linux/net/ipv6/ip6_fib.c
<<
>>
Prefs
   1/*
   2 *      Linux INET6 implementation
   3 *      Forwarding Information Database
   4 *
   5 *      Authors:
   6 *      Pedro Roque             <roque@di.fc.ul.pt>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *      Changes:
  14 *      Yuji SEKIYA @USAGI:     Support default route on router node;
  15 *                              remove ip6_null_entry from the top of
  16 *                              routing table.
  17 *      Ville Nuorvala:         Fixed routing subtrees.
  18 */
  19
  20#define pr_fmt(fmt) "IPv6: " fmt
  21
  22#include <linux/errno.h>
  23#include <linux/types.h>
  24#include <linux/net.h>
  25#include <linux/route.h>
  26#include <linux/netdevice.h>
  27#include <linux/in6.h>
  28#include <linux/init.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31
  32#include <net/ipv6.h>
  33#include <net/ndisc.h>
  34#include <net/addrconf.h>
  35#include <net/lwtunnel.h>
  36
  37#include <net/ip6_fib.h>
  38#include <net/ip6_route.h>
  39
  40#define RT6_DEBUG 2
  41
  42#if RT6_DEBUG >= 3
  43#define RT6_TRACE(x...) pr_debug(x)
  44#else
  45#define RT6_TRACE(x...) do { ; } while (0)
  46#endif
  47
  48static struct kmem_cache *fib6_node_kmem __read_mostly;
  49
  50struct fib6_cleaner {
  51        struct fib6_walker w;
  52        struct net *net;
  53        int (*func)(struct rt6_info *, void *arg);
  54        int sernum;
  55        void *arg;
  56};
  57
  58#ifdef CONFIG_IPV6_SUBTREES
  59#define FWS_INIT FWS_S
  60#else
  61#define FWS_INIT FWS_L
  62#endif
  63
  64static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
  65static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  66static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  67static int fib6_walk(struct net *net, struct fib6_walker *w);
  68static int fib6_walk_continue(struct fib6_walker *w);
  69
  70/*
  71 *      A routing update causes an increase of the serial number on the
  72 *      affected subtree. This allows for cached routes to be asynchronously
  73 *      tested when modifications are made to the destination cache as a
  74 *      result of redirects, path MTU changes, etc.
  75 */
  76
  77static void fib6_gc_timer_cb(unsigned long arg);
  78
  79#define FOR_WALKERS(net, w) \
  80        list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
  81
  82static void fib6_walker_link(struct net *net, struct fib6_walker *w)
  83{
  84        write_lock_bh(&net->ipv6.fib6_walker_lock);
  85        list_add(&w->lh, &net->ipv6.fib6_walkers);
  86        write_unlock_bh(&net->ipv6.fib6_walker_lock);
  87}
  88
  89static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
  90{
  91        write_lock_bh(&net->ipv6.fib6_walker_lock);
  92        list_del(&w->lh);
  93        write_unlock_bh(&net->ipv6.fib6_walker_lock);
  94}
  95
  96static int fib6_new_sernum(struct net *net)
  97{
  98        int new, old;
  99
 100        do {
 101                old = atomic_read(&net->ipv6.fib6_sernum);
 102                new = old < INT_MAX ? old + 1 : 1;
 103        } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
 104                                old, new) != old);
 105        return new;
 106}
 107
 108enum {
 109        FIB6_NO_SERNUM_CHANGE = 0,
 110};
 111
 112/*
 113 *      Auxiliary address test functions for the radix tree.
 114 *
 115 *      These assume a 32bit processor (although it will work on
 116 *      64bit processors)
 117 */
 118
 119/*
 120 *      test bit
 121 */
 122#if defined(__LITTLE_ENDIAN)
 123# define BITOP_BE32_SWIZZLE     (0x1F & ~7)
 124#else
 125# define BITOP_BE32_SWIZZLE     0
 126#endif
 127
 128static __be32 addr_bit_set(const void *token, int fn_bit)
 129{
 130        const __be32 *addr = token;
 131        /*
 132         * Here,
 133         *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 134         * is optimized version of
 135         *      htonl(1 << ((~fn_bit)&0x1F))
 136         * See include/asm-generic/bitops/le.h.
 137         */
 138        return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 139               addr[fn_bit >> 5];
 140}
 141
 142static struct fib6_node *node_alloc(void)
 143{
 144        struct fib6_node *fn;
 145
 146        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 147
 148        return fn;
 149}
 150
 151static void node_free(struct fib6_node *fn)
 152{
 153        kmem_cache_free(fib6_node_kmem, fn);
 154}
 155
 156static void rt6_rcu_free(struct rt6_info *rt)
 157{
 158        call_rcu(&rt->dst.rcu_head, dst_rcu_free);
 159}
 160
 161static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
 162{
 163        int cpu;
 164
 165        if (!non_pcpu_rt->rt6i_pcpu)
 166                return;
 167
 168        for_each_possible_cpu(cpu) {
 169                struct rt6_info **ppcpu_rt;
 170                struct rt6_info *pcpu_rt;
 171
 172                ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
 173                pcpu_rt = *ppcpu_rt;
 174                if (pcpu_rt) {
 175                        rt6_rcu_free(pcpu_rt);
 176                        *ppcpu_rt = NULL;
 177                }
 178        }
 179
 180        free_percpu(non_pcpu_rt->rt6i_pcpu);
 181        non_pcpu_rt->rt6i_pcpu = NULL;
 182}
 183
 184static void rt6_release(struct rt6_info *rt)
 185{
 186        if (atomic_dec_and_test(&rt->rt6i_ref)) {
 187                rt6_free_pcpu(rt);
 188                rt6_rcu_free(rt);
 189        }
 190}
 191
 192static void fib6_link_table(struct net *net, struct fib6_table *tb)
 193{
 194        unsigned int h;
 195
 196        /*
 197         * Initialize table lock at a single place to give lockdep a key,
 198         * tables aren't visible prior to being linked to the list.
 199         */
 200        rwlock_init(&tb->tb6_lock);
 201
 202        h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 203
 204        /*
 205         * No protection necessary, this is the only list mutatation
 206         * operation, tables never disappear once they exist.
 207         */
 208        hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 209}
 210
 211#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 212
 213static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 214{
 215        struct fib6_table *table;
 216
 217        table = kzalloc(sizeof(*table), GFP_ATOMIC);
 218        if (table) {
 219                table->tb6_id = id;
 220                table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 221                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 222                inet_peer_base_init(&table->tb6_peers);
 223        }
 224
 225        return table;
 226}
 227
 228struct fib6_table *fib6_new_table(struct net *net, u32 id)
 229{
 230        struct fib6_table *tb;
 231
 232        if (id == 0)
 233                id = RT6_TABLE_MAIN;
 234        tb = fib6_get_table(net, id);
 235        if (tb)
 236                return tb;
 237
 238        tb = fib6_alloc_table(net, id);
 239        if (tb)
 240                fib6_link_table(net, tb);
 241
 242        return tb;
 243}
 244EXPORT_SYMBOL_GPL(fib6_new_table);
 245
 246struct fib6_table *fib6_get_table(struct net *net, u32 id)
 247{
 248        struct fib6_table *tb;
 249        struct hlist_head *head;
 250        unsigned int h;
 251
 252        if (id == 0)
 253                id = RT6_TABLE_MAIN;
 254        h = id & (FIB6_TABLE_HASHSZ - 1);
 255        rcu_read_lock();
 256        head = &net->ipv6.fib_table_hash[h];
 257        hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 258                if (tb->tb6_id == id) {
 259                        rcu_read_unlock();
 260                        return tb;
 261                }
 262        }
 263        rcu_read_unlock();
 264
 265        return NULL;
 266}
 267EXPORT_SYMBOL_GPL(fib6_get_table);
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272        fib6_link_table(net, net->ipv6.fib6_local_tbl);
 273}
 274#else
 275
 276struct fib6_table *fib6_new_table(struct net *net, u32 id)
 277{
 278        return fib6_get_table(net, id);
 279}
 280
 281struct fib6_table *fib6_get_table(struct net *net, u32 id)
 282{
 283          return net->ipv6.fib6_main_tbl;
 284}
 285
 286struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 287                                   int flags, pol_lookup_t lookup)
 288{
 289        struct rt6_info *rt;
 290
 291        rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 292        if (rt->rt6i_flags & RTF_REJECT &&
 293            rt->dst.error == -EAGAIN) {
 294                ip6_rt_put(rt);
 295                rt = net->ipv6.ip6_null_entry;
 296                dst_hold(&rt->dst);
 297        }
 298
 299        return &rt->dst;
 300}
 301
 302static void __net_init fib6_tables_init(struct net *net)
 303{
 304        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 305}
 306
 307#endif
 308
 309static int fib6_dump_node(struct fib6_walker *w)
 310{
 311        int res;
 312        struct rt6_info *rt;
 313
 314        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 315                res = rt6_dump_route(rt, w->args);
 316                if (res < 0) {
 317                        /* Frame is full, suspend walking */
 318                        w->leaf = rt;
 319                        return 1;
 320                }
 321        }
 322        w->leaf = NULL;
 323        return 0;
 324}
 325
 326static void fib6_dump_end(struct netlink_callback *cb)
 327{
 328        struct net *net = sock_net(cb->skb->sk);
 329        struct fib6_walker *w = (void *)cb->args[2];
 330
 331        if (w) {
 332                if (cb->args[4]) {
 333                        cb->args[4] = 0;
 334                        fib6_walker_unlink(net, w);
 335                }
 336                cb->args[2] = 0;
 337                kfree(w);
 338        }
 339        cb->done = (void *)cb->args[3];
 340        cb->args[1] = 3;
 341}
 342
 343static int fib6_dump_done(struct netlink_callback *cb)
 344{
 345        fib6_dump_end(cb);
 346        return cb->done ? cb->done(cb) : 0;
 347}
 348
 349static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 350                           struct netlink_callback *cb)
 351{
 352        struct net *net = sock_net(skb->sk);
 353        struct fib6_walker *w;
 354        int res;
 355
 356        w = (void *)cb->args[2];
 357        w->root = &table->tb6_root;
 358
 359        if (cb->args[4] == 0) {
 360                w->count = 0;
 361                w->skip = 0;
 362
 363                read_lock_bh(&table->tb6_lock);
 364                res = fib6_walk(net, w);
 365                read_unlock_bh(&table->tb6_lock);
 366                if (res > 0) {
 367                        cb->args[4] = 1;
 368                        cb->args[5] = w->root->fn_sernum;
 369                }
 370        } else {
 371                if (cb->args[5] != w->root->fn_sernum) {
 372                        /* Begin at the root if the tree changed */
 373                        cb->args[5] = w->root->fn_sernum;
 374                        w->state = FWS_INIT;
 375                        w->node = w->root;
 376                        w->skip = w->count;
 377                } else
 378                        w->skip = 0;
 379
 380                read_lock_bh(&table->tb6_lock);
 381                res = fib6_walk_continue(w);
 382                read_unlock_bh(&table->tb6_lock);
 383                if (res <= 0) {
 384                        fib6_walker_unlink(net, w);
 385                        cb->args[4] = 0;
 386                }
 387        }
 388
 389        return res;
 390}
 391
 392static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 393{
 394        struct net *net = sock_net(skb->sk);
 395        unsigned int h, s_h;
 396        unsigned int e = 0, s_e;
 397        struct rt6_rtnl_dump_arg arg;
 398        struct fib6_walker *w;
 399        struct fib6_table *tb;
 400        struct hlist_head *head;
 401        int res = 0;
 402
 403        s_h = cb->args[0];
 404        s_e = cb->args[1];
 405
 406        w = (void *)cb->args[2];
 407        if (!w) {
 408                /* New dump:
 409                 *
 410                 * 1. hook callback destructor.
 411                 */
 412                cb->args[3] = (long)cb->done;
 413                cb->done = fib6_dump_done;
 414
 415                /*
 416                 * 2. allocate and initialize walker.
 417                 */
 418                w = kzalloc(sizeof(*w), GFP_ATOMIC);
 419                if (!w)
 420                        return -ENOMEM;
 421                w->func = fib6_dump_node;
 422                cb->args[2] = (long)w;
 423        }
 424
 425        arg.skb = skb;
 426        arg.cb = cb;
 427        arg.net = net;
 428        w->args = &arg;
 429
 430        rcu_read_lock();
 431        for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 432                e = 0;
 433                head = &net->ipv6.fib_table_hash[h];
 434                hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 435                        if (e < s_e)
 436                                goto next;
 437                        res = fib6_dump_table(tb, skb, cb);
 438                        if (res != 0)
 439                                goto out;
 440next:
 441                        e++;
 442                }
 443        }
 444out:
 445        rcu_read_unlock();
 446        cb->args[1] = e;
 447        cb->args[0] = h;
 448
 449        res = res < 0 ? res : skb->len;
 450        if (res <= 0)
 451                fib6_dump_end(cb);
 452        return res;
 453}
 454
 455/*
 456 *      Routing Table
 457 *
 458 *      return the appropriate node for a routing tree "add" operation
 459 *      by either creating and inserting or by returning an existing
 460 *      node.
 461 */
 462
 463static struct fib6_node *fib6_add_1(struct fib6_node *root,
 464                                     struct in6_addr *addr, int plen,
 465                                     int offset, int allow_create,
 466                                     int replace_required, int sernum)
 467{
 468        struct fib6_node *fn, *in, *ln;
 469        struct fib6_node *pn = NULL;
 470        struct rt6key *key;
 471        int     bit;
 472        __be32  dir = 0;
 473
 474        RT6_TRACE("fib6_add_1\n");
 475
 476        /* insert node in tree */
 477
 478        fn = root;
 479
 480        do {
 481                key = (struct rt6key *)((u8 *)fn->leaf + offset);
 482
 483                /*
 484                 *      Prefix match
 485                 */
 486                if (plen < fn->fn_bit ||
 487                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 488                        if (!allow_create) {
 489                                if (replace_required) {
 490                                        pr_warn("Can't replace route, no match found\n");
 491                                        return ERR_PTR(-ENOENT);
 492                                }
 493                                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 494                        }
 495                        goto insert_above;
 496                }
 497
 498                /*
 499                 *      Exact match ?
 500                 */
 501
 502                if (plen == fn->fn_bit) {
 503                        /* clean up an intermediate node */
 504                        if (!(fn->fn_flags & RTN_RTINFO)) {
 505                                rt6_release(fn->leaf);
 506                                fn->leaf = NULL;
 507                        }
 508
 509                        fn->fn_sernum = sernum;
 510
 511                        return fn;
 512                }
 513
 514                /*
 515                 *      We have more bits to go
 516                 */
 517
 518                /* Try to walk down on tree. */
 519                fn->fn_sernum = sernum;
 520                dir = addr_bit_set(addr, fn->fn_bit);
 521                pn = fn;
 522                fn = dir ? fn->right : fn->left;
 523        } while (fn);
 524
 525        if (!allow_create) {
 526                /* We should not create new node because
 527                 * NLM_F_REPLACE was specified without NLM_F_CREATE
 528                 * I assume it is safe to require NLM_F_CREATE when
 529                 * REPLACE flag is used! Later we may want to remove the
 530                 * check for replace_required, because according
 531                 * to netlink specification, NLM_F_CREATE
 532                 * MUST be specified if new route is created.
 533                 * That would keep IPv6 consistent with IPv4
 534                 */
 535                if (replace_required) {
 536                        pr_warn("Can't replace route, no match found\n");
 537                        return ERR_PTR(-ENOENT);
 538                }
 539                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 540        }
 541        /*
 542         *      We walked to the bottom of tree.
 543         *      Create new leaf node without children.
 544         */
 545
 546        ln = node_alloc();
 547
 548        if (!ln)
 549                return ERR_PTR(-ENOMEM);
 550        ln->fn_bit = plen;
 551
 552        ln->parent = pn;
 553        ln->fn_sernum = sernum;
 554
 555        if (dir)
 556                pn->right = ln;
 557        else
 558                pn->left  = ln;
 559
 560        return ln;
 561
 562
 563insert_above:
 564        /*
 565         * split since we don't have a common prefix anymore or
 566         * we have a less significant route.
 567         * we've to insert an intermediate node on the list
 568         * this new node will point to the one we need to create
 569         * and the current
 570         */
 571
 572        pn = fn->parent;
 573
 574        /* find 1st bit in difference between the 2 addrs.
 575
 576           See comment in __ipv6_addr_diff: bit may be an invalid value,
 577           but if it is >= plen, the value is ignored in any case.
 578         */
 579
 580        bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
 581
 582        /*
 583         *              (intermediate)[in]
 584         *                /        \
 585         *      (new leaf node)[ln] (old node)[fn]
 586         */
 587        if (plen > bit) {
 588                in = node_alloc();
 589                ln = node_alloc();
 590
 591                if (!in || !ln) {
 592                        if (in)
 593                                node_free(in);
 594                        if (ln)
 595                                node_free(ln);
 596                        return ERR_PTR(-ENOMEM);
 597                }
 598
 599                /*
 600                 * new intermediate node.
 601                 * RTN_RTINFO will
 602                 * be off since that an address that chooses one of
 603                 * the branches would not match less specific routes
 604                 * in the other branch
 605                 */
 606
 607                in->fn_bit = bit;
 608
 609                in->parent = pn;
 610                in->leaf = fn->leaf;
 611                atomic_inc(&in->leaf->rt6i_ref);
 612
 613                in->fn_sernum = sernum;
 614
 615                /* update parent pointer */
 616                if (dir)
 617                        pn->right = in;
 618                else
 619                        pn->left  = in;
 620
 621                ln->fn_bit = plen;
 622
 623                ln->parent = in;
 624                fn->parent = in;
 625
 626                ln->fn_sernum = sernum;
 627
 628                if (addr_bit_set(addr, bit)) {
 629                        in->right = ln;
 630                        in->left  = fn;
 631                } else {
 632                        in->left  = ln;
 633                        in->right = fn;
 634                }
 635        } else { /* plen <= bit */
 636
 637                /*
 638                 *              (new leaf node)[ln]
 639                 *                /        \
 640                 *           (old node)[fn] NULL
 641                 */
 642
 643                ln = node_alloc();
 644
 645                if (!ln)
 646                        return ERR_PTR(-ENOMEM);
 647
 648                ln->fn_bit = plen;
 649
 650                ln->parent = pn;
 651
 652                ln->fn_sernum = sernum;
 653
 654                if (dir)
 655                        pn->right = ln;
 656                else
 657                        pn->left  = ln;
 658
 659                if (addr_bit_set(&key->addr, plen))
 660                        ln->right = fn;
 661                else
 662                        ln->left  = fn;
 663
 664                fn->parent = ln;
 665        }
 666        return ln;
 667}
 668
 669static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
 670{
 671        return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
 672               RTF_GATEWAY;
 673}
 674
 675static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
 676{
 677        int i;
 678
 679        for (i = 0; i < RTAX_MAX; i++) {
 680                if (test_bit(i, mxc->mx_valid))
 681                        mp[i] = mxc->mx[i];
 682        }
 683}
 684
 685static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
 686{
 687        if (!mxc->mx)
 688                return 0;
 689
 690        if (dst->flags & DST_HOST) {
 691                u32 *mp = dst_metrics_write_ptr(dst);
 692
 693                if (unlikely(!mp))
 694                        return -ENOMEM;
 695
 696                fib6_copy_metrics(mp, mxc);
 697        } else {
 698                dst_init_metrics(dst, mxc->mx, false);
 699
 700                /* We've stolen mx now. */
 701                mxc->mx = NULL;
 702        }
 703
 704        return 0;
 705}
 706
 707static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
 708                          struct net *net)
 709{
 710        if (atomic_read(&rt->rt6i_ref) != 1) {
 711                /* This route is used as dummy address holder in some split
 712                 * nodes. It is not leaked, but it still holds other resources,
 713                 * which must be released in time. So, scan ascendant nodes
 714                 * and replace dummy references to this route with references
 715                 * to still alive ones.
 716                 */
 717                while (fn) {
 718                        if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
 719                                fn->leaf = fib6_find_prefix(net, fn);
 720                                atomic_inc(&fn->leaf->rt6i_ref);
 721                                rt6_release(rt);
 722                        }
 723                        fn = fn->parent;
 724                }
 725                /* No more references are possible at this point. */
 726                BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
 727        }
 728}
 729
 730/*
 731 *      Insert routing information in a node.
 732 */
 733
 734static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 735                            struct nl_info *info, struct mx6_config *mxc)
 736{
 737        struct rt6_info *iter = NULL;
 738        struct rt6_info **ins;
 739        struct rt6_info **fallback_ins = NULL;
 740        int replace = (info->nlh &&
 741                       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
 742        int add = (!info->nlh ||
 743                   (info->nlh->nlmsg_flags & NLM_F_CREATE));
 744        int found = 0;
 745        bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
 746        u16 nlflags = NLM_F_EXCL;
 747        int err;
 748
 749        ins = &fn->leaf;
 750
 751        for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
 752                /*
 753                 *      Search for duplicates
 754                 */
 755
 756                if (iter->rt6i_metric == rt->rt6i_metric) {
 757                        /*
 758                         *      Same priority level
 759                         */
 760                        if (info->nlh &&
 761                            (info->nlh->nlmsg_flags & NLM_F_EXCL))
 762                                return -EEXIST;
 763
 764                        nlflags &= ~NLM_F_EXCL;
 765                        if (replace) {
 766                                if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
 767                                        found++;
 768                                        break;
 769                                }
 770                                if (rt_can_ecmp)
 771                                        fallback_ins = fallback_ins ?: ins;
 772                                goto next_iter;
 773                        }
 774
 775                        if (iter->dst.dev == rt->dst.dev &&
 776                            iter->rt6i_idev == rt->rt6i_idev &&
 777                            ipv6_addr_equal(&iter->rt6i_gateway,
 778                                            &rt->rt6i_gateway)) {
 779                                if (rt->rt6i_nsiblings)
 780                                        rt->rt6i_nsiblings = 0;
 781                                if (!(iter->rt6i_flags & RTF_EXPIRES))
 782                                        return -EEXIST;
 783                                if (!(rt->rt6i_flags & RTF_EXPIRES))
 784                                        rt6_clean_expires(iter);
 785                                else
 786                                        rt6_set_expires(iter, rt->dst.expires);
 787                                iter->rt6i_pmtu = rt->rt6i_pmtu;
 788                                return -EEXIST;
 789                        }
 790                        /* If we have the same destination and the same metric,
 791                         * but not the same gateway, then the route we try to
 792                         * add is sibling to this route, increment our counter
 793                         * of siblings, and later we will add our route to the
 794                         * list.
 795                         * Only static routes (which don't have flag
 796                         * RTF_EXPIRES) are used for ECMPv6.
 797                         *
 798                         * To avoid long list, we only had siblings if the
 799                         * route have a gateway.
 800                         */
 801                        if (rt_can_ecmp &&
 802                            rt6_qualify_for_ecmp(iter))
 803                                rt->rt6i_nsiblings++;
 804                }
 805
 806                if (iter->rt6i_metric > rt->rt6i_metric)
 807                        break;
 808
 809next_iter:
 810                ins = &iter->dst.rt6_next;
 811        }
 812
 813        if (fallback_ins && !found) {
 814                /* No ECMP-able route found, replace first non-ECMP one */
 815                ins = fallback_ins;
 816                iter = *ins;
 817                found++;
 818        }
 819
 820        /* Reset round-robin state, if necessary */
 821        if (ins == &fn->leaf)
 822                fn->rr_ptr = NULL;
 823
 824        /* Link this route to others same route. */
 825        if (rt->rt6i_nsiblings) {
 826                unsigned int rt6i_nsiblings;
 827                struct rt6_info *sibling, *temp_sibling;
 828
 829                /* Find the first route that have the same metric */
 830                sibling = fn->leaf;
 831                while (sibling) {
 832                        if (sibling->rt6i_metric == rt->rt6i_metric &&
 833                            rt6_qualify_for_ecmp(sibling)) {
 834                                list_add_tail(&rt->rt6i_siblings,
 835                                              &sibling->rt6i_siblings);
 836                                break;
 837                        }
 838                        sibling = sibling->dst.rt6_next;
 839                }
 840                /* For each sibling in the list, increment the counter of
 841                 * siblings. BUG() if counters does not match, list of siblings
 842                 * is broken!
 843                 */
 844                rt6i_nsiblings = 0;
 845                list_for_each_entry_safe(sibling, temp_sibling,
 846                                         &rt->rt6i_siblings, rt6i_siblings) {
 847                        sibling->rt6i_nsiblings++;
 848                        BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
 849                        rt6i_nsiblings++;
 850                }
 851                BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
 852        }
 853
 854        /*
 855         *      insert node
 856         */
 857        if (!replace) {
 858                if (!add)
 859                        pr_warn("NLM_F_CREATE should be set when creating new route\n");
 860
 861add:
 862                nlflags |= NLM_F_CREATE;
 863                err = fib6_commit_metrics(&rt->dst, mxc);
 864                if (err)
 865                        return err;
 866
 867                rt->dst.rt6_next = iter;
 868                *ins = rt;
 869                rt->rt6i_node = fn;
 870                atomic_inc(&rt->rt6i_ref);
 871                inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
 872                info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 873
 874                if (!(fn->fn_flags & RTN_RTINFO)) {
 875                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 876                        fn->fn_flags |= RTN_RTINFO;
 877                }
 878
 879        } else {
 880                int nsiblings;
 881
 882                if (!found) {
 883                        if (add)
 884                                goto add;
 885                        pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
 886                        return -ENOENT;
 887                }
 888
 889                err = fib6_commit_metrics(&rt->dst, mxc);
 890                if (err)
 891                        return err;
 892
 893                *ins = rt;
 894                rt->rt6i_node = fn;
 895                rt->dst.rt6_next = iter->dst.rt6_next;
 896                atomic_inc(&rt->rt6i_ref);
 897                inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
 898                if (!(fn->fn_flags & RTN_RTINFO)) {
 899                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 900                        fn->fn_flags |= RTN_RTINFO;
 901                }
 902                nsiblings = iter->rt6i_nsiblings;
 903                fib6_purge_rt(iter, fn, info->nl_net);
 904                rt6_release(iter);
 905
 906                if (nsiblings) {
 907                        /* Replacing an ECMP route, remove all siblings */
 908                        ins = &rt->dst.rt6_next;
 909                        iter = *ins;
 910                        while (iter) {
 911                                if (rt6_qualify_for_ecmp(iter)) {
 912                                        *ins = iter->dst.rt6_next;
 913                                        fib6_purge_rt(iter, fn, info->nl_net);
 914                                        rt6_release(iter);
 915                                        nsiblings--;
 916                                } else {
 917                                        ins = &iter->dst.rt6_next;
 918                                }
 919                                iter = *ins;
 920                        }
 921                        WARN_ON(nsiblings != 0);
 922                }
 923        }
 924
 925        return 0;
 926}
 927
 928static void fib6_start_gc(struct net *net, struct rt6_info *rt)
 929{
 930        if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 931            (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
 932                mod_timer(&net->ipv6.ip6_fib_timer,
 933                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 934}
 935
 936void fib6_force_start_gc(struct net *net)
 937{
 938        if (!timer_pending(&net->ipv6.ip6_fib_timer))
 939                mod_timer(&net->ipv6.ip6_fib_timer,
 940                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 941}
 942
 943/*
 944 *      Add routing information to the routing tree.
 945 *      <destination addr>/<source addr>
 946 *      with source addr info in sub-trees
 947 */
 948
 949int fib6_add(struct fib6_node *root, struct rt6_info *rt,
 950             struct nl_info *info, struct mx6_config *mxc)
 951{
 952        struct fib6_node *fn, *pn = NULL;
 953        int err = -ENOMEM;
 954        int allow_create = 1;
 955        int replace_required = 0;
 956        int sernum = fib6_new_sernum(info->nl_net);
 957
 958        if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
 959                         !atomic_read(&rt->dst.__refcnt)))
 960                return -EINVAL;
 961
 962        if (info->nlh) {
 963                if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
 964                        allow_create = 0;
 965                if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
 966                        replace_required = 1;
 967        }
 968        if (!allow_create && !replace_required)
 969                pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
 970
 971        fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
 972                        offsetof(struct rt6_info, rt6i_dst), allow_create,
 973                        replace_required, sernum);
 974        if (IS_ERR(fn)) {
 975                err = PTR_ERR(fn);
 976                fn = NULL;
 977                goto out;
 978        }
 979
 980        pn = fn;
 981
 982#ifdef CONFIG_IPV6_SUBTREES
 983        if (rt->rt6i_src.plen) {
 984                struct fib6_node *sn;
 985
 986                if (!fn->subtree) {
 987                        struct fib6_node *sfn;
 988
 989                        /*
 990                         * Create subtree.
 991                         *
 992                         *              fn[main tree]
 993                         *              |
 994                         *              sfn[subtree root]
 995                         *                 \
 996                         *                  sn[new leaf node]
 997                         */
 998
 999                        /* Create subtree root node */
1000                        sfn = node_alloc();
1001                        if (!sfn)
1002                                goto st_failure;
1003
1004                        sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1005                        atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1006                        sfn->fn_flags = RTN_ROOT;
1007                        sfn->fn_sernum = sernum;
1008
1009                        /* Now add the first leaf node to new subtree */
1010
1011                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1012                                        rt->rt6i_src.plen,
1013                                        offsetof(struct rt6_info, rt6i_src),
1014                                        allow_create, replace_required, sernum);
1015
1016                        if (IS_ERR(sn)) {
1017                                /* If it is failed, discard just allocated
1018                                   root, and then (in st_failure) stale node
1019                                   in main tree.
1020                                 */
1021                                node_free(sfn);
1022                                err = PTR_ERR(sn);
1023                                goto st_failure;
1024                        }
1025
1026                        /* Now link new subtree to main tree */
1027                        sfn->parent = fn;
1028                        fn->subtree = sfn;
1029                } else {
1030                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1031                                        rt->rt6i_src.plen,
1032                                        offsetof(struct rt6_info, rt6i_src),
1033                                        allow_create, replace_required, sernum);
1034
1035                        if (IS_ERR(sn)) {
1036                                err = PTR_ERR(sn);
1037                                goto st_failure;
1038                        }
1039                }
1040
1041                if (!fn->leaf) {
1042                        fn->leaf = rt;
1043                        atomic_inc(&rt->rt6i_ref);
1044                }
1045                fn = sn;
1046        }
1047#endif
1048
1049        err = fib6_add_rt2node(fn, rt, info, mxc);
1050        if (!err) {
1051                fib6_start_gc(info->nl_net, rt);
1052                if (!(rt->rt6i_flags & RTF_CACHE))
1053                        fib6_prune_clones(info->nl_net, pn);
1054                rt->dst.flags &= ~DST_NOCACHE;
1055        }
1056
1057out:
1058        if (err) {
1059#ifdef CONFIG_IPV6_SUBTREES
1060                /*
1061                 * If fib6_add_1 has cleared the old leaf pointer in the
1062                 * super-tree leaf node we have to find a new one for it.
1063                 */
1064                if (pn != fn && pn->leaf == rt) {
1065                        pn->leaf = NULL;
1066                        atomic_dec(&rt->rt6i_ref);
1067                }
1068                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1069                        pn->leaf = fib6_find_prefix(info->nl_net, pn);
1070#if RT6_DEBUG >= 2
1071                        if (!pn->leaf) {
1072                                WARN_ON(pn->leaf == NULL);
1073                                pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1074                        }
1075#endif
1076                        atomic_inc(&pn->leaf->rt6i_ref);
1077                }
1078#endif
1079                if (!(rt->dst.flags & DST_NOCACHE))
1080                        dst_free(&rt->dst);
1081        }
1082        return err;
1083
1084#ifdef CONFIG_IPV6_SUBTREES
1085        /* Subtree creation failed, probably main tree node
1086           is orphan. If it is, shoot it.
1087         */
1088st_failure:
1089        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1090                fib6_repair_tree(info->nl_net, fn);
1091        if (!(rt->dst.flags & DST_NOCACHE))
1092                dst_free(&rt->dst);
1093        return err;
1094#endif
1095}
1096
1097/*
1098 *      Routing tree lookup
1099 *
1100 */
1101
1102struct lookup_args {
1103        int                     offset;         /* key offset on rt6_info       */
1104        const struct in6_addr   *addr;          /* search key                   */
1105};
1106
1107static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1108                                       struct lookup_args *args)
1109{
1110        struct fib6_node *fn;
1111        __be32 dir;
1112
1113        if (unlikely(args->offset == 0))
1114                return NULL;
1115
1116        /*
1117         *      Descend on a tree
1118         */
1119
1120        fn = root;
1121
1122        for (;;) {
1123                struct fib6_node *next;
1124
1125                dir = addr_bit_set(args->addr, fn->fn_bit);
1126
1127                next = dir ? fn->right : fn->left;
1128
1129                if (next) {
1130                        fn = next;
1131                        continue;
1132                }
1133                break;
1134        }
1135
1136        while (fn) {
1137                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1138                        struct rt6key *key;
1139
1140                        key = (struct rt6key *) ((u8 *) fn->leaf +
1141                                                 args->offset);
1142
1143                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1144#ifdef CONFIG_IPV6_SUBTREES
1145                                if (fn->subtree) {
1146                                        struct fib6_node *sfn;
1147                                        sfn = fib6_lookup_1(fn->subtree,
1148                                                            args + 1);
1149                                        if (!sfn)
1150                                                goto backtrack;
1151                                        fn = sfn;
1152                                }
1153#endif
1154                                if (fn->fn_flags & RTN_RTINFO)
1155                                        return fn;
1156                        }
1157                }
1158#ifdef CONFIG_IPV6_SUBTREES
1159backtrack:
1160#endif
1161                if (fn->fn_flags & RTN_ROOT)
1162                        break;
1163
1164                fn = fn->parent;
1165        }
1166
1167        return NULL;
1168}
1169
1170struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1171                              const struct in6_addr *saddr)
1172{
1173        struct fib6_node *fn;
1174        struct lookup_args args[] = {
1175                {
1176                        .offset = offsetof(struct rt6_info, rt6i_dst),
1177                        .addr = daddr,
1178                },
1179#ifdef CONFIG_IPV6_SUBTREES
1180                {
1181                        .offset = offsetof(struct rt6_info, rt6i_src),
1182                        .addr = saddr,
1183                },
1184#endif
1185                {
1186                        .offset = 0,    /* sentinel */
1187                }
1188        };
1189
1190        fn = fib6_lookup_1(root, daddr ? args : args + 1);
1191        if (!fn || fn->fn_flags & RTN_TL_ROOT)
1192                fn = root;
1193
1194        return fn;
1195}
1196
1197/*
1198 *      Get node with specified destination prefix (and source prefix,
1199 *      if subtrees are used)
1200 */
1201
1202
1203static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1204                                       const struct in6_addr *addr,
1205                                       int plen, int offset)
1206{
1207        struct fib6_node *fn;
1208
1209        for (fn = root; fn ; ) {
1210                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1211
1212                /*
1213                 *      Prefix match
1214                 */
1215                if (plen < fn->fn_bit ||
1216                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1217                        return NULL;
1218
1219                if (plen == fn->fn_bit)
1220                        return fn;
1221
1222                /*
1223                 *      We have more bits to go
1224                 */
1225                if (addr_bit_set(addr, fn->fn_bit))
1226                        fn = fn->right;
1227                else
1228                        fn = fn->left;
1229        }
1230        return NULL;
1231}
1232
1233struct fib6_node *fib6_locate(struct fib6_node *root,
1234                              const struct in6_addr *daddr, int dst_len,
1235                              const struct in6_addr *saddr, int src_len)
1236{
1237        struct fib6_node *fn;
1238
1239        fn = fib6_locate_1(root, daddr, dst_len,
1240                           offsetof(struct rt6_info, rt6i_dst));
1241
1242#ifdef CONFIG_IPV6_SUBTREES
1243        if (src_len) {
1244                WARN_ON(saddr == NULL);
1245                if (fn && fn->subtree)
1246                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
1247                                           offsetof(struct rt6_info, rt6i_src));
1248        }
1249#endif
1250
1251        if (fn && fn->fn_flags & RTN_RTINFO)
1252                return fn;
1253
1254        return NULL;
1255}
1256
1257
1258/*
1259 *      Deletion
1260 *
1261 */
1262
1263static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1264{
1265        if (fn->fn_flags & RTN_ROOT)
1266                return net->ipv6.ip6_null_entry;
1267
1268        while (fn) {
1269                if (fn->left)
1270                        return fn->left->leaf;
1271                if (fn->right)
1272                        return fn->right->leaf;
1273
1274                fn = FIB6_SUBTREE(fn);
1275        }
1276        return NULL;
1277}
1278
1279/*
1280 *      Called to trim the tree of intermediate nodes when possible. "fn"
1281 *      is the node we want to try and remove.
1282 */
1283
1284static struct fib6_node *fib6_repair_tree(struct net *net,
1285                                           struct fib6_node *fn)
1286{
1287        int children;
1288        int nstate;
1289        struct fib6_node *child, *pn;
1290        struct fib6_walker *w;
1291        int iter = 0;
1292
1293        for (;;) {
1294                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1295                iter++;
1296
1297                WARN_ON(fn->fn_flags & RTN_RTINFO);
1298                WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1299                WARN_ON(fn->leaf);
1300
1301                children = 0;
1302                child = NULL;
1303                if (fn->right)
1304                        child = fn->right, children |= 1;
1305                if (fn->left)
1306                        child = fn->left, children |= 2;
1307
1308                if (children == 3 || FIB6_SUBTREE(fn)
1309#ifdef CONFIG_IPV6_SUBTREES
1310                    /* Subtree root (i.e. fn) may have one child */
1311                    || (children && fn->fn_flags & RTN_ROOT)
1312#endif
1313                    ) {
1314                        fn->leaf = fib6_find_prefix(net, fn);
1315#if RT6_DEBUG >= 2
1316                        if (!fn->leaf) {
1317                                WARN_ON(!fn->leaf);
1318                                fn->leaf = net->ipv6.ip6_null_entry;
1319                        }
1320#endif
1321                        atomic_inc(&fn->leaf->rt6i_ref);
1322                        return fn->parent;
1323                }
1324
1325                pn = fn->parent;
1326#ifdef CONFIG_IPV6_SUBTREES
1327                if (FIB6_SUBTREE(pn) == fn) {
1328                        WARN_ON(!(fn->fn_flags & RTN_ROOT));
1329                        FIB6_SUBTREE(pn) = NULL;
1330                        nstate = FWS_L;
1331                } else {
1332                        WARN_ON(fn->fn_flags & RTN_ROOT);
1333#endif
1334                        if (pn->right == fn)
1335                                pn->right = child;
1336                        else if (pn->left == fn)
1337                                pn->left = child;
1338#if RT6_DEBUG >= 2
1339                        else
1340                                WARN_ON(1);
1341#endif
1342                        if (child)
1343                                child->parent = pn;
1344                        nstate = FWS_R;
1345#ifdef CONFIG_IPV6_SUBTREES
1346                }
1347#endif
1348
1349                read_lock(&net->ipv6.fib6_walker_lock);
1350                FOR_WALKERS(net, w) {
1351                        if (!child) {
1352                                if (w->root == fn) {
1353                                        w->root = w->node = NULL;
1354                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1355                                } else if (w->node == fn) {
1356                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1357                                        w->node = pn;
1358                                        w->state = nstate;
1359                                }
1360                        } else {
1361                                if (w->root == fn) {
1362                                        w->root = child;
1363                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1364                                }
1365                                if (w->node == fn) {
1366                                        w->node = child;
1367                                        if (children&2) {
1368                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1369                                                w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1370                                        } else {
1371                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1372                                                w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1373                                        }
1374                                }
1375                        }
1376                }
1377                read_unlock(&net->ipv6.fib6_walker_lock);
1378
1379                node_free(fn);
1380                if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1381                        return pn;
1382
1383                rt6_release(pn->leaf);
1384                pn->leaf = NULL;
1385                fn = pn;
1386        }
1387}
1388
1389static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1390                           struct nl_info *info)
1391{
1392        struct fib6_walker *w;
1393        struct rt6_info *rt = *rtp;
1394        struct net *net = info->nl_net;
1395
1396        RT6_TRACE("fib6_del_route\n");
1397
1398        /* Unlink it */
1399        *rtp = rt->dst.rt6_next;
1400        rt->rt6i_node = NULL;
1401        net->ipv6.rt6_stats->fib_rt_entries--;
1402        net->ipv6.rt6_stats->fib_discarded_routes++;
1403
1404        /* Reset round-robin state, if necessary */
1405        if (fn->rr_ptr == rt)
1406                fn->rr_ptr = NULL;
1407
1408        /* Remove this entry from other siblings */
1409        if (rt->rt6i_nsiblings) {
1410                struct rt6_info *sibling, *next_sibling;
1411
1412                list_for_each_entry_safe(sibling, next_sibling,
1413                                         &rt->rt6i_siblings, rt6i_siblings)
1414                        sibling->rt6i_nsiblings--;
1415                rt->rt6i_nsiblings = 0;
1416                list_del_init(&rt->rt6i_siblings);
1417        }
1418
1419        /* Adjust walkers */
1420        read_lock(&net->ipv6.fib6_walker_lock);
1421        FOR_WALKERS(net, w) {
1422                if (w->state == FWS_C && w->leaf == rt) {
1423                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1424                        w->leaf = rt->dst.rt6_next;
1425                        if (!w->leaf)
1426                                w->state = FWS_U;
1427                }
1428        }
1429        read_unlock(&net->ipv6.fib6_walker_lock);
1430
1431        rt->dst.rt6_next = NULL;
1432
1433        /* If it was last route, expunge its radix tree node */
1434        if (!fn->leaf) {
1435                fn->fn_flags &= ~RTN_RTINFO;
1436                net->ipv6.rt6_stats->fib_route_nodes--;
1437                fn = fib6_repair_tree(net, fn);
1438        }
1439
1440        fib6_purge_rt(rt, fn, net);
1441
1442        inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1443        rt6_release(rt);
1444}
1445
1446int fib6_del(struct rt6_info *rt, struct nl_info *info)
1447{
1448        struct net *net = info->nl_net;
1449        struct fib6_node *fn = rt->rt6i_node;
1450        struct rt6_info **rtp;
1451
1452#if RT6_DEBUG >= 2
1453        if (rt->dst.obsolete > 0) {
1454                WARN_ON(fn);
1455                return -ENOENT;
1456        }
1457#endif
1458        if (!fn || rt == net->ipv6.ip6_null_entry)
1459                return -ENOENT;
1460
1461        WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1462
1463        if (!(rt->rt6i_flags & RTF_CACHE)) {
1464                struct fib6_node *pn = fn;
1465#ifdef CONFIG_IPV6_SUBTREES
1466                /* clones of this route might be in another subtree */
1467                if (rt->rt6i_src.plen) {
1468                        while (!(pn->fn_flags & RTN_ROOT))
1469                                pn = pn->parent;
1470                        pn = pn->parent;
1471                }
1472#endif
1473                fib6_prune_clones(info->nl_net, pn);
1474        }
1475
1476        /*
1477         *      Walk the leaf entries looking for ourself
1478         */
1479
1480        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1481                if (*rtp == rt) {
1482                        fib6_del_route(fn, rtp, info);
1483                        return 0;
1484                }
1485        }
1486        return -ENOENT;
1487}
1488
1489/*
1490 *      Tree traversal function.
1491 *
1492 *      Certainly, it is not interrupt safe.
1493 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1494 *      It means, that we can modify tree during walking
1495 *      and use this function for garbage collection, clone pruning,
1496 *      cleaning tree when a device goes down etc. etc.
1497 *
1498 *      It guarantees that every node will be traversed,
1499 *      and that it will be traversed only once.
1500 *
1501 *      Callback function w->func may return:
1502 *      0 -> continue walking.
1503 *      positive value -> walking is suspended (used by tree dumps,
1504 *      and probably by gc, if it will be split to several slices)
1505 *      negative value -> terminate walking.
1506 *
1507 *      The function itself returns:
1508 *      0   -> walk is complete.
1509 *      >0  -> walk is incomplete (i.e. suspended)
1510 *      <0  -> walk is terminated by an error.
1511 */
1512
1513static int fib6_walk_continue(struct fib6_walker *w)
1514{
1515        struct fib6_node *fn, *pn;
1516
1517        for (;;) {
1518                fn = w->node;
1519                if (!fn)
1520                        return 0;
1521
1522                if (w->prune && fn != w->root &&
1523                    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1524                        w->state = FWS_C;
1525                        w->leaf = fn->leaf;
1526                }
1527                switch (w->state) {
1528#ifdef CONFIG_IPV6_SUBTREES
1529                case FWS_S:
1530                        if (FIB6_SUBTREE(fn)) {
1531                                w->node = FIB6_SUBTREE(fn);
1532                                continue;
1533                        }
1534                        w->state = FWS_L;
1535#endif
1536                case FWS_L:
1537                        if (fn->left) {
1538                                w->node = fn->left;
1539                                w->state = FWS_INIT;
1540                                continue;
1541                        }
1542                        w->state = FWS_R;
1543                case FWS_R:
1544                        if (fn->right) {
1545                                w->node = fn->right;
1546                                w->state = FWS_INIT;
1547                                continue;
1548                        }
1549                        w->state = FWS_C;
1550                        w->leaf = fn->leaf;
1551                case FWS_C:
1552                        if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1553                                int err;
1554
1555                                if (w->skip) {
1556                                        w->skip--;
1557                                        goto skip;
1558                                }
1559
1560                                err = w->func(w);
1561                                if (err)
1562                                        return err;
1563
1564                                w->count++;
1565                                continue;
1566                        }
1567skip:
1568                        w->state = FWS_U;
1569                case FWS_U:
1570                        if (fn == w->root)
1571                                return 0;
1572                        pn = fn->parent;
1573                        w->node = pn;
1574#ifdef CONFIG_IPV6_SUBTREES
1575                        if (FIB6_SUBTREE(pn) == fn) {
1576                                WARN_ON(!(fn->fn_flags & RTN_ROOT));
1577                                w->state = FWS_L;
1578                                continue;
1579                        }
1580#endif
1581                        if (pn->left == fn) {
1582                                w->state = FWS_R;
1583                                continue;
1584                        }
1585                        if (pn->right == fn) {
1586                                w->state = FWS_C;
1587                                w->leaf = w->node->leaf;
1588                                continue;
1589                        }
1590#if RT6_DEBUG >= 2
1591                        WARN_ON(1);
1592#endif
1593                }
1594        }
1595}
1596
1597static int fib6_walk(struct net *net, struct fib6_walker *w)
1598{
1599        int res;
1600
1601        w->state = FWS_INIT;
1602        w->node = w->root;
1603
1604        fib6_walker_link(net, w);
1605        res = fib6_walk_continue(w);
1606        if (res <= 0)
1607                fib6_walker_unlink(net, w);
1608        return res;
1609}
1610
1611static int fib6_clean_node(struct fib6_walker *w)
1612{
1613        int res;
1614        struct rt6_info *rt;
1615        struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1616        struct nl_info info = {
1617                .nl_net = c->net,
1618        };
1619
1620        if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1621            w->node->fn_sernum != c->sernum)
1622                w->node->fn_sernum = c->sernum;
1623
1624        if (!c->func) {
1625                WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1626                w->leaf = NULL;
1627                return 0;
1628        }
1629
1630        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1631                res = c->func(rt, c->arg);
1632                if (res < 0) {
1633                        w->leaf = rt;
1634                        res = fib6_del(rt, &info);
1635                        if (res) {
1636#if RT6_DEBUG >= 2
1637                                pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1638                                         __func__, rt, rt->rt6i_node, res);
1639#endif
1640                                continue;
1641                        }
1642                        return 0;
1643                }
1644                WARN_ON(res != 0);
1645        }
1646        w->leaf = rt;
1647        return 0;
1648}
1649
1650/*
1651 *      Convenient frontend to tree walker.
1652 *
1653 *      func is called on each route.
1654 *              It may return -1 -> delete this route.
1655 *                            0  -> continue walking
1656 *
1657 *      prune==1 -> only immediate children of node (certainly,
1658 *      ignoring pure split nodes) will be scanned.
1659 */
1660
1661static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1662                            int (*func)(struct rt6_info *, void *arg),
1663                            bool prune, int sernum, void *arg)
1664{
1665        struct fib6_cleaner c;
1666
1667        c.w.root = root;
1668        c.w.func = fib6_clean_node;
1669        c.w.prune = prune;
1670        c.w.count = 0;
1671        c.w.skip = 0;
1672        c.func = func;
1673        c.sernum = sernum;
1674        c.arg = arg;
1675        c.net = net;
1676
1677        fib6_walk(net, &c.w);
1678}
1679
1680static void __fib6_clean_all(struct net *net,
1681                             int (*func)(struct rt6_info *, void *),
1682                             int sernum, void *arg)
1683{
1684        struct fib6_table *table;
1685        struct hlist_head *head;
1686        unsigned int h;
1687
1688        rcu_read_lock();
1689        for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1690                head = &net->ipv6.fib_table_hash[h];
1691                hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1692                        write_lock_bh(&table->tb6_lock);
1693                        fib6_clean_tree(net, &table->tb6_root,
1694                                        func, false, sernum, arg);
1695                        write_unlock_bh(&table->tb6_lock);
1696                }
1697        }
1698        rcu_read_unlock();
1699}
1700
1701void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1702                    void *arg)
1703{
1704        __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1705}
1706
1707static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1708{
1709        if (rt->rt6i_flags & RTF_CACHE) {
1710                RT6_TRACE("pruning clone %p\n", rt);
1711                return -1;
1712        }
1713
1714        return 0;
1715}
1716
1717static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1718{
1719        fib6_clean_tree(net, fn, fib6_prune_clone, true,
1720                        FIB6_NO_SERNUM_CHANGE, NULL);
1721}
1722
1723static void fib6_flush_trees(struct net *net)
1724{
1725        int new_sernum = fib6_new_sernum(net);
1726
1727        __fib6_clean_all(net, NULL, new_sernum, NULL);
1728}
1729
1730/*
1731 *      Garbage collection
1732 */
1733
1734struct fib6_gc_args
1735{
1736        int                     timeout;
1737        int                     more;
1738};
1739
1740static int fib6_age(struct rt6_info *rt, void *arg)
1741{
1742        struct fib6_gc_args *gc_args = arg;
1743        unsigned long now = jiffies;
1744
1745        /*
1746         *      check addrconf expiration here.
1747         *      Routes are expired even if they are in use.
1748         *
1749         *      Also age clones. Note, that clones are aged out
1750         *      only if they are not in use now.
1751         */
1752
1753        if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1754                if (time_after(now, rt->dst.expires)) {
1755                        RT6_TRACE("expiring %p\n", rt);
1756                        return -1;
1757                }
1758                gc_args->more++;
1759        } else if (rt->rt6i_flags & RTF_CACHE) {
1760                if (atomic_read(&rt->dst.__refcnt) == 0 &&
1761                    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1762                        RT6_TRACE("aging clone %p\n", rt);
1763                        return -1;
1764                } else if (rt->rt6i_flags & RTF_GATEWAY) {
1765                        struct neighbour *neigh;
1766                        __u8 neigh_flags = 0;
1767
1768                        neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1769                        if (neigh) {
1770                                neigh_flags = neigh->flags;
1771                                neigh_release(neigh);
1772                        }
1773                        if (!(neigh_flags & NTF_ROUTER)) {
1774                                RT6_TRACE("purging route %p via non-router but gateway\n",
1775                                          rt);
1776                                return -1;
1777                        }
1778                }
1779                gc_args->more++;
1780        }
1781
1782        return 0;
1783}
1784
1785void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1786{
1787        struct fib6_gc_args gc_args;
1788        unsigned long now;
1789
1790        if (force) {
1791                spin_lock_bh(&net->ipv6.fib6_gc_lock);
1792        } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1793                mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1794                return;
1795        }
1796        gc_args.timeout = expires ? (int)expires :
1797                          net->ipv6.sysctl.ip6_rt_gc_interval;
1798
1799        gc_args.more = icmp6_dst_gc();
1800
1801        fib6_clean_all(net, fib6_age, &gc_args);
1802        now = jiffies;
1803        net->ipv6.ip6_rt_last_gc = now;
1804
1805        if (gc_args.more)
1806                mod_timer(&net->ipv6.ip6_fib_timer,
1807                          round_jiffies(now
1808                                        + net->ipv6.sysctl.ip6_rt_gc_interval));
1809        else
1810                del_timer(&net->ipv6.ip6_fib_timer);
1811        spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1812}
1813
1814static void fib6_gc_timer_cb(unsigned long arg)
1815{
1816        fib6_run_gc(0, (struct net *)arg, true);
1817}
1818
1819static int __net_init fib6_net_init(struct net *net)
1820{
1821        size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1822
1823        spin_lock_init(&net->ipv6.fib6_gc_lock);
1824        rwlock_init(&net->ipv6.fib6_walker_lock);
1825        INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1826        setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1827
1828        net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1829        if (!net->ipv6.rt6_stats)
1830                goto out_timer;
1831
1832        /* Avoid false sharing : Use at least a full cache line */
1833        size = max_t(size_t, size, L1_CACHE_BYTES);
1834
1835        net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1836        if (!net->ipv6.fib_table_hash)
1837                goto out_rt6_stats;
1838
1839        net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1840                                          GFP_KERNEL);
1841        if (!net->ipv6.fib6_main_tbl)
1842                goto out_fib_table_hash;
1843
1844        net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1845        net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1846        net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1847                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1848        inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1849
1850#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1851        net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1852                                           GFP_KERNEL);
1853        if (!net->ipv6.fib6_local_tbl)
1854                goto out_fib6_main_tbl;
1855        net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1856        net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1857        net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1858                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1859        inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1860#endif
1861        fib6_tables_init(net);
1862
1863        return 0;
1864
1865#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1866out_fib6_main_tbl:
1867        kfree(net->ipv6.fib6_main_tbl);
1868#endif
1869out_fib_table_hash:
1870        kfree(net->ipv6.fib_table_hash);
1871out_rt6_stats:
1872        kfree(net->ipv6.rt6_stats);
1873out_timer:
1874        return -ENOMEM;
1875}
1876
1877static void fib6_net_exit(struct net *net)
1878{
1879        rt6_ifdown(net, NULL);
1880        del_timer_sync(&net->ipv6.ip6_fib_timer);
1881
1882#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1883        inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1884        kfree(net->ipv6.fib6_local_tbl);
1885#endif
1886        inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1887        kfree(net->ipv6.fib6_main_tbl);
1888        kfree(net->ipv6.fib_table_hash);
1889        kfree(net->ipv6.rt6_stats);
1890}
1891
1892static struct pernet_operations fib6_net_ops = {
1893        .init = fib6_net_init,
1894        .exit = fib6_net_exit,
1895};
1896
1897int __init fib6_init(void)
1898{
1899        int ret = -ENOMEM;
1900
1901        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1902                                           sizeof(struct fib6_node),
1903                                           0, SLAB_HWCACHE_ALIGN,
1904                                           NULL);
1905        if (!fib6_node_kmem)
1906                goto out;
1907
1908        ret = register_pernet_subsys(&fib6_net_ops);
1909        if (ret)
1910                goto out_kmem_cache_create;
1911
1912        ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1913                              NULL);
1914        if (ret)
1915                goto out_unregister_subsys;
1916
1917        __fib6_flush_trees = fib6_flush_trees;
1918out:
1919        return ret;
1920
1921out_unregister_subsys:
1922        unregister_pernet_subsys(&fib6_net_ops);
1923out_kmem_cache_create:
1924        kmem_cache_destroy(fib6_node_kmem);
1925        goto out;
1926}
1927
1928void fib6_gc_cleanup(void)
1929{
1930        unregister_pernet_subsys(&fib6_net_ops);
1931        kmem_cache_destroy(fib6_node_kmem);
1932}
1933
1934#ifdef CONFIG_PROC_FS
1935
1936struct ipv6_route_iter {
1937        struct seq_net_private p;
1938        struct fib6_walker w;
1939        loff_t skip;
1940        struct fib6_table *tbl;
1941        int sernum;
1942};
1943
1944static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1945{
1946        struct rt6_info *rt = v;
1947        struct ipv6_route_iter *iter = seq->private;
1948
1949        seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1950
1951#ifdef CONFIG_IPV6_SUBTREES
1952        seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1953#else
1954        seq_puts(seq, "00000000000000000000000000000000 00 ");
1955#endif
1956        if (rt->rt6i_flags & RTF_GATEWAY)
1957                seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1958        else
1959                seq_puts(seq, "00000000000000000000000000000000");
1960
1961        seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1962                   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1963                   rt->dst.__use, rt->rt6i_flags,
1964                   rt->dst.dev ? rt->dst.dev->name : "");
1965        iter->w.leaf = NULL;
1966        return 0;
1967}
1968
1969static int ipv6_route_yield(struct fib6_walker *w)
1970{
1971        struct ipv6_route_iter *iter = w->args;
1972
1973        if (!iter->skip)
1974                return 1;
1975
1976        do {
1977                iter->w.leaf = iter->w.leaf->dst.rt6_next;
1978                iter->skip--;
1979                if (!iter->skip && iter->w.leaf)
1980                        return 1;
1981        } while (iter->w.leaf);
1982
1983        return 0;
1984}
1985
1986static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1987                                      struct net *net)
1988{
1989        memset(&iter->w, 0, sizeof(iter->w));
1990        iter->w.func = ipv6_route_yield;
1991        iter->w.root = &iter->tbl->tb6_root;
1992        iter->w.state = FWS_INIT;
1993        iter->w.node = iter->w.root;
1994        iter->w.args = iter;
1995        iter->sernum = iter->w.root->fn_sernum;
1996        INIT_LIST_HEAD(&iter->w.lh);
1997        fib6_walker_link(net, &iter->w);
1998}
1999
2000static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2001                                                    struct net *net)
2002{
2003        unsigned int h;
2004        struct hlist_node *node;
2005
2006        if (tbl) {
2007                h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2008                node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2009        } else {
2010                h = 0;
2011                node = NULL;
2012        }
2013
2014        while (!node && h < FIB6_TABLE_HASHSZ) {
2015                node = rcu_dereference_bh(
2016                        hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2017        }
2018        return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2019}
2020
2021static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2022{
2023        if (iter->sernum != iter->w.root->fn_sernum) {
2024                iter->sernum = iter->w.root->fn_sernum;
2025                iter->w.state = FWS_INIT;
2026                iter->w.node = iter->w.root;
2027                WARN_ON(iter->w.skip);
2028                iter->w.skip = iter->w.count;
2029        }
2030}
2031
2032static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2033{
2034        int r;
2035        struct rt6_info *n;
2036        struct net *net = seq_file_net(seq);
2037        struct ipv6_route_iter *iter = seq->private;
2038
2039        if (!v)
2040                goto iter_table;
2041
2042        n = ((struct rt6_info *)v)->dst.rt6_next;
2043        if (n) {
2044                ++*pos;
2045                return n;
2046        }
2047
2048iter_table:
2049        ipv6_route_check_sernum(iter);
2050        read_lock(&iter->tbl->tb6_lock);
2051        r = fib6_walk_continue(&iter->w);
2052        read_unlock(&iter->tbl->tb6_lock);
2053        if (r > 0) {
2054                if (v)
2055                        ++*pos;
2056                return iter->w.leaf;
2057        } else if (r < 0) {
2058                fib6_walker_unlink(net, &iter->w);
2059                return NULL;
2060        }
2061        fib6_walker_unlink(net, &iter->w);
2062
2063        iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2064        if (!iter->tbl)
2065                return NULL;
2066
2067        ipv6_route_seq_setup_walk(iter, net);
2068        goto iter_table;
2069}
2070
2071static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2072        __acquires(RCU_BH)
2073{
2074        struct net *net = seq_file_net(seq);
2075        struct ipv6_route_iter *iter = seq->private;
2076
2077        rcu_read_lock_bh();
2078        iter->tbl = ipv6_route_seq_next_table(NULL, net);
2079        iter->skip = *pos;
2080
2081        if (iter->tbl) {
2082                ipv6_route_seq_setup_walk(iter, net);
2083                return ipv6_route_seq_next(seq, NULL, pos);
2084        } else {
2085                return NULL;
2086        }
2087}
2088
2089static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2090{
2091        struct fib6_walker *w = &iter->w;
2092        return w->node && !(w->state == FWS_U && w->node == w->root);
2093}
2094
2095static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2096        __releases(RCU_BH)
2097{
2098        struct net *net = seq_file_net(seq);
2099        struct ipv6_route_iter *iter = seq->private;
2100
2101        if (ipv6_route_iter_active(iter))
2102                fib6_walker_unlink(net, &iter->w);
2103
2104        rcu_read_unlock_bh();
2105}
2106
2107static const struct seq_operations ipv6_route_seq_ops = {
2108        .start  = ipv6_route_seq_start,
2109        .next   = ipv6_route_seq_next,
2110        .stop   = ipv6_route_seq_stop,
2111        .show   = ipv6_route_seq_show
2112};
2113
2114int ipv6_route_open(struct inode *inode, struct file *file)
2115{
2116        return seq_open_net(inode, file, &ipv6_route_seq_ops,
2117                            sizeof(struct ipv6_route_iter));
2118}
2119
2120#endif /* CONFIG_PROC_FS */
2121