linux/mm/cma.c
<<
>>
Prefs
   1/*
   2 * Contiguous Memory Allocator
   3 *
   4 * Copyright (c) 2010-2011 by Samsung Electronics.
   5 * Copyright IBM Corporation, 2013
   6 * Copyright LG Electronics Inc., 2014
   7 * Written by:
   8 *      Marek Szyprowski <m.szyprowski@samsung.com>
   9 *      Michal Nazarewicz <mina86@mina86.com>
  10 *      Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
  11 *      Joonsoo Kim <iamjoonsoo.kim@lge.com>
  12 *
  13 * This program is free software; you can redistribute it and/or
  14 * modify it under the terms of the GNU General Public License as
  15 * published by the Free Software Foundation; either version 2 of the
  16 * License or (at your optional) any later version of the license.
  17 */
  18
  19#define pr_fmt(fmt) "cma: " fmt
  20
  21#ifdef CONFIG_CMA_DEBUG
  22#ifndef DEBUG
  23#  define DEBUG
  24#endif
  25#endif
  26#define CREATE_TRACE_POINTS
  27
  28#include <linux/memblock.h>
  29#include <linux/err.h>
  30#include <linux/mm.h>
  31#include <linux/mutex.h>
  32#include <linux/sizes.h>
  33#include <linux/slab.h>
  34#include <linux/log2.h>
  35#include <linux/cma.h>
  36#include <linux/highmem.h>
  37#include <linux/io.h>
  38#include <trace/events/cma.h>
  39
  40#include "cma.h"
  41
  42struct cma cma_areas[MAX_CMA_AREAS];
  43unsigned cma_area_count;
  44static DEFINE_MUTEX(cma_mutex);
  45
  46phys_addr_t cma_get_base(const struct cma *cma)
  47{
  48        return PFN_PHYS(cma->base_pfn);
  49}
  50
  51unsigned long cma_get_size(const struct cma *cma)
  52{
  53        return cma->count << PAGE_SHIFT;
  54}
  55
  56static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
  57                                             int align_order)
  58{
  59        if (align_order <= cma->order_per_bit)
  60                return 0;
  61        return (1UL << (align_order - cma->order_per_bit)) - 1;
  62}
  63
  64/*
  65 * Find a PFN aligned to the specified order and return an offset represented in
  66 * order_per_bits.
  67 */
  68static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
  69                                               int align_order)
  70{
  71        if (align_order <= cma->order_per_bit)
  72                return 0;
  73
  74        return (ALIGN(cma->base_pfn, (1UL << align_order))
  75                - cma->base_pfn) >> cma->order_per_bit;
  76}
  77
  78static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
  79                                              unsigned long pages)
  80{
  81        return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
  82}
  83
  84static void cma_clear_bitmap(struct cma *cma, unsigned long pfn,
  85                             unsigned int count)
  86{
  87        unsigned long bitmap_no, bitmap_count;
  88
  89        bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit;
  90        bitmap_count = cma_bitmap_pages_to_bits(cma, count);
  91
  92        mutex_lock(&cma->lock);
  93        bitmap_clear(cma->bitmap, bitmap_no, bitmap_count);
  94        mutex_unlock(&cma->lock);
  95}
  96
  97static int __init cma_activate_area(struct cma *cma)
  98{
  99        int bitmap_size = BITS_TO_LONGS(cma_bitmap_maxno(cma)) * sizeof(long);
 100        unsigned long base_pfn = cma->base_pfn, pfn = base_pfn;
 101        unsigned i = cma->count >> pageblock_order;
 102        struct zone *zone;
 103
 104        cma->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 105
 106        if (!cma->bitmap)
 107                return -ENOMEM;
 108
 109        WARN_ON_ONCE(!pfn_valid(pfn));
 110        zone = page_zone(pfn_to_page(pfn));
 111
 112        do {
 113                unsigned j;
 114
 115                base_pfn = pfn;
 116                for (j = pageblock_nr_pages; j; --j, pfn++) {
 117                        WARN_ON_ONCE(!pfn_valid(pfn));
 118                        /*
 119                         * alloc_contig_range requires the pfn range
 120                         * specified to be in the same zone. Make this
 121                         * simple by forcing the entire CMA resv range
 122                         * to be in the same zone.
 123                         */
 124                        if (page_zone(pfn_to_page(pfn)) != zone)
 125                                goto err;
 126                }
 127                init_cma_reserved_pageblock(pfn_to_page(base_pfn));
 128        } while (--i);
 129
 130        mutex_init(&cma->lock);
 131
 132#ifdef CONFIG_CMA_DEBUGFS
 133        INIT_HLIST_HEAD(&cma->mem_head);
 134        spin_lock_init(&cma->mem_head_lock);
 135#endif
 136
 137        return 0;
 138
 139err:
 140        kfree(cma->bitmap);
 141        cma->count = 0;
 142        return -EINVAL;
 143}
 144
 145static int __init cma_init_reserved_areas(void)
 146{
 147        int i;
 148
 149        for (i = 0; i < cma_area_count; i++) {
 150                int ret = cma_activate_area(&cma_areas[i]);
 151
 152                if (ret)
 153                        return ret;
 154        }
 155
 156        return 0;
 157}
 158core_initcall(cma_init_reserved_areas);
 159
 160/**
 161 * cma_init_reserved_mem() - create custom contiguous area from reserved memory
 162 * @base: Base address of the reserved area
 163 * @size: Size of the reserved area (in bytes),
 164 * @order_per_bit: Order of pages represented by one bit on bitmap.
 165 * @res_cma: Pointer to store the created cma region.
 166 *
 167 * This function creates custom contiguous area from already reserved memory.
 168 */
 169int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
 170                                 unsigned int order_per_bit,
 171                                 struct cma **res_cma)
 172{
 173        struct cma *cma;
 174        phys_addr_t alignment;
 175
 176        /* Sanity checks */
 177        if (cma_area_count == ARRAY_SIZE(cma_areas)) {
 178                pr_err("Not enough slots for CMA reserved regions!\n");
 179                return -ENOSPC;
 180        }
 181
 182        if (!size || !memblock_is_region_reserved(base, size))
 183                return -EINVAL;
 184
 185        /* ensure minimal alignment required by mm core */
 186        alignment = PAGE_SIZE <<
 187                        max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
 188
 189        /* alignment should be aligned with order_per_bit */
 190        if (!IS_ALIGNED(alignment >> PAGE_SHIFT, 1 << order_per_bit))
 191                return -EINVAL;
 192
 193        if (ALIGN(base, alignment) != base || ALIGN(size, alignment) != size)
 194                return -EINVAL;
 195
 196        /*
 197         * Each reserved area must be initialised later, when more kernel
 198         * subsystems (like slab allocator) are available.
 199         */
 200        cma = &cma_areas[cma_area_count];
 201        cma->base_pfn = PFN_DOWN(base);
 202        cma->count = size >> PAGE_SHIFT;
 203        cma->order_per_bit = order_per_bit;
 204        *res_cma = cma;
 205        cma_area_count++;
 206        totalcma_pages += (size / PAGE_SIZE);
 207
 208        return 0;
 209}
 210
 211/**
 212 * cma_declare_contiguous() - reserve custom contiguous area
 213 * @base: Base address of the reserved area optional, use 0 for any
 214 * @size: Size of the reserved area (in bytes),
 215 * @limit: End address of the reserved memory (optional, 0 for any).
 216 * @alignment: Alignment for the CMA area, should be power of 2 or zero
 217 * @order_per_bit: Order of pages represented by one bit on bitmap.
 218 * @fixed: hint about where to place the reserved area
 219 * @res_cma: Pointer to store the created cma region.
 220 *
 221 * This function reserves memory from early allocator. It should be
 222 * called by arch specific code once the early allocator (memblock or bootmem)
 223 * has been activated and all other subsystems have already allocated/reserved
 224 * memory. This function allows to create custom reserved areas.
 225 *
 226 * If @fixed is true, reserve contiguous area at exactly @base.  If false,
 227 * reserve in range from @base to @limit.
 228 */
 229int __init cma_declare_contiguous(phys_addr_t base,
 230                        phys_addr_t size, phys_addr_t limit,
 231                        phys_addr_t alignment, unsigned int order_per_bit,
 232                        bool fixed, struct cma **res_cma)
 233{
 234        phys_addr_t memblock_end = memblock_end_of_DRAM();
 235        phys_addr_t highmem_start;
 236        int ret = 0;
 237
 238#ifdef CONFIG_X86
 239        /*
 240         * high_memory isn't direct mapped memory so retrieving its physical
 241         * address isn't appropriate.  But it would be useful to check the
 242         * physical address of the highmem boundary so it's justifiable to get
 243         * the physical address from it.  On x86 there is a validation check for
 244         * this case, so the following workaround is needed to avoid it.
 245         */
 246        highmem_start = __pa_nodebug(high_memory);
 247#else
 248        highmem_start = __pa(high_memory);
 249#endif
 250        pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
 251                __func__, &size, &base, &limit, &alignment);
 252
 253        if (cma_area_count == ARRAY_SIZE(cma_areas)) {
 254                pr_err("Not enough slots for CMA reserved regions!\n");
 255                return -ENOSPC;
 256        }
 257
 258        if (!size)
 259                return -EINVAL;
 260
 261        if (alignment && !is_power_of_2(alignment))
 262                return -EINVAL;
 263
 264        /*
 265         * Sanitise input arguments.
 266         * Pages both ends in CMA area could be merged into adjacent unmovable
 267         * migratetype page by page allocator's buddy algorithm. In the case,
 268         * you couldn't get a contiguous memory, which is not what we want.
 269         */
 270        alignment = max(alignment,  (phys_addr_t)PAGE_SIZE <<
 271                          max_t(unsigned long, MAX_ORDER - 1, pageblock_order));
 272        base = ALIGN(base, alignment);
 273        size = ALIGN(size, alignment);
 274        limit &= ~(alignment - 1);
 275
 276        if (!base)
 277                fixed = false;
 278
 279        /* size should be aligned with order_per_bit */
 280        if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
 281                return -EINVAL;
 282
 283        /*
 284         * If allocating at a fixed base the request region must not cross the
 285         * low/high memory boundary.
 286         */
 287        if (fixed && base < highmem_start && base + size > highmem_start) {
 288                ret = -EINVAL;
 289                pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
 290                        &base, &highmem_start);
 291                goto err;
 292        }
 293
 294        /*
 295         * If the limit is unspecified or above the memblock end, its effective
 296         * value will be the memblock end. Set it explicitly to simplify further
 297         * checks.
 298         */
 299        if (limit == 0 || limit > memblock_end)
 300                limit = memblock_end;
 301
 302        /* Reserve memory */
 303        if (fixed) {
 304                if (memblock_is_region_reserved(base, size) ||
 305                    memblock_reserve(base, size) < 0) {
 306                        ret = -EBUSY;
 307                        goto err;
 308                }
 309        } else {
 310                phys_addr_t addr = 0;
 311
 312                /*
 313                 * All pages in the reserved area must come from the same zone.
 314                 * If the requested region crosses the low/high memory boundary,
 315                 * try allocating from high memory first and fall back to low
 316                 * memory in case of failure.
 317                 */
 318                if (base < highmem_start && limit > highmem_start) {
 319                        addr = memblock_alloc_range(size, alignment,
 320                                                    highmem_start, limit,
 321                                                    MEMBLOCK_NONE);
 322                        limit = highmem_start;
 323                }
 324
 325                if (!addr) {
 326                        addr = memblock_alloc_range(size, alignment, base,
 327                                                    limit,
 328                                                    MEMBLOCK_NONE);
 329                        if (!addr) {
 330                                ret = -ENOMEM;
 331                                goto err;
 332                        }
 333                }
 334
 335                /*
 336                 * kmemleak scans/reads tracked objects for pointers to other
 337                 * objects but this address isn't mapped and accessible
 338                 */
 339                kmemleak_ignore_phys(addr);
 340                base = addr;
 341        }
 342
 343        ret = cma_init_reserved_mem(base, size, order_per_bit, res_cma);
 344        if (ret)
 345                goto err;
 346
 347        pr_info("Reserved %ld MiB at %pa\n", (unsigned long)size / SZ_1M,
 348                &base);
 349        return 0;
 350
 351err:
 352        pr_err("Failed to reserve %ld MiB\n", (unsigned long)size / SZ_1M);
 353        return ret;
 354}
 355
 356/**
 357 * cma_alloc() - allocate pages from contiguous area
 358 * @cma:   Contiguous memory region for which the allocation is performed.
 359 * @count: Requested number of pages.
 360 * @align: Requested alignment of pages (in PAGE_SIZE order).
 361 *
 362 * This function allocates part of contiguous memory on specific
 363 * contiguous memory area.
 364 */
 365struct page *cma_alloc(struct cma *cma, size_t count, unsigned int align)
 366{
 367        unsigned long mask, offset;
 368        unsigned long pfn = -1;
 369        unsigned long start = 0;
 370        unsigned long bitmap_maxno, bitmap_no, bitmap_count;
 371        struct page *page = NULL;
 372        int ret;
 373
 374        if (!cma || !cma->count)
 375                return NULL;
 376
 377        pr_debug("%s(cma %p, count %zu, align %d)\n", __func__, (void *)cma,
 378                 count, align);
 379
 380        if (!count)
 381                return NULL;
 382
 383        mask = cma_bitmap_aligned_mask(cma, align);
 384        offset = cma_bitmap_aligned_offset(cma, align);
 385        bitmap_maxno = cma_bitmap_maxno(cma);
 386        bitmap_count = cma_bitmap_pages_to_bits(cma, count);
 387
 388        if (bitmap_count > bitmap_maxno)
 389                return NULL;
 390
 391        for (;;) {
 392                mutex_lock(&cma->lock);
 393                bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap,
 394                                bitmap_maxno, start, bitmap_count, mask,
 395                                offset);
 396                if (bitmap_no >= bitmap_maxno) {
 397                        mutex_unlock(&cma->lock);
 398                        break;
 399                }
 400                bitmap_set(cma->bitmap, bitmap_no, bitmap_count);
 401                /*
 402                 * It's safe to drop the lock here. We've marked this region for
 403                 * our exclusive use. If the migration fails we will take the
 404                 * lock again and unmark it.
 405                 */
 406                mutex_unlock(&cma->lock);
 407
 408                pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit);
 409                mutex_lock(&cma_mutex);
 410                ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA);
 411                mutex_unlock(&cma_mutex);
 412                if (ret == 0) {
 413                        page = pfn_to_page(pfn);
 414                        break;
 415                }
 416
 417                cma_clear_bitmap(cma, pfn, count);
 418                if (ret != -EBUSY)
 419                        break;
 420
 421                pr_debug("%s(): memory range at %p is busy, retrying\n",
 422                         __func__, pfn_to_page(pfn));
 423                /* try again with a bit different memory target */
 424                start = bitmap_no + mask + 1;
 425        }
 426
 427        trace_cma_alloc(pfn, page, count, align);
 428
 429        pr_debug("%s(): returned %p\n", __func__, page);
 430        return page;
 431}
 432
 433/**
 434 * cma_release() - release allocated pages
 435 * @cma:   Contiguous memory region for which the allocation is performed.
 436 * @pages: Allocated pages.
 437 * @count: Number of allocated pages.
 438 *
 439 * This function releases memory allocated by alloc_cma().
 440 * It returns false when provided pages do not belong to contiguous area and
 441 * true otherwise.
 442 */
 443bool cma_release(struct cma *cma, const struct page *pages, unsigned int count)
 444{
 445        unsigned long pfn;
 446
 447        if (!cma || !pages)
 448                return false;
 449
 450        pr_debug("%s(page %p)\n", __func__, (void *)pages);
 451
 452        pfn = page_to_pfn(pages);
 453
 454        if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count)
 455                return false;
 456
 457        VM_BUG_ON(pfn + count > cma->base_pfn + cma->count);
 458
 459        free_contig_range(pfn, count);
 460        cma_clear_bitmap(cma, pfn, count);
 461        trace_cma_release(pfn, pages, count);
 462
 463        return true;
 464}
 465