linux/security/commoncap.c
<<
>>
Prefs
   1/* Common capabilities, needed by capability.o.
   2 *
   3 *      This program is free software; you can redistribute it and/or modify
   4 *      it under the terms of the GNU General Public License as published by
   5 *      the Free Software Foundation; either version 2 of the License, or
   6 *      (at your option) any later version.
   7 *
   8 */
   9
  10#include <linux/capability.h>
  11#include <linux/audit.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/lsm_hooks.h>
  16#include <linux/file.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/skbuff.h>
  22#include <linux/netlink.h>
  23#include <linux/ptrace.h>
  24#include <linux/xattr.h>
  25#include <linux/hugetlb.h>
  26#include <linux/mount.h>
  27#include <linux/sched.h>
  28#include <linux/prctl.h>
  29#include <linux/securebits.h>
  30#include <linux/user_namespace.h>
  31#include <linux/binfmts.h>
  32#include <linux/personality.h>
  33
  34/*
  35 * If a non-root user executes a setuid-root binary in
  36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  37 * However if fE is also set, then the intent is for only
  38 * the file capabilities to be applied, and the setuid-root
  39 * bit is left on either to change the uid (plausible) or
  40 * to get full privilege on a kernel without file capabilities
  41 * support.  So in that case we do not raise capabilities.
  42 *
  43 * Warn if that happens, once per boot.
  44 */
  45static void warn_setuid_and_fcaps_mixed(const char *fname)
  46{
  47        static int warned;
  48        if (!warned) {
  49                printk(KERN_INFO "warning: `%s' has both setuid-root and"
  50                        " effective capabilities. Therefore not raising all"
  51                        " capabilities.\n", fname);
  52                warned = 1;
  53        }
  54}
  55
  56/**
  57 * cap_capable - Determine whether a task has a particular effective capability
  58 * @cred: The credentials to use
  59 * @ns:  The user namespace in which we need the capability
  60 * @cap: The capability to check for
  61 * @audit: Whether to write an audit message or not
  62 *
  63 * Determine whether the nominated task has the specified capability amongst
  64 * its effective set, returning 0 if it does, -ve if it does not.
  65 *
  66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  67 * and has_capability() functions.  That is, it has the reverse semantics:
  68 * cap_has_capability() returns 0 when a task has a capability, but the
  69 * kernel's capable() and has_capability() returns 1 for this case.
  70 */
  71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
  72                int cap, int audit)
  73{
  74        struct user_namespace *ns = targ_ns;
  75
  76        /* See if cred has the capability in the target user namespace
  77         * by examining the target user namespace and all of the target
  78         * user namespace's parents.
  79         */
  80        for (;;) {
  81                /* Do we have the necessary capabilities? */
  82                if (ns == cred->user_ns)
  83                        return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  84
  85                /* Have we tried all of the parent namespaces? */
  86                if (ns == &init_user_ns)
  87                        return -EPERM;
  88
  89                /* 
  90                 * The owner of the user namespace in the parent of the
  91                 * user namespace has all caps.
  92                 */
  93                if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
  94                        return 0;
  95
  96                /*
  97                 * If you have a capability in a parent user ns, then you have
  98                 * it over all children user namespaces as well.
  99                 */
 100                ns = ns->parent;
 101        }
 102
 103        /* We never get here */
 104}
 105
 106/**
 107 * cap_settime - Determine whether the current process may set the system clock
 108 * @ts: The time to set
 109 * @tz: The timezone to set
 110 *
 111 * Determine whether the current process may set the system clock and timezone
 112 * information, returning 0 if permission granted, -ve if denied.
 113 */
 114int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
 115{
 116        if (!capable(CAP_SYS_TIME))
 117                return -EPERM;
 118        return 0;
 119}
 120
 121/**
 122 * cap_ptrace_access_check - Determine whether the current process may access
 123 *                         another
 124 * @child: The process to be accessed
 125 * @mode: The mode of attachment.
 126 *
 127 * If we are in the same or an ancestor user_ns and have all the target
 128 * task's capabilities, then ptrace access is allowed.
 129 * If we have the ptrace capability to the target user_ns, then ptrace
 130 * access is allowed.
 131 * Else denied.
 132 *
 133 * Determine whether a process may access another, returning 0 if permission
 134 * granted, -ve if denied.
 135 */
 136int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 137{
 138        int ret = 0;
 139        const struct cred *cred, *child_cred;
 140        const kernel_cap_t *caller_caps;
 141
 142        rcu_read_lock();
 143        cred = current_cred();
 144        child_cred = __task_cred(child);
 145        if (mode & PTRACE_MODE_FSCREDS)
 146                caller_caps = &cred->cap_effective;
 147        else
 148                caller_caps = &cred->cap_permitted;
 149        if (cred->user_ns == child_cred->user_ns &&
 150            cap_issubset(child_cred->cap_permitted, *caller_caps))
 151                goto out;
 152        if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
 153                goto out;
 154        ret = -EPERM;
 155out:
 156        rcu_read_unlock();
 157        return ret;
 158}
 159
 160/**
 161 * cap_ptrace_traceme - Determine whether another process may trace the current
 162 * @parent: The task proposed to be the tracer
 163 *
 164 * If parent is in the same or an ancestor user_ns and has all current's
 165 * capabilities, then ptrace access is allowed.
 166 * If parent has the ptrace capability to current's user_ns, then ptrace
 167 * access is allowed.
 168 * Else denied.
 169 *
 170 * Determine whether the nominated task is permitted to trace the current
 171 * process, returning 0 if permission is granted, -ve if denied.
 172 */
 173int cap_ptrace_traceme(struct task_struct *parent)
 174{
 175        int ret = 0;
 176        const struct cred *cred, *child_cred;
 177
 178        rcu_read_lock();
 179        cred = __task_cred(parent);
 180        child_cred = current_cred();
 181        if (cred->user_ns == child_cred->user_ns &&
 182            cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 183                goto out;
 184        if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
 185                goto out;
 186        ret = -EPERM;
 187out:
 188        rcu_read_unlock();
 189        return ret;
 190}
 191
 192/**
 193 * cap_capget - Retrieve a task's capability sets
 194 * @target: The task from which to retrieve the capability sets
 195 * @effective: The place to record the effective set
 196 * @inheritable: The place to record the inheritable set
 197 * @permitted: The place to record the permitted set
 198 *
 199 * This function retrieves the capabilities of the nominated task and returns
 200 * them to the caller.
 201 */
 202int cap_capget(struct task_struct *target, kernel_cap_t *effective,
 203               kernel_cap_t *inheritable, kernel_cap_t *permitted)
 204{
 205        const struct cred *cred;
 206
 207        /* Derived from kernel/capability.c:sys_capget. */
 208        rcu_read_lock();
 209        cred = __task_cred(target);
 210        *effective   = cred->cap_effective;
 211        *inheritable = cred->cap_inheritable;
 212        *permitted   = cred->cap_permitted;
 213        rcu_read_unlock();
 214        return 0;
 215}
 216
 217/*
 218 * Determine whether the inheritable capabilities are limited to the old
 219 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 220 */
 221static inline int cap_inh_is_capped(void)
 222{
 223
 224        /* they are so limited unless the current task has the CAP_SETPCAP
 225         * capability
 226         */
 227        if (cap_capable(current_cred(), current_cred()->user_ns,
 228                        CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
 229                return 0;
 230        return 1;
 231}
 232
 233/**
 234 * cap_capset - Validate and apply proposed changes to current's capabilities
 235 * @new: The proposed new credentials; alterations should be made here
 236 * @old: The current task's current credentials
 237 * @effective: A pointer to the proposed new effective capabilities set
 238 * @inheritable: A pointer to the proposed new inheritable capabilities set
 239 * @permitted: A pointer to the proposed new permitted capabilities set
 240 *
 241 * This function validates and applies a proposed mass change to the current
 242 * process's capability sets.  The changes are made to the proposed new
 243 * credentials, and assuming no error, will be committed by the caller of LSM.
 244 */
 245int cap_capset(struct cred *new,
 246               const struct cred *old,
 247               const kernel_cap_t *effective,
 248               const kernel_cap_t *inheritable,
 249               const kernel_cap_t *permitted)
 250{
 251        if (cap_inh_is_capped() &&
 252            !cap_issubset(*inheritable,
 253                          cap_combine(old->cap_inheritable,
 254                                      old->cap_permitted)))
 255                /* incapable of using this inheritable set */
 256                return -EPERM;
 257
 258        if (!cap_issubset(*inheritable,
 259                          cap_combine(old->cap_inheritable,
 260                                      old->cap_bset)))
 261                /* no new pI capabilities outside bounding set */
 262                return -EPERM;
 263
 264        /* verify restrictions on target's new Permitted set */
 265        if (!cap_issubset(*permitted, old->cap_permitted))
 266                return -EPERM;
 267
 268        /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 269        if (!cap_issubset(*effective, *permitted))
 270                return -EPERM;
 271
 272        new->cap_effective   = *effective;
 273        new->cap_inheritable = *inheritable;
 274        new->cap_permitted   = *permitted;
 275
 276        /*
 277         * Mask off ambient bits that are no longer both permitted and
 278         * inheritable.
 279         */
 280        new->cap_ambient = cap_intersect(new->cap_ambient,
 281                                         cap_intersect(*permitted,
 282                                                       *inheritable));
 283        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 284                return -EINVAL;
 285        return 0;
 286}
 287
 288/*
 289 * Clear proposed capability sets for execve().
 290 */
 291static inline void bprm_clear_caps(struct linux_binprm *bprm)
 292{
 293        cap_clear(bprm->cred->cap_permitted);
 294        bprm->cap_effective = false;
 295}
 296
 297/**
 298 * cap_inode_need_killpriv - Determine if inode change affects privileges
 299 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 300 *
 301 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 302 * affects the security markings on that inode, and if it is, should
 303 * inode_killpriv() be invoked or the change rejected?
 304 *
 305 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
 306 * -ve to deny the change.
 307 */
 308int cap_inode_need_killpriv(struct dentry *dentry)
 309{
 310        struct inode *inode = d_backing_inode(dentry);
 311        int error;
 312
 313        error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
 314        return error > 0;
 315}
 316
 317/**
 318 * cap_inode_killpriv - Erase the security markings on an inode
 319 * @dentry: The inode/dentry to alter
 320 *
 321 * Erase the privilege-enhancing security markings on an inode.
 322 *
 323 * Returns 0 if successful, -ve on error.
 324 */
 325int cap_inode_killpriv(struct dentry *dentry)
 326{
 327        int error;
 328
 329        error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
 330        if (error == -EOPNOTSUPP)
 331                error = 0;
 332        return error;
 333}
 334
 335/*
 336 * Calculate the new process capability sets from the capability sets attached
 337 * to a file.
 338 */
 339static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 340                                          struct linux_binprm *bprm,
 341                                          bool *effective,
 342                                          bool *has_cap)
 343{
 344        struct cred *new = bprm->cred;
 345        unsigned i;
 346        int ret = 0;
 347
 348        if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 349                *effective = true;
 350
 351        if (caps->magic_etc & VFS_CAP_REVISION_MASK)
 352                *has_cap = true;
 353
 354        CAP_FOR_EACH_U32(i) {
 355                __u32 permitted = caps->permitted.cap[i];
 356                __u32 inheritable = caps->inheritable.cap[i];
 357
 358                /*
 359                 * pP' = (X & fP) | (pI & fI)
 360                 * The addition of pA' is handled later.
 361                 */
 362                new->cap_permitted.cap[i] =
 363                        (new->cap_bset.cap[i] & permitted) |
 364                        (new->cap_inheritable.cap[i] & inheritable);
 365
 366                if (permitted & ~new->cap_permitted.cap[i])
 367                        /* insufficient to execute correctly */
 368                        ret = -EPERM;
 369        }
 370
 371        /*
 372         * For legacy apps, with no internal support for recognizing they
 373         * do not have enough capabilities, we return an error if they are
 374         * missing some "forced" (aka file-permitted) capabilities.
 375         */
 376        return *effective ? ret : 0;
 377}
 378
 379/*
 380 * Extract the on-exec-apply capability sets for an executable file.
 381 */
 382int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 383{
 384        struct inode *inode = d_backing_inode(dentry);
 385        __u32 magic_etc;
 386        unsigned tocopy, i;
 387        int size;
 388        struct vfs_cap_data caps;
 389
 390        memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 391
 392        if (!inode)
 393                return -ENODATA;
 394
 395        size = __vfs_getxattr((struct dentry *)dentry, inode,
 396                              XATTR_NAME_CAPS, &caps, XATTR_CAPS_SZ);
 397        if (size == -ENODATA || size == -EOPNOTSUPP)
 398                /* no data, that's ok */
 399                return -ENODATA;
 400        if (size < 0)
 401                return size;
 402
 403        if (size < sizeof(magic_etc))
 404                return -EINVAL;
 405
 406        cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
 407
 408        switch (magic_etc & VFS_CAP_REVISION_MASK) {
 409        case VFS_CAP_REVISION_1:
 410                if (size != XATTR_CAPS_SZ_1)
 411                        return -EINVAL;
 412                tocopy = VFS_CAP_U32_1;
 413                break;
 414        case VFS_CAP_REVISION_2:
 415                if (size != XATTR_CAPS_SZ_2)
 416                        return -EINVAL;
 417                tocopy = VFS_CAP_U32_2;
 418                break;
 419        default:
 420                return -EINVAL;
 421        }
 422
 423        CAP_FOR_EACH_U32(i) {
 424                if (i >= tocopy)
 425                        break;
 426                cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
 427                cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
 428        }
 429
 430        cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 431        cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 432
 433        return 0;
 434}
 435
 436/*
 437 * Attempt to get the on-exec apply capability sets for an executable file from
 438 * its xattrs and, if present, apply them to the proposed credentials being
 439 * constructed by execve().
 440 */
 441static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
 442{
 443        int rc = 0;
 444        struct cpu_vfs_cap_data vcaps;
 445
 446        bprm_clear_caps(bprm);
 447
 448        if (!file_caps_enabled)
 449                return 0;
 450
 451        if (!mnt_may_suid(bprm->file->f_path.mnt))
 452                return 0;
 453
 454        /*
 455         * This check is redundant with mnt_may_suid() but is kept to make
 456         * explicit that capability bits are limited to s_user_ns and its
 457         * descendants.
 458         */
 459        if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
 460                return 0;
 461
 462        rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 463        if (rc < 0) {
 464                if (rc == -EINVAL)
 465                        printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
 466                                __func__, rc, bprm->filename);
 467                else if (rc == -ENODATA)
 468                        rc = 0;
 469                goto out;
 470        }
 471
 472        rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
 473        if (rc == -EINVAL)
 474                printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
 475                       __func__, rc, bprm->filename);
 476
 477out:
 478        if (rc)
 479                bprm_clear_caps(bprm);
 480
 481        return rc;
 482}
 483
 484/**
 485 * cap_bprm_set_creds - Set up the proposed credentials for execve().
 486 * @bprm: The execution parameters, including the proposed creds
 487 *
 488 * Set up the proposed credentials for a new execution context being
 489 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 490 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 491 */
 492int cap_bprm_set_creds(struct linux_binprm *bprm)
 493{
 494        const struct cred *old = current_cred();
 495        struct cred *new = bprm->cred;
 496        bool effective, has_cap = false, is_setid;
 497        int ret;
 498        kuid_t root_uid;
 499
 500        if (WARN_ON(!cap_ambient_invariant_ok(old)))
 501                return -EPERM;
 502
 503        effective = false;
 504        ret = get_file_caps(bprm, &effective, &has_cap);
 505        if (ret < 0)
 506                return ret;
 507
 508        root_uid = make_kuid(new->user_ns, 0);
 509
 510        if (!issecure(SECURE_NOROOT)) {
 511                /*
 512                 * If the legacy file capability is set, then don't set privs
 513                 * for a setuid root binary run by a non-root user.  Do set it
 514                 * for a root user just to cause least surprise to an admin.
 515                 */
 516                if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
 517                        warn_setuid_and_fcaps_mixed(bprm->filename);
 518                        goto skip;
 519                }
 520                /*
 521                 * To support inheritance of root-permissions and suid-root
 522                 * executables under compatibility mode, we override the
 523                 * capability sets for the file.
 524                 *
 525                 * If only the real uid is 0, we do not set the effective bit.
 526                 */
 527                if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
 528                        /* pP' = (cap_bset & ~0) | (pI & ~0) */
 529                        new->cap_permitted = cap_combine(old->cap_bset,
 530                                                         old->cap_inheritable);
 531                }
 532                if (uid_eq(new->euid, root_uid))
 533                        effective = true;
 534        }
 535skip:
 536
 537        /* if we have fs caps, clear dangerous personality flags */
 538        if (!cap_issubset(new->cap_permitted, old->cap_permitted))
 539                bprm->per_clear |= PER_CLEAR_ON_SETID;
 540
 541
 542        /* Don't let someone trace a set[ug]id/setpcap binary with the revised
 543         * credentials unless they have the appropriate permit.
 544         *
 545         * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
 546         */
 547        is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
 548
 549        if ((is_setid ||
 550             !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
 551            bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
 552                /* downgrade; they get no more than they had, and maybe less */
 553                if (!capable(CAP_SETUID) ||
 554                    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
 555                        new->euid = new->uid;
 556                        new->egid = new->gid;
 557                }
 558                new->cap_permitted = cap_intersect(new->cap_permitted,
 559                                                   old->cap_permitted);
 560        }
 561
 562        new->suid = new->fsuid = new->euid;
 563        new->sgid = new->fsgid = new->egid;
 564
 565        /* File caps or setid cancels ambient. */
 566        if (has_cap || is_setid)
 567                cap_clear(new->cap_ambient);
 568
 569        /*
 570         * Now that we've computed pA', update pP' to give:
 571         *   pP' = (X & fP) | (pI & fI) | pA'
 572         */
 573        new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
 574
 575        /*
 576         * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
 577         * this is the same as pE' = (fE ? pP' : 0) | pA'.
 578         */
 579        if (effective)
 580                new->cap_effective = new->cap_permitted;
 581        else
 582                new->cap_effective = new->cap_ambient;
 583
 584        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 585                return -EPERM;
 586
 587        bprm->cap_effective = effective;
 588
 589        /*
 590         * Audit candidate if current->cap_effective is set
 591         *
 592         * We do not bother to audit if 3 things are true:
 593         *   1) cap_effective has all caps
 594         *   2) we are root
 595         *   3) root is supposed to have all caps (SECURE_NOROOT)
 596         * Since this is just a normal root execing a process.
 597         *
 598         * Number 1 above might fail if you don't have a full bset, but I think
 599         * that is interesting information to audit.
 600         */
 601        if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
 602                if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
 603                    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
 604                    issecure(SECURE_NOROOT)) {
 605                        ret = audit_log_bprm_fcaps(bprm, new, old);
 606                        if (ret < 0)
 607                                return ret;
 608                }
 609        }
 610
 611        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 612
 613        if (WARN_ON(!cap_ambient_invariant_ok(new)))
 614                return -EPERM;
 615
 616        return 0;
 617}
 618
 619/**
 620 * cap_bprm_secureexec - Determine whether a secure execution is required
 621 * @bprm: The execution parameters
 622 *
 623 * Determine whether a secure execution is required, return 1 if it is, and 0
 624 * if it is not.
 625 *
 626 * The credentials have been committed by this point, and so are no longer
 627 * available through @bprm->cred.
 628 */
 629int cap_bprm_secureexec(struct linux_binprm *bprm)
 630{
 631        const struct cred *cred = current_cred();
 632        kuid_t root_uid = make_kuid(cred->user_ns, 0);
 633
 634        if (!uid_eq(cred->uid, root_uid)) {
 635                if (bprm->cap_effective)
 636                        return 1;
 637                if (!cap_issubset(cred->cap_permitted, cred->cap_ambient))
 638                        return 1;
 639        }
 640
 641        return (!uid_eq(cred->euid, cred->uid) ||
 642                !gid_eq(cred->egid, cred->gid));
 643}
 644
 645/**
 646 * cap_inode_setxattr - Determine whether an xattr may be altered
 647 * @dentry: The inode/dentry being altered
 648 * @name: The name of the xattr to be changed
 649 * @value: The value that the xattr will be changed to
 650 * @size: The size of value
 651 * @flags: The replacement flag
 652 *
 653 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 654 * permission is granted, -ve if denied.
 655 *
 656 * This is used to make sure security xattrs don't get updated or set by those
 657 * who aren't privileged to do so.
 658 */
 659int cap_inode_setxattr(struct dentry *dentry, const char *name,
 660                       const void *value, size_t size, int flags)
 661{
 662        if (!strcmp(name, XATTR_NAME_CAPS)) {
 663                if (!capable(CAP_SETFCAP))
 664                        return -EPERM;
 665                return 0;
 666        }
 667
 668        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 669                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 670            !capable(CAP_SYS_ADMIN))
 671                return -EPERM;
 672        return 0;
 673}
 674
 675/**
 676 * cap_inode_removexattr - Determine whether an xattr may be removed
 677 * @dentry: The inode/dentry being altered
 678 * @name: The name of the xattr to be changed
 679 *
 680 * Determine whether an xattr may be removed from an inode, returning 0 if
 681 * permission is granted, -ve if denied.
 682 *
 683 * This is used to make sure security xattrs don't get removed by those who
 684 * aren't privileged to remove them.
 685 */
 686int cap_inode_removexattr(struct dentry *dentry, const char *name)
 687{
 688        if (!strcmp(name, XATTR_NAME_CAPS)) {
 689                if (!capable(CAP_SETFCAP))
 690                        return -EPERM;
 691                return 0;
 692        }
 693
 694        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 695                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 696            !capable(CAP_SYS_ADMIN))
 697                return -EPERM;
 698        return 0;
 699}
 700
 701/*
 702 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 703 * a process after a call to setuid, setreuid, or setresuid.
 704 *
 705 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 706 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 707 *  cleared.
 708 *
 709 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 710 *  capabilities of the process are cleared.
 711 *
 712 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 713 *  capabilities are set to the permitted capabilities.
 714 *
 715 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 716 *  never happen.
 717 *
 718 *  -astor
 719 *
 720 * cevans - New behaviour, Oct '99
 721 * A process may, via prctl(), elect to keep its capabilities when it
 722 * calls setuid() and switches away from uid==0. Both permitted and
 723 * effective sets will be retained.
 724 * Without this change, it was impossible for a daemon to drop only some
 725 * of its privilege. The call to setuid(!=0) would drop all privileges!
 726 * Keeping uid 0 is not an option because uid 0 owns too many vital
 727 * files..
 728 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 729 */
 730static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
 731{
 732        kuid_t root_uid = make_kuid(old->user_ns, 0);
 733
 734        if ((uid_eq(old->uid, root_uid) ||
 735             uid_eq(old->euid, root_uid) ||
 736             uid_eq(old->suid, root_uid)) &&
 737            (!uid_eq(new->uid, root_uid) &&
 738             !uid_eq(new->euid, root_uid) &&
 739             !uid_eq(new->suid, root_uid))) {
 740                if (!issecure(SECURE_KEEP_CAPS)) {
 741                        cap_clear(new->cap_permitted);
 742                        cap_clear(new->cap_effective);
 743                }
 744
 745                /*
 746                 * Pre-ambient programs expect setresuid to nonroot followed
 747                 * by exec to drop capabilities.  We should make sure that
 748                 * this remains the case.
 749                 */
 750                cap_clear(new->cap_ambient);
 751        }
 752        if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
 753                cap_clear(new->cap_effective);
 754        if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
 755                new->cap_effective = new->cap_permitted;
 756}
 757
 758/**
 759 * cap_task_fix_setuid - Fix up the results of setuid() call
 760 * @new: The proposed credentials
 761 * @old: The current task's current credentials
 762 * @flags: Indications of what has changed
 763 *
 764 * Fix up the results of setuid() call before the credential changes are
 765 * actually applied, returning 0 to grant the changes, -ve to deny them.
 766 */
 767int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
 768{
 769        switch (flags) {
 770        case LSM_SETID_RE:
 771        case LSM_SETID_ID:
 772        case LSM_SETID_RES:
 773                /* juggle the capabilities to follow [RES]UID changes unless
 774                 * otherwise suppressed */
 775                if (!issecure(SECURE_NO_SETUID_FIXUP))
 776                        cap_emulate_setxuid(new, old);
 777                break;
 778
 779        case LSM_SETID_FS:
 780                /* juggle the capabilties to follow FSUID changes, unless
 781                 * otherwise suppressed
 782                 *
 783                 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 784                 *          if not, we might be a bit too harsh here.
 785                 */
 786                if (!issecure(SECURE_NO_SETUID_FIXUP)) {
 787                        kuid_t root_uid = make_kuid(old->user_ns, 0);
 788                        if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
 789                                new->cap_effective =
 790                                        cap_drop_fs_set(new->cap_effective);
 791
 792                        if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
 793                                new->cap_effective =
 794                                        cap_raise_fs_set(new->cap_effective,
 795                                                         new->cap_permitted);
 796                }
 797                break;
 798
 799        default:
 800                return -EINVAL;
 801        }
 802
 803        return 0;
 804}
 805
 806/*
 807 * Rationale: code calling task_setscheduler, task_setioprio, and
 808 * task_setnice, assumes that
 809 *   . if capable(cap_sys_nice), then those actions should be allowed
 810 *   . if not capable(cap_sys_nice), but acting on your own processes,
 811 *      then those actions should be allowed
 812 * This is insufficient now since you can call code without suid, but
 813 * yet with increased caps.
 814 * So we check for increased caps on the target process.
 815 */
 816static int cap_safe_nice(struct task_struct *p)
 817{
 818        int is_subset, ret = 0;
 819
 820        rcu_read_lock();
 821        is_subset = cap_issubset(__task_cred(p)->cap_permitted,
 822                                 current_cred()->cap_permitted);
 823        if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
 824                ret = -EPERM;
 825        rcu_read_unlock();
 826
 827        return ret;
 828}
 829
 830/**
 831 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
 832 * @p: The task to affect
 833 *
 834 * Detemine if the requested scheduler policy change is permitted for the
 835 * specified task, returning 0 if permission is granted, -ve if denied.
 836 */
 837int cap_task_setscheduler(struct task_struct *p)
 838{
 839        return cap_safe_nice(p);
 840}
 841
 842/**
 843 * cap_task_ioprio - Detemine if I/O priority change is permitted
 844 * @p: The task to affect
 845 * @ioprio: The I/O priority to set
 846 *
 847 * Detemine if the requested I/O priority change is permitted for the specified
 848 * task, returning 0 if permission is granted, -ve if denied.
 849 */
 850int cap_task_setioprio(struct task_struct *p, int ioprio)
 851{
 852        return cap_safe_nice(p);
 853}
 854
 855/**
 856 * cap_task_ioprio - Detemine if task priority change is permitted
 857 * @p: The task to affect
 858 * @nice: The nice value to set
 859 *
 860 * Detemine if the requested task priority change is permitted for the
 861 * specified task, returning 0 if permission is granted, -ve if denied.
 862 */
 863int cap_task_setnice(struct task_struct *p, int nice)
 864{
 865        return cap_safe_nice(p);
 866}
 867
 868/*
 869 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
 870 * the current task's bounding set.  Returns 0 on success, -ve on error.
 871 */
 872static int cap_prctl_drop(unsigned long cap)
 873{
 874        struct cred *new;
 875
 876        if (!ns_capable(current_user_ns(), CAP_SETPCAP))
 877                return -EPERM;
 878        if (!cap_valid(cap))
 879                return -EINVAL;
 880
 881        new = prepare_creds();
 882        if (!new)
 883                return -ENOMEM;
 884        cap_lower(new->cap_bset, cap);
 885        return commit_creds(new);
 886}
 887
 888/**
 889 * cap_task_prctl - Implement process control functions for this security module
 890 * @option: The process control function requested
 891 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 892 *
 893 * Allow process control functions (sys_prctl()) to alter capabilities; may
 894 * also deny access to other functions not otherwise implemented here.
 895 *
 896 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
 897 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
 898 * modules will consider performing the function.
 899 */
 900int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 901                   unsigned long arg4, unsigned long arg5)
 902{
 903        const struct cred *old = current_cred();
 904        struct cred *new;
 905
 906        switch (option) {
 907        case PR_CAPBSET_READ:
 908                if (!cap_valid(arg2))
 909                        return -EINVAL;
 910                return !!cap_raised(old->cap_bset, arg2);
 911
 912        case PR_CAPBSET_DROP:
 913                return cap_prctl_drop(arg2);
 914
 915        /*
 916         * The next four prctl's remain to assist with transitioning a
 917         * system from legacy UID=0 based privilege (when filesystem
 918         * capabilities are not in use) to a system using filesystem
 919         * capabilities only - as the POSIX.1e draft intended.
 920         *
 921         * Note:
 922         *
 923         *  PR_SET_SECUREBITS =
 924         *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
 925         *    | issecure_mask(SECURE_NOROOT)
 926         *    | issecure_mask(SECURE_NOROOT_LOCKED)
 927         *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
 928         *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
 929         *
 930         * will ensure that the current process and all of its
 931         * children will be locked into a pure
 932         * capability-based-privilege environment.
 933         */
 934        case PR_SET_SECUREBITS:
 935                if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
 936                     & (old->securebits ^ arg2))                        /*[1]*/
 937                    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))   /*[2]*/
 938                    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))   /*[3]*/
 939                    || (cap_capable(current_cred(),
 940                                    current_cred()->user_ns, CAP_SETPCAP,
 941                                    SECURITY_CAP_AUDIT) != 0)           /*[4]*/
 942                        /*
 943                         * [1] no changing of bits that are locked
 944                         * [2] no unlocking of locks
 945                         * [3] no setting of unsupported bits
 946                         * [4] doing anything requires privilege (go read about
 947                         *     the "sendmail capabilities bug")
 948                         */
 949                    )
 950                        /* cannot change a locked bit */
 951                        return -EPERM;
 952
 953                new = prepare_creds();
 954                if (!new)
 955                        return -ENOMEM;
 956                new->securebits = arg2;
 957                return commit_creds(new);
 958
 959        case PR_GET_SECUREBITS:
 960                return old->securebits;
 961
 962        case PR_GET_KEEPCAPS:
 963                return !!issecure(SECURE_KEEP_CAPS);
 964
 965        case PR_SET_KEEPCAPS:
 966                if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
 967                        return -EINVAL;
 968                if (issecure(SECURE_KEEP_CAPS_LOCKED))
 969                        return -EPERM;
 970
 971                new = prepare_creds();
 972                if (!new)
 973                        return -ENOMEM;
 974                if (arg2)
 975                        new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
 976                else
 977                        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 978                return commit_creds(new);
 979
 980        case PR_CAP_AMBIENT:
 981                if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
 982                        if (arg3 | arg4 | arg5)
 983                                return -EINVAL;
 984
 985                        new = prepare_creds();
 986                        if (!new)
 987                                return -ENOMEM;
 988                        cap_clear(new->cap_ambient);
 989                        return commit_creds(new);
 990                }
 991
 992                if (((!cap_valid(arg3)) | arg4 | arg5))
 993                        return -EINVAL;
 994
 995                if (arg2 == PR_CAP_AMBIENT_IS_SET) {
 996                        return !!cap_raised(current_cred()->cap_ambient, arg3);
 997                } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
 998                           arg2 != PR_CAP_AMBIENT_LOWER) {
 999                        return -EINVAL;
1000                } else {
1001                        if (arg2 == PR_CAP_AMBIENT_RAISE &&
1002                            (!cap_raised(current_cred()->cap_permitted, arg3) ||
1003                             !cap_raised(current_cred()->cap_inheritable,
1004                                         arg3) ||
1005                             issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1006                                return -EPERM;
1007
1008                        new = prepare_creds();
1009                        if (!new)
1010                                return -ENOMEM;
1011                        if (arg2 == PR_CAP_AMBIENT_RAISE)
1012                                cap_raise(new->cap_ambient, arg3);
1013                        else
1014                                cap_lower(new->cap_ambient, arg3);
1015                        return commit_creds(new);
1016                }
1017
1018        default:
1019                /* No functionality available - continue with default */
1020                return -ENOSYS;
1021        }
1022}
1023
1024/**
1025 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1026 * @mm: The VM space in which the new mapping is to be made
1027 * @pages: The size of the mapping
1028 *
1029 * Determine whether the allocation of a new virtual mapping by the current
1030 * task is permitted, returning 1 if permission is granted, 0 if not.
1031 */
1032int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1033{
1034        int cap_sys_admin = 0;
1035
1036        if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1037                        SECURITY_CAP_NOAUDIT) == 0)
1038                cap_sys_admin = 1;
1039        return cap_sys_admin;
1040}
1041
1042/*
1043 * cap_mmap_addr - check if able to map given addr
1044 * @addr: address attempting to be mapped
1045 *
1046 * If the process is attempting to map memory below dac_mmap_min_addr they need
1047 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1048 * capability security module.  Returns 0 if this mapping should be allowed
1049 * -EPERM if not.
1050 */
1051int cap_mmap_addr(unsigned long addr)
1052{
1053        int ret = 0;
1054
1055        if (addr < dac_mmap_min_addr) {
1056                ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1057                                  SECURITY_CAP_AUDIT);
1058                /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1059                if (ret == 0)
1060                        current->flags |= PF_SUPERPRIV;
1061        }
1062        return ret;
1063}
1064
1065int cap_mmap_file(struct file *file, unsigned long reqprot,
1066                  unsigned long prot, unsigned long flags)
1067{
1068        return 0;
1069}
1070
1071#ifdef CONFIG_SECURITY
1072
1073struct security_hook_list capability_hooks[] = {
1074        LSM_HOOK_INIT(capable, cap_capable),
1075        LSM_HOOK_INIT(settime, cap_settime),
1076        LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1077        LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1078        LSM_HOOK_INIT(capget, cap_capget),
1079        LSM_HOOK_INIT(capset, cap_capset),
1080        LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1081        LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec),
1082        LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1083        LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1084        LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1085        LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1086        LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1087        LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1088        LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1089        LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1090        LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1091        LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1092};
1093
1094void __init capability_add_hooks(void)
1095{
1096        security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks));
1097}
1098
1099#endif /* CONFIG_SECURITY */
1100