linux/kernel/pid_namespace.c
<<
>>
Prefs
   1/*
   2 * Pid namespaces
   3 *
   4 * Authors:
   5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   7 *     Many thanks to Oleg Nesterov for comments and help
   8 *
   9 */
  10
  11#include <linux/pid.h>
  12#include <linux/pid_namespace.h>
  13#include <linux/user_namespace.h>
  14#include <linux/syscalls.h>
  15#include <linux/err.h>
  16#include <linux/acct.h>
  17#include <linux/slab.h>
  18#include <linux/proc_ns.h>
  19#include <linux/reboot.h>
  20#include <linux/export.h>
  21
  22struct pid_cache {
  23        int nr_ids;
  24        char name[16];
  25        struct kmem_cache *cachep;
  26        struct list_head list;
  27};
  28
  29static LIST_HEAD(pid_caches_lh);
  30static DEFINE_MUTEX(pid_caches_mutex);
  31static struct kmem_cache *pid_ns_cachep;
  32
  33/*
  34 * creates the kmem cache to allocate pids from.
  35 * @nr_ids: the number of numerical ids this pid will have to carry
  36 */
  37
  38static struct kmem_cache *create_pid_cachep(int nr_ids)
  39{
  40        struct pid_cache *pcache;
  41        struct kmem_cache *cachep;
  42
  43        mutex_lock(&pid_caches_mutex);
  44        list_for_each_entry(pcache, &pid_caches_lh, list)
  45                if (pcache->nr_ids == nr_ids)
  46                        goto out;
  47
  48        pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  49        if (pcache == NULL)
  50                goto err_alloc;
  51
  52        snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  53        cachep = kmem_cache_create(pcache->name,
  54                        sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  55                        0, SLAB_HWCACHE_ALIGN, NULL);
  56        if (cachep == NULL)
  57                goto err_cachep;
  58
  59        pcache->nr_ids = nr_ids;
  60        pcache->cachep = cachep;
  61        list_add(&pcache->list, &pid_caches_lh);
  62out:
  63        mutex_unlock(&pid_caches_mutex);
  64        return pcache->cachep;
  65
  66err_cachep:
  67        kfree(pcache);
  68err_alloc:
  69        mutex_unlock(&pid_caches_mutex);
  70        return NULL;
  71}
  72
  73static void proc_cleanup_work(struct work_struct *work)
  74{
  75        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  76        pid_ns_release_proc(ns);
  77}
  78
  79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  80#define MAX_PID_NS_LEVEL 32
  81
  82static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  83{
  84        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  85}
  86
  87static void dec_pid_namespaces(struct ucounts *ucounts)
  88{
  89        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  90}
  91
  92static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  93        struct pid_namespace *parent_pid_ns)
  94{
  95        struct pid_namespace *ns;
  96        unsigned int level = parent_pid_ns->level + 1;
  97        struct ucounts *ucounts;
  98        int i;
  99        int err;
 100
 101        err = -ENOSPC;
 102        if (level > MAX_PID_NS_LEVEL)
 103                goto out;
 104        ucounts = inc_pid_namespaces(user_ns);
 105        if (!ucounts)
 106                goto out;
 107
 108        err = -ENOMEM;
 109        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 110        if (ns == NULL)
 111                goto out_dec;
 112
 113        ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 114        if (!ns->pidmap[0].page)
 115                goto out_free;
 116
 117        ns->pid_cachep = create_pid_cachep(level + 1);
 118        if (ns->pid_cachep == NULL)
 119                goto out_free_map;
 120
 121        err = ns_alloc_inum(&ns->ns);
 122        if (err)
 123                goto out_free_map;
 124        ns->ns.ops = &pidns_operations;
 125
 126        kref_init(&ns->kref);
 127        ns->level = level;
 128        ns->parent = get_pid_ns(parent_pid_ns);
 129        ns->user_ns = get_user_ns(user_ns);
 130        ns->ucounts = ucounts;
 131        ns->nr_hashed = PIDNS_HASH_ADDING;
 132        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 133
 134        set_bit(0, ns->pidmap[0].page);
 135        atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 136
 137        for (i = 1; i < PIDMAP_ENTRIES; i++)
 138                atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 139
 140        return ns;
 141
 142out_free_map:
 143        kfree(ns->pidmap[0].page);
 144out_free:
 145        kmem_cache_free(pid_ns_cachep, ns);
 146out_dec:
 147        dec_pid_namespaces(ucounts);
 148out:
 149        return ERR_PTR(err);
 150}
 151
 152static void delayed_free_pidns(struct rcu_head *p)
 153{
 154        kmem_cache_free(pid_ns_cachep,
 155                        container_of(p, struct pid_namespace, rcu));
 156}
 157
 158static void destroy_pid_namespace(struct pid_namespace *ns)
 159{
 160        int i;
 161
 162        ns_free_inum(&ns->ns);
 163        for (i = 0; i < PIDMAP_ENTRIES; i++)
 164                kfree(ns->pidmap[i].page);
 165        dec_pid_namespaces(ns->ucounts);
 166        put_user_ns(ns->user_ns);
 167        call_rcu(&ns->rcu, delayed_free_pidns);
 168}
 169
 170struct pid_namespace *copy_pid_ns(unsigned long flags,
 171        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 172{
 173        if (!(flags & CLONE_NEWPID))
 174                return get_pid_ns(old_ns);
 175        if (task_active_pid_ns(current) != old_ns)
 176                return ERR_PTR(-EINVAL);
 177        return create_pid_namespace(user_ns, old_ns);
 178}
 179
 180static void free_pid_ns(struct kref *kref)
 181{
 182        struct pid_namespace *ns;
 183
 184        ns = container_of(kref, struct pid_namespace, kref);
 185        destroy_pid_namespace(ns);
 186}
 187
 188void put_pid_ns(struct pid_namespace *ns)
 189{
 190        struct pid_namespace *parent;
 191
 192        while (ns != &init_pid_ns) {
 193                parent = ns->parent;
 194                if (!kref_put(&ns->kref, free_pid_ns))
 195                        break;
 196                ns = parent;
 197        }
 198}
 199EXPORT_SYMBOL_GPL(put_pid_ns);
 200
 201void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 202{
 203        int nr;
 204        int rc;
 205        struct task_struct *task, *me = current;
 206        int init_pids = thread_group_leader(me) ? 1 : 2;
 207
 208        /* Don't allow any more processes into the pid namespace */
 209        disable_pid_allocation(pid_ns);
 210
 211        /*
 212         * Ignore SIGCHLD causing any terminated children to autoreap.
 213         * This speeds up the namespace shutdown, plus see the comment
 214         * below.
 215         */
 216        spin_lock_irq(&me->sighand->siglock);
 217        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 218        spin_unlock_irq(&me->sighand->siglock);
 219
 220        /*
 221         * The last thread in the cgroup-init thread group is terminating.
 222         * Find remaining pid_ts in the namespace, signal and wait for them
 223         * to exit.
 224         *
 225         * Note:  This signals each threads in the namespace - even those that
 226         *        belong to the same thread group, To avoid this, we would have
 227         *        to walk the entire tasklist looking a processes in this
 228         *        namespace, but that could be unnecessarily expensive if the
 229         *        pid namespace has just a few processes. Or we need to
 230         *        maintain a tasklist for each pid namespace.
 231         *
 232         */
 233        read_lock(&tasklist_lock);
 234        nr = next_pidmap(pid_ns, 1);
 235        while (nr > 0) {
 236                rcu_read_lock();
 237
 238                task = pid_task(find_vpid(nr), PIDTYPE_PID);
 239                if (task && !__fatal_signal_pending(task))
 240                        send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 241
 242                rcu_read_unlock();
 243
 244                nr = next_pidmap(pid_ns, nr);
 245        }
 246        read_unlock(&tasklist_lock);
 247
 248        /*
 249         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 250         * sys_wait4() will also block until our children traced from the
 251         * parent namespace are detached and become EXIT_DEAD.
 252         */
 253        do {
 254                clear_thread_flag(TIF_SIGPENDING);
 255                rc = sys_wait4(-1, NULL, __WALL, NULL);
 256        } while (rc != -ECHILD);
 257
 258        /*
 259         * sys_wait4() above can't reap the EXIT_DEAD children but we do not
 260         * really care, we could reparent them to the global init. We could
 261         * exit and reap ->child_reaper even if it is not the last thread in
 262         * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
 263         * pid_ns can not go away until proc_kill_sb() drops the reference.
 264         *
 265         * But this ns can also have other tasks injected by setns()+fork().
 266         * Again, ignoring the user visible semantics we do not really need
 267         * to wait until they are all reaped, but they can be reparented to
 268         * us and thus we need to ensure that pid->child_reaper stays valid
 269         * until they all go away. See free_pid()->wake_up_process().
 270         *
 271         * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 272         * if reparented.
 273         */
 274        for (;;) {
 275                set_current_state(TASK_UNINTERRUPTIBLE);
 276                if (pid_ns->nr_hashed == init_pids)
 277                        break;
 278                schedule();
 279        }
 280        __set_current_state(TASK_RUNNING);
 281
 282        if (pid_ns->reboot)
 283                current->signal->group_exit_code = pid_ns->reboot;
 284
 285        acct_exit_ns(pid_ns);
 286        return;
 287}
 288
 289#ifdef CONFIG_CHECKPOINT_RESTORE
 290static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 291                void __user *buffer, size_t *lenp, loff_t *ppos)
 292{
 293        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 294        struct ctl_table tmp = *table;
 295
 296        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 297                return -EPERM;
 298
 299        /*
 300         * Writing directly to ns' last_pid field is OK, since this field
 301         * is volatile in a living namespace anyway and a code writing to
 302         * it should synchronize its usage with external means.
 303         */
 304
 305        tmp.data = &pid_ns->last_pid;
 306        return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 307}
 308
 309extern int pid_max;
 310static int zero = 0;
 311static struct ctl_table pid_ns_ctl_table[] = {
 312        {
 313                .procname = "ns_last_pid",
 314                .maxlen = sizeof(int),
 315                .mode = 0666, /* permissions are checked in the handler */
 316                .proc_handler = pid_ns_ctl_handler,
 317                .extra1 = &zero,
 318                .extra2 = &pid_max,
 319        },
 320        { }
 321};
 322static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 323#endif  /* CONFIG_CHECKPOINT_RESTORE */
 324
 325int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 326{
 327        if (pid_ns == &init_pid_ns)
 328                return 0;
 329
 330        switch (cmd) {
 331        case LINUX_REBOOT_CMD_RESTART2:
 332        case LINUX_REBOOT_CMD_RESTART:
 333                pid_ns->reboot = SIGHUP;
 334                break;
 335
 336        case LINUX_REBOOT_CMD_POWER_OFF:
 337        case LINUX_REBOOT_CMD_HALT:
 338                pid_ns->reboot = SIGINT;
 339                break;
 340        default:
 341                return -EINVAL;
 342        }
 343
 344        read_lock(&tasklist_lock);
 345        force_sig(SIGKILL, pid_ns->child_reaper);
 346        read_unlock(&tasklist_lock);
 347
 348        do_exit(0);
 349
 350        /* Not reached */
 351        return 0;
 352}
 353
 354static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 355{
 356        return container_of(ns, struct pid_namespace, ns);
 357}
 358
 359static struct ns_common *pidns_get(struct task_struct *task)
 360{
 361        struct pid_namespace *ns;
 362
 363        rcu_read_lock();
 364        ns = task_active_pid_ns(task);
 365        if (ns)
 366                get_pid_ns(ns);
 367        rcu_read_unlock();
 368
 369        return ns ? &ns->ns : NULL;
 370}
 371
 372static void pidns_put(struct ns_common *ns)
 373{
 374        put_pid_ns(to_pid_ns(ns));
 375}
 376
 377static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 378{
 379        struct pid_namespace *active = task_active_pid_ns(current);
 380        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 381
 382        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 383            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 384                return -EPERM;
 385
 386        /*
 387         * Only allow entering the current active pid namespace
 388         * or a child of the current active pid namespace.
 389         *
 390         * This is required for fork to return a usable pid value and
 391         * this maintains the property that processes and their
 392         * children can not escape their current pid namespace.
 393         */
 394        if (new->level < active->level)
 395                return -EINVAL;
 396
 397        ancestor = new;
 398        while (ancestor->level > active->level)
 399                ancestor = ancestor->parent;
 400        if (ancestor != active)
 401                return -EINVAL;
 402
 403        put_pid_ns(nsproxy->pid_ns_for_children);
 404        nsproxy->pid_ns_for_children = get_pid_ns(new);
 405        return 0;
 406}
 407
 408static struct ns_common *pidns_get_parent(struct ns_common *ns)
 409{
 410        struct pid_namespace *active = task_active_pid_ns(current);
 411        struct pid_namespace *pid_ns, *p;
 412
 413        /* See if the parent is in the current namespace */
 414        pid_ns = p = to_pid_ns(ns)->parent;
 415        for (;;) {
 416                if (!p)
 417                        return ERR_PTR(-EPERM);
 418                if (p == active)
 419                        break;
 420                p = p->parent;
 421        }
 422
 423        return &get_pid_ns(pid_ns)->ns;
 424}
 425
 426static struct user_namespace *pidns_owner(struct ns_common *ns)
 427{
 428        return to_pid_ns(ns)->user_ns;
 429}
 430
 431const struct proc_ns_operations pidns_operations = {
 432        .name           = "pid",
 433        .type           = CLONE_NEWPID,
 434        .get            = pidns_get,
 435        .put            = pidns_put,
 436        .install        = pidns_install,
 437        .owner          = pidns_owner,
 438        .get_parent     = pidns_get_parent,
 439};
 440
 441static __init int pid_namespaces_init(void)
 442{
 443        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 444
 445#ifdef CONFIG_CHECKPOINT_RESTORE
 446        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 447#endif
 448        return 0;
 449}
 450
 451__initcall(pid_namespaces_init);
 452