom(const struct sk_buff *skb)
1976{
1977        return skb->data - skb->head;
1978}
1979
1980/**
1981 *      skb_tailroom - bytes at buffer end
1982 *      @skb: buffer to check
1983 *
1984 *      Return the number of bytes of free space at the tail of an sk_buff
1985 */
1986static inline int skb_tailroom(const struct sk_buff *skb)
1987{
1988        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1989}
1990
1991/**
1992 *      skb_availroom - bytes at buffer end
1993 *      @skb: buffer to check
1994 *
1995 *      Return the number of bytes of free space at the tail of an sk_buff
1996 *      allocated by sk_stream_alloc()
1997 */
1998static inline int skb_availroom(const struct sk_buff *skb)
1999{
2000        if (skb_is_nonlinear(skb))
2001                return 0;
2002
2003        return skb->end - skb->tail - skb->reserved_tailroom;
2004}
2005
2006/**
2007 *      skb_reserve - adjust headroom
2008 *      @skb: buffer to alter
2009 *      @len: bytes to move
2010 *
2011 *      Increase the headroom of an empty &sk_buff by reducing the tail
2012 *      room. This is only allowed for an empty buffer.
2013 */
2014static inline void skb_reserve(struct sk_buff *skb, int len)
2015{
2016        skb->data += len;
2017        skb->tail += len;
2018}
2019
2020/**
2021 *      skb_tailroom_reserve - adjust reserved_tailroom
2022 *      @skb: buffer to alter
2023 *      @mtu: maximum amount of headlen permitted
2024 *      @needed_tailroom: minimum amount of reserved_tailroom
2025 *
2026 *      Set reserved_tailroom so that headlen can be as large as possible but
2027 *      not larger than mtu and tailroom cannot be smaller than
2028 *      needed_tailroom.
2029 *      The required headroom should already have been reserved before using
2030 *      this function.
2031 */
2032static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2033                                        unsigned int needed_tailroom)
2034{
2035        SKB_LINEAR_ASSERT(skb);
2036        if (mtu < skb_tailroom(skb) - needed_tailroom)
2037                /* use at most mtu */
2038                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2039        else
2040                /* use up to all available space */
2041                skb->reserved_tailroom = needed_tailroom;
2042}
2043
2044#define ENCAP_TYPE_ETHER        0
2045#define ENCAP_TYPE_IPPROTO      1
2046
2047static inline void skb_set_inner_protocol(struct sk_buff *skb,
2048                                          __be16 protocol)
2049{
2050        skb->inner_protocol = protocol;
2051        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2052}
2053
2054static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2055                                         __u8 ipproto)
2056{
2057        skb->inner_ipproto = ipproto;
2058        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2059}
2060
2061static inline void skb_reset_inner_headers(struct sk_buff *skb)
2062{
2063        skb->inner_mac_header = skb->mac_header;
2064        skb->inner_network_header = skb->network_header;
2065        skb->inner_transport_header = skb->transport_header;
2066}
2067
2068static inline void skb_reset_mac_len(struct sk_buff *skb)
2069{
2070        skb->mac_len = skb->network_header - skb->mac_header;
2071}
2072
2073static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2074                                                        *skb)
2075{
2076        return skb->head + skb->inner_transport_header;
2077}
2078
2079static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2080{
2081        return skb_inner_transport_header(skb) - skb->data;
2082}
2083
2084static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2085{
2086        skb->inner_transport_header = skb->data - skb->head;
2087}
2088
2089static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2090                                                   const int offset)
2091{
2092        skb_reset_inner_transport_header(skb);
2093        skb->inner_transport_header += offset;
2094}
2095
2096static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2097{
2098        return skb->head + skb->inner_network_header;
2099}
2100
2101static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2102{
2103        skb->inner_network_header = skb->data - skb->head;
2104}
2105
2106static inline void skb_set_inner_network_header(struct sk_buff *skb,
2107                                                const int offset)
2108{
2109        skb_reset_inner_network_header(skb);
2110        skb->inner_network_header += offset;
2111}
2112
2113static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2114{
2115        return skb->head + skb->inner_mac_header;
2116}
2117
2118static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2119{
2120        skb->inner_mac_header = skb->data - skb->head;
2121}
2122
2123static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2124                                            const int offset)
2125{
2126        skb_reset_inner_mac_header(skb);
2127        skb->inner_mac_header += offset;
2128}
2129static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2130{
2131        return skb->transport_header != (typeof(skb->transport_header))~0U;
2132}
2133
2134static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2135{
2136        return skb->head + skb->transport_header;
2137}
2138
2139static inline void skb_reset_transport_header(struct sk_buff *skb)
2140{
2141        skb->transport_header = skb->data - skb->head;
2142}
2143
2144static inline void skb_set_transport_header(struct sk_buff *skb,
2145                                            const int offset)
2146{
2147        skb_reset_transport_header(skb);
2148        skb->transport_header += offset;
2149}
2150
2151static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2152{
2153        return skb->head + skb->network_header;
2154}
2155
2156static inline void skb_reset_network_header(struct sk_buff *skb)
2157{
2158        skb->network_header = skb->data - skb->head;
2159}
2160
2161static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2162{
2163        skb_reset_network_header(skb);
2164        skb->network_header += offset;
2165}
2166
2167static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2168{
2169        return skb->head + skb->mac_header;
2170}
2171
2172static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2173{
2174        return skb->mac_header != (typeof(skb->mac_header))~0U;
2175}
2176
2177static inline void skb_reset_mac_header(struct sk_buff *skb)
2178{
2179        skb->mac_header = skb->data - skb->head;
2180}
2181
2182static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2183{
2184        skb_reset_mac_header(skb);
2185        skb->mac_header += offset;
2186}
2187
2188static inline void skb_pop_mac_header(struct sk_buff *skb)
2189{
2190        skb->mac_header = skb->network_header;
2191}
2192
2193static inline void skb_probe_transport_header(struct sk_buff *skb,
2194                                              const int offset_hint)
2195{
2196        struct flow_keys keys;
2197
2198        if (skb_transport_header_was_set(skb))
2199                return;
2200        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2201                skb_set_transport_header(skb, keys.control.thoff);
2202        else
2203                skb_set_transport_header(skb, offset_hint);
2204}
2205
2206static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2207{
2208        if (skb_mac_header_was_set(skb)) {
2209                const unsigned char *old_mac = skb_mac_header(skb);
2210
2211                skb_set_mac_header(skb, -skb->mac_len);
2212                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2213        }
2214}
2215
2216static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2217{
2218        return skb->csum_start - skb_headroom(skb);
2219}
2220
2221static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2222{
2223        return skb->head + skb->csum_start;
2224}
2225
2226static inline int skb_transport_offset(const struct sk_buff *skb)
2227{
2228        return skb_transport_header(skb) - skb->data;
2229}
2230
2231static inline u32 skb_network_header_len(const struct sk_buff *skb)
2232{
2233        return skb->transport_header - skb->network_header;
2234}
2235
2236static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2237{
2238        return skb->inner_transport_header - skb->inner_network_header;
2239}
2240
2241static inline int skb_network_offset(const struct sk_buff *skb)
2242{
2243        return skb_network_header(skb) - skb->data;
2244}
2245
2246static inline int skb_inner_network_offset(const struct sk_buff *skb)
2247{
2248        return skb_inner_network_header(skb) - skb->data;
2249}
2250
2251static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2252{
2253        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2254}
2255
2256/*
2257 * CPUs often take a performance hit when accessing unaligned memory
2258 * locations. The actual performance hit varies, it can be small if the
2259 * hardware handles it or large if we have to take an exception and fix it
2260 * in software.
2261 *
2262 * Since an ethernet header is 14 bytes network drivers often end up with
2263 * the IP header at an unaligned offset. The IP header can be aligned by
2264 * shifting the start of the packet by 2 bytes. Drivers should do this
2265 * with:
2266 *
2267 * skb_reserve(skb, NET_IP_ALIGN);
2268 *
2269 * The downside to this alignment of the IP header is that the DMA is now
2270 * unaligned. On some architectures the cost of an unaligned DMA is high
2271 * and this cost outweighs the gains made by aligning the IP header.
2272 *
2273 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2274 * to be overridden.
2275 */
2276#ifndef NET_IP_ALIGN
2277#define NET_IP_ALIGN    2
2278#endif
2279
2280/*
2281 * The networking layer reserves some headroom in skb data (via
2282 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2283 * the header has to grow. In the default case, if the header has to grow
2284 * 32 bytes or less we avoid the reallocation.
2285 *
2286 * Unfortunately this headroom changes the DMA alignment of the resulting
2287 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2288 * on some architectures. An architecture can override this value,
2289 * perhaps setting it to a cacheline in size (since that will maintain
2290 * cacheline alignment of the DMA). It must be a power of 2.
2291 *
2292 * Various parts of the networking layer expect at least 32 bytes of
2293 * headroom, you should not reduce this.
2294 *
2295 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2296 * to reduce average number of cache lines per packet.
2297 * get_rps_cpus() for example only access one 64 bytes aligned block :
2298 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2299 */
2300#ifndef NET_SKB_PAD
2301#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2302#endif
2303
2304int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2305
2306static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2307{
2308        if (unlikely(skb_is_nonlinear(skb))) {
2309                WARN_ON(1);
2310                return;
2311        }
2312        skb->len = len;
2313        skb_set_tail_pointer(skb, len);
2314}
2315
2316static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2317{
2318        __skb_set_length(skb, len);
2319}
2320
2321void skb_trim(struct sk_buff *skb, unsigned int len);
2322
2323static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2324{
2325        if (skb->data_len)
2326                return ___pskb_trim(skb, len);
2327        __skb_trim(skb, len);
2328        return 0;
2329}
2330
2331static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2332{
2333        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2334}
2335
2336/**
2337 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2338 *      @skb: buffer to alter
2339 *      @len: new length
2340 *
2341 *      This is identical to pskb_trim except that the caller knows that
2342 *      the skb is not cloned so we should never get an error due to out-
2343 *      of-memory.
2344 */
2345static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2346{
2347        int err = pskb_trim(skb, len);
2348        BUG_ON(err);
2349}
2350
2351static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2352{
2353        unsigned int diff = len - skb->len;
2354
2355        if (skb_tailroom(skb) < diff) {
2356                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2357                                           GFP_ATOMIC);
2358                if (ret)
2359                        return ret;
2360        }
2361        __skb_set_length(skb, len);
2362        return 0;
2363}
2364
2365/**
2366 *      skb_orphan - orphan a buffer
2367 *      @skb: buffer to orphan
2368 *
2369 *      If a buffer currently has an owner then we call the owner's
2370 *      destructor function and make the @skb unowned. The buffer continues
2371 *      to exist but is no longer charged to its former owner.
2372 */
2373static inline void skb_orphan(struct sk_buff *skb)
2374{
2375        if (skb->destructor) {
2376                skb->destructor(skb);
2377                skb->destructor = NULL;
2378                skb->sk         = NULL;
2379        } else {
2380                BUG_ON(skb->sk);
2381        }
2382}
2383
2384/**
2385 *      skb_orphan_frags - orphan the frags contained in a buffer
2386 *      @skb: buffer to orphan frags from
2387 *      @gfp_mask: allocation mask for replacement pages
2388 *
2389 *      For each frag in the SKB which needs a destructor (i.e. has an
2390 *      owner) create a copy of that frag and release the original
2391 *      page by calling the destructor.
2392 */
2393static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2394{
2395        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2396                return 0;
2397        return skb_copy_ubufs(skb, gfp_mask);
2398}
2399
2400/**
2401 *      __skb_queue_purge - empty a list
2402 *      @list: list to empty
2403 *
2404 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2405 *      the list and one reference dropped. This function does not take the
2406 *      list lock and the caller must hold the relevant locks to use it.
2407 */
2408void skb_queue_purge(struct sk_buff_head *list);
2409static inline void __skb_queue_purge(struct sk_buff_head *list)
2410{
2411        struct sk_buff *skb;
2412        while ((skb = __skb_dequeue(list)) != NULL)
2413                kfree_skb(skb);
2414}
2415
2416void skb_rbtree_purge(struct rb_root *root);
2417
2418void *netdev_alloc_frag(unsigned int fragsz);
2419
2420struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2421                                   gfp_t gfp_mask);
2422
2423/**
2424 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2425 *      @dev: network device to receive on
2426 *      @length: length to allocate
2427 *
2428 *      Allocate a new &sk_buff and assign it a usage count of one. The
2429 *      buffer has unspecified headroom built in. Users should allocate
2430 *      the headroom they think they need without accounting for the
2431 *      built in space. The built in space is used for optimisations.
2432 *
2433 *      %NULL is returned if there is no free memory. Although this function
2434 *      allocates memory it can be called from an interrupt.
2435 */
2436static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2437                                               unsigned int length)
2438{
2439        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2440}
2441
2442/* legacy helper around __netdev_alloc_skb() */
2443static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2444                                              gfp_t gfp_mask)
2445{
2446        return __netdev_alloc_skb(NULL, length, gfp_mask);
2447}
2448
2449/* legacy helper around netdev_alloc_skb() */
2450static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2451{
2452        return netdev_alloc_skb(NULL, length);
2453}
2454
2455
2456static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2457                unsigned int length, gfp_t gfp)
2458{
2459        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2460
2461        if (NET_IP_ALIGN && skb)
2462                skb_reserve(skb, NET_IP_ALIGN);
2463        return skb;
2464}
2465
2466static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2467                unsigned int length)
2468{
2469        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2470}
2471
2472static inline void skb_free_frag(void *addr)
2473{
2474        __free_page_frag(addr);
2475}
2476
2477void *napi_alloc_frag(unsigned int fragsz);
2478struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2479                                 unsigned int length, gfp_t gfp_mask);
2480static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2481                                             unsigned int length)
2482{
2483        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2484}
2485void napi_consume_skb(struct sk_buff *skb, int budget);
2486
2487void __kfree_skb_flush(void);
2488void __kfree_skb_defer(struct sk_buff *skb);
2489
2490/**
2491 * __dev_alloc_pages - allocate page for network Rx
2492 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2493 * @order: size of the allocation
2494 *
2495 * Allocate a new page.
2496 *
2497 * %NULL is returned if there is no free memory.
2498*/
2499static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2500                                             unsigned int order)
2501{
2502        /* This piece of code contains several assumptions.
2503         * 1.  This is for device Rx, therefor a cold page is preferred.
2504         * 2.  The expectation is the user wants a compound page.
2505         * 3.  If requesting a order 0 page it will not be compound
2506         *     due to the check to see if order has a value in prep_new_page
2507         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2508         *     code in gfp_to_alloc_flags that should be enforcing this.
2509         */
2510        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2511
2512        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2513}
2514
2515static inline struct page *dev_alloc_pages(unsigned int order)
2516{
2517        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2518}
2519
2520/**
2521 * __dev_alloc_page - allocate a page for network Rx
2522 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2523 *
2524 * Allocate a new page.
2525 *
2526 * %NULL is returned if there is no free memory.
2527 */
2528static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2529{
2530        return __dev_alloc_pages(gfp_mask, 0);
2531}
2532
2533static inline struct page *dev_alloc_page(void)
2534{
2535        return dev_alloc_pages(0);
2536}
2537
2538/**
2539 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2540 *      @page: The page that was allocated from skb_alloc_page
2541 *      @skb: The skb that may need pfmemalloc set
2542 */
2543static inline void skb_propagate_pfmemalloc(struct page *page,
2544                                             struct sk_buff *skb)
2545{
2546        if (page_is_pfmemalloc(page))
2547                skb->pfmemalloc = true;
2548}
2549
2550/**
2551 * skb_frag_page - retrieve the page referred to by a paged fragment
2552 * @frag: the paged fragment
2553 *
2554 * Returns the &struct page associated with @frag.
2555 */
2556static inline struct page *skb_frag_page(const skb_frag_t *frag)
2557{
2558        return frag->page.p;
2559}
2560
2561/**
2562 * __skb_frag_ref - take an addition reference on a paged fragment.
2563 * @frag: the paged fragment
2564 *
2565 * Takes an additional reference on the paged fragment @frag.
2566 */
2567static inline void __skb_frag_ref(skb_frag_t *frag)
2568{
2569        get_page(skb_frag_page(frag));
2570}
2571
2572/**
2573 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2574 * @skb: the buffer
2575 * @f: the fragment offset.
2576 *
2577 * Takes an additional reference on the @f'th paged fragment of @skb.
2578 */
2579static inline void skb_frag_ref(struct sk_buff *skb, int f)
2580{
2581        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2582}
2583
2584/**
2585 * __skb_frag_unref - release a reference on a paged fragment.
2586 * @frag: the paged fragment
2587 *
2588 * Releases a reference on the paged fragment @frag.
2589 */
2590static inline void __skb_frag_unref(skb_frag_t *frag)
2591{
2592        put_page(skb_frag_page(frag));
2593}
2594
2595/**
2596 * skb_frag_unref - release a reference on a paged fragment of an skb.
2597 * @skb: the buffer
2598 * @f: the fragment offset
2599 *
2600 * Releases a reference on the @f'th paged fragment of @skb.
2601 */
2602static inline void skb_frag_unref(struct sk_buff *skb, int f)
2603{
2604        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2605}
2606
2607/**
2608 * skb_frag_address - gets the address of the data contained in a paged fragment
2609 * @frag: the paged fragment buffer
2610 *
2611 * Returns the address of the data within @frag. The page must already
2612 * be mapped.
2613 */
2614static inline void *skb_frag_address(const skb_frag_t *frag)
2615{
2616        return page_address(skb_frag_page(frag)) + frag->page_offset;
2617}
2618
2619/**
2620 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2621 * @frag: the paged fragment buffer
2622 *
2623 * Returns the address of the data within @frag. Checks that the page
2624 * is mapped and returns %NULL otherwise.
2625 */
2626static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2627{
2628        void *ptr = page_address(skb_frag_page(frag));
2629        if (unlikely(!ptr))
2630                return NULL;
2631
2632        return ptr + frag->page_offset;
2633}
2634
2635/**
2636 * __skb_frag_set_page - sets the page contained in a paged fragment
2637 * @frag: the paged fragment
2638 * @page: the page to set
2639 *
2640 * Sets the fragment @frag to contain @page.
2641 */
2642static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2643{
2644        frag->page.p = page;
2645}
2646
2647/**
2648 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2649 * @skb: the buffer
2650 * @f: the fragment offset
2651 * @page: the page to set
2652 *
2653 * Sets the @f'th fragment of @skb to contain @page.
2654 */
2655static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2656                                     struct page *page)
2657{
2658        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2659}
2660
2661bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2662
2663/**
2664 * skb_frag_dma_map - maps a paged fragment via the DMA API
2665 * @dev: the device to map the fragment to
2666 * @frag: the paged fragment to map
2667 * @offset: the offset within the fragment (starting at the
2668 *          fragment's own offset)
2669 * @size: the number of bytes to map
2670 * @dir: the direction of the mapping (%PCI_DMA_*)
2671 *
2672 * Maps the page associated with @frag to @device.
2673 */
2674static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2675                                          const skb_frag_t *frag,
2676                                          size_t offset, size_t size,
2677                                          enum dma_data_direction dir)
2678{
2679        return dma_map_page(dev, skb_frag_page(frag),
2680                            frag->page_offset + offset, size, dir);
2681}
2682
2683static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2684                                        gfp_t gfp_mask)
2685{
2686        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2687}
2688
2689
2690static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2691                                                  gfp_t gfp_mask)
2692{
2693        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2694}
2695
2696
2697/**
2698 *      skb_clone_writable - is the header of a clone writable
2699 *      @skb: buffer to check
2700 *      @len: length up to which to write
2701 *
2702 *      Returns true if modifying the header part of the cloned buffer
2703 *      does not requires the data to be copied.
2704 */
2705static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2706{
2707        return !skb_header_cloned(skb) &&
2708               skb_headroom(skb) + len <= skb->hdr_len;
2709}
2710
2711static inline int skb_try_make_writable(struct sk_buff *skb,
2712                                        unsigned int write_len)
2713{
2714        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2715               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2716}
2717
2718static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2719                            int cloned)
2720{
2721        int delta = 0;
2722
2723        if (headroom > skb_headroom(skb))
2724                delta = headroom - skb_headroom(skb);
2725
2726        if (delta || cloned)
2727                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2728                                        GFP_ATOMIC);
2729        return 0;
2730}
2731
2732/**
2733 *      skb_cow - copy header of skb when it is required
2734 *      @skb: buffer to cow
2735 *      @headroom: needed headroom
2736 *
2737 *      If the skb passed lacks sufficient headroom or its data part
2738 *      is shared, data is reallocated. If reallocation fails, an error
2739 *      is returned and original skb is not changed.
2740 *
2741 *      The result is skb with writable area skb->head...skb->tail
2742 *      and at least @headroom of space at head.
2743 */
2744static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2745{
2746        return __skb_cow(skb, headroom, skb_cloned(skb));
2747}
2748
2749/**
2750 *      skb_cow_head - skb_cow but only making the head writable
2751 *      @skb: buffer to cow
2752 *      @headroom: needed headroom
2753 *
2754 *      This function is identical to skb_cow except that we replace the
2755 *      skb_cloned check by skb_header_cloned.  It should be used when
2756 *      you only need to push on some header and do not need to modify
2757 *      the data.
2758 */
2759static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2760{
2761        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2762}
2763
2764/**
2765 *      skb_padto       - pad an skbuff up to a minimal size
2766 *      @skb: buffer to pad
2767 *      @len: minimal length
2768 *
2769 *      Pads up a buffer to ensure the trailing bytes exist and are
2770 *      blanked. If the buffer already contains sufficient data it
2771 *      is untouched. Otherwise it is extended. Returns zero on
2772 *      success. The skb is freed on error.
2773 */
2774static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2775{
2776        unsigned int size = skb->len;
2777        if (likely(size >= len))
2778                return 0;
2779        return skb_pad(skb, len - size);
2780}
2781
2782/**
2783 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2784 *      @skb: buffer to pad
2785 *      @len: minimal length
2786 *
2787 *      Pads up a buffer to ensure the trailing bytes exist and are
2788 *      blanked. If the buffer already contains sufficient data it
2789 *      is untouched. Otherwise it is extended. Returns zero on
2790 *      success. The skb is freed on error.
2791 */
2792static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2793{
2794        unsigned int size = skb->len;
2795
2796        if (unlikely(size < len)) {
2797                len -= size;
2798                if (skb_pad(skb, len))
2799                        return -ENOMEM;
2800                __skb_put(skb, len);
2801        }
2802        return 0;
2803}
2804
2805static inline int skb_add_data(struct sk_buff *skb,
2806                               struct iov_iter *from, int copy)
2807{
2808        const int off = skb->len;
2809
2810        if (skb->ip_summed == CHECKSUM_NONE) {
2811                __wsum csum = 0;
2812                if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2813                                            &csum, from) == copy) {
2814                        skb->csum = csum_block_add(skb->csum, csum, off);
2815                        return 0;
2816                }
2817        } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2818                return 0;
2819
2820        __skb_trim(skb, off);
2821        return -EFAULT;
2822}
2823
2824static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2825                                    const struct page *page, int off)
2826{
2827        if (i) {
2828                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2829
2830                return page == skb_frag_page(frag) &&
2831                       off == frag->page_offset + skb_frag_size(frag);
2832        }
2833        return false;
2834}
2835
2836static inline int __skb_linearize(struct sk_buff *skb)
2837{
2838        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2839}
2840
2841/**
2842 *      skb_linearize - convert paged skb to linear one
2843 *      @skb: buffer to linarize
2844 *
2845 *      If there is no free memory -ENOMEM is returned, otherwise zero
2846 *      is returned and the old skb data released.
2847 */
2848static inline int skb_linearize(struct sk_buff *skb)
2849{
2850        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2851}
2852
2853/**
2854 * skb_has_shared_frag - can any frag be overwritten
2855 * @skb: buffer to test
2856 *
2857 * Return true if the skb has at least one frag that might be modified
2858 * by an external entity (as in vmsplice()/sendfile())
2859 */
2860static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2861{
2862        return skb_is_nonlinear(skb) &&
2863               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2864}
2865
2866/**
2867 *      skb_linearize_cow - make sure skb is linear and writable
2868 *      @skb: buffer to process
2869 *
2870 *      If there is no free memory -ENOMEM is returned, otherwise zero
2871 *      is returned and the old skb data released.
2872 */
2873static inline int skb_linearize_cow(struct sk_buff *skb)
2874{
2875        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2876               __skb_linearize(skb) : 0;
2877}
2878
2879static __always_inline void
2880__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2881                     unsigned int off)
2882{
2883        if (skb->ip_summed == CHECKSUM_COMPLETE)
2884                skb->csum = csum_block_sub(skb->csum,
2885                                           csum_partial(start, len, 0), off);
2886        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2887                 skb_checksum_start_offset(skb) < 0)
2888                skb->ip_summed = CHECKSUM_NONE;
2889}
2890
2891/**
2892 *      skb_postpull_rcsum - update checksum for received skb after pull
2893 *      @skb: buffer to update
2894 *      @start: start of data before pull
2895 *      @len: length of data pulled
2896 *
2897 *      After doing a pull on a received packet, you need to call this to
2898 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2899 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2900 */
2901static inline void skb_postpull_rcsum(struct sk_buff *skb,
2902                                      const void *start, unsigned int len)
2903{
2904        __skb_postpull_rcsum(skb, start, len, 0);
2905}
2906
2907static __always_inline void
2908__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2909                     unsigned int off)
2910{
2911        if (skb->ip_summed == CHECKSUM_COMPLETE)
2912                skb->csum = csum_block_add(skb->csum,
2913                                           csum_partial(start, len, 0), off);
2914}
2915
2916/**
2917 *      skb_postpush_rcsum - update checksum for received skb after push
2918 *      @skb: buffer to update
2919 *      @start: start of data after push
2920 *      @len: length of data pushed
2921 *
2922 *      After doing a push on a received packet, you need to call this to
2923 *      update the CHECKSUM_COMPLETE checksum.
2924 */
2925static inline void skb_postpush_rcsum(struct sk_buff *skb,
2926                                      const void *start, unsigned int len)
2927{
2928        __skb_postpush_rcsum(skb, start, len, 0);
2929}
2930
2931unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2932
2933/**
2934 *      skb_push_rcsum - push skb and update receive checksum
2935 *      @skb: buffer to update
2936 *      @len: length of data pulled
2937 *
2938 *      This function performs an skb_push on the packet and updates
2939 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2940 *      receive path processing instead of skb_push unless you know
2941 *      that the checksum difference is zero (e.g., a valid IP header)
2942 *      or you are setting ip_summed to CHECKSUM_NONE.
2943 */
2944static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2945                                            unsigned int len)
2946{
2947        skb_push(skb, len);
2948        skb_postpush_rcsum(skb, skb->data, len);
2949        return skb->data;
2950}
2951
2952/**
2953 *      pskb_trim_rcsum - trim received skb and update checksum
2954 *      @skb: buffer to trim
2955 *      @len: new length
2956 *
2957 *      This is exactly the same as pskb_trim except that it ensures the
2958 *      checksum of received packets are still valid after the operation.
2959 */
2960
2961static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2962{
2963        if (likely(len >= skb->len))
2964                return 0;
2965        if (skb->ip_summed == CHECKSUM_COMPLETE)
2966                skb->ip_summed = CHECKSUM_NONE;
2967        return __pskb_trim(skb, len);
2968}
2969
2970static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2971{
2972        if (skb->ip_summed == CHECKSUM_COMPLETE)
2973                skb->ip_summed = CHECKSUM_NONE;
2974        __skb_trim(skb, len);
2975        return 0;
2976}
2977
2978static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2979{
2980        if (skb->ip_summed == CHECKSUM_COMPLETE)
2981                skb->ip_summed = CHECKSUM_NONE;
2982        return __skb_grow(skb, len);
2983}
2984
2985#define skb_queue_walk(queue, skb) \
2986                for (skb = (queue)->next;                                       \
2987                     skb != (struct sk_buff *)(queue);                          \
2988                     skb = skb->next)
2989
2990#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2991                for (skb = (queue)->next, tmp = skb->next;                      \
2992                     skb != (struct sk_buff *)(queue);                          \
2993                     skb = tmp, tmp = skb->next)
2994
2995#define skb_queue_walk_from(queue, skb)                                         \
2996                for (; skb != (struct sk_buff *)(queue);                        \
2997                     skb = skb->next)
2998
2999#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3000                for (tmp = skb->next;                                           \
3001                     skb != (struct sk_buff *)(queue);                          \
3002                     skb = tmp, tmp = skb->next)
3003
3004#define skb_queue_reverse_walk(queue, skb) \
3005                for (skb = (queue)->prev;                                       \
3006                     skb != (struct sk_buff *)(queue);                          \
3007                     skb = skb->prev)
3008
3009#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3010                for (skb = (queue)->prev, tmp = skb->prev;                      \
3011                     skb != (struct sk_buff *)(queue);                          \
3012                     skb = tmp, tmp = skb->prev)
3013
3014#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3015                for (tmp = skb->prev;                                           \
3016                     skb != (struct sk_buff *)(queue);                          \
3017                     skb = tmp, tmp = skb->prev)
3018
3019static inline bool skb_has_frag_list(const struct sk_buff *skb)
3020{
3021        return skb_shinfo(skb)->frag_list != NULL;
3022}
3023
3024static inline void skb_frag_list_init(struct sk_buff *skb)
3025{
3026        skb_shinfo(skb)->frag_list = NULL;
3027}
3028
3029#define skb_walk_frags(skb, iter)       \
3030        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3031
3032
3033int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3034                                const struct sk_buff *skb);
3035struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3036                                        int *peeked, int *off, int *err,
3037                                        struct sk_buff **last);
3038struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3039                                    int *peeked, int *off, int *err);
3040struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3041                                  int *err);
3042unsigned int datagram_poll(struct file *file, struct socket *sock,
3043                           struct poll_table_struct *wait);
3044int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3045                           struct iov_iter *to, int size);
3046static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3047                                        struct msghdr *msg, int size)
3048{
3049        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3050}
3051int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3052                                   struct msghdr *msg);
3053int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3054                                 struct iov_iter *from, int len);
3055int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3056void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3057void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3058static inline void skb_free_datagram_locked(struct sock *sk,
3059                                            struct sk_buff *skb)
3060{
3061        __skb_free_datagram_locked(sk, skb, 0);
3062}
3063int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3064int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3065int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3066__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3067                              int len, __wsum csum);
3068int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3069                    struct pipe_inode_info *pipe, unsigned int len,
3070                    unsigned int flags);
3071void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3072unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3073int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3074                 int len, int hlen);
3075void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3076int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3077void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3078unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3079bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3080struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3081struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3082int skb_ensure_writable(struct sk_buff *skb, int write_len);
3083int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3084int skb_vlan_pop(struct sk_buff *skb);
3085int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3086struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3087                             gfp_t gfp);
3088
3089static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3090{
3091        return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3092}
3093
3094static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3095{
3096        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3097}
3098
3099struct skb_checksum_ops {
3100        __wsum (*update)(const void *mem, int len, __wsum wsum);
3101        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3102};
3103
3104__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3105                      __wsum csum, const struct skb_checksum_ops *ops);
3106__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3107                    __wsum csum);
3108
3109static inline void * __must_check
3110__skb_header_pointer(const struct sk_buff *skb, int offset,
3111                     int len, void *data, int hlen, void *buffer)
3112{
3113        if (hlen - offset >= len)
3114                return data + offset;
3115
3116        if (!skb ||
3117            skb_copy_bits(skb, offset, buffer, len) < 0)
3118                return NULL;
3119
3120        return buffer;
3121}
3122
3123static inline void * __must_check
3124skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3125{
3126        return __skb_header_pointer(skb, offset, len, skb->data,
3127                                    skb_headlen(skb), buffer);
3128}
3129
3130/**
3131 *      skb_needs_linearize - check if we need to linearize a given skb
3132 *                            depending on the given device features.
3133 *      @skb: socket buffer to check
3134 *      @features: net device features
3135 *
3136 *      Returns true if either:
3137 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3138 *      2. skb is fragmented and the device does not support SG.
3139 */
3140static inline bool skb_needs_linearize(struct sk_buff *skb,
3141                                       netdev_features_t features)
3142{
3143        return skb_is_nonlinear(skb) &&
3144               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3145                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3146}
3147
3148static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3149                                             void *to,
3150                                             const unsigned int len)
3151{
3152        memcpy(to, skb->data, len);
3153}
3154
3155static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3156                                                    const int offset, void *to,
3157                                                    const unsigned int len)
3158{
3159        memcpy(to, skb->data + offset, len);
3160}
3161
3162static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3163                                           const void *from,
3164                                           const unsigned int len)
3165{
3166        memcpy(skb->data, from, len);
3167}
3168
3169static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3170                                                  const int offset,
3171                                                  const void *from,
3172                                                  const unsigned int len)
3173{
3174        memcpy(skb->data + offset, from, len);
3175}
3176
3177void skb_init(void);
3178
3179static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3180{
3181        return skb->tstamp;
3182}
3183
3184/**
3185 *      skb_get_timestamp - get timestamp from a skb
3186 *      @skb: skb to get stamp from
3187 *      @stamp: pointer to struct timeval to store stamp in
3188 *
3189 *      Timestamps are stored in the skb as offsets to a base timestamp.
3190 *      This function converts the offset back to a struct timeval and stores
3191 *      it in stamp.
3192 */
3193static inline void skb_get_timestamp(const struct sk_buff *skb,
3194                                     struct timeval *stamp)
3195{
3196        *stamp = ktime_to_timeval(skb->tstamp);
3197}
3198
3199static inline void skb_get_timestampns(const struct sk_buff *skb,
3200                                       struct timespec *stamp)
3201{
3202        *stamp = ktime_to_timespec(skb->tstamp);
3203}
3204
3205static inline void __net_timestamp(struct sk_buff *skb)
3206{
3207        skb->tstamp = ktime_get_real();
3208}
3209
3210static inline ktime_t net_timedelta(ktime_t t)
3211{
3212        return ktime_sub(ktime_get_real(), t);
3213}
3214
3215static inline ktime_t net_invalid_timestamp(void)
3216{
3217        return ktime_set(0, 0);
3218}
3219
3220struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3221
3222#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3223
3224void skb_clone_tx_timestamp(struct sk_buff *skb);
3225bool skb_defer_rx_timestamp(struct sk_buff *skb);
3226
3227#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3228
3229static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3230{
3231}
3232
3233static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3234{
3235        return false;
3236}
3237
3238#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3239
3240/**
3241 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3242 *
3243 * PHY drivers may accept clones of transmitted packets for
3244 * timestamping via their phy_driver.txtstamp method. These drivers
3245 * must call this function to return the skb back to the stack with a
3246 * timestamp.
3247 *
3248 * @skb: clone of the the original outgoing packet
3249 * @hwtstamps: hardware time stamps
3250 *
3251 */
3252void skb_complete_tx_timestamp(struct sk_buff *skb,
3253                               struct skb_shared_hwtstamps *hwtstamps);
3254
3255void __skb_tstamp_tx(struct sk_buff *orig_skb,
3256                     struct skb_shared_hwtstamps *hwtstamps,
3257                     struct sock *sk, int tstype);
3258
3259/**
3260 * skb_tstamp_tx - queue clone of skb with send time stamps
3261 * @orig_skb:   the original outgoing packet
3262 * @hwtstamps:  hardware time stamps, may be NULL if not available
3263 *
3264 * If the skb has a socket associated, then this function clones the
3265 * skb (thus sharing the actual data and optional structures), stores
3266 * the optional hardware time stamping information (if non NULL) or
3267 * generates a software time stamp (otherwise), then queues the clone
3268 * to the error queue of the socket.  Errors are silently ignored.
3269 */
3270void skb_tstamp_tx(struct sk_buff *orig_skb,
3271                   struct skb_shared_hwtstamps *hwtstamps);
3272
3273static inline void sw_tx_timestamp(struct sk_buff *skb)
3274{
3275        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3276            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3277                skb_tstamp_tx(skb, NULL);
3278}
3279
3280/**
3281 * skb_tx_timestamp() - Driver hook for transmit timestamping
3282 *
3283 * Ethernet MAC Drivers should call this function in their hard_xmit()
3284 * function immediately before giving the sk_buff to the MAC hardware.
3285 *
3286 * Specifically, one should make absolutely sure that this function is
3287 * called before TX completion of this packet can trigger.  Otherwise
3288 * the packet could potentially already be freed.
3289 *
3290 * @skb: A socket buffer.
3291 */
3292static inline void skb_tx_timestamp(struct sk_buff *skb)
3293{
3294        skb_clone_tx_timestamp(skb);
3295        sw_tx_timestamp(skb);
3296}
3297
3298/**
3299 * skb_complete_wifi_ack - deliver skb with wifi status
3300 *
3301 * @skb: the original outgoing packet
3302 * @acked: ack status
3303 *
3304 */
3305void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3306
3307__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3308__sum16 __skb_checksum_complete(struct sk_buff *skb);
3309
3310static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3311{
3312        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3313                skb->csum_valid ||
3314                (skb->ip_summed == CHECKSUM_PARTIAL &&
3315                 skb_checksum_start_offset(skb) >= 0));
3316}
3317
3318/**
3319 *      skb_checksum_complete - Calculate checksum of an entire packet
3320 *      @skb: packet to process
3321 *
3322 *      This function calculates the checksum over the entire packet plus
3323 *      the value of skb->csum.  The latter can be used to supply the
3324 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3325 *      checksum.
3326 *
3327 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3328 *      this function can be used to verify that checksum on received
3329 *      packets.  In that case the function should return zero if the
3330 *      checksum is correct.  In particular, this function will return zero
3331 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3332 *      hardware has already verified the correctness of the checksum.
3333 */
3334static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3335{
3336        return skb_csum_unnecessary(skb) ?
3337               0 : __skb_checksum_complete(skb);
3338}
3339
3340static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3341{
3342        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3343                if (skb->csum_level == 0)
3344                        skb->ip_summed = CHECKSUM_NONE;
3345                else
3346                        skb->csum_level--;
3347        }
3348}
3349
3350static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3351{
3352        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3353                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3354                        skb->csum_level++;
3355        } else if (skb->ip_summed == CHECKSUM_NONE) {
3356                skb->ip_summed = CHECKSUM_UNNECESSARY;
3357                skb->csum_level = 0;
3358        }
3359}
3360
3361static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3362{
3363        /* Mark current checksum as bad (typically called from GRO
3364         * path). In the case that ip_summed is CHECKSUM_NONE
3365         * this must be the first checksum encountered in the packet.
3366         * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3367         * checksum after the last one validated. For UDP, a zero
3368         * checksum can not be marked as bad.
3369         */
3370
3371        if (skb->ip_summed == CHECKSUM_NONE ||
3372            skb->ip_summed == CHECKSUM_UNNECESSARY)
3373                skb->csum_bad = 1;
3374}
3375
3376/* Check if we need to perform checksum complete validation.
3377 *
3378 * Returns true if checksum complete is needed, false otherwise
3379 * (either checksum is unnecessary or zero checksum is allowed).
3380 */
3381static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3382                                                  bool zero_okay,
3383                                                  __sum16 check)
3384{
3385        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3386                skb->csum_valid = 1;
3387                __skb_decr_checksum_unnecessary(skb);
3388                return false;
3389        }
3390
3391        return true;
3392}
3393
3394/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3395 * in checksum_init.
3396 */
3397#define CHECKSUM_BREAK 76
3398
3399/* Unset checksum-complete
3400 *
3401 * Unset checksum complete can be done when packet is being modified
3402 * (uncompressed for instance) and checksum-complete value is
3403 * invalidated.
3404 */
3405static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3406{
3407        if (skb->ip_summed == CHECKSUM_COMPLETE)
3408                skb->ip_summed = CHECKSUM_NONE;
3409}
3410
3411/* Validate (init) checksum based on checksum complete.
3412 *
3413 * Return values:
3414 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3415 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3416 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3417 *   non-zero: value of invalid checksum
3418 *
3419 */
3420static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3421                                                       bool complete,
3422                                                       __wsum psum)
3423{
3424        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3425                if (!csum_fold(csum_add(psum, skb->csum))) {
3426                        skb->csum_valid = 1;
3427                        return 0;
3428                }
3429        } else if (skb->csum_bad) {
3430                /* ip_summed == CHECKSUM_NONE in this case */
3431                return (__force __sum16)1;
3432        }
3433
3434        skb->csum = psum;
3435
3436        if (complete || skb->len <= CHECKSUM_BREAK) {
3437                __sum16 csum;
3438
3439                csum = __skb_checksum_complete(skb);
3440                skb->csum_valid = !csum;
3441                return csum;
3442        }
3443
3444        return 0;
3445}
3446
3447static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3448{
3449        return 0;
3450}
3451
3452/* Perform checksum validate (init). Note that this is a macro since we only
3453 * want to calculate the pseudo header which is an input function if necessary.
3454 * First we try to validate without any computation (checksum unnecessary) and
3455 * then calculate based on checksum complete calling the function to compute
3456 * pseudo header.
3457 *
3458 * Return values:
3459 *   0: checksum is validated or try to in skb_checksum_complete
3460 *   non-zero: value of invalid checksum
3461 */
3462#define __skb_checksum_validate(skb, proto, complete,                   \
3463                                zero_okay, check, compute_pseudo)       \
3464({                                                                      \
3465        __sum16 __ret = 0;                                              \
3466        skb->csum_valid = 0;                                            \
3467        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3468                __ret = __skb_checksum_validate_complete(skb,           \
3469                                complete, compute_pseudo(skb, proto));  \
3470        __ret;                                                          \
3471})
3472
3473#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3474        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3475
3476#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3477        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3478
3479#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3480        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3481
3482#define skb_checksum_validate_zero_check(skb, proto, check,             \
3483                                         compute_pseudo)                \
3484        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3485
3486#define skb_checksum_simple_validate(skb)                               \
3487        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3488
3489static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3490{
3491        return (skb->ip_summed == CHECKSUM_NONE &&
3492                skb->csum_valid && !skb->csum_bad);
3493}
3494
3495static inline void __skb_checksum_convert(struct sk_buff *skb,
3496                                          __sum16 check, __wsum pseudo)
3497{
3498        skb->csum = ~pseudo;
3499        skb->ip_summed = CHECKSUM_COMPLETE;
3500}
3501
3502#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3503do {                                                                    \
3504        if (__skb_checksum_convert_check(skb))                          \
3505                __skb_checksum_convert(skb, check,                      \
3506                                       compute_pseudo(skb, proto));     \
3507} while (0)
3508
3509static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3510                                              u16 start, u16 offset)
3511{
3512        skb->ip_summed = CHECKSUM_PARTIAL;
3513        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3514        skb->csum_offset = offset - start;
3515}
3516
3517/* Update skbuf and packet to reflect the remote checksum offload operation.
3518 * When called, ptr indicates the starting point for skb->csum when
3519 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3520 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3521 */
3522static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3523                                       int start, int offset, bool nopartial)
3524{
3525        __wsum delta;
3526
3527        if (!nopartial) {
3528                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3529                return;
3530        }
3531
3532         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3533                __skb_checksum_complete(skb);
3534                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3535        }
3536
3537        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3538
3539        /* Adjust skb->csum since we changed the packet */
3540        skb->csum = csum_add(skb->csum, delta);
3541}
3542
3543#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3544void nf_conntrack_destroy(struct nf_conntrack *nfct);
3545static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3546{
3547        if (nfct && atomic_dec_and_test(&nfct->use))
3548                nf_conntrack_destroy(nfct);
3549}
3550static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3551{
3552        if (nfct)
3553                atomic_inc(&nfct->use);
3554}
3555#endif
3556#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3557static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3558{
3559        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3560                kfree(nf_bridge);
3561}
3562static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3563{
3564        if (nf_bridge)
3565                atomic_inc(&nf_bridge->use);
3566}
3567#endif /* CONFIG_BRIDGE_NETFILTER */
3568static inline void nf_reset(struct sk_buff *skb)
3569{
3570#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3571        nf_conntrack_put(skb->nfct);
3572        skb->nfct = NULL;
3573#endif
3574#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3575        nf_bridge_put(skb->nf_bridge);
3576        skb->nf_bridge = NULL;
3577#endif
3578}
3579
3580static inline void nf_reset_trace(struct sk_buff *skb)
3581{
3582#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3583        skb->nf_trace = 0;
3584#endif
3585}
3586
3587/* Note: This doesn't put any conntrack and bridge info in dst. */
3588static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3589                             bool copy)
3590{
3591#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3592        dst->nfct = src->nfct;
3593        nf_conntrack_get(src->nfct);
3594        if (copy)
3595                dst->nfctinfo = src->nfctinfo;
3596#endif
3597#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3598        dst->nf_bridge  = src->nf_bridge;
3599        nf_bridge_get(src->nf_bridge);
3600#endif
3601#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3602        if (copy)
3603                dst->nf_trace = src->nf_trace;
3604#endif
3605}
3606
3607static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3608{
3609#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3610        nf_conntrack_put(dst->nfct);
3611#endif
3612#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3613        nf_bridge_put(dst->nf_bridge);
3614#endif
3615        __nf_copy(dst, src, true);
3616}
3617
3618#ifdef CONFIG_NETWORK_SECMARK
3619static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3620{
3621        to->secmark = from->secmark;
3622}
3623
3624static inline void skb_init_secmark(struct sk_buff *skb)
3625{
3626        skb->secmark = 0;
3627}
3628#else
3629static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3630{ }
3631
3632static inline void skb_init_secmark(struct sk_buff *skb)
3633{ }
3634#endif
3635
3636static inline bool skb_irq_freeable(const struct sk_buff *skb)
3637{
3638        return !skb->destructor &&
3639#if IS_ENABLED(CONFIG_XFRM)
3640                !skb->sp &&
3641#endif
3642#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3643                !skb->nfct &&
3644#endif
3645                !skb->_skb_refdst &&
3646                !skb_has_frag_list(skb);
3647}
3648
3649static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3650{
3651        skb->queue_mapping = queue_mapping;
3652}
3653
3654static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3655{
3656        return skb->queue_mapping;
3657}
3658
3659static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3660{
3661        to->queue_mapping = from->queue_mapping;
3662}
3663
3664static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3665{
3666        skb->queue_mapping = rx_queue + 1;
3667}
3668
3669static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3670{
3671        return skb->queue_mapping - 1;
3672}
3673
3674static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3675{
3676        return skb->queue_mapping != 0;
3677}
3678
3679static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3680{
3681#ifdef CONFIG_XFRM
3682        return skb->sp;
3683#else
3684        return NULL;
3685#endif
3686}
3687
3688/* Keeps track of mac header offset relative to skb->head.
3689 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3690 * For non-tunnel skb it points to skb_mac_header() and for
3691 * tunnel skb it points to outer mac header.
3692 * Keeps track of level of encapsulation of network headers.
3693 */
3694struct skb_gso_cb {
3695        union {
3696                int     mac_offset;
3697                int     data_offset;
3698        };
3699        int     encap_level;
3700        __wsum  csum;
3701        __u16   csum_start;
3702};
3703#define SKB_SGO_CB_OFFSET       32
3704#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3705
3706static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3707{
3708        return (skb_mac_header(inner_skb) - inner_skb->head) -
3709                SKB_GSO_CB(inner_skb)->mac_offset;
3710}
3711
3712static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3713{
3714        int new_headroom, headroom;
3715        int ret;
3716
3717        headroom = skb_headroom(skb);
3718        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3719        if (ret)
3720                return ret;
3721
3722        new_headroom = skb_headroom(skb);
3723        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3724        return 0;
3725}
3726
3727static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3728{
3729        /* Do not update partial checksums if remote checksum is enabled. */
3730        if (skb->remcsum_offload)
3731                return;
3732
3733        SKB_GSO_CB(skb)->csum = res;
3734        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3735}
3736
3737/* Compute the checksum for a gso segment. First compute the checksum value
3738 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3739 * then add in skb->csum (checksum from csum_start to end of packet).
3740 * skb->csum and csum_start are then updated to reflect the checksum of the
3741 * resultant packet starting from the transport header-- the resultant checksum
3742 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3743 * header.
3744 */
3745static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3746{
3747        unsigned char *csum_start = skb_transport_header(skb);
3748        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3749        __wsum partial = SKB_GSO_CB(skb)->csum;
3750
3751        SKB_GSO_CB(skb)->csum = res;
3752        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3753
3754        return csum_fold(csum_partial(csum_start, plen, partial));
3755}
3756
3757static inline bool skb_is_gso(const struct sk_buff *skb)
3758{
3759        return skb_shinfo(skb)->gso_size;
3760}
3761
3762/* Note: Should be called only if skb_is_gso(skb) is true */
3763static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3764{
3765        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3766}
3767
3768static inline void skb_gso_reset(struct sk_buff *skb)
3769{
3770        skb_shinfo(skb)->gso_size = 0;
3771        skb_shinfo(skb)->gso_segs = 0;
3772        skb_shinfo(skb)->gso_type = 0;
3773}
3774
3775void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3776
3777static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3778{
3779        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3780         * wanted then gso_type will be set. */
3781        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3782
3783        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3784            unlikely(shinfo->gso_type == 0)) {
3785                __skb_warn_lro_forwarding(skb);
3786                return true;
3787        }
3788        return false;
3789}
3790
3791static inline void skb_forward_csum(struct sk_buff *skb)
3792{
3793        /* Unfortunately we don't support this one.  Any brave souls? */
3794        if (skb->ip_summed == CHECKSUM_COMPLETE)
3795                skb->ip_summed = CHECKSUM_NONE;
3796}
3797
3798/**
3799 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3800 * @skb: skb to check
3801 *
3802 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3803 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3804 * use this helper, to document places where we make this assertion.
3805 */
3806static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3807{
3808#ifdef DEBUG
3809        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3810#endif
3811}
3812
3813bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3814
3815int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3816struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3817                                     unsigned int transport_len,
3818                                     __sum16(*skb_chkf)(struct sk_buff *skb));
3819
3820/**
3821 * skb_head_is_locked - Determine if the skb->head is locked down
3822 * @skb: skb to check
3823 *
3824 * The head on skbs build around a head frag can be removed if they are
3825 * not cloned.  This function returns true if the skb head is locked down
3826 * due to either being allocated via kmalloc, or by being a clone with
3827 * multiple references to the head.
3828 */
3829static inline bool skb_head_is_locked(const struct sk_buff *skb)
3830{
3831        return !skb->head_frag || skb_cloned(skb);
3832}
3833
3834/**
3835 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3836 *
3837 * @skb: GSO skb
3838 *
3839 * skb_gso_network_seglen is used to determine the real size of the
3840 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3841 *
3842 * The MAC/L2 header is not accounted for.
3843 */
3844static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3845{
3846        unsigned int hdr_len = skb_transport_header(skb) -
3847                               skb_network_header(skb);
3848        return hdr_len + skb_gso_transport_seglen(skb);
3849}
3850
3851/* Local Checksum Offload.
3852 * Compute outer checksum based on the assumption that the
3853 * inner checksum will be offloaded later.
3854 * See Documentation/networking/checksum-offloads.txt for
3855 * explanation of how this works.
3856 * Fill in outer checksum adjustment (e.g. with sum of outer
3857 * pseudo-header) before calling.
3858 * Also ensure that inner checksum is in linear data area.
3859 */
3860static inline __wsum lco_csum(struct sk_buff *skb)
3861{
3862        unsigned char *csum_start = skb_checksum_start(skb);
3863        unsigned char *l4_hdr = skb_transport_header(skb);
3864        __wsum partial;
3865
3866        /* Start with complement of inner checksum adjustment */
3867        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3868                                                    skb->csum_offset));
3869
3870        /* Add in checksum of our headers (incl. outer checksum
3871         * adjustment filled in by caller) and return result.
3872         */
3873        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3874}
3875
3876#endif  /* __KERNEL__ */
3877#endif  /* _LINUX_SKBUFF_H */
3878