linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        wq->flags = 0;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298                                              init_once);
 299        if (sock_inode_cachep == NULL)
 300                return -ENOMEM;
 301        return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305        .alloc_inode    = sock_alloc_inode,
 306        .destroy_inode  = sock_destroy_inode,
 307        .statfs         = simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316                                d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320        .d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324                            struct dentry *dentry, struct inode *inode,
 325                            const char *suffix, void *value, size_t size)
 326{
 327        if (value) {
 328                if (dentry->d_name.len + 1 > size)
 329                        return -ERANGE;
 330                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331        }
 332        return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340        .name = XATTR_NAME_SOCKPROTONAME,
 341        .get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345                                     struct dentry *dentry, struct inode *inode,
 346                                     const char *suffix, const void *value,
 347                                     size_t size, int flags)
 348{
 349        /* Handled by LSM. */
 350        return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354        .prefix = XATTR_SECURITY_PREFIX,
 355        .set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359        &sockfs_xattr_handler,
 360        &sockfs_security_xattr_handler,
 361        NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365                         int flags, const char *dev_name, void *data)
 366{
 367        return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368                                  sockfs_xattr_handlers,
 369                                  &sockfs_dentry_operations, SOCKFS_MAGIC);
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375        .name =         "sockfs",
 376        .mount =        sockfs_mount,
 377        .kill_sb =      kill_anon_super,
 378};
 379
 380/*
 381 *      Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *      These functions create file structures and maps them to fd space
 384 *      of the current process. On success it returns file descriptor
 385 *      and file struct implicitly stored in sock->file.
 386 *      Note that another thread may close file descriptor before we return
 387 *      from this function. We use the fact that now we do not refer
 388 *      to socket after mapping. If one day we will need it, this
 389 *      function will increment ref. count on file by 1.
 390 *
 391 *      In any case returned fd MAY BE not valid!
 392 *      This race condition is unavoidable
 393 *      with shared fd spaces, we cannot solve it inside kernel,
 394 *      but we take care of internal coherence yet.
 395 */
 396
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399        struct qstr name = { .name = "" };
 400        struct path path;
 401        struct file *file;
 402
 403        if (dname) {
 404                name.name = dname;
 405                name.len = strlen(name.name);
 406        } else if (sock->sk) {
 407                name.name = sock->sk->sk_prot_creator->name;
 408                name.len = strlen(name.name);
 409        }
 410        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411        if (unlikely(!path.dentry))
 412                return ERR_PTR(-ENOMEM);
 413        path.mnt = mntget(sock_mnt);
 414
 415        d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418                  &socket_file_ops);
 419        if (IS_ERR(file)) {
 420                /* drop dentry, keep inode */
 421                ihold(d_inode(path.dentry));
 422                path_put(&path);
 423                return file;
 424        }
 425
 426        sock->file = file;
 427        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428        file->private_data = sock;
 429        return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435        struct file *newfile;
 436        int fd = get_unused_fd_flags(flags);
 437        if (unlikely(fd < 0))
 438                return fd;
 439
 440        newfile = sock_alloc_file(sock, flags, NULL);
 441        if (likely(!IS_ERR(newfile))) {
 442                fd_install(fd, newfile);
 443                return fd;
 444        }
 445
 446        put_unused_fd(fd);
 447        return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452        if (file->f_op == &socket_file_ops)
 453                return file->private_data;      /* set in sock_map_fd */
 454
 455        *err = -ENOTSOCK;
 456        return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *      sockfd_lookup - Go from a file number to its socket slot
 462 *      @fd: file handle
 463 *      @err: pointer to an error code return
 464 *
 465 *      The file handle passed in is locked and the socket it is bound
 466 *      too is returned. If an error occurs the err pointer is overwritten
 467 *      with a negative errno code and NULL is returned. The function checks
 468 *      for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *      On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475        struct file *file;
 476        struct socket *sock;
 477
 478        file = fget(fd);
 479        if (!file) {
 480                *err = -EBADF;
 481                return NULL;
 482        }
 483
 484        sock = sock_from_file(file, err);
 485        if (!sock)
 486                fput(file);
 487        return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493        struct fd f = fdget(fd);
 494        struct socket *sock;
 495
 496        *err = -EBADF;
 497        if (f.file) {
 498                sock = sock_from_file(f.file, err);
 499                if (likely(sock)) {
 500                        *fput_needed = f.flags;
 501                        return sock;
 502                }
 503                fdput(f);
 504        }
 505        return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509                                size_t size)
 510{
 511        ssize_t len;
 512        ssize_t used = 0;
 513
 514        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515        if (len < 0)
 516                return len;
 517        used += len;
 518        if (buffer) {
 519                if (size < used)
 520                        return -ERANGE;
 521                buffer += len;
 522        }
 523
 524        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525        used += len;
 526        if (buffer) {
 527                if (size < used)
 528                        return -ERANGE;
 529                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530                buffer += len;
 531        }
 532
 533        return used;
 534}
 535
 536static const struct inode_operations sockfs_inode_ops = {
 537        .listxattr = sockfs_listxattr,
 538};
 539
 540/**
 541 *      sock_alloc      -       allocate a socket
 542 *
 543 *      Allocate a new inode and socket object. The two are bound together
 544 *      and initialised. The socket is then returned. If we are out of inodes
 545 *      NULL is returned.
 546 */
 547
 548struct socket *sock_alloc(void)
 549{
 550        struct inode *inode;
 551        struct socket *sock;
 552
 553        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 554        if (!inode)
 555                return NULL;
 556
 557        sock = SOCKET_I(inode);
 558
 559        kmemcheck_annotate_bitfield(sock, type);
 560        inode->i_ino = get_next_ino();
 561        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 562        inode->i_uid = current_fsuid();
 563        inode->i_gid = current_fsgid();
 564        inode->i_op = &sockfs_inode_ops;
 565
 566        this_cpu_add(sockets_in_use, 1);
 567        return sock;
 568}
 569EXPORT_SYMBOL(sock_alloc);
 570
 571/**
 572 *      sock_release    -       close a socket
 573 *      @sock: socket to close
 574 *
 575 *      The socket is released from the protocol stack if it has a release
 576 *      callback, and the inode is then released if the socket is bound to
 577 *      an inode not a file.
 578 */
 579
 580void sock_release(struct socket *sock)
 581{
 582        if (sock->ops) {
 583                struct module *owner = sock->ops->owner;
 584
 585                sock->ops->release(sock);
 586                sock->ops = NULL;
 587                module_put(owner);
 588        }
 589
 590        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 591                pr_err("%s: fasync list not empty!\n", __func__);
 592
 593        this_cpu_sub(sockets_in_use, 1);
 594        if (!sock->file) {
 595                iput(SOCK_INODE(sock));
 596                return;
 597        }
 598        sock->file = NULL;
 599}
 600EXPORT_SYMBOL(sock_release);
 601
 602void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 603{
 604        u8 flags = *tx_flags;
 605
 606        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 607                flags |= SKBTX_HW_TSTAMP;
 608
 609        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 610                flags |= SKBTX_SW_TSTAMP;
 611
 612        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 613                flags |= SKBTX_SCHED_TSTAMP;
 614
 615        *tx_flags = flags;
 616}
 617EXPORT_SYMBOL(__sock_tx_timestamp);
 618
 619static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 620{
 621        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 622        BUG_ON(ret == -EIOCBQUEUED);
 623        return ret;
 624}
 625
 626int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 627{
 628        int err = security_socket_sendmsg(sock, msg,
 629                                          msg_data_left(msg));
 630
 631        return err ?: sock_sendmsg_nosec(sock, msg);
 632}
 633EXPORT_SYMBOL(sock_sendmsg);
 634
 635int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 636                   struct kvec *vec, size_t num, size_t size)
 637{
 638        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 639        return sock_sendmsg(sock, msg);
 640}
 641EXPORT_SYMBOL(kernel_sendmsg);
 642
 643/*
 644 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 645 */
 646void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 647        struct sk_buff *skb)
 648{
 649        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 650        struct scm_timestamping tss;
 651        int empty = 1;
 652        struct skb_shared_hwtstamps *shhwtstamps =
 653                skb_hwtstamps(skb);
 654
 655        /* Race occurred between timestamp enabling and packet
 656           receiving.  Fill in the current time for now. */
 657        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 658                __net_timestamp(skb);
 659
 660        if (need_software_tstamp) {
 661                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 662                        struct timeval tv;
 663                        skb_get_timestamp(skb, &tv);
 664                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 665                                 sizeof(tv), &tv);
 666                } else {
 667                        struct timespec ts;
 668                        skb_get_timestampns(skb, &ts);
 669                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 670                                 sizeof(ts), &ts);
 671                }
 672        }
 673
 674        memset(&tss, 0, sizeof(tss));
 675        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 676            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 677                empty = 0;
 678        if (shhwtstamps &&
 679            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 680            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 681                empty = 0;
 682        if (!empty)
 683                put_cmsg(msg, SOL_SOCKET,
 684                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 685}
 686EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 687
 688void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 689        struct sk_buff *skb)
 690{
 691        int ack;
 692
 693        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 694                return;
 695        if (!skb->wifi_acked_valid)
 696                return;
 697
 698        ack = skb->wifi_acked;
 699
 700        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 701}
 702EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 703
 704static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 705                                   struct sk_buff *skb)
 706{
 707        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 708                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 709                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 710}
 711
 712void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 713        struct sk_buff *skb)
 714{
 715        sock_recv_timestamp(msg, sk, skb);
 716        sock_recv_drops(msg, sk, skb);
 717}
 718EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 719
 720static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 721                                     int flags)
 722{
 723        return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 724}
 725
 726int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 727{
 728        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 729
 730        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 731}
 732EXPORT_SYMBOL(sock_recvmsg);
 733
 734/**
 735 * kernel_recvmsg - Receive a message from a socket (kernel space)
 736 * @sock:       The socket to receive the message from
 737 * @msg:        Received message
 738 * @vec:        Input s/g array for message data
 739 * @num:        Size of input s/g array
 740 * @size:       Number of bytes to read
 741 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 742 *
 743 * On return the msg structure contains the scatter/gather array passed in the
 744 * vec argument. The array is modified so that it consists of the unfilled
 745 * portion of the original array.
 746 *
 747 * The returned value is the total number of bytes received, or an error.
 748 */
 749int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 750                   struct kvec *vec, size_t num, size_t size, int flags)
 751{
 752        mm_segment_t oldfs = get_fs();
 753        int result;
 754
 755        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 756        set_fs(KERNEL_DS);
 757        result = sock_recvmsg(sock, msg, flags);
 758        set_fs(oldfs);
 759        return result;
 760}
 761EXPORT_SYMBOL(kernel_recvmsg);
 762
 763static ssize_t sock_sendpage(struct file *file, struct page *page,
 764                             int offset, size_t size, loff_t *ppos, int more)
 765{
 766        struct socket *sock;
 767        int flags;
 768
 769        sock = file->private_data;
 770
 771        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 772        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 773        flags |= more;
 774
 775        return kernel_sendpage(sock, page, offset, size, flags);
 776}
 777
 778static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 779                                struct pipe_inode_info *pipe, size_t len,
 780                                unsigned int flags)
 781{
 782        struct socket *sock = file->private_data;
 783
 784        if (unlikely(!sock->ops->splice_read))
 785                return -EINVAL;
 786
 787        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 788}
 789
 790static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 791{
 792        struct file *file = iocb->ki_filp;
 793        struct socket *sock = file->private_data;
 794        struct msghdr msg = {.msg_iter = *to,
 795                             .msg_iocb = iocb};
 796        ssize_t res;
 797
 798        if (file->f_flags & O_NONBLOCK)
 799                msg.msg_flags = MSG_DONTWAIT;
 800
 801        if (iocb->ki_pos != 0)
 802                return -ESPIPE;
 803
 804        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 805                return 0;
 806
 807        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 808        *to = msg.msg_iter;
 809        return res;
 810}
 811
 812static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 813{
 814        struct file *file = iocb->ki_filp;
 815        struct socket *sock = file->private_data;
 816        struct msghdr msg = {.msg_iter = *from,
 817                             .msg_iocb = iocb};
 818        ssize_t res;
 819
 820        if (iocb->ki_pos != 0)
 821                return -ESPIPE;
 822
 823        if (file->f_flags & O_NONBLOCK)
 824                msg.msg_flags = MSG_DONTWAIT;
 825
 826        if (sock->type == SOCK_SEQPACKET)
 827                msg.msg_flags |= MSG_EOR;
 828
 829        res = sock_sendmsg(sock, &msg);
 830        *from = msg.msg_iter;
 831        return res;
 832}
 833
 834/*
 835 * Atomic setting of ioctl hooks to avoid race
 836 * with module unload.
 837 */
 838
 839static DEFINE_MUTEX(br_ioctl_mutex);
 840static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 841
 842void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 843{
 844        mutex_lock(&br_ioctl_mutex);
 845        br_ioctl_hook = hook;
 846        mutex_unlock(&br_ioctl_mutex);
 847}
 848EXPORT_SYMBOL(brioctl_set);
 849
 850static DEFINE_MUTEX(vlan_ioctl_mutex);
 851static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 852
 853void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 854{
 855        mutex_lock(&vlan_ioctl_mutex);
 856        vlan_ioctl_hook = hook;
 857        mutex_unlock(&vlan_ioctl_mutex);
 858}
 859EXPORT_SYMBOL(vlan_ioctl_set);
 860
 861static DEFINE_MUTEX(dlci_ioctl_mutex);
 862static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 863
 864void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 865{
 866        mutex_lock(&dlci_ioctl_mutex);
 867        dlci_ioctl_hook = hook;
 868        mutex_unlock(&dlci_ioctl_mutex);
 869}
 870EXPORT_SYMBOL(dlci_ioctl_set);
 871
 872static long sock_do_ioctl(struct net *net, struct socket *sock,
 873                                 unsigned int cmd, unsigned long arg)
 874{
 875        int err;
 876        void __user *argp = (void __user *)arg;
 877
 878        err = sock->ops->ioctl(sock, cmd, arg);
 879
 880        /*
 881         * If this ioctl is unknown try to hand it down
 882         * to the NIC driver.
 883         */
 884        if (err == -ENOIOCTLCMD)
 885                err = dev_ioctl(net, cmd, argp);
 886
 887        return err;
 888}
 889
 890/*
 891 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 892 *      what to do with it - that's up to the protocol still.
 893 */
 894
 895static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 896{
 897        struct socket *sock;
 898        struct sock *sk;
 899        void __user *argp = (void __user *)arg;
 900        int pid, err;
 901        struct net *net;
 902
 903        sock = file->private_data;
 904        sk = sock->sk;
 905        net = sock_net(sk);
 906        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 907                err = dev_ioctl(net, cmd, argp);
 908        } else
 909#ifdef CONFIG_WEXT_CORE
 910        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 911                err = dev_ioctl(net, cmd, argp);
 912        } else
 913#endif
 914                switch (cmd) {
 915                case FIOSETOWN:
 916                case SIOCSPGRP:
 917                        err = -EFAULT;
 918                        if (get_user(pid, (int __user *)argp))
 919                                break;
 920                        f_setown(sock->file, pid, 1);
 921                        err = 0;
 922                        break;
 923                case FIOGETOWN:
 924                case SIOCGPGRP:
 925                        err = put_user(f_getown(sock->file),
 926                                       (int __user *)argp);
 927                        break;
 928                case SIOCGIFBR:
 929                case SIOCSIFBR:
 930                case SIOCBRADDBR:
 931                case SIOCBRDELBR:
 932                        err = -ENOPKG;
 933                        if (!br_ioctl_hook)
 934                                request_module("bridge");
 935
 936                        mutex_lock(&br_ioctl_mutex);
 937                        if (br_ioctl_hook)
 938                                err = br_ioctl_hook(net, cmd, argp);
 939                        mutex_unlock(&br_ioctl_mutex);
 940                        break;
 941                case SIOCGIFVLAN:
 942                case SIOCSIFVLAN:
 943                        err = -ENOPKG;
 944                        if (!vlan_ioctl_hook)
 945                                request_module("8021q");
 946
 947                        mutex_lock(&vlan_ioctl_mutex);
 948                        if (vlan_ioctl_hook)
 949                                err = vlan_ioctl_hook(net, argp);
 950                        mutex_unlock(&vlan_ioctl_mutex);
 951                        break;
 952                case SIOCADDDLCI:
 953                case SIOCDELDLCI:
 954                        err = -ENOPKG;
 955                        if (!dlci_ioctl_hook)
 956                                request_module("dlci");
 957
 958                        mutex_lock(&dlci_ioctl_mutex);
 959                        if (dlci_ioctl_hook)
 960                                err = dlci_ioctl_hook(cmd, argp);
 961                        mutex_unlock(&dlci_ioctl_mutex);
 962                        break;
 963                default:
 964                        err = sock_do_ioctl(net, sock, cmd, arg);
 965                        break;
 966                }
 967        return err;
 968}
 969
 970int sock_create_lite(int family, int type, int protocol, struct socket **res)
 971{
 972        int err;
 973        struct socket *sock = NULL;
 974
 975        err = security_socket_create(family, type, protocol, 1);
 976        if (err)
 977                goto out;
 978
 979        sock = sock_alloc();
 980        if (!sock) {
 981                err = -ENOMEM;
 982                goto out;
 983        }
 984
 985        sock->type = type;
 986        err = security_socket_post_create(sock, family, type, protocol, 1);
 987        if (err)
 988                goto out_release;
 989
 990out:
 991        *res = sock;
 992        return err;
 993out_release:
 994        sock_release(sock);
 995        sock = NULL;
 996        goto out;
 997}
 998EXPORT_SYMBOL(sock_create_lite);
 999
1000/* No kernel lock held - perfect */
1001static unsigned int sock_poll(struct file *file, poll_table *wait)
1002{
1003        unsigned int busy_flag = 0;
1004        struct socket *sock;
1005
1006        /*
1007         *      We can't return errors to poll, so it's either yes or no.
1008         */
1009        sock = file->private_data;
1010
1011        if (sk_can_busy_loop(sock->sk)) {
1012                /* this socket can poll_ll so tell the system call */
1013                busy_flag = POLL_BUSY_LOOP;
1014
1015                /* once, only if requested by syscall */
1016                if (wait && (wait->_key & POLL_BUSY_LOOP))
1017                        sk_busy_loop(sock->sk, 1);
1018        }
1019
1020        return busy_flag | sock->ops->poll(file, sock, wait);
1021}
1022
1023static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1024{
1025        struct socket *sock = file->private_data;
1026
1027        return sock->ops->mmap(file, sock, vma);
1028}
1029
1030static int sock_close(struct inode *inode, struct file *filp)
1031{
1032        sock_release(SOCKET_I(inode));
1033        return 0;
1034}
1035
1036/*
1037 *      Update the socket async list
1038 *
1039 *      Fasync_list locking strategy.
1040 *
1041 *      1. fasync_list is modified only under process context socket lock
1042 *         i.e. under semaphore.
1043 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1044 *         or under socket lock
1045 */
1046
1047static int sock_fasync(int fd, struct file *filp, int on)
1048{
1049        struct socket *sock = filp->private_data;
1050        struct sock *sk = sock->sk;
1051        struct socket_wq *wq;
1052
1053        if (sk == NULL)
1054                return -EINVAL;
1055
1056        lock_sock(sk);
1057        wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1058        fasync_helper(fd, filp, on, &wq->fasync_list);
1059
1060        if (!wq->fasync_list)
1061                sock_reset_flag(sk, SOCK_FASYNC);
1062        else
1063                sock_set_flag(sk, SOCK_FASYNC);
1064
1065        release_sock(sk);
1066        return 0;
1067}
1068
1069/* This function may be called only under rcu_lock */
1070
1071int sock_wake_async(struct socket_wq *wq, int how, int band)
1072{
1073        if (!wq || !wq->fasync_list)
1074                return -1;
1075
1076        switch (how) {
1077        case SOCK_WAKE_WAITD:
1078                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1079                        break;
1080                goto call_kill;
1081        case SOCK_WAKE_SPACE:
1082                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1083                        break;
1084                /* fall through */
1085        case SOCK_WAKE_IO:
1086call_kill:
1087                kill_fasync(&wq->fasync_list, SIGIO, band);
1088                break;
1089        case SOCK_WAKE_URG:
1090                kill_fasync(&wq->fasync_list, SIGURG, band);
1091        }
1092
1093        return 0;
1094}
1095EXPORT_SYMBOL(sock_wake_async);
1096
1097int __sock_create(struct net *net, int family, int type, int protocol,
1098                         struct socket **res, int kern)
1099{
1100        int err;
1101        struct socket *sock;
1102        const struct net_proto_family *pf;
1103
1104        /*
1105         *      Check protocol is in range
1106         */
1107        if (family < 0 || family >= NPROTO)
1108                return -EAFNOSUPPORT;
1109        if (type < 0 || type >= SOCK_MAX)
1110                return -EINVAL;
1111
1112        /* Compatibility.
1113
1114           This uglymoron is moved from INET layer to here to avoid
1115           deadlock in module load.
1116         */
1117        if (family == PF_INET && type == SOCK_PACKET) {
1118                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119                             current->comm);
1120                family = PF_PACKET;
1121        }
1122
1123        err = security_socket_create(family, type, protocol, kern);
1124        if (err)
1125                return err;
1126
1127        /*
1128         *      Allocate the socket and allow the family to set things up. if
1129         *      the protocol is 0, the family is instructed to select an appropriate
1130         *      default.
1131         */
1132        sock = sock_alloc();
1133        if (!sock) {
1134                net_warn_ratelimited("socket: no more sockets\n");
1135                return -ENFILE; /* Not exactly a match, but its the
1136                                   closest posix thing */
1137        }
1138
1139        sock->type = type;
1140
1141#ifdef CONFIG_MODULES
1142        /* Attempt to load a protocol module if the find failed.
1143         *
1144         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1145         * requested real, full-featured networking support upon configuration.
1146         * Otherwise module support will break!
1147         */
1148        if (rcu_access_pointer(net_families[family]) == NULL)
1149                request_module("net-pf-%d", family);
1150#endif
1151
1152        rcu_read_lock();
1153        pf = rcu_dereference(net_families[family]);
1154        err = -EAFNOSUPPORT;
1155        if (!pf)
1156                goto out_release;
1157
1158        /*
1159         * We will call the ->create function, that possibly is in a loadable
1160         * module, so we have to bump that loadable module refcnt first.
1161         */
1162        if (!try_module_get(pf->owner))
1163                goto out_release;
1164
1165        /* Now protected by module ref count */
1166        rcu_read_unlock();
1167
1168        err = pf->create(net, sock, protocol, kern);
1169        if (err < 0)
1170                goto out_module_put;
1171
1172        /*
1173         * Now to bump the refcnt of the [loadable] module that owns this
1174         * socket at sock_release time we decrement its refcnt.
1175         */
1176        if (!try_module_get(sock->ops->owner))
1177                goto out_module_busy;
1178
1179        /*
1180         * Now that we're done with the ->create function, the [loadable]
1181         * module can have its refcnt decremented
1182         */
1183        module_put(pf->owner);
1184        err = security_socket_post_create(sock, family, type, protocol, kern);
1185        if (err)
1186                goto out_sock_release;
1187        *res = sock;
1188
1189        return 0;
1190
1191out_module_busy:
1192        err = -EAFNOSUPPORT;
1193out_module_put:
1194        sock->ops = NULL;
1195        module_put(pf->owner);
1196out_sock_release:
1197        sock_release(sock);
1198        return err;
1199
1200out_release:
1201        rcu_read_unlock();
1202        goto out_sock_release;
1203}
1204EXPORT_SYMBOL(__sock_create);
1205
1206int sock_create(int family, int type, int protocol, struct socket **res)
1207{
1208        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1209}
1210EXPORT_SYMBOL(sock_create);
1211
1212int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1213{
1214        return __sock_create(net, family, type, protocol, res, 1);
1215}
1216EXPORT_SYMBOL(sock_create_kern);
1217
1218SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1219{
1220        int retval;
1221        struct socket *sock;
1222        int flags;
1223
1224        /* Check the SOCK_* constants for consistency.  */
1225        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1229
1230        flags = type & ~SOCK_TYPE_MASK;
1231        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232                return -EINVAL;
1233        type &= SOCK_TYPE_MASK;
1234
1235        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1237
1238        retval = sock_create(family, type, protocol, &sock);
1239        if (retval < 0)
1240                goto out;
1241
1242        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243        if (retval < 0)
1244                goto out_release;
1245
1246out:
1247        /* It may be already another descriptor 8) Not kernel problem. */
1248        return retval;
1249
1250out_release:
1251        sock_release(sock);
1252        return retval;
1253}
1254
1255/*
1256 *      Create a pair of connected sockets.
1257 */
1258
1259SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1260                int __user *, usockvec)
1261{
1262        struct socket *sock1, *sock2;
1263        int fd1, fd2, err;
1264        struct file *newfile1, *newfile2;
1265        int flags;
1266
1267        flags = type & ~SOCK_TYPE_MASK;
1268        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269                return -EINVAL;
1270        type &= SOCK_TYPE_MASK;
1271
1272        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1274
1275        /*
1276         * Obtain the first socket and check if the underlying protocol
1277         * supports the socketpair call.
1278         */
1279
1280        err = sock_create(family, type, protocol, &sock1);
1281        if (err < 0)
1282                goto out;
1283
1284        err = sock_create(family, type, protocol, &sock2);
1285        if (err < 0)
1286                goto out_release_1;
1287
1288        err = sock1->ops->socketpair(sock1, sock2);
1289        if (err < 0)
1290                goto out_release_both;
1291
1292        fd1 = get_unused_fd_flags(flags);
1293        if (unlikely(fd1 < 0)) {
1294                err = fd1;
1295                goto out_release_both;
1296        }
1297
1298        fd2 = get_unused_fd_flags(flags);
1299        if (unlikely(fd2 < 0)) {
1300                err = fd2;
1301                goto out_put_unused_1;
1302        }
1303
1304        newfile1 = sock_alloc_file(sock1, flags, NULL);
1305        if (IS_ERR(newfile1)) {
1306                err = PTR_ERR(newfile1);
1307                goto out_put_unused_both;
1308        }
1309
1310        newfile2 = sock_alloc_file(sock2, flags, NULL);
1311        if (IS_ERR(newfile2)) {
1312                err = PTR_ERR(newfile2);
1313                goto out_fput_1;
1314        }
1315
1316        err = put_user(fd1, &usockvec[0]);
1317        if (err)
1318                goto out_fput_both;
1319
1320        err = put_user(fd2, &usockvec[1]);
1321        if (err)
1322                goto out_fput_both;
1323
1324        audit_fd_pair(fd1, fd2);
1325
1326        fd_install(fd1, newfile1);
1327        fd_install(fd2, newfile2);
1328        /* fd1 and fd2 may be already another descriptors.
1329         * Not kernel problem.
1330         */
1331
1332        return 0;
1333
1334out_fput_both:
1335        fput(newfile2);
1336        fput(newfile1);
1337        put_unused_fd(fd2);
1338        put_unused_fd(fd1);
1339        goto out;
1340
1341out_fput_1:
1342        fput(newfile1);
1343        put_unused_fd(fd2);
1344        put_unused_fd(fd1);
1345        sock_release(sock2);
1346        goto out;
1347
1348out_put_unused_both:
1349        put_unused_fd(fd2);
1350out_put_unused_1:
1351        put_unused_fd(fd1);
1352out_release_both:
1353        sock_release(sock2);
1354out_release_1:
1355        sock_release(sock1);
1356out:
1357        return err;
1358}
1359
1360/*
1361 *      Bind a name to a socket. Nothing much to do here since it's
1362 *      the protocol's responsibility to handle the local address.
1363 *
1364 *      We move the socket address to kernel space before we call
1365 *      the protocol layer (having also checked the address is ok).
1366 */
1367
1368SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1369{
1370        struct socket *sock;
1371        struct sockaddr_storage address;
1372        int err, fput_needed;
1373
1374        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375        if (sock) {
1376                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1377                if (err >= 0) {
1378                        err = security_socket_bind(sock,
1379                                                   (struct sockaddr *)&address,
1380                                                   addrlen);
1381                        if (!err)
1382                                err = sock->ops->bind(sock,
1383                                                      (struct sockaddr *)
1384                                                      &address, addrlen);
1385                }
1386                fput_light(sock->file, fput_needed);
1387        }
1388        return err;
1389}
1390
1391/*
1392 *      Perform a listen. Basically, we allow the protocol to do anything
1393 *      necessary for a listen, and if that works, we mark the socket as
1394 *      ready for listening.
1395 */
1396
1397SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1398{
1399        struct socket *sock;
1400        int err, fput_needed;
1401        int somaxconn;
1402
1403        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404        if (sock) {
1405                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406                if ((unsigned int)backlog > somaxconn)
1407                        backlog = somaxconn;
1408
1409                err = security_socket_listen(sock, backlog);
1410                if (!err)
1411                        err = sock->ops->listen(sock, backlog);
1412
1413                fput_light(sock->file, fput_needed);
1414        }
1415        return err;
1416}
1417
1418/*
1419 *      For accept, we attempt to create a new socket, set up the link
1420 *      with the client, wake up the client, then return the new
1421 *      connected fd. We collect the address of the connector in kernel
1422 *      space and move it to user at the very end. This is unclean because
1423 *      we open the socket then return an error.
1424 *
1425 *      1003.1g adds the ability to recvmsg() to query connection pending
1426 *      status to recvmsg. We need to add that support in a way thats
1427 *      clean when we restucture accept also.
1428 */
1429
1430SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1431                int __user *, upeer_addrlen, int, flags)
1432{
1433        struct socket *sock, *newsock;
1434        struct file *newfile;
1435        int err, len, newfd, fput_needed;
1436        struct sockaddr_storage address;
1437
1438        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439                return -EINVAL;
1440
1441        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1443
1444        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445        if (!sock)
1446                goto out;
1447
1448        err = -ENFILE;
1449        newsock = sock_alloc();
1450        if (!newsock)
1451                goto out_put;
1452
1453        newsock->type = sock->type;
1454        newsock->ops = sock->ops;
1455
1456        /*
1457         * We don't need try_module_get here, as the listening socket (sock)
1458         * has the protocol module (sock->ops->owner) held.
1459         */
1460        __module_get(newsock->ops->owner);
1461
1462        newfd = get_unused_fd_flags(flags);
1463        if (unlikely(newfd < 0)) {
1464                err = newfd;
1465                sock_release(newsock);
1466                goto out_put;
1467        }
1468        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1469        if (IS_ERR(newfile)) {
1470                err = PTR_ERR(newfile);
1471                put_unused_fd(newfd);
1472                sock_release(newsock);
1473                goto out_put;
1474        }
1475
1476        err = security_socket_accept(sock, newsock);
1477        if (err)
1478                goto out_fd;
1479
1480        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1481        if (err < 0)
1482                goto out_fd;
1483
1484        if (upeer_sockaddr) {
1485                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1486                                          &len, 2) < 0) {
1487                        err = -ECONNABORTED;
1488                        goto out_fd;
1489                }
1490                err = move_addr_to_user(&address,
1491                                        len, upeer_sockaddr, upeer_addrlen);
1492                if (err < 0)
1493                        goto out_fd;
1494        }
1495
1496        /* File flags are not inherited via accept() unlike another OSes. */
1497
1498        fd_install(newfd, newfile);
1499        err = newfd;
1500
1501out_put:
1502        fput_light(sock->file, fput_needed);
1503out:
1504        return err;
1505out_fd:
1506        fput(newfile);
1507        put_unused_fd(newfd);
1508        goto out_put;
1509}
1510
1511SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1512                int __user *, upeer_addrlen)
1513{
1514        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1515}
1516
1517/*
1518 *      Attempt to connect to a socket with the server address.  The address
1519 *      is in user space so we verify it is OK and move it to kernel space.
1520 *
1521 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1522 *      break bindings
1523 *
1524 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1525 *      other SEQPACKET protocols that take time to connect() as it doesn't
1526 *      include the -EINPROGRESS status for such sockets.
1527 */
1528
1529SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1530                int, addrlen)
1531{
1532        struct socket *sock;
1533        struct sockaddr_storage address;
1534        int err, fput_needed;
1535
1536        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537        if (!sock)
1538                goto out;
1539        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1540        if (err < 0)
1541                goto out_put;
1542
1543        err =
1544            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1545        if (err)
1546                goto out_put;
1547
1548        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1549                                 sock->file->f_flags);
1550out_put:
1551        fput_light(sock->file, fput_needed);
1552out:
1553        return err;
1554}
1555
1556/*
1557 *      Get the local address ('name') of a socket object. Move the obtained
1558 *      name to user space.
1559 */
1560
1561SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1562                int __user *, usockaddr_len)
1563{
1564        struct socket *sock;
1565        struct sockaddr_storage address;
1566        int len, err, fput_needed;
1567
1568        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569        if (!sock)
1570                goto out;
1571
1572        err = security_socket_getsockname(sock);
1573        if (err)
1574                goto out_put;
1575
1576        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1577        if (err)
1578                goto out_put;
1579        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1580
1581out_put:
1582        fput_light(sock->file, fput_needed);
1583out:
1584        return err;
1585}
1586
1587/*
1588 *      Get the remote address ('name') of a socket object. Move the obtained
1589 *      name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1593                int __user *, usockaddr_len)
1594{
1595        struct socket *sock;
1596        struct sockaddr_storage address;
1597        int len, err, fput_needed;
1598
1599        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600        if (sock != NULL) {
1601                err = security_socket_getpeername(sock);
1602                if (err) {
1603                        fput_light(sock->file, fput_needed);
1604                        return err;
1605                }
1606
1607                err =
1608                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1609                                       1);
1610                if (!err)
1611                        err = move_addr_to_user(&address, len, usockaddr,
1612                                                usockaddr_len);
1613                fput_light(sock->file, fput_needed);
1614        }
1615        return err;
1616}
1617
1618/*
1619 *      Send a datagram to a given address. We move the address into kernel
1620 *      space and check the user space data area is readable before invoking
1621 *      the protocol.
1622 */
1623
1624SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1625                unsigned int, flags, struct sockaddr __user *, addr,
1626                int, addr_len)
1627{
1628        struct socket *sock;
1629        struct sockaddr_storage address;
1630        int err;
1631        struct msghdr msg;
1632        struct iovec iov;
1633        int fput_needed;
1634
1635        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1636        if (unlikely(err))
1637                return err;
1638        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639        if (!sock)
1640                goto out;
1641
1642        msg.msg_name = NULL;
1643        msg.msg_control = NULL;
1644        msg.msg_controllen = 0;
1645        msg.msg_namelen = 0;
1646        if (addr) {
1647                err = move_addr_to_kernel(addr, addr_len, &address);
1648                if (err < 0)
1649                        goto out_put;
1650                msg.msg_name = (struct sockaddr *)&address;
1651                msg.msg_namelen = addr_len;
1652        }
1653        if (sock->file->f_flags & O_NONBLOCK)
1654                flags |= MSG_DONTWAIT;
1655        msg.msg_flags = flags;
1656        err = sock_sendmsg(sock, &msg);
1657
1658out_put:
1659        fput_light(sock->file, fput_needed);
1660out:
1661        return err;
1662}
1663
1664/*
1665 *      Send a datagram down a socket.
1666 */
1667
1668SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1669                unsigned int, flags)
1670{
1671        return sys_sendto(fd, buff, len, flags, NULL, 0);
1672}
1673
1674/*
1675 *      Receive a frame from the socket and optionally record the address of the
1676 *      sender. We verify the buffers are writable and if needed move the
1677 *      sender address from kernel to user space.
1678 */
1679
1680SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1681                unsigned int, flags, struct sockaddr __user *, addr,
1682                int __user *, addr_len)
1683{
1684        struct socket *sock;
1685        struct iovec iov;
1686        struct msghdr msg;
1687        struct sockaddr_storage address;
1688        int err, err2;
1689        int fput_needed;
1690
1691        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1692        if (unlikely(err))
1693                return err;
1694        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695        if (!sock)
1696                goto out;
1697
1698        msg.msg_control = NULL;
1699        msg.msg_controllen = 0;
1700        /* Save some cycles and don't copy the address if not needed */
1701        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1702        /* We assume all kernel code knows the size of sockaddr_storage */
1703        msg.msg_namelen = 0;
1704        msg.msg_iocb = NULL;
1705        if (sock->file->f_flags & O_NONBLOCK)
1706                flags |= MSG_DONTWAIT;
1707        err = sock_recvmsg(sock, &msg, flags);
1708
1709        if (err >= 0 && addr != NULL) {
1710                err2 = move_addr_to_user(&address,
1711                                         msg.msg_namelen, addr, addr_len);
1712                if (err2 < 0)
1713                        err = err2;
1714        }
1715
1716        fput_light(sock->file, fput_needed);
1717out:
1718        return err;
1719}
1720
1721/*
1722 *      Receive a datagram from a socket.
1723 */
1724
1725SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726                unsigned int, flags)
1727{
1728        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729}
1730
1731/*
1732 *      Set a socket option. Because we don't know the option lengths we have
1733 *      to pass the user mode parameter for the protocols to sort out.
1734 */
1735
1736SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737                char __user *, optval, int, optlen)
1738{
1739        int err, fput_needed;
1740        struct socket *sock;
1741
1742        if (optlen < 0)
1743                return -EINVAL;
1744
1745        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746        if (sock != NULL) {
1747                err = security_socket_setsockopt(sock, level, optname);
1748                if (err)
1749                        goto out_put;
1750
1751                if (level == SOL_SOCKET)
1752                        err =
1753                            sock_setsockopt(sock, level, optname, optval,
1754                                            optlen);
1755                else
1756                        err =
1757                            sock->ops->setsockopt(sock, level, optname, optval,
1758                                                  optlen);
1759out_put:
1760                fput_light(sock->file, fput_needed);
1761        }
1762        return err;
1763}
1764
1765/*
1766 *      Get a socket option. Because we don't know the option lengths we have
1767 *      to pass a user mode parameter for the protocols to sort out.
1768 */
1769
1770SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771                char __user *, optval, int __user *, optlen)
1772{
1773        int err, fput_needed;
1774        struct socket *sock;
1775
1776        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777        if (sock != NULL) {
1778                err = security_socket_getsockopt(sock, level, optname);
1779                if (err)
1780                        goto out_put;
1781
1782                if (level == SOL_SOCKET)
1783                        err =
1784                            sock_getsockopt(sock, level, optname, optval,
1785                                            optlen);
1786                else
1787                        err =
1788                            sock->ops->getsockopt(sock, level, optname, optval,
1789                                                  optlen);
1790out_put:
1791                fput_light(sock->file, fput_needed);
1792        }
1793        return err;
1794}
1795
1796/*
1797 *      Shutdown a socket.
1798 */
1799
1800SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1801{
1802        int err, fput_needed;
1803        struct socket *sock;
1804
1805        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806        if (sock != NULL) {
1807                err = security_socket_shutdown(sock, how);
1808                if (!err)
1809                        err = sock->ops->shutdown(sock, how);
1810                fput_light(sock->file, fput_needed);
1811        }
1812        return err;
1813}
1814
1815/* A couple of helpful macros for getting the address of the 32/64 bit
1816 * fields which are the same type (int / unsigned) on our platforms.
1817 */
1818#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1820#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1821
1822struct used_address {
1823        struct sockaddr_storage name;
1824        unsigned int name_len;
1825};
1826
1827static int copy_msghdr_from_user(struct msghdr *kmsg,
1828                                 struct user_msghdr __user *umsg,
1829                                 struct sockaddr __user **save_addr,
1830                                 struct iovec **iov)
1831{
1832        struct sockaddr __user *uaddr;
1833        struct iovec __user *uiov;
1834        size_t nr_segs;
1835        ssize_t err;
1836
1837        if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838            __get_user(uaddr, &umsg->msg_name) ||
1839            __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840            __get_user(uiov, &umsg->msg_iov) ||
1841            __get_user(nr_segs, &umsg->msg_iovlen) ||
1842            __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843            __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844            __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845                return -EFAULT;
1846
1847        if (!uaddr)
1848                kmsg->msg_namelen = 0;
1849
1850        if (kmsg->msg_namelen < 0)
1851                return -EINVAL;
1852
1853        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1855
1856        if (save_addr)
1857                *save_addr = uaddr;
1858
1859        if (uaddr && kmsg->msg_namelen) {
1860                if (!save_addr) {
1861                        err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862                                                  kmsg->msg_name);
1863                        if (err < 0)
1864                                return err;
1865                }
1866        } else {
1867                kmsg->msg_name = NULL;
1868                kmsg->msg_namelen = 0;
1869        }
1870
1871        if (nr_segs > UIO_MAXIOV)
1872                return -EMSGSIZE;
1873
1874        kmsg->msg_iocb = NULL;
1875
1876        return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1878}
1879
1880static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881                         struct msghdr *msg_sys, unsigned int flags,
1882                         struct used_address *used_address,
1883                         unsigned int allowed_msghdr_flags)
1884{
1885        struct compat_msghdr __user *msg_compat =
1886            (struct compat_msghdr __user *)msg;
1887        struct sockaddr_storage address;
1888        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1889        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1890            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1891        /* 20 is size of ipv6_pktinfo */
1892        unsigned char *ctl_buf = ctl;
1893        int ctl_len;
1894        ssize_t err;
1895
1896        msg_sys->msg_name = &address;
1897
1898        if (MSG_CMSG_COMPAT & flags)
1899                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1900        else
1901                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1902        if (err < 0)
1903                return err;
1904
1905        err = -ENOBUFS;
1906
1907        if (msg_sys->msg_controllen > INT_MAX)
1908                goto out_freeiov;
1909        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1910        ctl_len = msg_sys->msg_controllen;
1911        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1912                err =
1913                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1914                                                     sizeof(ctl));
1915                if (err)
1916                        goto out_freeiov;
1917                ctl_buf = msg_sys->msg_control;
1918                ctl_len = msg_sys->msg_controllen;
1919        } else if (ctl_len) {
1920                if (ctl_len > sizeof(ctl)) {
1921                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1922                        if (ctl_buf == NULL)
1923                                goto out_freeiov;
1924                }
1925                err = -EFAULT;
1926                /*
1927                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1928                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1929                 * checking falls down on this.
1930                 */
1931                if (copy_from_user(ctl_buf,
1932                                   (void __user __force *)msg_sys->msg_control,
1933                                   ctl_len))
1934                        goto out_freectl;
1935                msg_sys->msg_control = ctl_buf;
1936        }
1937        msg_sys->msg_flags = flags;
1938
1939        if (sock->file->f_flags & O_NONBLOCK)
1940                msg_sys->msg_flags |= MSG_DONTWAIT;
1941        /*
1942         * If this is sendmmsg() and current destination address is same as
1943         * previously succeeded address, omit asking LSM's decision.
1944         * used_address->name_len is initialized to UINT_MAX so that the first
1945         * destination address never matches.
1946         */
1947        if (used_address && msg_sys->msg_name &&
1948            used_address->name_len == msg_sys->msg_namelen &&
1949            !memcmp(&used_address->name, msg_sys->msg_name,
1950                    used_address->name_len)) {
1951                err = sock_sendmsg_nosec(sock, msg_sys);
1952                goto out_freectl;
1953        }
1954        err = sock_sendmsg(sock, msg_sys);
1955        /*
1956         * If this is sendmmsg() and sending to current destination address was
1957         * successful, remember it.
1958         */
1959        if (used_address && err >= 0) {
1960                used_address->name_len = msg_sys->msg_namelen;
1961                if (msg_sys->msg_name)
1962                        memcpy(&used_address->name, msg_sys->msg_name,
1963                               used_address->name_len);
1964        }
1965
1966out_freectl:
1967        if (ctl_buf != ctl)
1968                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1969out_freeiov:
1970        kfree(iov);
1971        return err;
1972}
1973
1974/*
1975 *      BSD sendmsg interface
1976 */
1977
1978long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1979{
1980        int fput_needed, err;
1981        struct msghdr msg_sys;
1982        struct socket *sock;
1983
1984        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985        if (!sock)
1986                goto out;
1987
1988        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1989
1990        fput_light(sock->file, fput_needed);
1991out:
1992        return err;
1993}
1994
1995SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1996{
1997        if (flags & MSG_CMSG_COMPAT)
1998                return -EINVAL;
1999        return __sys_sendmsg(fd, msg, flags);
2000}
2001
2002/*
2003 *      Linux sendmmsg interface
2004 */
2005
2006int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2007                   unsigned int flags)
2008{
2009        int fput_needed, err, datagrams;
2010        struct socket *sock;
2011        struct mmsghdr __user *entry;
2012        struct compat_mmsghdr __user *compat_entry;
2013        struct msghdr msg_sys;
2014        struct used_address used_address;
2015        unsigned int oflags = flags;
2016
2017        if (vlen > UIO_MAXIOV)
2018                vlen = UIO_MAXIOV;
2019
2020        datagrams = 0;
2021
2022        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023        if (!sock)
2024                return err;
2025
2026        used_address.name_len = UINT_MAX;
2027        entry = mmsg;
2028        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2029        err = 0;
2030        flags |= MSG_BATCH;
2031
2032        while (datagrams < vlen) {
2033                if (datagrams == vlen - 1)
2034                        flags = oflags;
2035
2036                if (MSG_CMSG_COMPAT & flags) {
2037                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2038                                             &msg_sys, flags, &used_address, MSG_EOR);
2039                        if (err < 0)
2040                                break;
2041                        err = __put_user(err, &compat_entry->msg_len);
2042                        ++compat_entry;
2043                } else {
2044                        err = ___sys_sendmsg(sock,
2045                                             (struct user_msghdr __user *)entry,
2046                                             &msg_sys, flags, &used_address, MSG_EOR);
2047                        if (err < 0)
2048                                break;
2049                        err = put_user(err, &entry->msg_len);
2050                        ++entry;
2051                }
2052
2053                if (err)
2054                        break;
2055                ++datagrams;
2056                if (msg_data_left(&msg_sys))
2057                        break;
2058                cond_resched();
2059        }
2060
2061        fput_light(sock->file, fput_needed);
2062
2063        /* We only return an error if no datagrams were able to be sent */
2064        if (datagrams != 0)
2065                return datagrams;
2066
2067        return err;
2068}
2069
2070SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2071                unsigned int, vlen, unsigned int, flags)
2072{
2073        if (flags & MSG_CMSG_COMPAT)
2074                return -EINVAL;
2075        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2076}
2077
2078static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2079                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2080{
2081        struct compat_msghdr __user *msg_compat =
2082            (struct compat_msghdr __user *)msg;
2083        struct iovec iovstack[UIO_FASTIOV];
2084        struct iovec *iov = iovstack;
2085        unsigned long cmsg_ptr;
2086        int len;
2087        ssize_t err;
2088
2089        /* kernel mode address */
2090        struct sockaddr_storage addr;
2091
2092        /* user mode address pointers */
2093        struct sockaddr __user *uaddr;
2094        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2095
2096        msg_sys->msg_name = &addr;
2097
2098        if (MSG_CMSG_COMPAT & flags)
2099                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2100        else
2101                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2102        if (err < 0)
2103                return err;
2104
2105        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2106        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2107
2108        /* We assume all kernel code knows the size of sockaddr_storage */
2109        msg_sys->msg_namelen = 0;
2110
2111        if (sock->file->f_flags & O_NONBLOCK)
2112                flags |= MSG_DONTWAIT;
2113        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2114        if (err < 0)
2115                goto out_freeiov;
2116        len = err;
2117
2118        if (uaddr != NULL) {
2119                err = move_addr_to_user(&addr,
2120                                        msg_sys->msg_namelen, uaddr,
2121                                        uaddr_len);
2122                if (err < 0)
2123                        goto out_freeiov;
2124        }
2125        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2126                         COMPAT_FLAGS(msg));
2127        if (err)
2128                goto out_freeiov;
2129        if (MSG_CMSG_COMPAT & flags)
2130                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2131                                 &msg_compat->msg_controllen);
2132        else
2133                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2134                                 &msg->msg_controllen);
2135        if (err)
2136                goto out_freeiov;
2137        err = len;
2138
2139out_freeiov:
2140        kfree(iov);
2141        return err;
2142}
2143
2144/*
2145 *      BSD recvmsg interface
2146 */
2147
2148long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2149{
2150        int fput_needed, err;
2151        struct msghdr msg_sys;
2152        struct socket *sock;
2153
2154        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155        if (!sock)
2156                goto out;
2157
2158        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2159
2160        fput_light(sock->file, fput_needed);
2161out:
2162        return err;
2163}
2164
2165SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2166                unsigned int, flags)
2167{
2168        if (flags & MSG_CMSG_COMPAT)
2169                return -EINVAL;
2170        return __sys_recvmsg(fd, msg, flags);
2171}
2172
2173/*
2174 *     Linux recvmmsg interface
2175 */
2176
2177int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2178                   unsigned int flags, struct timespec *timeout)
2179{
2180        int fput_needed, err, datagrams;
2181        struct socket *sock;
2182        struct mmsghdr __user *entry;
2183        struct compat_mmsghdr __user *compat_entry;
2184        struct msghdr msg_sys;
2185        struct timespec64 end_time;
2186        struct timespec64 timeout64;
2187
2188        if (timeout &&
2189            poll_select_set_timeout(&end_time, timeout->tv_sec,
2190                                    timeout->tv_nsec))
2191                return -EINVAL;
2192
2193        datagrams = 0;
2194
2195        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2196        if (!sock)
2197                return err;
2198
2199        err = sock_error(sock->sk);
2200        if (err)
2201                goto out_put;
2202
2203        entry = mmsg;
2204        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2205
2206        while (datagrams < vlen) {
2207                /*
2208                 * No need to ask LSM for more than the first datagram.
2209                 */
2210                if (MSG_CMSG_COMPAT & flags) {
2211                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2212                                             &msg_sys, flags & ~MSG_WAITFORONE,
2213                                             datagrams);
2214                        if (err < 0)
2215                                break;
2216                        err = __put_user(err, &compat_entry->msg_len);
2217                        ++compat_entry;
2218                } else {
2219                        err = ___sys_recvmsg(sock,
2220                                             (struct user_msghdr __user *)entry,
2221                                             &msg_sys, flags & ~MSG_WAITFORONE,
2222                                             datagrams);
2223                        if (err < 0)
2224                                break;
2225                        err = put_user(err, &entry->msg_len);
2226                        ++entry;
2227                }
2228
2229                if (err)
2230                        break;
2231                ++datagrams;
2232
2233                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2234                if (flags & MSG_WAITFORONE)
2235                        flags |= MSG_DONTWAIT;
2236
2237                if (timeout) {
2238                        ktime_get_ts64(&timeout64);
2239                        *timeout = timespec64_to_timespec(
2240                                        timespec64_sub(end_time, timeout64));
2241                        if (timeout->tv_sec < 0) {
2242                                timeout->tv_sec = timeout->tv_nsec = 0;
2243                                break;
2244                        }
2245
2246                        /* Timeout, return less than vlen datagrams */
2247                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2248                                break;
2249                }
2250
2251                /* Out of band data, return right away */
2252                if (msg_sys.msg_flags & MSG_OOB)
2253                        break;
2254                cond_resched();
2255        }
2256
2257        if (err == 0)
2258                goto out_put;
2259
2260        if (datagrams == 0) {
2261                datagrams = err;
2262                goto out_put;
2263        }
2264
2265        /*
2266         * We may return less entries than requested (vlen) if the
2267         * sock is non block and there aren't enough datagrams...
2268         */
2269        if (err != -EAGAIN) {
2270                /*
2271                 * ... or  if recvmsg returns an error after we
2272                 * received some datagrams, where we record the
2273                 * error to return on the next call or if the
2274                 * app asks about it using getsockopt(SO_ERROR).
2275                 */
2276                sock->sk->sk_err = -err;
2277        }
2278out_put:
2279        fput_light(sock->file, fput_needed);
2280
2281        return datagrams;
2282}
2283
2284SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2285                unsigned int, vlen, unsigned int, flags,
2286                struct timespec __user *, timeout)
2287{
2288        int datagrams;
2289        struct timespec timeout_sys;
2290
2291        if (flags & MSG_CMSG_COMPAT)
2292                return -EINVAL;
2293
2294        if (!timeout)
2295                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2296
2297        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2298                return -EFAULT;
2299
2300        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2301
2302        if (datagrams > 0 &&
2303            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2304                datagrams = -EFAULT;
2305
2306        return datagrams;
2307}
2308
2309#ifdef __ARCH_WANT_SYS_SOCKETCALL
2310/* Argument list sizes for sys_socketcall */
2311#define AL(x) ((x) * sizeof(unsigned long))
2312static const unsigned char nargs[21] = {
2313        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2314        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2315        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2316        AL(4), AL(5), AL(4)
2317};
2318
2319#undef AL
2320
2321/*
2322 *      System call vectors.
2323 *
2324 *      Argument checking cleaned up. Saved 20% in size.
2325 *  This function doesn't need to set the kernel lock because
2326 *  it is set by the callees.
2327 */
2328
2329SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2330{
2331        unsigned long a[AUDITSC_ARGS];
2332        unsigned long a0, a1;
2333        int err;
2334        unsigned int len;
2335
2336        if (call < 1 || call > SYS_SENDMMSG)
2337                return -EINVAL;
2338
2339        len = nargs[call];
2340        if (len > sizeof(a))
2341                return -EINVAL;
2342
2343        /* copy_from_user should be SMP safe. */
2344        if (copy_from_user(a, args, len))
2345                return -EFAULT;
2346
2347        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2348        if (err)
2349                return err;
2350
2351        a0 = a[0];
2352        a1 = a[1];
2353
2354        switch (call) {
2355        case SYS_SOCKET:
2356                err = sys_socket(a0, a1, a[2]);
2357                break;
2358        case SYS_BIND:
2359                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2360                break;
2361        case SYS_CONNECT:
2362                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2363                break;
2364        case SYS_LISTEN:
2365                err = sys_listen(a0, a1);
2366                break;
2367        case SYS_ACCEPT:
2368                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2369                                  (int __user *)a[2], 0);
2370                break;
2371        case SYS_GETSOCKNAME:
2372                err =
2373                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2374                                    (int __user *)a[2]);
2375                break;
2376        case SYS_GETPEERNAME:
2377                err =
2378                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2379                                    (int __user *)a[2]);
2380                break;
2381        case SYS_SOCKETPAIR:
2382                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2383                break;
2384        case SYS_SEND:
2385                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2386                break;
2387        case SYS_SENDTO:
2388                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2389                                 (struct sockaddr __user *)a[4], a[5]);
2390                break;
2391        case SYS_RECV:
2392                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2393                break;
2394        case SYS_RECVFROM:
2395                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2396                                   (struct sockaddr __user *)a[4],
2397                                   (int __user *)a[5]);
2398                break;
2399        case SYS_SHUTDOWN:
2400                err = sys_shutdown(a0, a1);
2401                break;
2402        case SYS_SETSOCKOPT:
2403                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2404                break;
2405        case SYS_GETSOCKOPT:
2406                err =
2407                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2408                                   (int __user *)a[4]);
2409                break;
2410        case SYS_SENDMSG:
2411                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2412                break;
2413        case SYS_SENDMMSG:
2414                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2415                break;
2416        case SYS_RECVMSG:
2417                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2418                break;
2419        case SYS_RECVMMSG:
2420                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2421                                   (struct timespec __user *)a[4]);
2422                break;
2423        case SYS_ACCEPT4:
2424                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2425                                  (int __user *)a[2], a[3]);
2426                break;
2427        default:
2428                err = -EINVAL;
2429                break;
2430        }
2431        return err;
2432}
2433
2434#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2435
2436/**
2437 *      sock_register - add a socket protocol handler
2438 *      @ops: description of protocol
2439 *
2440 *      This function is called by a protocol handler that wants to
2441 *      advertise its address family, and have it linked into the
2442 *      socket interface. The value ops->family corresponds to the
2443 *      socket system call protocol family.
2444 */
2445int sock_register(const struct net_proto_family *ops)
2446{
2447        int err;
2448
2449        if (ops->family >= NPROTO) {
2450                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2451                return -ENOBUFS;
2452        }
2453
2454        spin_lock(&net_family_lock);
2455        if (rcu_dereference_protected(net_families[ops->family],
2456                                      lockdep_is_held(&net_family_lock)))
2457                err = -EEXIST;
2458        else {
2459                rcu_assign_pointer(net_families[ops->family], ops);
2460                err = 0;
2461        }
2462        spin_unlock(&net_family_lock);
2463
2464        pr_info("NET: Registered protocol family %d\n", ops->family);
2465        return err;
2466}
2467EXPORT_SYMBOL(sock_register);
2468
2469/**
2470 *      sock_unregister - remove a protocol handler
2471 *      @family: protocol family to remove
2472 *
2473 *      This function is called by a protocol handler that wants to
2474 *      remove its address family, and have it unlinked from the
2475 *      new socket creation.
2476 *
2477 *      If protocol handler is a module, then it can use module reference
2478 *      counts to protect against new references. If protocol handler is not
2479 *      a module then it needs to provide its own protection in
2480 *      the ops->create routine.
2481 */
2482void sock_unregister(int family)
2483{
2484        BUG_ON(family < 0 || family >= NPROTO);
2485
2486        spin_lock(&net_family_lock);
2487        RCU_INIT_POINTER(net_families[family], NULL);
2488        spin_unlock(&net_family_lock);
2489
2490        synchronize_rcu();
2491
2492        pr_info("NET: Unregistered protocol family %d\n", family);
2493}
2494EXPORT_SYMBOL(sock_unregister);
2495
2496static int __init sock_init(void)
2497{
2498        int err;
2499        /*
2500         *      Initialize the network sysctl infrastructure.
2501         */
2502        err = net_sysctl_init();
2503        if (err)
2504                goto out;
2505
2506        /*
2507         *      Initialize skbuff SLAB cache
2508         */
2509        skb_init();
2510
2511        /*
2512         *      Initialize the protocols module.
2513         */
2514
2515        init_inodecache();
2516
2517        err = register_filesystem(&sock_fs_type);
2518        if (err)
2519                goto out_fs;
2520        sock_mnt = kern_mount(&sock_fs_type);
2521        if (IS_ERR(sock_mnt)) {
2522                err = PTR_ERR(sock_mnt);
2523                goto out_mount;
2524        }
2525
2526        /* The real protocol initialization is performed in later initcalls.
2527         */
2528
2529#ifdef CONFIG_NETFILTER
2530        err = netfilter_init();
2531        if (err)
2532                goto out;
2533#endif
2534
2535        ptp_classifier_init();
2536
2537out:
2538        return err;
2539
2540out_mount:
2541        unregister_filesystem(&sock_fs_type);
2542out_fs:
2543        goto out;
2544}
2545
2546core_initcall(sock_init);       /* early initcall */
2547
2548#ifdef CONFIG_PROC_FS
2549void socket_seq_show(struct seq_file *seq)
2550{
2551        int cpu;
2552        int counter = 0;
2553
2554        for_each_possible_cpu(cpu)
2555            counter += per_cpu(sockets_in_use, cpu);
2556
2557        /* It can be negative, by the way. 8) */
2558        if (counter < 0)
2559                counter = 0;
2560
2561        seq_printf(seq, "sockets: used %d\n", counter);
2562}
2563#endif                          /* CONFIG_PROC_FS */
2564
2565#ifdef CONFIG_COMPAT
2566static int do_siocgstamp(struct net *net, struct socket *sock,
2567                         unsigned int cmd, void __user *up)
2568{
2569        mm_segment_t old_fs = get_fs();
2570        struct timeval ktv;
2571        int err;
2572
2573        set_fs(KERNEL_DS);
2574        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2575        set_fs(old_fs);
2576        if (!err)
2577                err = compat_put_timeval(&ktv, up);
2578
2579        return err;
2580}
2581
2582static int do_siocgstampns(struct net *net, struct socket *sock,
2583                           unsigned int cmd, void __user *up)
2584{
2585        mm_segment_t old_fs = get_fs();
2586        struct timespec kts;
2587        int err;
2588
2589        set_fs(KERNEL_DS);
2590        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2591        set_fs(old_fs);
2592        if (!err)
2593                err = compat_put_timespec(&kts, up);
2594
2595        return err;
2596}
2597
2598static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2599{
2600        struct ifreq __user *uifr;
2601        int err;
2602
2603        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2604        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2605                return -EFAULT;
2606
2607        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2608        if (err)
2609                return err;
2610
2611        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2612                return -EFAULT;
2613
2614        return 0;
2615}
2616
2617static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2618{
2619        struct compat_ifconf ifc32;
2620        struct ifconf ifc;
2621        struct ifconf __user *uifc;
2622        struct compat_ifreq __user *ifr32;
2623        struct ifreq __user *ifr;
2624        unsigned int i, j;
2625        int err;
2626
2627        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2628                return -EFAULT;
2629
2630        memset(&ifc, 0, sizeof(ifc));
2631        if (ifc32.ifcbuf == 0) {
2632                ifc32.ifc_len = 0;
2633                ifc.ifc_len = 0;
2634                ifc.ifc_req = NULL;
2635                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2636        } else {
2637                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2638                        sizeof(struct ifreq);
2639                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2640                ifc.ifc_len = len;
2641                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2642                ifr32 = compat_ptr(ifc32.ifcbuf);
2643                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2644                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2645                                return -EFAULT;
2646                        ifr++;
2647                        ifr32++;
2648                }
2649        }
2650        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2651                return -EFAULT;
2652
2653        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2654        if (err)
2655                return err;
2656
2657        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2658                return -EFAULT;
2659
2660        ifr = ifc.ifc_req;
2661        ifr32 = compat_ptr(ifc32.ifcbuf);
2662        for (i = 0, j = 0;
2663             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2664             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2665                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2666                        return -EFAULT;
2667                ifr32++;
2668                ifr++;
2669        }
2670
2671        if (ifc32.ifcbuf == 0) {
2672                /* Translate from 64-bit structure multiple to
2673                 * a 32-bit one.
2674                 */
2675                i = ifc.ifc_len;
2676                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2677                ifc32.ifc_len = i;
2678        } else {
2679                ifc32.ifc_len = i;
2680        }
2681        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2682                return -EFAULT;
2683
2684        return 0;
2685}
2686
2687static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2688{
2689        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2690        bool convert_in = false, convert_out = false;
2691        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2692        struct ethtool_rxnfc __user *rxnfc;
2693        struct ifreq __user *ifr;
2694        u32 rule_cnt = 0, actual_rule_cnt;
2695        u32 ethcmd;
2696        u32 data;
2697        int ret;
2698
2699        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2700                return -EFAULT;
2701
2702        compat_rxnfc = compat_ptr(data);
2703
2704        if (get_user(ethcmd, &compat_rxnfc->cmd))
2705                return -EFAULT;
2706
2707        /* Most ethtool structures are defined without padding.
2708         * Unfortunately struct ethtool_rxnfc is an exception.
2709         */
2710        switch (ethcmd) {
2711        default:
2712                break;
2713        case ETHTOOL_GRXCLSRLALL:
2714                /* Buffer size is variable */
2715                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2716                        return -EFAULT;
2717                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2718                        return -ENOMEM;
2719                buf_size += rule_cnt * sizeof(u32);
2720                /* fall through */
2721        case ETHTOOL_GRXRINGS:
2722        case ETHTOOL_GRXCLSRLCNT:
2723        case ETHTOOL_GRXCLSRULE:
2724        case ETHTOOL_SRXCLSRLINS:
2725                convert_out = true;
2726                /* fall through */
2727        case ETHTOOL_SRXCLSRLDEL:
2728                buf_size += sizeof(struct ethtool_rxnfc);
2729                convert_in = true;
2730                break;
2731        }
2732
2733        ifr = compat_alloc_user_space(buf_size);
2734        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2735
2736        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2737                return -EFAULT;
2738
2739        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2740                     &ifr->ifr_ifru.ifru_data))
2741                return -EFAULT;
2742
2743        if (convert_in) {
2744                /* We expect there to be holes between fs.m_ext and
2745                 * fs.ring_cookie and at the end of fs, but nowhere else.
2746                 */
2747                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2748                             sizeof(compat_rxnfc->fs.m_ext) !=
2749                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2750                             sizeof(rxnfc->fs.m_ext));
2751                BUILD_BUG_ON(
2752                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2753                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2754                        offsetof(struct ethtool_rxnfc, fs.location) -
2755                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2756
2757                if (copy_in_user(rxnfc, compat_rxnfc,
2758                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2759                                 (void __user *)rxnfc) ||
2760                    copy_in_user(&rxnfc->fs.ring_cookie,
2761                                 &compat_rxnfc->fs.ring_cookie,
2762                                 (void __user *)(&rxnfc->fs.location + 1) -
2763                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2764                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2765                                 sizeof(rxnfc->rule_cnt)))
2766                        return -EFAULT;
2767        }
2768
2769        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2770        if (ret)
2771                return ret;
2772
2773        if (convert_out) {
2774                if (copy_in_user(compat_rxnfc, rxnfc,
2775                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2776                                 (const void __user *)rxnfc) ||
2777                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2778                                 &rxnfc->fs.ring_cookie,
2779                                 (const void __user *)(&rxnfc->fs.location + 1) -
2780                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2781                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2782                                 sizeof(rxnfc->rule_cnt)))
2783                        return -EFAULT;
2784
2785                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2786                        /* As an optimisation, we only copy the actual
2787                         * number of rules that the underlying
2788                         * function returned.  Since Mallory might
2789                         * change the rule count in user memory, we
2790                         * check that it is less than the rule count
2791                         * originally given (as the user buffer size),
2792                         * which has been range-checked.
2793                         */
2794                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2795                                return -EFAULT;
2796                        if (actual_rule_cnt < rule_cnt)
2797                                rule_cnt = actual_rule_cnt;
2798                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2799                                         &rxnfc->rule_locs[0],
2800                                         rule_cnt * sizeof(u32)))
2801                                return -EFAULT;
2802                }
2803        }
2804
2805        return 0;
2806}
2807
2808static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2809{
2810        void __user *uptr;
2811        compat_uptr_t uptr32;
2812        struct ifreq __user *uifr;
2813
2814        uifr = compat_alloc_user_space(sizeof(*uifr));
2815        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2816                return -EFAULT;
2817
2818        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2819                return -EFAULT;
2820
2821        uptr = compat_ptr(uptr32);
2822
2823        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2824                return -EFAULT;
2825
2826        return dev_ioctl(net, SIOCWANDEV, uifr);
2827}
2828
2829static int bond_ioctl(struct net *net, unsigned int cmd,
2830                         struct compat_ifreq __user *ifr32)
2831{
2832        struct ifreq kifr;
2833        mm_segment_t old_fs;
2834        int err;
2835
2836        switch (cmd) {
2837        case SIOCBONDENSLAVE:
2838        case SIOCBONDRELEASE:
2839        case SIOCBONDSETHWADDR:
2840        case SIOCBONDCHANGEACTIVE:
2841                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2842                        return -EFAULT;
2843
2844                old_fs = get_fs();
2845                set_fs(KERNEL_DS);
2846                err = dev_ioctl(net, cmd,
2847                                (struct ifreq __user __force *) &kifr);
2848                set_fs(old_fs);
2849
2850                return err;
2851        default:
2852                return -ENOIOCTLCMD;
2853        }
2854}
2855
2856/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2857static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2858                                 struct compat_ifreq __user *u_ifreq32)
2859{
2860        struct ifreq __user *u_ifreq64;
2861        char tmp_buf[IFNAMSIZ];
2862        void __user *data64;
2863        u32 data32;
2864
2865        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2866                           IFNAMSIZ))
2867                return -EFAULT;
2868        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2869                return -EFAULT;
2870        data64 = compat_ptr(data32);
2871
2872        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2873
2874        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2875                         IFNAMSIZ))
2876                return -EFAULT;
2877        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2878                return -EFAULT;
2879
2880        return dev_ioctl(net, cmd, u_ifreq64);
2881}
2882
2883static int dev_ifsioc(struct net *net, struct socket *sock,
2884                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2885{
2886        struct ifreq __user *uifr;
2887        int err;
2888
2889        uifr = compat_alloc_user_space(sizeof(*uifr));
2890        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2891                return -EFAULT;
2892
2893        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2894
2895        if (!err) {
2896                switch (cmd) {
2897                case SIOCGIFFLAGS:
2898                case SIOCGIFMETRIC:
2899                case SIOCGIFMTU:
2900                case SIOCGIFMEM:
2901                case SIOCGIFHWADDR:
2902                case SIOCGIFINDEX:
2903                case SIOCGIFADDR:
2904                case SIOCGIFBRDADDR:
2905                case SIOCGIFDSTADDR:
2906                case SIOCGIFNETMASK:
2907                case SIOCGIFPFLAGS:
2908                case SIOCGIFTXQLEN:
2909                case SIOCGMIIPHY:
2910                case SIOCGMIIREG:
2911                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2912                                err = -EFAULT;
2913                        break;
2914                }
2915        }
2916        return err;
2917}
2918
2919static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2920                        struct compat_ifreq __user *uifr32)
2921{
2922        struct ifreq ifr;
2923        struct compat_ifmap __user *uifmap32;
2924        mm_segment_t old_fs;
2925        int err;
2926
2927        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2928        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2929        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2930        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2931        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2932        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2933        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2934        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2935        if (err)
2936                return -EFAULT;
2937
2938        old_fs = get_fs();
2939        set_fs(KERNEL_DS);
2940        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2941        set_fs(old_fs);
2942
2943        if (cmd == SIOCGIFMAP && !err) {
2944                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2945                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2946                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2947                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2948                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2949                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2950                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2951                if (err)
2952                        err = -EFAULT;
2953        }
2954        return err;
2955}
2956
2957struct rtentry32 {
2958        u32             rt_pad1;
2959        struct sockaddr rt_dst;         /* target address               */
2960        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2961        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2962        unsigned short  rt_flags;
2963        short           rt_pad2;
2964        u32             rt_pad3;
2965        unsigned char   rt_tos;
2966        unsigned char   rt_class;
2967        short           rt_pad4;
2968        short           rt_metric;      /* +1 for binary compatibility! */
2969        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2970        u32             rt_mtu;         /* per route MTU/Window         */
2971        u32             rt_window;      /* Window clamping              */
2972        unsigned short  rt_irtt;        /* Initial RTT                  */
2973};
2974
2975struct in6_rtmsg32 {
2976        struct in6_addr         rtmsg_dst;
2977        struct in6_addr         rtmsg_src;
2978        struct in6_addr         rtmsg_gateway;
2979        u32                     rtmsg_type;
2980        u16                     rtmsg_dst_len;
2981        u16                     rtmsg_src_len;
2982        u32                     rtmsg_metric;
2983        u32                     rtmsg_info;
2984        u32                     rtmsg_flags;
2985        s32                     rtmsg_ifindex;
2986};
2987
2988static int routing_ioctl(struct net *net, struct socket *sock,
2989                         unsigned int cmd, void __user *argp)
2990{
2991        int ret;
2992        void *r = NULL;
2993        struct in6_rtmsg r6;
2994        struct rtentry r4;
2995        char devname[16];
2996        u32 rtdev;
2997        mm_segment_t old_fs = get_fs();
2998
2999        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3000                struct in6_rtmsg32 __user *ur6 = argp;
3001                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3002                        3 * sizeof(struct in6_addr));
3003                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3004                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3005                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3006                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3007                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3008                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3009                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3010
3011                r = (void *) &r6;
3012        } else { /* ipv4 */
3013                struct rtentry32 __user *ur4 = argp;
3014                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3015                                        3 * sizeof(struct sockaddr));
3016                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3017                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3018                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3019                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3020                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3021                ret |= get_user(rtdev, &(ur4->rt_dev));
3022                if (rtdev) {
3023                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3024                        r4.rt_dev = (char __user __force *)devname;
3025                        devname[15] = 0;
3026                } else
3027                        r4.rt_dev = NULL;
3028
3029                r = (void *) &r4;
3030        }
3031
3032        if (ret) {
3033                ret = -EFAULT;
3034                goto out;
3035        }
3036
3037        set_fs(KERNEL_DS);
3038        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3039        set_fs(old_fs);
3040
3041out:
3042        return ret;
3043}
3044
3045/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3046 * for some operations; this forces use of the newer bridge-utils that
3047 * use compatible ioctls
3048 */
3049static int old_bridge_ioctl(compat_ulong_t __user *argp)
3050{
3051        compat_ulong_t tmp;
3052
3053        if (get_user(tmp, argp))
3054                return -EFAULT;
3055        if (tmp == BRCTL_GET_VERSION)
3056                return BRCTL_VERSION + 1;
3057        return -EINVAL;
3058}
3059
3060static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3061                         unsigned int cmd, unsigned long arg)
3062{
3063        void __user *argp = compat_ptr(arg);
3064        struct sock *sk = sock->sk;
3065        struct net *net = sock_net(sk);
3066
3067        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3068                return compat_ifr_data_ioctl(net, cmd, argp);
3069
3070        switch (cmd) {
3071        case SIOCSIFBR:
3072        case SIOCGIFBR:
3073                return old_bridge_ioctl(argp);
3074        case SIOCGIFNAME:
3075                return dev_ifname32(net, argp);
3076        case SIOCGIFCONF:
3077                return dev_ifconf(net, argp);
3078        case SIOCETHTOOL:
3079                return ethtool_ioctl(net, argp);
3080        case SIOCWANDEV:
3081                return compat_siocwandev(net, argp);
3082        case SIOCGIFMAP:
3083        case SIOCSIFMAP:
3084                return compat_sioc_ifmap(net, cmd, argp);
3085        case SIOCBONDENSLAVE:
3086        case SIOCBONDRELEASE:
3087        case SIOCBONDSETHWADDR:
3088        case SIOCBONDCHANGEACTIVE:
3089                return bond_ioctl(net, cmd, argp);
3090        case SIOCADDRT:
3091        case SIOCDELRT:
3092                return routing_ioctl(net, sock, cmd, argp);
3093        case SIOCGSTAMP:
3094                return do_siocgstamp(net, sock, cmd, argp);
3095        case SIOCGSTAMPNS:
3096                return do_siocgstampns(net, sock, cmd, argp);
3097        case SIOCBONDSLAVEINFOQUERY:
3098        case SIOCBONDINFOQUERY:
3099        case SIOCSHWTSTAMP:
3100        case SIOCGHWTSTAMP:
3101                return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103        case FIOSETOWN:
3104        case SIOCSPGRP:
3105        case FIOGETOWN:
3106        case SIOCGPGRP:
3107        case SIOCBRADDBR:
3108        case SIOCBRDELBR:
3109        case SIOCGIFVLAN:
3110        case SIOCSIFVLAN:
3111        case SIOCADDDLCI:
3112        case SIOCDELDLCI:
3113                return sock_ioctl(file, cmd, arg);
3114
3115        case SIOCGIFFLAGS:
3116        case SIOCSIFFLAGS:
3117        case SIOCGIFMETRIC:
3118        case SIOCSIFMETRIC:
3119        case SIOCGIFMTU:
3120        case SIOCSIFMTU:
3121        case SIOCGIFMEM:
3122        case SIOCSIFMEM:
3123        case SIOCGIFHWADDR:
3124        case SIOCSIFHWADDR:
3125        case SIOCADDMULTI:
3126        case SIOCDELMULTI:
3127        case SIOCGIFINDEX:
3128        case SIOCGIFADDR:
3129        case SIOCSIFADDR:
3130        case SIOCSIFHWBROADCAST:
3131        case SIOCDIFADDR:
3132        case SIOCGIFBRDADDR:
3133        case SIOCSIFBRDADDR:
3134        case SIOCGIFDSTADDR:
3135        case SIOCSIFDSTADDR:
3136        case SIOCGIFNETMASK:
3137        case SIOCSIFNETMASK:
3138        case SIOCSIFPFLAGS:
3139        case SIOCGIFPFLAGS:
3140        case SIOCGIFTXQLEN:
3141        case SIOCSIFTXQLEN:
3142        case SIOCBRADDIF:
3143        case SIOCBRDELIF:
3144        case SIOCSIFNAME:
3145        case SIOCGMIIPHY:
3146        case SIOCGMIIREG:
3147        case SIOCSMIIREG:
3148                return dev_ifsioc(net, sock, cmd, argp);
3149
3150        case SIOCSARP:
3151        case SIOCGARP:
3152        case SIOCDARP:
3153        case SIOCATMARK:
3154                return sock_do_ioctl(net, sock, cmd, arg);
3155        }
3156
3157        return -ENOIOCTLCMD;
3158}
3159
3160static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3161                              unsigned long arg)
3162{
3163        struct socket *sock = file->private_data;
3164        int ret = -ENOIOCTLCMD;
3165        struct sock *sk;
3166        struct net *net;
3167
3168        sk = sock->sk;
3169        net = sock_net(sk);
3170
3171        if (sock->ops->compat_ioctl)
3172                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3173
3174        if (ret == -ENOIOCTLCMD &&
3175            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3176                ret = compat_wext_handle_ioctl(net, cmd, arg);
3177
3178        if (ret == -ENOIOCTLCMD)
3179                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3180
3181        return ret;
3182}
3183#endif
3184
3185int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3186{
3187        return sock->ops->bind(sock, addr, addrlen);
3188}
3189EXPORT_SYMBOL(kernel_bind);
3190
3191int kernel_listen(struct socket *sock, int backlog)
3192{
3193        return sock->ops->listen(sock, backlog);
3194}
3195EXPORT_SYMBOL(kernel_listen);
3196
3197int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3198{
3199        struct sock *sk = sock->sk;
3200        int err;
3201
3202        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3203                               newsock);
3204        if (err < 0)
3205                goto done;
3206
3207        err = sock->ops->accept(sock, *newsock, flags);
3208        if (err < 0) {
3209                sock_release(*newsock);
3210                *newsock = NULL;
3211                goto done;
3212        }
3213
3214        (*newsock)->ops = sock->ops;
3215        __module_get((*newsock)->ops->owner);
3216
3217done:
3218        return err;
3219}
3220EXPORT_SYMBOL(kernel_accept);
3221
3222int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3223                   int flags)
3224{
3225        return sock->ops->connect(sock, addr, addrlen, flags);
3226}
3227EXPORT_SYMBOL(kernel_connect);
3228
3229int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3230                         int *addrlen)
3231{
3232        return sock->ops->getname(sock, addr, addrlen, 0);
3233}
3234EXPORT_SYMBOL(kernel_getsockname);
3235
3236int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3237                         int *addrlen)
3238{
3239        return sock->ops->getname(sock, addr, addrlen, 1);
3240}
3241EXPORT_SYMBOL(kernel_getpeername);
3242
3243int kernel_getsockopt(struct socket *sock, int level, int optname,
3244                        char *optval, int *optlen)
3245{
3246        mm_segment_t oldfs = get_fs();
3247        char __user *uoptval;
3248        int __user *uoptlen;
3249        int err;
3250
3251        uoptval = (char __user __force *) optval;
3252        uoptlen = (int __user __force *) optlen;
3253
3254        set_fs(KERNEL_DS);
3255        if (level == SOL_SOCKET)
3256                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3257        else
3258                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3259                                            uoptlen);
3260        set_fs(oldfs);
3261        return err;
3262}
3263EXPORT_SYMBOL(kernel_getsockopt);
3264
3265int kernel_setsockopt(struct socket *sock, int level, int optname,
3266                        char *optval, unsigned int optlen)
3267{
3268        mm_segment_t oldfs = get_fs();
3269        char __user *uoptval;
3270        int err;
3271
3272        uoptval = (char __user __force *) optval;
3273
3274        set_fs(KERNEL_DS);
3275        if (level == SOL_SOCKET)
3276                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3277        else
3278                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3279                                            optlen);
3280        set_fs(oldfs);
3281        return err;
3282}
3283EXPORT_SYMBOL(kernel_setsockopt);
3284
3285int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3286                    size_t size, int flags)
3287{
3288        if (sock->ops->sendpage)
3289                return sock->ops->sendpage(sock, page, offset, size, flags);
3290
3291        return sock_no_sendpage(sock, page, offset, size, flags);
3292}
3293EXPORT_SYMBOL(kernel_sendpage);
3294
3295int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3296{
3297        mm_segment_t oldfs = get_fs();
3298        int err;
3299
3300        set_fs(KERNEL_DS);
3301        err = sock->ops->ioctl(sock, cmd, arg);
3302        set_fs(oldfs);
3303
3304        return err;
3305}
3306EXPORT_SYMBOL(kernel_sock_ioctl);
3307
3308int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3309{
3310        return sock->ops->shutdown(sock, how);
3311}
3312EXPORT_SYMBOL(kernel_sock_shutdown);
3313