linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <net/dst.h>
  70#include <net/checksum.h>
  71#include <net/tcp_states.h>
  72#include <linux/net_tstamp.h>
  73
  74/*
  75 * This structure really needs to be cleaned up.
  76 * Most of it is for TCP, and not used by any of
  77 * the other protocols.
  78 */
  79
  80/* Define this to get the SOCK_DBG debugging facility. */
  81#define SOCK_DEBUGGING
  82#ifdef SOCK_DEBUGGING
  83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  84                                        printk(KERN_DEBUG msg); } while (0)
  85#else
  86/* Validate arguments and do nothing */
  87static inline __printf(2, 3)
  88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  89{
  90}
  91#endif
  92
  93/* This is the per-socket lock.  The spinlock provides a synchronization
  94 * between user contexts and software interrupt processing, whereas the
  95 * mini-semaphore synchronizes multiple users amongst themselves.
  96 */
  97typedef struct {
  98        spinlock_t              slock;
  99        int                     owned;
 100        wait_queue_head_t       wq;
 101        /*
 102         * We express the mutex-alike socket_lock semantics
 103         * to the lock validator by explicitly managing
 104         * the slock as a lock variant (in addition to
 105         * the slock itself):
 106         */
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108        struct lockdep_map dep_map;
 109#endif
 110} socket_lock_t;
 111
 112struct sock;
 113struct proto;
 114struct net;
 115
 116typedef __u32 __bitwise __portpair;
 117typedef __u64 __bitwise __addrpair;
 118
 119/**
 120 *      struct sock_common - minimal network layer representation of sockets
 121 *      @skc_daddr: Foreign IPv4 addr
 122 *      @skc_rcv_saddr: Bound local IPv4 addr
 123 *      @skc_hash: hash value used with various protocol lookup tables
 124 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *      @skc_dport: placeholder for inet_dport/tw_dport
 126 *      @skc_num: placeholder for inet_num/tw_num
 127 *      @skc_family: network address family
 128 *      @skc_state: Connection state
 129 *      @skc_reuse: %SO_REUSEADDR setting
 130 *      @skc_reuseport: %SO_REUSEPORT setting
 131 *      @skc_bound_dev_if: bound device index if != 0
 132 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 133 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 134 *      @skc_prot: protocol handlers inside a network family
 135 *      @skc_net: reference to the network namespace of this socket
 136 *      @skc_node: main hash linkage for various protocol lookup tables
 137 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 138 *      @skc_tx_queue_mapping: tx queue number for this connection
 139 *      @skc_flags: place holder for sk_flags
 140 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 141 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 142 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 143 *      @skc_refcnt: reference count
 144 *
 145 *      This is the minimal network layer representation of sockets, the header
 146 *      for struct sock and struct inet_timewait_sock.
 147 */
 148struct sock_common {
 149        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 150         * address on 64bit arches : cf INET_MATCH()
 151         */
 152        union {
 153                __addrpair      skc_addrpair;
 154                struct {
 155                        __be32  skc_daddr;
 156                        __be32  skc_rcv_saddr;
 157                };
 158        };
 159        union  {
 160                unsigned int    skc_hash;
 161                __u16           skc_u16hashes[2];
 162        };
 163        /* skc_dport && skc_num must be grouped as well */
 164        union {
 165                __portpair      skc_portpair;
 166                struct {
 167                        __be16  skc_dport;
 168                        __u16   skc_num;
 169                };
 170        };
 171
 172        unsigned short          skc_family;
 173        volatile unsigned char  skc_state;
 174        unsigned char           skc_reuse:4;
 175        unsigned char           skc_reuseport:1;
 176        unsigned char           skc_ipv6only:1;
 177        unsigned char           skc_net_refcnt:1;
 178        int                     skc_bound_dev_if;
 179        union {
 180                struct hlist_node       skc_bind_node;
 181                struct hlist_node       skc_portaddr_node;
 182        };
 183        struct proto            *skc_prot;
 184        possible_net_t          skc_net;
 185
 186#if IS_ENABLED(CONFIG_IPV6)
 187        struct in6_addr         skc_v6_daddr;
 188        struct in6_addr         skc_v6_rcv_saddr;
 189#endif
 190
 191        atomic64_t              skc_cookie;
 192
 193        /* following fields are padding to force
 194         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 195         * assuming IPV6 is enabled. We use this padding differently
 196         * for different kind of 'sockets'
 197         */
 198        union {
 199                unsigned long   skc_flags;
 200                struct sock     *skc_listener; /* request_sock */
 201                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 202        };
 203        /*
 204         * fields between dontcopy_begin/dontcopy_end
 205         * are not copied in sock_copy()
 206         */
 207        /* private: */
 208        int                     skc_dontcopy_begin[0];
 209        /* public: */
 210        union {
 211                struct hlist_node       skc_node;
 212                struct hlist_nulls_node skc_nulls_node;
 213        };
 214        int                     skc_tx_queue_mapping;
 215        union {
 216                int             skc_incoming_cpu;
 217                u32             skc_rcv_wnd;
 218                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 219        };
 220
 221        atomic_t                skc_refcnt;
 222        /* private: */
 223        int                     skc_dontcopy_end[0];
 224        union {
 225                u32             skc_rxhash;
 226                u32             skc_window_clamp;
 227                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 228        };
 229        /* public: */
 230};
 231
 232/**
 233  *     struct sock - network layer representation of sockets
 234  *     @__sk_common: shared layout with inet_timewait_sock
 235  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 236  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 237  *     @sk_lock:       synchronizer
 238  *     @sk_rcvbuf: size of receive buffer in bytes
 239  *     @sk_wq: sock wait queue and async head
 240  *     @sk_rx_dst: receive input route used by early demux
 241  *     @sk_dst_cache: destination cache
 242  *     @sk_policy: flow policy
 243  *     @sk_receive_queue: incoming packets
 244  *     @sk_wmem_alloc: transmit queue bytes committed
 245  *     @sk_write_queue: Packet sending queue
 246  *     @sk_omem_alloc: "o" is "option" or "other"
 247  *     @sk_wmem_queued: persistent queue size
 248  *     @sk_forward_alloc: space allocated forward
 249  *     @sk_napi_id: id of the last napi context to receive data for sk
 250  *     @sk_ll_usec: usecs to busypoll when there is no data
 251  *     @sk_allocation: allocation mode
 252  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 253  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 254  *     @sk_sndbuf: size of send buffer in bytes
 255  *     @sk_padding: unused element for alignment
 256  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 257  *     @sk_no_check_rx: allow zero checksum in RX packets
 258  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 259  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 260  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 261  *     @sk_gso_max_size: Maximum GSO segment size to build
 262  *     @sk_gso_max_segs: Maximum number of GSO segments
 263  *     @sk_lingertime: %SO_LINGER l_linger setting
 264  *     @sk_backlog: always used with the per-socket spinlock held
 265  *     @sk_callback_lock: used with the callbacks in the end of this struct
 266  *     @sk_error_queue: rarely used
 267  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 268  *                       IPV6_ADDRFORM for instance)
 269  *     @sk_err: last error
 270  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 271  *                   persistent failure not just 'timed out'
 272  *     @sk_drops: raw/udp drops counter
 273  *     @sk_ack_backlog: current listen backlog
 274  *     @sk_max_ack_backlog: listen backlog set in listen()
 275  *     @sk_priority: %SO_PRIORITY setting
 276  *     @sk_type: socket type (%SOCK_STREAM, etc)
 277  *     @sk_protocol: which protocol this socket belongs in this network family
 278  *     @sk_peer_pid: &struct pid for this socket's peer
 279  *     @sk_peer_cred: %SO_PEERCRED setting
 280  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 281  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 282  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 283  *     @sk_txhash: computed flow hash for use on transmit
 284  *     @sk_filter: socket filtering instructions
 285  *     @sk_timer: sock cleanup timer
 286  *     @sk_stamp: time stamp of last packet received
 287  *     @sk_tsflags: SO_TIMESTAMPING socket options
 288  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 289  *     @sk_socket: Identd and reporting IO signals
 290  *     @sk_user_data: RPC layer private data
 291  *     @sk_frag: cached page frag
 292  *     @sk_peek_off: current peek_offset value
 293  *     @sk_send_head: front of stuff to transmit
 294  *     @sk_security: used by security modules
 295  *     @sk_mark: generic packet mark
 296  *     @sk_cgrp_data: cgroup data for this cgroup
 297  *     @sk_memcg: this socket's memory cgroup association
 298  *     @sk_write_pending: a write to stream socket waits to start
 299  *     @sk_state_change: callback to indicate change in the state of the sock
 300  *     @sk_data_ready: callback to indicate there is data to be processed
 301  *     @sk_write_space: callback to indicate there is bf sending space available
 302  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 303  *     @sk_backlog_rcv: callback to process the backlog
 304  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 305  *     @sk_reuseport_cb: reuseport group container
 306  *     @sk_rcu: used during RCU grace period
 307  */
 308struct sock {
 309        /*
 310         * Now struct inet_timewait_sock also uses sock_common, so please just
 311         * don't add nothing before this first member (__sk_common) --acme
 312         */
 313        struct sock_common      __sk_common;
 314#define sk_node                 __sk_common.skc_node
 315#define sk_nulls_node           __sk_common.skc_nulls_node
 316#define sk_refcnt               __sk_common.skc_refcnt
 317#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 318
 319#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 320#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 321#define sk_hash                 __sk_common.skc_hash
 322#define sk_portpair             __sk_common.skc_portpair
 323#define sk_num                  __sk_common.skc_num
 324#define sk_dport                __sk_common.skc_dport
 325#define sk_addrpair             __sk_common.skc_addrpair
 326#define sk_daddr                __sk_common.skc_daddr
 327#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 328#define sk_family               __sk_common.skc_family
 329#define sk_state                __sk_common.skc_state
 330#define sk_reuse                __sk_common.skc_reuse
 331#define sk_reuseport            __sk_common.skc_reuseport
 332#define sk_ipv6only             __sk_common.skc_ipv6only
 333#define sk_net_refcnt           __sk_common.skc_net_refcnt
 334#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 335#define sk_bind_node            __sk_common.skc_bind_node
 336#define sk_prot                 __sk_common.skc_prot
 337#define sk_net                  __sk_common.skc_net
 338#define sk_v6_daddr             __sk_common.skc_v6_daddr
 339#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 340#define sk_cookie               __sk_common.skc_cookie
 341#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 342#define sk_flags                __sk_common.skc_flags
 343#define sk_rxhash               __sk_common.skc_rxhash
 344
 345        socket_lock_t           sk_lock;
 346        struct sk_buff_head     sk_receive_queue;
 347        /*
 348         * The backlog queue is special, it is always used with
 349         * the per-socket spinlock held and requires low latency
 350         * access. Therefore we special case it's implementation.
 351         * Note : rmem_alloc is in this structure to fill a hole
 352         * on 64bit arches, not because its logically part of
 353         * backlog.
 354         */
 355        struct {
 356                atomic_t        rmem_alloc;
 357                int             len;
 358                struct sk_buff  *head;
 359                struct sk_buff  *tail;
 360        } sk_backlog;
 361#define sk_rmem_alloc sk_backlog.rmem_alloc
 362        int                     sk_forward_alloc;
 363
 364        __u32                   sk_txhash;
 365#ifdef CONFIG_NET_RX_BUSY_POLL
 366        unsigned int            sk_napi_id;
 367        unsigned int            sk_ll_usec;
 368#endif
 369        atomic_t                sk_drops;
 370        int                     sk_rcvbuf;
 371
 372        struct sk_filter __rcu  *sk_filter;
 373        union {
 374                struct socket_wq __rcu  *sk_wq;
 375                struct socket_wq        *sk_wq_raw;
 376        };
 377#ifdef CONFIG_XFRM
 378        struct xfrm_policy __rcu *sk_policy[2];
 379#endif
 380        struct dst_entry        *sk_rx_dst;
 381        struct dst_entry __rcu  *sk_dst_cache;
 382        /* Note: 32bit hole on 64bit arches */
 383        atomic_t                sk_wmem_alloc;
 384        atomic_t                sk_omem_alloc;
 385        int                     sk_sndbuf;
 386        struct sk_buff_head     sk_write_queue;
 387
 388        /*
 389         * Because of non atomicity rules, all
 390         * changes are protected by socket lock.
 391         */
 392        kmemcheck_bitfield_begin(flags);
 393        unsigned int            sk_padding : 2,
 394                                sk_no_check_tx : 1,
 395                                sk_no_check_rx : 1,
 396                                sk_userlocks : 4,
 397                                sk_protocol  : 8,
 398                                sk_type      : 16;
 399#define SK_PROTOCOL_MAX U8_MAX
 400        kmemcheck_bitfield_end(flags);
 401
 402        int                     sk_wmem_queued;
 403        gfp_t                   sk_allocation;
 404        u32                     sk_pacing_rate; /* bytes per second */
 405        u32                     sk_max_pacing_rate;
 406        netdev_features_t       sk_route_caps;
 407        netdev_features_t       sk_route_nocaps;
 408        int                     sk_gso_type;
 409        unsigned int            sk_gso_max_size;
 410        u16                     sk_gso_max_segs;
 411        int                     sk_rcvlowat;
 412        unsigned long           sk_lingertime;
 413        struct sk_buff_head     sk_error_queue;
 414        struct proto            *sk_prot_creator;
 415        rwlock_t                sk_callback_lock;
 416        int                     sk_err,
 417                                sk_err_soft;
 418        u32                     sk_ack_backlog;
 419        u32                     sk_max_ack_backlog;
 420        __u32                   sk_priority;
 421        __u32                   sk_mark;
 422        struct pid              *sk_peer_pid;
 423        const struct cred       *sk_peer_cred;
 424        long                    sk_rcvtimeo;
 425        long                    sk_sndtimeo;
 426        struct timer_list       sk_timer;
 427        ktime_t                 sk_stamp;
 428        u16                     sk_tsflags;
 429        u8                      sk_shutdown;
 430        u32                     sk_tskey;
 431        struct socket           *sk_socket;
 432        void                    *sk_user_data;
 433        struct page_frag        sk_frag;
 434        struct sk_buff          *sk_send_head;
 435        __s32                   sk_peek_off;
 436        int                     sk_write_pending;
 437#ifdef CONFIG_SECURITY
 438        void                    *sk_security;
 439#endif
 440        struct sock_cgroup_data sk_cgrp_data;
 441        struct mem_cgroup       *sk_memcg;
 442        void                    (*sk_state_change)(struct sock *sk);
 443        void                    (*sk_data_ready)(struct sock *sk);
 444        void                    (*sk_write_space)(struct sock *sk);
 445        void                    (*sk_error_report)(struct sock *sk);
 446        int                     (*sk_backlog_rcv)(struct sock *sk,
 447                                                  struct sk_buff *skb);
 448        void                    (*sk_destruct)(struct sock *sk);
 449        struct sock_reuseport __rcu     *sk_reuseport_cb;
 450        struct rcu_head         sk_rcu;
 451};
 452
 453#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 454
 455#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 456#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 457
 458/*
 459 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 460 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 461 * on a socket means that the socket will reuse everybody else's port
 462 * without looking at the other's sk_reuse value.
 463 */
 464
 465#define SK_NO_REUSE     0
 466#define SK_CAN_REUSE    1
 467#define SK_FORCE_REUSE  2
 468
 469int sk_set_peek_off(struct sock *sk, int val);
 470
 471static inline int sk_peek_offset(struct sock *sk, int flags)
 472{
 473        if (unlikely(flags & MSG_PEEK)) {
 474                s32 off = READ_ONCE(sk->sk_peek_off);
 475                if (off >= 0)
 476                        return off;
 477        }
 478
 479        return 0;
 480}
 481
 482static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 483{
 484        s32 off = READ_ONCE(sk->sk_peek_off);
 485
 486        if (unlikely(off >= 0)) {
 487                off = max_t(s32, off - val, 0);
 488                WRITE_ONCE(sk->sk_peek_off, off);
 489        }
 490}
 491
 492static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 493{
 494        sk_peek_offset_bwd(sk, -val);
 495}
 496
 497/*
 498 * Hashed lists helper routines
 499 */
 500static inline struct sock *sk_entry(const struct hlist_node *node)
 501{
 502        return hlist_entry(node, struct sock, sk_node);
 503}
 504
 505static inline struct sock *__sk_head(const struct hlist_head *head)
 506{
 507        return hlist_entry(head->first, struct sock, sk_node);
 508}
 509
 510static inline struct sock *sk_head(const struct hlist_head *head)
 511{
 512        return hlist_empty(head) ? NULL : __sk_head(head);
 513}
 514
 515static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 516{
 517        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 518}
 519
 520static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 521{
 522        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 523}
 524
 525static inline struct sock *sk_next(const struct sock *sk)
 526{
 527        return sk->sk_node.next ?
 528                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 529}
 530
 531static inline struct sock *sk_nulls_next(const struct sock *sk)
 532{
 533        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 534                hlist_nulls_entry(sk->sk_nulls_node.next,
 535                                  struct sock, sk_nulls_node) :
 536                NULL;
 537}
 538
 539static inline bool sk_unhashed(const struct sock *sk)
 540{
 541        return hlist_unhashed(&sk->sk_node);
 542}
 543
 544static inline bool sk_hashed(const struct sock *sk)
 545{
 546        return !sk_unhashed(sk);
 547}
 548
 549static inline void sk_node_init(struct hlist_node *node)
 550{
 551        node->pprev = NULL;
 552}
 553
 554static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 555{
 556        node->pprev = NULL;
 557}
 558
 559static inline void __sk_del_node(struct sock *sk)
 560{
 561        __hlist_del(&sk->sk_node);
 562}
 563
 564/* NB: equivalent to hlist_del_init_rcu */
 565static inline bool __sk_del_node_init(struct sock *sk)
 566{
 567        if (sk_hashed(sk)) {
 568                __sk_del_node(sk);
 569                sk_node_init(&sk->sk_node);
 570                return true;
 571        }
 572        return false;
 573}
 574
 575/* Grab socket reference count. This operation is valid only
 576   when sk is ALREADY grabbed f.e. it is found in hash table
 577   or a list and the lookup is made under lock preventing hash table
 578   modifications.
 579 */
 580
 581static __always_inline void sock_hold(struct sock *sk)
 582{
 583        atomic_inc(&sk->sk_refcnt);
 584}
 585
 586/* Ungrab socket in the context, which assumes that socket refcnt
 587   cannot hit zero, f.e. it is true in context of any socketcall.
 588 */
 589static __always_inline void __sock_put(struct sock *sk)
 590{
 591        atomic_dec(&sk->sk_refcnt);
 592}
 593
 594static inline bool sk_del_node_init(struct sock *sk)
 595{
 596        bool rc = __sk_del_node_init(sk);
 597
 598        if (rc) {
 599                /* paranoid for a while -acme */
 600                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 601                __sock_put(sk);
 602        }
 603        return rc;
 604}
 605#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 606
 607static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 608{
 609        if (sk_hashed(sk)) {
 610                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 611                return true;
 612        }
 613        return false;
 614}
 615
 616static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 617{
 618        bool rc = __sk_nulls_del_node_init_rcu(sk);
 619
 620        if (rc) {
 621                /* paranoid for a while -acme */
 622                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 623                __sock_put(sk);
 624        }
 625        return rc;
 626}
 627
 628static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 629{
 630        hlist_add_head(&sk->sk_node, list);
 631}
 632
 633static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 634{
 635        sock_hold(sk);
 636        __sk_add_node(sk, list);
 637}
 638
 639static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 640{
 641        sock_hold(sk);
 642        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 643            sk->sk_family == AF_INET6)
 644                hlist_add_tail_rcu(&sk->sk_node, list);
 645        else
 646                hlist_add_head_rcu(&sk->sk_node, list);
 647}
 648
 649static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 650{
 651        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 652            sk->sk_family == AF_INET6)
 653                hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 654        else
 655                hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 656}
 657
 658static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 659{
 660        sock_hold(sk);
 661        __sk_nulls_add_node_rcu(sk, list);
 662}
 663
 664static inline void __sk_del_bind_node(struct sock *sk)
 665{
 666        __hlist_del(&sk->sk_bind_node);
 667}
 668
 669static inline void sk_add_bind_node(struct sock *sk,
 670                                        struct hlist_head *list)
 671{
 672        hlist_add_head(&sk->sk_bind_node, list);
 673}
 674
 675#define sk_for_each(__sk, list) \
 676        hlist_for_each_entry(__sk, list, sk_node)
 677#define sk_for_each_rcu(__sk, list) \
 678        hlist_for_each_entry_rcu(__sk, list, sk_node)
 679#define sk_nulls_for_each(__sk, node, list) \
 680        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 681#define sk_nulls_for_each_rcu(__sk, node, list) \
 682        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 683#define sk_for_each_from(__sk) \
 684        hlist_for_each_entry_from(__sk, sk_node)
 685#define sk_nulls_for_each_from(__sk, node) \
 686        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 687                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 688#define sk_for_each_safe(__sk, tmp, list) \
 689        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 690#define sk_for_each_bound(__sk, list) \
 691        hlist_for_each_entry(__sk, list, sk_bind_node)
 692
 693/**
 694 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 695 * @tpos:       the type * to use as a loop cursor.
 696 * @pos:        the &struct hlist_node to use as a loop cursor.
 697 * @head:       the head for your list.
 698 * @offset:     offset of hlist_node within the struct.
 699 *
 700 */
 701#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 702        for (pos = rcu_dereference((head)->first);                             \
 703             pos != NULL &&                                                    \
 704                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 705             pos = rcu_dereference(pos->next))
 706
 707static inline struct user_namespace *sk_user_ns(struct sock *sk)
 708{
 709        /* Careful only use this in a context where these parameters
 710         * can not change and must all be valid, such as recvmsg from
 711         * userspace.
 712         */
 713        return sk->sk_socket->file->f_cred->user_ns;
 714}
 715
 716/* Sock flags */
 717enum sock_flags {
 718        SOCK_DEAD,
 719        SOCK_DONE,
 720        SOCK_URGINLINE,
 721        SOCK_KEEPOPEN,
 722        SOCK_LINGER,
 723        SOCK_DESTROY,
 724        SOCK_BROADCAST,
 725        SOCK_TIMESTAMP,
 726        SOCK_ZAPPED,
 727        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 728        SOCK_DBG, /* %SO_DEBUG setting */
 729        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 730        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 731        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 732        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 733        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 734        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 735        SOCK_FASYNC, /* fasync() active */
 736        SOCK_RXQ_OVFL,
 737        SOCK_ZEROCOPY, /* buffers from userspace */
 738        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 739        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 740                     * Will use last 4 bytes of packet sent from
 741                     * user-space instead.
 742                     */
 743        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 744        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 745        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 746};
 747
 748#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 749
 750static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 751{
 752        nsk->sk_flags = osk->sk_flags;
 753}
 754
 755static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 756{
 757        __set_bit(flag, &sk->sk_flags);
 758}
 759
 760static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 761{
 762        __clear_bit(flag, &sk->sk_flags);
 763}
 764
 765static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 766{
 767        return test_bit(flag, &sk->sk_flags);
 768}
 769
 770#ifdef CONFIG_NET
 771extern struct static_key memalloc_socks;
 772static inline int sk_memalloc_socks(void)
 773{
 774        return static_key_false(&memalloc_socks);
 775}
 776#else
 777
 778static inline int sk_memalloc_socks(void)
 779{
 780        return 0;
 781}
 782
 783#endif
 784
 785static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 786{
 787        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 788}
 789
 790static inline void sk_acceptq_removed(struct sock *sk)
 791{
 792        sk->sk_ack_backlog--;
 793}
 794
 795static inline void sk_acceptq_added(struct sock *sk)
 796{
 797        sk->sk_ack_backlog++;
 798}
 799
 800static inline bool sk_acceptq_is_full(const struct sock *sk)
 801{
 802        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 803}
 804
 805/*
 806 * Compute minimal free write space needed to queue new packets.
 807 */
 808static inline int sk_stream_min_wspace(const struct sock *sk)
 809{
 810        return sk->sk_wmem_queued >> 1;
 811}
 812
 813static inline int sk_stream_wspace(const struct sock *sk)
 814{
 815        return sk->sk_sndbuf - sk->sk_wmem_queued;
 816}
 817
 818void sk_stream_write_space(struct sock *sk);
 819
 820/* OOB backlog add */
 821static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 822{
 823        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 824        skb_dst_force_safe(skb);
 825
 826        if (!sk->sk_backlog.tail)
 827                sk->sk_backlog.head = skb;
 828        else
 829                sk->sk_backlog.tail->next = skb;
 830
 831        sk->sk_backlog.tail = skb;
 832        skb->next = NULL;
 833}
 834
 835/*
 836 * Take into account size of receive queue and backlog queue
 837 * Do not take into account this skb truesize,
 838 * to allow even a single big packet to come.
 839 */
 840static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 841{
 842        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 843
 844        return qsize > limit;
 845}
 846
 847/* The per-socket spinlock must be held here. */
 848static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 849                                              unsigned int limit)
 850{
 851        if (sk_rcvqueues_full(sk, limit))
 852                return -ENOBUFS;
 853
 854        /*
 855         * If the skb was allocated from pfmemalloc reserves, only
 856         * allow SOCK_MEMALLOC sockets to use it as this socket is
 857         * helping free memory
 858         */
 859        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 860                return -ENOMEM;
 861
 862        __sk_add_backlog(sk, skb);
 863        sk->sk_backlog.len += skb->truesize;
 864        return 0;
 865}
 866
 867int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 868
 869static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 870{
 871        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 872                return __sk_backlog_rcv(sk, skb);
 873
 874        return sk->sk_backlog_rcv(sk, skb);
 875}
 876
 877static inline void sk_incoming_cpu_update(struct sock *sk)
 878{
 879        sk->sk_incoming_cpu = raw_smp_processor_id();
 880}
 881
 882static inline void sock_rps_record_flow_hash(__u32 hash)
 883{
 884#ifdef CONFIG_RPS
 885        struct rps_sock_flow_table *sock_flow_table;
 886
 887        rcu_read_lock();
 888        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 889        rps_record_sock_flow(sock_flow_table, hash);
 890        rcu_read_unlock();
 891#endif
 892}
 893
 894static inline void sock_rps_record_flow(const struct sock *sk)
 895{
 896#ifdef CONFIG_RPS
 897        sock_rps_record_flow_hash(sk->sk_rxhash);
 898#endif
 899}
 900
 901static inline void sock_rps_save_rxhash(struct sock *sk,
 902                                        const struct sk_buff *skb)
 903{
 904#ifdef CONFIG_RPS
 905        if (unlikely(sk->sk_rxhash != skb->hash))
 906                sk->sk_rxhash = skb->hash;
 907#endif
 908}
 909
 910static inline void sock_rps_reset_rxhash(struct sock *sk)
 911{
 912#ifdef CONFIG_RPS
 913        sk->sk_rxhash = 0;
 914#endif
 915}
 916
 917#define sk_wait_event(__sk, __timeo, __condition)                       \
 918        ({      int __rc;                                               \
 919                release_sock(__sk);                                     \
 920                __rc = __condition;                                     \
 921                if (!__rc) {                                            \
 922                        *(__timeo) = schedule_timeout(*(__timeo));      \
 923                }                                                       \
 924                sched_annotate_sleep();                                         \
 925                lock_sock(__sk);                                        \
 926                __rc = __condition;                                     \
 927                __rc;                                                   \
 928        })
 929
 930int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 931int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 932void sk_stream_wait_close(struct sock *sk, long timeo_p);
 933int sk_stream_error(struct sock *sk, int flags, int err);
 934void sk_stream_kill_queues(struct sock *sk);
 935void sk_set_memalloc(struct sock *sk);
 936void sk_clear_memalloc(struct sock *sk);
 937
 938void __sk_flush_backlog(struct sock *sk);
 939
 940static inline bool sk_flush_backlog(struct sock *sk)
 941{
 942        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
 943                __sk_flush_backlog(sk);
 944                return true;
 945        }
 946        return false;
 947}
 948
 949int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 950
 951struct request_sock_ops;
 952struct timewait_sock_ops;
 953struct inet_hashinfo;
 954struct raw_hashinfo;
 955struct module;
 956
 957/*
 958 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 959 * un-modified. Special care is taken when initializing object to zero.
 960 */
 961static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 962{
 963        if (offsetof(struct sock, sk_node.next) != 0)
 964                memset(sk, 0, offsetof(struct sock, sk_node.next));
 965        memset(&sk->sk_node.pprev, 0,
 966               size - offsetof(struct sock, sk_node.pprev));
 967}
 968
 969/* Networking protocol blocks we attach to sockets.
 970 * socket layer -> transport layer interface
 971 */
 972struct proto {
 973        void                    (*close)(struct sock *sk,
 974                                        long timeout);
 975        int                     (*connect)(struct sock *sk,
 976                                        struct sockaddr *uaddr,
 977                                        int addr_len);
 978        int                     (*disconnect)(struct sock *sk, int flags);
 979
 980        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 981
 982        int                     (*ioctl)(struct sock *sk, int cmd,
 983                                         unsigned long arg);
 984        int                     (*init)(struct sock *sk);
 985        void                    (*destroy)(struct sock *sk);
 986        void                    (*shutdown)(struct sock *sk, int how);
 987        int                     (*setsockopt)(struct sock *sk, int level,
 988                                        int optname, char __user *optval,
 989                                        unsigned int optlen);
 990        int                     (*getsockopt)(struct sock *sk, int level,
 991                                        int optname, char __user *optval,
 992                                        int __user *option);
 993#ifdef CONFIG_COMPAT
 994        int                     (*compat_setsockopt)(struct sock *sk,
 995                                        int level,
 996                                        int optname, char __user *optval,
 997                                        unsigned int optlen);
 998        int                     (*compat_getsockopt)(struct sock *sk,
 999                                        int level,
1000                                        int optname, char __user *optval,
1001                                        int __user *option);
1002        int                     (*compat_ioctl)(struct sock *sk,
1003                                        unsigned int cmd, unsigned long arg);
1004#endif
1005        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1006                                           size_t len);
1007        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1008                                           size_t len, int noblock, int flags,
1009                                           int *addr_len);
1010        int                     (*sendpage)(struct sock *sk, struct page *page,
1011                                        int offset, size_t size, int flags);
1012        int                     (*bind)(struct sock *sk,
1013                                        struct sockaddr *uaddr, int addr_len);
1014
1015        int                     (*backlog_rcv) (struct sock *sk,
1016                                                struct sk_buff *skb);
1017
1018        void            (*release_cb)(struct sock *sk);
1019
1020        /* Keeping track of sk's, looking them up, and port selection methods. */
1021        int                     (*hash)(struct sock *sk);
1022        void                    (*unhash)(struct sock *sk);
1023        void                    (*rehash)(struct sock *sk);
1024        int                     (*get_port)(struct sock *sk, unsigned short snum);
1025
1026        /* Keeping track of sockets in use */
1027#ifdef CONFIG_PROC_FS
1028        unsigned int            inuse_idx;
1029#endif
1030
1031        bool                    (*stream_memory_free)(const struct sock *sk);
1032        /* Memory pressure */
1033        void                    (*enter_memory_pressure)(struct sock *sk);
1034        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1035        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1036        /*
1037         * Pressure flag: try to collapse.
1038         * Technical note: it is used by multiple contexts non atomically.
1039         * All the __sk_mem_schedule() is of this nature: accounting
1040         * is strict, actions are advisory and have some latency.
1041         */
1042        int                     *memory_pressure;
1043        long                    *sysctl_mem;
1044        int                     *sysctl_wmem;
1045        int                     *sysctl_rmem;
1046        int                     max_header;
1047        bool                    no_autobind;
1048
1049        struct kmem_cache       *slab;
1050        unsigned int            obj_size;
1051        int                     slab_flags;
1052
1053        struct percpu_counter   *orphan_count;
1054
1055        struct request_sock_ops *rsk_prot;
1056        struct timewait_sock_ops *twsk_prot;
1057
1058        union {
1059                struct inet_hashinfo    *hashinfo;
1060                struct udp_table        *udp_table;
1061                struct raw_hashinfo     *raw_hash;
1062        } h;
1063
1064        struct module           *owner;
1065
1066        char                    name[32];
1067
1068        struct list_head        node;
1069#ifdef SOCK_REFCNT_DEBUG
1070        atomic_t                socks;
1071#endif
1072        int                     (*diag_destroy)(struct sock *sk, int err);
1073};
1074
1075int proto_register(struct proto *prot, int alloc_slab);
1076void proto_unregister(struct proto *prot);
1077
1078#ifdef SOCK_REFCNT_DEBUG
1079static inline void sk_refcnt_debug_inc(struct sock *sk)
1080{
1081        atomic_inc(&sk->sk_prot->socks);
1082}
1083
1084static inline void sk_refcnt_debug_dec(struct sock *sk)
1085{
1086        atomic_dec(&sk->sk_prot->socks);
1087        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1088               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1089}
1090
1091static inline void sk_refcnt_debug_release(const struct sock *sk)
1092{
1093        if (atomic_read(&sk->sk_refcnt) != 1)
1094                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1095                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1096}
1097#else /* SOCK_REFCNT_DEBUG */
1098#define sk_refcnt_debug_inc(sk) do { } while (0)
1099#define sk_refcnt_debug_dec(sk) do { } while (0)
1100#define sk_refcnt_debug_release(sk) do { } while (0)
1101#endif /* SOCK_REFCNT_DEBUG */
1102
1103static inline bool sk_stream_memory_free(const struct sock *sk)
1104{
1105        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1106                return false;
1107
1108        return sk->sk_prot->stream_memory_free ?
1109                sk->sk_prot->stream_memory_free(sk) : true;
1110}
1111
1112static inline bool sk_stream_is_writeable(const struct sock *sk)
1113{
1114        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1115               sk_stream_memory_free(sk);
1116}
1117
1118static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1119                                            struct cgroup *ancestor)
1120{
1121#ifdef CONFIG_SOCK_CGROUP_DATA
1122        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1123                                    ancestor);
1124#else
1125        return -ENOTSUPP;
1126#endif
1127}
1128
1129static inline bool sk_has_memory_pressure(const struct sock *sk)
1130{
1131        return sk->sk_prot->memory_pressure != NULL;
1132}
1133
1134static inline bool sk_under_memory_pressure(const struct sock *sk)
1135{
1136        if (!sk->sk_prot->memory_pressure)
1137                return false;
1138
1139        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1140            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1141                return true;
1142
1143        return !!*sk->sk_prot->memory_pressure;
1144}
1145
1146static inline void sk_leave_memory_pressure(struct sock *sk)
1147{
1148        int *memory_pressure = sk->sk_prot->memory_pressure;
1149
1150        if (!memory_pressure)
1151                return;
1152
1153        if (*memory_pressure)
1154                *memory_pressure = 0;
1155}
1156
1157static inline void sk_enter_memory_pressure(struct sock *sk)
1158{
1159        if (!sk->sk_prot->enter_memory_pressure)
1160                return;
1161
1162        sk->sk_prot->enter_memory_pressure(sk);
1163}
1164
1165static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1166{
1167        return sk->sk_prot->sysctl_mem[index];
1168}
1169
1170static inline long
1171sk_memory_allocated(const struct sock *sk)
1172{
1173        return atomic_long_read(sk->sk_prot->memory_allocated);
1174}
1175
1176static inline long
1177sk_memory_allocated_add(struct sock *sk, int amt)
1178{
1179        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1180}
1181
1182static inline void
1183sk_memory_allocated_sub(struct sock *sk, int amt)
1184{
1185        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1186}
1187
1188static inline void sk_sockets_allocated_dec(struct sock *sk)
1189{
1190        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1191}
1192
1193static inline void sk_sockets_allocated_inc(struct sock *sk)
1194{
1195        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1196}
1197
1198static inline int
1199sk_sockets_allocated_read_positive(struct sock *sk)
1200{
1201        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1202}
1203
1204static inline int
1205proto_sockets_allocated_sum_positive(struct proto *prot)
1206{
1207        return percpu_counter_sum_positive(prot->sockets_allocated);
1208}
1209
1210static inline long
1211proto_memory_allocated(struct proto *prot)
1212{
1213        return atomic_long_read(prot->memory_allocated);
1214}
1215
1216static inline bool
1217proto_memory_pressure(struct proto *prot)
1218{
1219        if (!prot->memory_pressure)
1220                return false;
1221        return !!*prot->memory_pressure;
1222}
1223
1224
1225#ifdef CONFIG_PROC_FS
1226/* Called with local bh disabled */
1227void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1228int sock_prot_inuse_get(struct net *net, struct proto *proto);
1229#else
1230static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1231                int inc)
1232{
1233}
1234#endif
1235
1236
1237/* With per-bucket locks this operation is not-atomic, so that
1238 * this version is not worse.
1239 */
1240static inline int __sk_prot_rehash(struct sock *sk)
1241{
1242        sk->sk_prot->unhash(sk);
1243        return sk->sk_prot->hash(sk);
1244}
1245
1246/* About 10 seconds */
1247#define SOCK_DESTROY_TIME (10*HZ)
1248
1249/* Sockets 0-1023 can't be bound to unless you are superuser */
1250#define PROT_SOCK       1024
1251
1252#define SHUTDOWN_MASK   3
1253#define RCV_SHUTDOWN    1
1254#define SEND_SHUTDOWN   2
1255
1256#define SOCK_SNDBUF_LOCK        1
1257#define SOCK_RCVBUF_LOCK        2
1258#define SOCK_BINDADDR_LOCK      4
1259#define SOCK_BINDPORT_LOCK      8
1260
1261struct socket_alloc {
1262        struct socket socket;
1263        struct inode vfs_inode;
1264};
1265
1266static inline struct socket *SOCKET_I(struct inode *inode)
1267{
1268        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1269}
1270
1271static inline struct inode *SOCK_INODE(struct socket *socket)
1272{
1273        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1274}
1275
1276/*
1277 * Functions for memory accounting
1278 */
1279int __sk_mem_schedule(struct sock *sk, int size, int kind);
1280void __sk_mem_reclaim(struct sock *sk, int amount);
1281
1282#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1283#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1284#define SK_MEM_SEND     0
1285#define SK_MEM_RECV     1
1286
1287static inline int sk_mem_pages(int amt)
1288{
1289        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1290}
1291
1292static inline bool sk_has_account(struct sock *sk)
1293{
1294        /* return true if protocol supports memory accounting */
1295        return !!sk->sk_prot->memory_allocated;
1296}
1297
1298static inline bool sk_wmem_schedule(struct sock *sk, int size)
1299{
1300        if (!sk_has_account(sk))
1301                return true;
1302        return size <= sk->sk_forward_alloc ||
1303                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1304}
1305
1306static inline bool
1307sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1308{
1309        if (!sk_has_account(sk))
1310                return true;
1311        return size<= sk->sk_forward_alloc ||
1312                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1313                skb_pfmemalloc(skb);
1314}
1315
1316static inline void sk_mem_reclaim(struct sock *sk)
1317{
1318        if (!sk_has_account(sk))
1319                return;
1320        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1321                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1322}
1323
1324static inline void sk_mem_reclaim_partial(struct sock *sk)
1325{
1326        if (!sk_has_account(sk))
1327                return;
1328        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1329                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1330}
1331
1332static inline void sk_mem_charge(struct sock *sk, int size)
1333{
1334        if (!sk_has_account(sk))
1335                return;
1336        sk->sk_forward_alloc -= size;
1337}
1338
1339static inline void sk_mem_uncharge(struct sock *sk, int size)
1340{
1341        if (!sk_has_account(sk))
1342                return;
1343        sk->sk_forward_alloc += size;
1344
1345        /* Avoid a possible overflow.
1346         * TCP send queues can make this happen, if sk_mem_reclaim()
1347         * is not called and more than 2 GBytes are released at once.
1348         *
1349         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1350         * no need to hold that much forward allocation anyway.
1351         */
1352        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1353                __sk_mem_reclaim(sk, 1 << 20);
1354}
1355
1356static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1357{
1358        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1359        sk->sk_wmem_queued -= skb->truesize;
1360        sk_mem_uncharge(sk, skb->truesize);
1361        __kfree_skb(skb);
1362}
1363
1364static inline void sock_release_ownership(struct sock *sk)
1365{
1366        if (sk->sk_lock.owned) {
1367                sk->sk_lock.owned = 0;
1368
1369                /* The sk_lock has mutex_unlock() semantics: */
1370                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1371        }
1372}
1373
1374/*
1375 * Macro so as to not evaluate some arguments when
1376 * lockdep is not enabled.
1377 *
1378 * Mark both the sk_lock and the sk_lock.slock as a
1379 * per-address-family lock class.
1380 */
1381#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1382do {                                                                    \
1383        sk->sk_lock.owned = 0;                                          \
1384        init_waitqueue_head(&sk->sk_lock.wq);                           \
1385        spin_lock_init(&(sk)->sk_lock.slock);                           \
1386        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1387                        sizeof((sk)->sk_lock));                         \
1388        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1389                                (skey), (sname));                               \
1390        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1391} while (0)
1392
1393#ifdef CONFIG_LOCKDEP
1394static inline bool lockdep_sock_is_held(const struct sock *csk)
1395{
1396        struct sock *sk = (struct sock *)csk;
1397
1398        return lockdep_is_held(&sk->sk_lock) ||
1399               lockdep_is_held(&sk->sk_lock.slock);
1400}
1401#endif
1402
1403void lock_sock_nested(struct sock *sk, int subclass);
1404
1405static inline void lock_sock(struct sock *sk)
1406{
1407        lock_sock_nested(sk, 0);
1408}
1409
1410void release_sock(struct sock *sk);
1411
1412/* BH context may only use the following locking interface. */
1413#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1414#define bh_lock_sock_nested(__sk) \
1415                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1416                                SINGLE_DEPTH_NESTING)
1417#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1418
1419bool lock_sock_fast(struct sock *sk);
1420/**
1421 * unlock_sock_fast - complement of lock_sock_fast
1422 * @sk: socket
1423 * @slow: slow mode
1424 *
1425 * fast unlock socket for user context.
1426 * If slow mode is on, we call regular release_sock()
1427 */
1428static inline void unlock_sock_fast(struct sock *sk, bool slow)
1429{
1430        if (slow)
1431                release_sock(sk);
1432        else
1433                spin_unlock_bh(&sk->sk_lock.slock);
1434}
1435
1436/* Used by processes to "lock" a socket state, so that
1437 * interrupts and bottom half handlers won't change it
1438 * from under us. It essentially blocks any incoming
1439 * packets, so that we won't get any new data or any
1440 * packets that change the state of the socket.
1441 *
1442 * While locked, BH processing will add new packets to
1443 * the backlog queue.  This queue is processed by the
1444 * owner of the socket lock right before it is released.
1445 *
1446 * Since ~2.3.5 it is also exclusive sleep lock serializing
1447 * accesses from user process context.
1448 */
1449
1450static inline void sock_owned_by_me(const struct sock *sk)
1451{
1452#ifdef CONFIG_LOCKDEP
1453        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1454#endif
1455}
1456
1457static inline bool sock_owned_by_user(const struct sock *sk)
1458{
1459        sock_owned_by_me(sk);
1460        return sk->sk_lock.owned;
1461}
1462
1463/* no reclassification while locks are held */
1464static inline bool sock_allow_reclassification(const struct sock *csk)
1465{
1466        struct sock *sk = (struct sock *)csk;
1467
1468        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1469}
1470
1471struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1472                      struct proto *prot, int kern);
1473void sk_free(struct sock *sk);
1474void sk_destruct(struct sock *sk);
1475struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1476
1477struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1478                             gfp_t priority);
1479void __sock_wfree(struct sk_buff *skb);
1480void sock_wfree(struct sk_buff *skb);
1481void skb_orphan_partial(struct sk_buff *skb);
1482void sock_rfree(struct sk_buff *skb);
1483void sock_efree(struct sk_buff *skb);
1484#ifdef CONFIG_INET
1485void sock_edemux(struct sk_buff *skb);
1486#else
1487#define sock_edemux(skb) sock_efree(skb)
1488#endif
1489
1490int sock_setsockopt(struct socket *sock, int level, int op,
1491                    char __user *optval, unsigned int optlen);
1492
1493int sock_getsockopt(struct socket *sock, int level, int op,
1494                    char __user *optval, int __user *optlen);
1495struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1496                                    int noblock, int *errcode);
1497struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1498                                     unsigned long data_len, int noblock,
1499                                     int *errcode, int max_page_order);
1500void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1501void sock_kfree_s(struct sock *sk, void *mem, int size);
1502void sock_kzfree_s(struct sock *sk, void *mem, int size);
1503void sk_send_sigurg(struct sock *sk);
1504
1505struct sockcm_cookie {
1506        u32 mark;
1507        u16 tsflags;
1508};
1509
1510int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1511                     struct sockcm_cookie *sockc);
1512int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1513                   struct sockcm_cookie *sockc);
1514
1515/*
1516 * Functions to fill in entries in struct proto_ops when a protocol
1517 * does not implement a particular function.
1518 */
1519int sock_no_bind(struct socket *, struct sockaddr *, int);
1520int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1521int sock_no_socketpair(struct socket *, struct socket *);
1522int sock_no_accept(struct socket *, struct socket *, int);
1523int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1524unsigned int sock_no_poll(struct file *, struct socket *,
1525                          struct poll_table_struct *);
1526int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1527int sock_no_listen(struct socket *, int);
1528int sock_no_shutdown(struct socket *, int);
1529int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1530int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1531int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1532int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1533int sock_no_mmap(struct file *file, struct socket *sock,
1534                 struct vm_area_struct *vma);
1535ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1536                         size_t size, int flags);
1537
1538/*
1539 * Functions to fill in entries in struct proto_ops when a protocol
1540 * uses the inet style.
1541 */
1542int sock_common_getsockopt(struct socket *sock, int level, int optname,
1543                                  char __user *optval, int __user *optlen);
1544int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1545                        int flags);
1546int sock_common_setsockopt(struct socket *sock, int level, int optname,
1547                                  char __user *optval, unsigned int optlen);
1548int compat_sock_common_getsockopt(struct socket *sock, int level,
1549                int optname, char __user *optval, int __user *optlen);
1550int compat_sock_common_setsockopt(struct socket *sock, int level,
1551                int optname, char __user *optval, unsigned int optlen);
1552
1553void sk_common_release(struct sock *sk);
1554
1555/*
1556 *      Default socket callbacks and setup code
1557 */
1558
1559/* Initialise core socket variables */
1560void sock_init_data(struct socket *sock, struct sock *sk);
1561
1562/*
1563 * Socket reference counting postulates.
1564 *
1565 * * Each user of socket SHOULD hold a reference count.
1566 * * Each access point to socket (an hash table bucket, reference from a list,
1567 *   running timer, skb in flight MUST hold a reference count.
1568 * * When reference count hits 0, it means it will never increase back.
1569 * * When reference count hits 0, it means that no references from
1570 *   outside exist to this socket and current process on current CPU
1571 *   is last user and may/should destroy this socket.
1572 * * sk_free is called from any context: process, BH, IRQ. When
1573 *   it is called, socket has no references from outside -> sk_free
1574 *   may release descendant resources allocated by the socket, but
1575 *   to the time when it is called, socket is NOT referenced by any
1576 *   hash tables, lists etc.
1577 * * Packets, delivered from outside (from network or from another process)
1578 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1579 *   when they sit in queue. Otherwise, packets will leak to hole, when
1580 *   socket is looked up by one cpu and unhasing is made by another CPU.
1581 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1582 *   (leak to backlog). Packet socket does all the processing inside
1583 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1584 *   use separate SMP lock, so that they are prone too.
1585 */
1586
1587/* Ungrab socket and destroy it, if it was the last reference. */
1588static inline void sock_put(struct sock *sk)
1589{
1590        if (atomic_dec_and_test(&sk->sk_refcnt))
1591                sk_free(sk);
1592}
1593/* Generic version of sock_put(), dealing with all sockets
1594 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1595 */
1596void sock_gen_put(struct sock *sk);
1597
1598int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1599                     unsigned int trim_cap, bool refcounted);
1600static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1601                                 const int nested)
1602{
1603        return __sk_receive_skb(sk, skb, nested, 1, true);
1604}
1605
1606static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1607{
1608        sk->sk_tx_queue_mapping = tx_queue;
1609}
1610
1611static inline void sk_tx_queue_clear(struct sock *sk)
1612{
1613        sk->sk_tx_queue_mapping = -1;
1614}
1615
1616static inline int sk_tx_queue_get(const struct sock *sk)
1617{
1618        return sk ? sk->sk_tx_queue_mapping : -1;
1619}
1620
1621static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1622{
1623        sk_tx_queue_clear(sk);
1624        sk->sk_socket = sock;
1625}
1626
1627static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1628{
1629        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1630        return &rcu_dereference_raw(sk->sk_wq)->wait;
1631}
1632/* Detach socket from process context.
1633 * Announce socket dead, detach it from wait queue and inode.
1634 * Note that parent inode held reference count on this struct sock,
1635 * we do not release it in this function, because protocol
1636 * probably wants some additional cleanups or even continuing
1637 * to work with this socket (TCP).
1638 */
1639static inline void sock_orphan(struct sock *sk)
1640{
1641        write_lock_bh(&sk->sk_callback_lock);
1642        sock_set_flag(sk, SOCK_DEAD);
1643        sk_set_socket(sk, NULL);
1644        sk->sk_wq  = NULL;
1645        write_unlock_bh(&sk->sk_callback_lock);
1646}
1647
1648static inline void sock_graft(struct sock *sk, struct socket *parent)
1649{
1650        write_lock_bh(&sk->sk_callback_lock);
1651        sk->sk_wq = parent->wq;
1652        parent->sk = sk;
1653        sk_set_socket(sk, parent);
1654        security_sock_graft(sk, parent);
1655        write_unlock_bh(&sk->sk_callback_lock);
1656}
1657
1658kuid_t sock_i_uid(struct sock *sk);
1659unsigned long sock_i_ino(struct sock *sk);
1660
1661static inline u32 net_tx_rndhash(void)
1662{
1663        u32 v = prandom_u32();
1664
1665        return v ?: 1;
1666}
1667
1668static inline void sk_set_txhash(struct sock *sk)
1669{
1670        sk->sk_txhash = net_tx_rndhash();
1671}
1672
1673static inline void sk_rethink_txhash(struct sock *sk)
1674{
1675        if (sk->sk_txhash)
1676                sk_set_txhash(sk);
1677}
1678
1679static inline struct dst_entry *
1680__sk_dst_get(struct sock *sk)
1681{
1682        return rcu_dereference_check(sk->sk_dst_cache,
1683                                     lockdep_sock_is_held(sk));
1684}
1685
1686static inline struct dst_entry *
1687sk_dst_get(struct sock *sk)
1688{
1689        struct dst_entry *dst;
1690
1691        rcu_read_lock();
1692        dst = rcu_dereference(sk->sk_dst_cache);
1693        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1694                dst = NULL;
1695        rcu_read_unlock();
1696        return dst;
1697}
1698
1699static inline void dst_negative_advice(struct sock *sk)
1700{
1701        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1702
1703        sk_rethink_txhash(sk);
1704
1705        if (dst && dst->ops->negative_advice) {
1706                ndst = dst->ops->negative_advice(dst);
1707
1708                if (ndst != dst) {
1709                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1710                        sk_tx_queue_clear(sk);
1711                }
1712        }
1713}
1714
1715static inline void
1716__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1717{
1718        struct dst_entry *old_dst;
1719
1720        sk_tx_queue_clear(sk);
1721        /*
1722         * This can be called while sk is owned by the caller only,
1723         * with no state that can be checked in a rcu_dereference_check() cond
1724         */
1725        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1726        rcu_assign_pointer(sk->sk_dst_cache, dst);
1727        dst_release(old_dst);
1728}
1729
1730static inline void
1731sk_dst_set(struct sock *sk, struct dst_entry *dst)
1732{
1733        struct dst_entry *old_dst;
1734
1735        sk_tx_queue_clear(sk);
1736        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1737        dst_release(old_dst);
1738}
1739
1740static inline void
1741__sk_dst_reset(struct sock *sk)
1742{
1743        __sk_dst_set(sk, NULL);
1744}
1745
1746static inline void
1747sk_dst_reset(struct sock *sk)
1748{
1749        sk_dst_set(sk, NULL);
1750}
1751
1752struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1753
1754struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1755
1756bool sk_mc_loop(struct sock *sk);
1757
1758static inline bool sk_can_gso(const struct sock *sk)
1759{
1760        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1761}
1762
1763void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1764
1765static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1766{
1767        sk->sk_route_nocaps |= flags;
1768        sk->sk_route_caps &= ~flags;
1769}
1770
1771static inline bool sk_check_csum_caps(struct sock *sk)
1772{
1773        return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1774               (sk->sk_family == PF_INET &&
1775                (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1776               (sk->sk_family == PF_INET6 &&
1777                (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1778}
1779
1780static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1781                                           struct iov_iter *from, char *to,
1782                                           int copy, int offset)
1783{
1784        if (skb->ip_summed == CHECKSUM_NONE) {
1785                __wsum csum = 0;
1786                if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1787                        return -EFAULT;
1788                skb->csum = csum_block_add(skb->csum, csum, offset);
1789        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1790                if (copy_from_iter_nocache(to, copy, from) != copy)
1791                        return -EFAULT;
1792        } else if (copy_from_iter(to, copy, from) != copy)
1793                return -EFAULT;
1794
1795        return 0;
1796}
1797
1798static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1799                                       struct iov_iter *from, int copy)
1800{
1801        int err, offset = skb->len;
1802
1803        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1804                                       copy, offset);
1805        if (err)
1806                __skb_trim(skb, offset);
1807
1808        return err;
1809}
1810
1811static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1812                                           struct sk_buff *skb,
1813                                           struct page *page,
1814                                           int off, int copy)
1815{
1816        int err;
1817
1818        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1819                                       copy, skb->len);
1820        if (err)
1821                return err;
1822
1823        skb->len             += copy;
1824        skb->data_len        += copy;
1825        skb->truesize        += copy;
1826        sk->sk_wmem_queued   += copy;
1827        sk_mem_charge(sk, copy);
1828        return 0;
1829}
1830
1831/**
1832 * sk_wmem_alloc_get - returns write allocations
1833 * @sk: socket
1834 *
1835 * Returns sk_wmem_alloc minus initial offset of one
1836 */
1837static inline int sk_wmem_alloc_get(const struct sock *sk)
1838{
1839        return atomic_read(&sk->sk_wmem_alloc) - 1;
1840}
1841
1842/**
1843 * sk_rmem_alloc_get - returns read allocations
1844 * @sk: socket
1845 *
1846 * Returns sk_rmem_alloc
1847 */
1848static inline int sk_rmem_alloc_get(const struct sock *sk)
1849{
1850        return atomic_read(&sk->sk_rmem_alloc);
1851}
1852
1853/**
1854 * sk_has_allocations - check if allocations are outstanding
1855 * @sk: socket
1856 *
1857 * Returns true if socket has write or read allocations
1858 */
1859static inline bool sk_has_allocations(const struct sock *sk)
1860{
1861        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1862}
1863
1864/**
1865 * skwq_has_sleeper - check if there are any waiting processes
1866 * @wq: struct socket_wq
1867 *
1868 * Returns true if socket_wq has waiting processes
1869 *
1870 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1871 * barrier call. They were added due to the race found within the tcp code.
1872 *
1873 * Consider following tcp code paths:
1874 *
1875 * CPU1                  CPU2
1876 *
1877 * sys_select            receive packet
1878 *   ...                 ...
1879 *   __add_wait_queue    update tp->rcv_nxt
1880 *   ...                 ...
1881 *   tp->rcv_nxt check   sock_def_readable
1882 *   ...                 {
1883 *   schedule               rcu_read_lock();
1884 *                          wq = rcu_dereference(sk->sk_wq);
1885 *                          if (wq && waitqueue_active(&wq->wait))
1886 *                              wake_up_interruptible(&wq->wait)
1887 *                          ...
1888 *                       }
1889 *
1890 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1891 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1892 * could then endup calling schedule and sleep forever if there are no more
1893 * data on the socket.
1894 *
1895 */
1896static inline bool skwq_has_sleeper(struct socket_wq *wq)
1897{
1898        return wq && wq_has_sleeper(&wq->wait);
1899}
1900
1901/**
1902 * sock_poll_wait - place memory barrier behind the poll_wait call.
1903 * @filp:           file
1904 * @wait_address:   socket wait queue
1905 * @p:              poll_table
1906 *
1907 * See the comments in the wq_has_sleeper function.
1908 */
1909static inline void sock_poll_wait(struct file *filp,
1910                wait_queue_head_t *wait_address, poll_table *p)
1911{
1912        if (!poll_does_not_wait(p) && wait_address) {
1913                poll_wait(filp, wait_address, p);
1914                /* We need to be sure we are in sync with the
1915                 * socket flags modification.
1916                 *
1917                 * This memory barrier is paired in the wq_has_sleeper.
1918                 */
1919                smp_mb();
1920        }
1921}
1922
1923static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1924{
1925        if (sk->sk_txhash) {
1926                skb->l4_hash = 1;
1927                skb->hash = sk->sk_txhash;
1928        }
1929}
1930
1931void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1932
1933/*
1934 *      Queue a received datagram if it will fit. Stream and sequenced
1935 *      protocols can't normally use this as they need to fit buffers in
1936 *      and play with them.
1937 *
1938 *      Inlined as it's very short and called for pretty much every
1939 *      packet ever received.
1940 */
1941static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1942{
1943        skb_orphan(skb);
1944        skb->sk = sk;
1945        skb->destructor = sock_rfree;
1946        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1947        sk_mem_charge(sk, skb->truesize);
1948}
1949
1950void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1951                    unsigned long expires);
1952
1953void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1954
1955int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1956int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1957
1958int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1959struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1960
1961/*
1962 *      Recover an error report and clear atomically
1963 */
1964
1965static inline int sock_error(struct sock *sk)
1966{
1967        int err;
1968        if (likely(!sk->sk_err))
1969                return 0;
1970        err = xchg(&sk->sk_err, 0);
1971        return -err;
1972}
1973
1974static inline unsigned long sock_wspace(struct sock *sk)
1975{
1976        int amt = 0;
1977
1978        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1979                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1980                if (amt < 0)
1981                        amt = 0;
1982        }
1983        return amt;
1984}
1985
1986/* Note:
1987 *  We use sk->sk_wq_raw, from contexts knowing this
1988 *  pointer is not NULL and cannot disappear/change.
1989 */
1990static inline void sk_set_bit(int nr, struct sock *sk)
1991{
1992        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1993            !sock_flag(sk, SOCK_FASYNC))
1994                return;
1995
1996        set_bit(nr, &sk->sk_wq_raw->flags);
1997}
1998
1999static inline void sk_clear_bit(int nr, struct sock *sk)
2000{
2001        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2002            !sock_flag(sk, SOCK_FASYNC))
2003                return;
2004
2005        clear_bit(nr, &sk->sk_wq_raw->flags);
2006}
2007
2008static inline void sk_wake_async(const struct sock *sk, int how, int band)
2009{
2010        if (sock_flag(sk, SOCK_FASYNC)) {
2011                rcu_read_lock();
2012                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2013                rcu_read_unlock();
2014        }
2015}
2016
2017/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2018 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2019 * Note: for send buffers, TCP works better if we can build two skbs at
2020 * minimum.
2021 */
2022#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2023
2024#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2025#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2026
2027static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2028{
2029        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2030                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2031                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2032        }
2033}
2034
2035struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2036                                    bool force_schedule);
2037
2038/**
2039 * sk_page_frag - return an appropriate page_frag
2040 * @sk: socket
2041 *
2042 * If socket allocation mode allows current thread to sleep, it means its
2043 * safe to use the per task page_frag instead of the per socket one.
2044 */
2045static inline struct page_frag *sk_page_frag(struct sock *sk)
2046{
2047        if (gfpflags_allow_blocking(sk->sk_allocation))
2048                return &current->task_frag;
2049
2050        return &sk->sk_frag;
2051}
2052
2053bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2054
2055/*
2056 *      Default write policy as shown to user space via poll/select/SIGIO
2057 */
2058static inline bool sock_writeable(const struct sock *sk)
2059{
2060        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2061}
2062
2063static inline gfp_t gfp_any(void)
2064{
2065        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2066}
2067
2068static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2069{
2070        return noblock ? 0 : sk->sk_rcvtimeo;
2071}
2072
2073static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2074{
2075        return noblock ? 0 : sk->sk_sndtimeo;
2076}
2077
2078static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2079{
2080        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2081}
2082
2083/* Alas, with timeout socket operations are not restartable.
2084 * Compare this to poll().
2085 */
2086static inline int sock_intr_errno(long timeo)
2087{
2088        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2089}
2090
2091struct sock_skb_cb {
2092        u32 dropcount;
2093};
2094
2095/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2096 * using skb->cb[] would keep using it directly and utilize its
2097 * alignement guarantee.
2098 */
2099#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2100                            sizeof(struct sock_skb_cb)))
2101
2102#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2103                            SOCK_SKB_CB_OFFSET))
2104
2105#define sock_skb_cb_check_size(size) \
2106        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2107
2108static inline void
2109sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2110{
2111        SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2112}
2113
2114static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2115{
2116        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2117
2118        atomic_add(segs, &sk->sk_drops);
2119}
2120
2121void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2122                           struct sk_buff *skb);
2123void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2124                             struct sk_buff *skb);
2125
2126static inline void
2127sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2128{
2129        ktime_t kt = skb->tstamp;
2130        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2131
2132        /*
2133         * generate control messages if
2134         * - receive time stamping in software requested
2135         * - software time stamp available and wanted
2136         * - hardware time stamps available and wanted
2137         */
2138        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2139            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2140            (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2141            (hwtstamps->hwtstamp.tv64 &&
2142             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2143                __sock_recv_timestamp(msg, sk, skb);
2144        else
2145                sk->sk_stamp = kt;
2146
2147        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2148                __sock_recv_wifi_status(msg, sk, skb);
2149}
2150
2151void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2152                              struct sk_buff *skb);
2153
2154static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2155                                          struct sk_buff *skb)
2156{
2157#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2158                           (1UL << SOCK_RCVTSTAMP))
2159#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2160                           SOF_TIMESTAMPING_RAW_HARDWARE)
2161
2162        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2163                __sock_recv_ts_and_drops(msg, sk, skb);
2164        else
2165                sk->sk_stamp = skb->tstamp;
2166}
2167
2168void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2169
2170/**
2171 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2172 * @sk:         socket sending this packet
2173 * @tsflags:    timestamping flags to use
2174 * @tx_flags:   completed with instructions for time stamping
2175 *
2176 * Note : callers should take care of initial *tx_flags value (usually 0)
2177 */
2178static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2179                                     __u8 *tx_flags)
2180{
2181        if (unlikely(tsflags))
2182                __sock_tx_timestamp(tsflags, tx_flags);
2183        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2184                *tx_flags |= SKBTX_WIFI_STATUS;
2185}
2186
2187/**
2188 * sk_eat_skb - Release a skb if it is no longer needed
2189 * @sk: socket to eat this skb from
2190 * @skb: socket buffer to eat
2191 *
2192 * This routine must be called with interrupts disabled or with the socket
2193 * locked so that the sk_buff queue operation is ok.
2194*/
2195static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2196{
2197        __skb_unlink(skb, &sk->sk_receive_queue);
2198        __kfree_skb(skb);
2199}
2200
2201static inline
2202struct net *sock_net(const struct sock *sk)
2203{
2204        return read_pnet(&sk->sk_net);
2205}
2206
2207static inline
2208void sock_net_set(struct sock *sk, struct net *net)
2209{
2210        write_pnet(&sk->sk_net, net);
2211}
2212
2213static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2214{
2215        if (skb->sk) {
2216                struct sock *sk = skb->sk;
2217
2218                skb->destructor = NULL;
2219                skb->sk = NULL;
2220                return sk;
2221        }
2222        return NULL;
2223}
2224
2225/* This helper checks if a socket is a full socket,
2226 * ie _not_ a timewait or request socket.
2227 */
2228static inline bool sk_fullsock(const struct sock *sk)
2229{
2230        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2231}
2232
2233/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2234 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2235 */
2236static inline bool sk_listener(const struct sock *sk)
2237{
2238        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2239}
2240
2241/**
2242 * sk_state_load - read sk->sk_state for lockless contexts
2243 * @sk: socket pointer
2244 *
2245 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2246 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2247 */
2248static inline int sk_state_load(const struct sock *sk)
2249{
2250        return smp_load_acquire(&sk->sk_state);
2251}
2252
2253/**
2254 * sk_state_store - update sk->sk_state
2255 * @sk: socket pointer
2256 * @newstate: new state
2257 *
2258 * Paired with sk_state_load(). Should be used in contexts where
2259 * state change might impact lockless readers.
2260 */
2261static inline void sk_state_store(struct sock *sk, int newstate)
2262{
2263        smp_store_release(&sk->sk_state, newstate);
2264}
2265
2266void sock_enable_timestamp(struct sock *sk, int flag);
2267int sock_get_timestamp(struct sock *, struct timeval __user *);
2268int sock_get_timestampns(struct sock *, struct timespec __user *);
2269int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2270                       int type);
2271
2272bool sk_ns_capable(const struct sock *sk,
2273                   struct user_namespace *user_ns, int cap);
2274bool sk_capable(const struct sock *sk, int cap);
2275bool sk_net_capable(const struct sock *sk, int cap);
2276
2277extern __u32 sysctl_wmem_max;
2278extern __u32 sysctl_rmem_max;
2279
2280extern int sysctl_tstamp_allow_data;
2281extern int sysctl_optmem_max;
2282
2283extern __u32 sysctl_wmem_default;
2284extern __u32 sysctl_rmem_default;
2285
2286#endif  /* _SOCK_H */
2287