linux/sound/pci/cmipci.c
<<
>>
Prefs
   1/*
   2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   4 *
   5 *   This program is free software; you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *   GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program; if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19 
  20/* Does not work. Warning may block system in capture mode */
  21/* #define USE_VAR48KRATE */
  22
  23#include <linux/io.h>
  24#include <linux/delay.h>
  25#include <linux/interrupt.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/gameport.h>
  30#include <linux/module.h>
  31#include <linux/mutex.h>
  32#include <sound/core.h>
  33#include <sound/info.h>
  34#include <sound/control.h>
  35#include <sound/pcm.h>
  36#include <sound/rawmidi.h>
  37#include <sound/mpu401.h>
  38#include <sound/opl3.h>
  39#include <sound/sb.h>
  40#include <sound/asoundef.h>
  41#include <sound/initval.h>
  42
  43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  45MODULE_LICENSE("GPL");
  46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  47                "{C-Media,CMI8738B},"
  48                "{C-Media,CMI8338A},"
  49                "{C-Media,CMI8338B}}");
  50
  51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
  52#define SUPPORT_JOYSTICK 1
  53#endif
  54
  55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  57static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
  58static long mpu_port[SNDRV_CARDS];
  59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  60static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  61#ifdef SUPPORT_JOYSTICK
  62static int joystick_port[SNDRV_CARDS];
  63#endif
  64
  65module_param_array(index, int, NULL, 0444);
  66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  67module_param_array(id, charp, NULL, 0444);
  68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  69module_param_array(enable, bool, NULL, 0444);
  70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  71module_param_array(mpu_port, long, NULL, 0444);
  72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  73module_param_array(fm_port, long, NULL, 0444);
  74MODULE_PARM_DESC(fm_port, "FM port.");
  75module_param_array(soft_ac3, bool, NULL, 0444);
  76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  77#ifdef SUPPORT_JOYSTICK
  78module_param_array(joystick_port, int, NULL, 0444);
  79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  80#endif
  81
  82/*
  83 * CM8x38 registers definition
  84 */
  85
  86#define CM_REG_FUNCTRL0         0x00
  87#define CM_RST_CH1              0x00080000
  88#define CM_RST_CH0              0x00040000
  89#define CM_CHEN1                0x00020000      /* ch1: enable */
  90#define CM_CHEN0                0x00010000      /* ch0: enable */
  91#define CM_PAUSE1               0x00000008      /* ch1: pause */
  92#define CM_PAUSE0               0x00000004      /* ch0: pause */
  93#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
  94#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
  95
  96#define CM_REG_FUNCTRL1         0x04
  97#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
  98#define CM_DSFC_SHIFT           13
  99#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
 100#define CM_ASFC_SHIFT           10
 101#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
 102#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
 103#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
 104#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
 105#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
 106#define CM_BREQ                 0x00000010      /* bus master enabled */
 107#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
 108#define CM_UART_EN              0x00000004      /* legacy UART */
 109#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
 110#define CM_ZVPORT               0x00000001      /* ZVPORT */
 111
 112#define CM_REG_CHFORMAT         0x08
 113
 114#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
 115#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
 116#define CM_CHB3D                0x20000000      /* 4 channels */
 117
 118#define CM_CHIP_MASK1           0x1f000000
 119#define CM_CHIP_037             0x01000000
 120#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
 121#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
 122#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
 123#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
 124#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
 125#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
 126/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
 127
 128#define CM_ADCBITLEN_MASK       0x0000C000      
 129#define CM_ADCBITLEN_16         0x00000000
 130#define CM_ADCBITLEN_15         0x00004000
 131#define CM_ADCBITLEN_14         0x00008000
 132#define CM_ADCBITLEN_13         0x0000C000
 133
 134#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
 135#define CM_ADCDACLEN_060        0x00000000
 136#define CM_ADCDACLEN_066        0x00001000
 137#define CM_ADCDACLEN_130        0x00002000
 138#define CM_ADCDACLEN_280        0x00003000
 139
 140#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
 141#define CM_ADCDLEN_ORIGINAL     0x00000000
 142#define CM_ADCDLEN_EXTRA        0x00001000
 143#define CM_ADCDLEN_24K          0x00002000
 144#define CM_ADCDLEN_WEIGHT       0x00003000
 145
 146#define CM_CH1_SRATE_176K       0x00000800
 147#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
 148#define CM_CH1_SRATE_88K        0x00000400
 149#define CM_CH0_SRATE_176K       0x00000200
 150#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
 151#define CM_CH0_SRATE_88K        0x00000100
 152#define CM_CH0_SRATE_128K       0x00000300
 153#define CM_CH0_SRATE_MASK       0x00000300
 154
 155#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
 156#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
 157#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
 158#define CM_SPDLOCKED            0x00000010
 159
 160#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
 161#define CM_CH1FMT_SHIFT         2
 162#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
 163#define CM_CH0FMT_SHIFT         0
 164
 165#define CM_REG_INT_HLDCLR       0x0C
 166#define CM_CHIP_MASK2           0xff000000
 167#define CM_CHIP_8768            0x20000000
 168#define CM_CHIP_055             0x08000000
 169#define CM_CHIP_039             0x04000000
 170#define CM_CHIP_039_6CH         0x01000000
 171#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
 172#define CM_TDMA_INT_EN          0x00040000
 173#define CM_CH1_INT_EN           0x00020000
 174#define CM_CH0_INT_EN           0x00010000
 175
 176#define CM_REG_INT_STATUS       0x10
 177#define CM_INTR                 0x80000000
 178#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
 179#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
 180#define CM_UARTINT              0x00010000
 181#define CM_LTDMAINT             0x00008000
 182#define CM_HTDMAINT             0x00004000
 183#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
 184#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
 185#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
 186#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
 187#define CM_CH1BUSY              0x00000008
 188#define CM_CH0BUSY              0x00000004
 189#define CM_CHINT1               0x00000002
 190#define CM_CHINT0               0x00000001
 191
 192#define CM_REG_LEGACY_CTRL      0x14
 193#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
 194#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
 195#define CM_VMPU_330             0x00000000
 196#define CM_VMPU_320             0x20000000
 197#define CM_VMPU_310             0x40000000
 198#define CM_VMPU_300             0x60000000
 199#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
 200#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
 201#define CM_VSBSEL_220           0x00000000
 202#define CM_VSBSEL_240           0x04000000
 203#define CM_VSBSEL_260           0x08000000
 204#define CM_VSBSEL_280           0x0C000000
 205#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
 206#define CM_FMSEL_388            0x00000000
 207#define CM_FMSEL_3C8            0x01000000
 208#define CM_FMSEL_3E0            0x02000000
 209#define CM_FMSEL_3E8            0x03000000
 210#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
 211#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
 212#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
 213#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
 214#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 215#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
 216#define CM_C_EECS               0x00040000
 217#define CM_C_EEDI46             0x00020000
 218#define CM_C_EECK46             0x00010000
 219#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
 220#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
 221#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
 222#define CM_EXBASEN              0x00001000      /* external bass input enable */
 223
 224#define CM_REG_MISC_CTRL        0x18
 225#define CM_PWD                  0x80000000      /* power down */
 226#define CM_RESET                0x40000000
 227#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
 228#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
 229#define CM_TXVX                 0x08000000      /* model 037? */
 230#define CM_N4SPK3D              0x04000000      /* copy front to rear */
 231#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
 232#define CM_SPDIF48K             0x01000000      /* write */
 233#define CM_SPATUS48K            0x01000000      /* read */
 234#define CM_ENDBDAC              0x00800000      /* enable double dac */
 235#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
 236#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
 237#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
 238#define CM_FM_EN                0x00080000      /* enable legacy FM */
 239#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
 240#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
 241#define CM_VIDWPDSB             0x00010000      /* model 037? */
 242#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
 243#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
 244#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
 245#define CM_VIDWPPRT             0x00002000      /* model 037? */
 246#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
 247#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
 248#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
 249#define CM_ENCENTER             0x00000080
 250#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
 251#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
 252#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
 253#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
 254#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
 255#define CM_UPDDMA_2048          0x00000000
 256#define CM_UPDDMA_1024          0x00000004
 257#define CM_UPDDMA_512           0x00000008
 258#define CM_UPDDMA_256           0x0000000C              
 259#define CM_TWAIT_MASK           0x00000003      /* model 037 */
 260#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 261#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
 262
 263#define CM_REG_TDMA_POSITION    0x1C
 264#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
 265#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
 266
 267        /* byte */
 268#define CM_REG_MIXER0           0x20
 269#define CM_REG_SBVR             0x20            /* write: sb16 version */
 270#define CM_REG_DEV              0x20            /* read: hardware device version */
 271
 272#define CM_REG_MIXER21          0x21
 273#define CM_UNKNOWN_21_MASK      0x78            /* ? */
 274#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
 275#define CM_PROINV               0x02            /* SBPro left/right channel switching */
 276#define CM_X_SB16               0x01            /* SB16 compatible */
 277
 278#define CM_REG_SB16_DATA        0x22
 279#define CM_REG_SB16_ADDR        0x23
 280
 281#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
 282#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 283#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
 284#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
 285
 286#define CM_REG_MIXER1           0x24
 287#define CM_FMMUTE               0x80    /* mute FM */
 288#define CM_FMMUTE_SHIFT         7
 289#define CM_WSMUTE               0x40    /* mute PCM */
 290#define CM_WSMUTE_SHIFT         6
 291#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
 292#define CM_REAR2LIN_SHIFT       5
 293#define CM_REAR2FRONT           0x10    /* exchange rear/front */
 294#define CM_REAR2FRONT_SHIFT     4
 295#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
 296#define CM_WAVEINL_SHIFT        3
 297#define CM_WAVEINR              0x04    /* digical wave rec. right */
 298#define CM_WAVEINR_SHIFT        2
 299#define CM_X3DEN                0x02    /* 3D surround enable */
 300#define CM_X3DEN_SHIFT          1
 301#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
 302#define CM_CDPLAY_SHIFT         0
 303
 304#define CM_REG_MIXER2           0x25
 305#define CM_RAUXREN              0x80    /* AUX right capture */
 306#define CM_RAUXREN_SHIFT        7
 307#define CM_RAUXLEN              0x40    /* AUX left capture */
 308#define CM_RAUXLEN_SHIFT        6
 309#define CM_VAUXRM               0x20    /* AUX right mute */
 310#define CM_VAUXRM_SHIFT         5
 311#define CM_VAUXLM               0x10    /* AUX left mute */
 312#define CM_VAUXLM_SHIFT         4
 313#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
 314#define CM_VADMIC_SHIFT         1
 315#define CM_MICGAINZ             0x01    /* mic boost */
 316#define CM_MICGAINZ_SHIFT       0
 317
 318#define CM_REG_MIXER3           0x24
 319#define CM_REG_AUX_VOL          0x26
 320#define CM_VAUXL_MASK           0xf0
 321#define CM_VAUXR_MASK           0x0f
 322
 323#define CM_REG_MISC             0x27
 324#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
 325#define CM_XGPO1                0x20
 326// #define CM_XGPBIO            0x04
 327#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
 328#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
 329#define CM_SPDVALID             0x02    /* spdif input valid check */
 330#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
 331
 332#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
 333/*
 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 335 * or identical with AC97 codec?
 336 */
 337#define CM_REG_EXTERN_CODEC     CM_REG_AC97
 338
 339/*
 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 341 */
 342#define CM_REG_MPU_PCI          0x40
 343
 344/*
 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 346 */
 347#define CM_REG_FM_PCI           0x50
 348
 349/*
 350 * access from SB-mixer port
 351 */
 352#define CM_REG_EXTENT_IND       0xf0
 353#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
 354#define CM_VPHONE_SHIFT         5
 355#define CM_VPHOM                0x10    /* Phone mute control */
 356#define CM_VSPKM                0x08    /* Speaker mute control, default high */
 357#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
 358#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
 359#define CM_VADMIC3              0x01    /* Mic record boost */
 360
 361/*
 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 364 * unit (readonly?).
 365 */
 366#define CM_REG_PLL              0xf8
 367
 368/*
 369 * extended registers
 370 */
 371#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
 372#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
 373#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
 374#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
 375
 376#define CM_REG_EXT_MISC         0x90
 377#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
 378#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
 379#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
 380#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
 381#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
 382#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
 383#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
 384#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
 385
 386/*
 387 * size of i/o region
 388 */
 389#define CM_EXTENT_CODEC   0x100
 390#define CM_EXTENT_MIDI    0x2
 391#define CM_EXTENT_SYNTH   0x4
 392
 393
 394/*
 395 * channels for playback / capture
 396 */
 397#define CM_CH_PLAY      0
 398#define CM_CH_CAPT      1
 399
 400/*
 401 * flags to check device open/close
 402 */
 403#define CM_OPEN_NONE    0
 404#define CM_OPEN_CH_MASK 0x01
 405#define CM_OPEN_DAC     0x10
 406#define CM_OPEN_ADC     0x20
 407#define CM_OPEN_SPDIF   0x40
 408#define CM_OPEN_MCHAN   0x80
 409#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
 410#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
 411#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 412#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
 413#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 414#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 415
 416
 417#if CM_CH_PLAY == 1
 418#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
 419#define CM_PLAYBACK_SPDF        CM_SPDF_1
 420#define CM_CAPTURE_SPDF         CM_SPDF_0
 421#else
 422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 423#define CM_PLAYBACK_SPDF        CM_SPDF_0
 424#define CM_CAPTURE_SPDF         CM_SPDF_1
 425#endif
 426
 427
 428/*
 429 * driver data
 430 */
 431
 432struct cmipci_pcm {
 433        struct snd_pcm_substream *substream;
 434        u8 running;             /* dac/adc running? */
 435        u8 fmt;                 /* format bits */
 436        u8 is_dac;
 437        u8 needs_silencing;
 438        unsigned int dma_size;  /* in frames */
 439        unsigned int shift;
 440        unsigned int ch;        /* channel (0/1) */
 441        unsigned int offset;    /* physical address of the buffer */
 442};
 443
 444/* mixer elements toggled/resumed during ac3 playback */
 445struct cmipci_mixer_auto_switches {
 446        const char *name;       /* switch to toggle */
 447        int toggle_on;          /* value to change when ac3 mode */
 448};
 449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 450        {"PCM Playback Switch", 0},
 451        {"IEC958 Output Switch", 1},
 452        {"IEC958 Mix Analog", 0},
 453        // {"IEC958 Out To DAC", 1}, // no longer used
 454        {"IEC958 Loop", 0},
 455};
 456#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
 457
 458struct cmipci {
 459        struct snd_card *card;
 460
 461        struct pci_dev *pci;
 462        unsigned int device;    /* device ID */
 463        int irq;
 464
 465        unsigned long iobase;
 466        unsigned int ctrl;      /* FUNCTRL0 current value */
 467
 468        struct snd_pcm *pcm;            /* DAC/ADC PCM */
 469        struct snd_pcm *pcm2;   /* 2nd DAC */
 470        struct snd_pcm *pcm_spdif;      /* SPDIF */
 471
 472        int chip_version;
 473        int max_channels;
 474        unsigned int can_ac3_sw: 1;
 475        unsigned int can_ac3_hw: 1;
 476        unsigned int can_multi_ch: 1;
 477        unsigned int can_96k: 1;        /* samplerate above 48k */
 478        unsigned int do_soft_ac3: 1;
 479
 480        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
 481        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
 482        int spdif_counter;      /* for software AC3 */
 483
 484        unsigned int dig_status;
 485        unsigned int dig_pcm_status;
 486
 487        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 488
 489        int opened[2];  /* open mode */
 490        struct mutex open_mutex;
 491
 492        unsigned int mixer_insensitive: 1;
 493        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 494        int mixer_res_status[CM_SAVED_MIXERS];
 495
 496        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
 497
 498        /* external MIDI */
 499        struct snd_rawmidi *rmidi;
 500
 501#ifdef SUPPORT_JOYSTICK
 502        struct gameport *gameport;
 503#endif
 504
 505        spinlock_t reg_lock;
 506
 507#ifdef CONFIG_PM_SLEEP
 508        unsigned int saved_regs[0x20];
 509        unsigned char saved_mixers[0x20];
 510#endif
 511};
 512
 513
 514/* read/write operations for dword register */
 515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 516{
 517        outl(data, cm->iobase + cmd);
 518}
 519
 520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 521{
 522        return inl(cm->iobase + cmd);
 523}
 524
 525/* read/write operations for word register */
 526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 527{
 528        outw(data, cm->iobase + cmd);
 529}
 530
 531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 532{
 533        return inw(cm->iobase + cmd);
 534}
 535
 536/* read/write operations for byte register */
 537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 538{
 539        outb(data, cm->iobase + cmd);
 540}
 541
 542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 543{
 544        return inb(cm->iobase + cmd);
 545}
 546
 547/* bit operations for dword register */
 548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 549{
 550        unsigned int val, oval;
 551        val = oval = inl(cm->iobase + cmd);
 552        val |= flag;
 553        if (val == oval)
 554                return 0;
 555        outl(val, cm->iobase + cmd);
 556        return 1;
 557}
 558
 559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 560{
 561        unsigned int val, oval;
 562        val = oval = inl(cm->iobase + cmd);
 563        val &= ~flag;
 564        if (val == oval)
 565                return 0;
 566        outl(val, cm->iobase + cmd);
 567        return 1;
 568}
 569
 570/* bit operations for byte register */
 571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 572{
 573        unsigned char val, oval;
 574        val = oval = inb(cm->iobase + cmd);
 575        val |= flag;
 576        if (val == oval)
 577                return 0;
 578        outb(val, cm->iobase + cmd);
 579        return 1;
 580}
 581
 582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 583{
 584        unsigned char val, oval;
 585        val = oval = inb(cm->iobase + cmd);
 586        val &= ~flag;
 587        if (val == oval)
 588                return 0;
 589        outb(val, cm->iobase + cmd);
 590        return 1;
 591}
 592
 593
 594/*
 595 * PCM interface
 596 */
 597
 598/*
 599 * calculate frequency
 600 */
 601
 602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 603
 604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 605{
 606        unsigned int i;
 607
 608        for (i = 0; i < ARRAY_SIZE(rates); i++) {
 609                if (rates[i] == rate)
 610                        return i;
 611        }
 612        snd_BUG();
 613        return 0;
 614}
 615
 616#ifdef USE_VAR48KRATE
 617/*
 618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 619 * does it this way .. maybe not.  Never get any information from C-Media about
 620 * that <werner@suse.de>.
 621 */
 622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 623{
 624        unsigned int delta, tolerance;
 625        int xm, xn, xr;
 626
 627        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 628                rate <<= 1;
 629        *n = -1;
 630        if (*r > 0xff)
 631                goto out;
 632        tolerance = rate*CM_TOLERANCE_RATE;
 633
 634        for (xn = (1+2); xn < (0x1f+2); xn++) {
 635                for (xm = (1+2); xm < (0xff+2); xm++) {
 636                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 637
 638                        if (xr < rate)
 639                                delta = rate - xr;
 640                        else
 641                                delta = xr - rate;
 642
 643                        /*
 644                         * If we found one, remember this,
 645                         * and try to find a closer one
 646                         */
 647                        if (delta < tolerance) {
 648                                tolerance = delta;
 649                                *m = xm - 2;
 650                                *n = xn - 2;
 651                        }
 652                }
 653        }
 654out:
 655        return (*n > -1);
 656}
 657
 658/*
 659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 661 * at the register CM_REG_FUNCTRL1 (0x04).
 662 * Problem: other ways are also possible (any information about that?)
 663 */
 664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 665{
 666        unsigned int reg = CM_REG_PLL + slot;
 667        /*
 668         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 669         * for DSFC/ASFC (000 up to 111).
 670         */
 671
 672        /* FIXME: Init (Do we've to set an other register first before programming?) */
 673
 674        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 675        snd_cmipci_write_b(cm, reg, rate>>8);
 676        snd_cmipci_write_b(cm, reg, rate&0xff);
 677
 678        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
 679}
 680#endif /* USE_VAR48KRATE */
 681
 682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
 683                                struct snd_pcm_hw_params *hw_params)
 684{
 685        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 686}
 687
 688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 689                                          struct snd_pcm_hw_params *hw_params)
 690{
 691        struct cmipci *cm = snd_pcm_substream_chip(substream);
 692        if (params_channels(hw_params) > 2) {
 693                mutex_lock(&cm->open_mutex);
 694                if (cm->opened[CM_CH_PLAY]) {
 695                        mutex_unlock(&cm->open_mutex);
 696                        return -EBUSY;
 697                }
 698                /* reserve the channel A */
 699                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 700                mutex_unlock(&cm->open_mutex);
 701        }
 702        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 703}
 704
 705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 706{
 707        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 708        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 709        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 710        udelay(10);
 711}
 712
 713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
 714{
 715        return snd_pcm_lib_free_pages(substream);
 716}
 717
 718
 719/*
 720 */
 721
 722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 724        .count = 3,
 725        .list = hw_channels,
 726        .mask = 0,
 727};
 728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 729        .count = 4,
 730        .list = hw_channels,
 731        .mask = 0,
 732};
 733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 734        .count = 5,
 735        .list = hw_channels,
 736        .mask = 0,
 737};
 738
 739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 740{
 741        if (channels > 2) {
 742                if (!cm->can_multi_ch || !rec->ch)
 743                        return -EINVAL;
 744                if (rec->fmt != 0x03) /* stereo 16bit only */
 745                        return -EINVAL;
 746        }
 747
 748        if (cm->can_multi_ch) {
 749                spin_lock_irq(&cm->reg_lock);
 750                if (channels > 2) {
 751                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 752                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 753                } else {
 754                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 755                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 756                }
 757                if (channels == 8)
 758                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 759                else
 760                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 761                if (channels == 6) {
 762                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 763                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 764                } else {
 765                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 766                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 767                }
 768                if (channels == 4)
 769                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 770                else
 771                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 772                spin_unlock_irq(&cm->reg_lock);
 773        }
 774        return 0;
 775}
 776
 777
 778/*
 779 * prepare playback/capture channel
 780 * channel to be used must have been set in rec->ch.
 781 */
 782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 783                                 struct snd_pcm_substream *substream)
 784{
 785        unsigned int reg, freq, freq_ext, val;
 786        unsigned int period_size;
 787        struct snd_pcm_runtime *runtime = substream->runtime;
 788
 789        rec->fmt = 0;
 790        rec->shift = 0;
 791        if (snd_pcm_format_width(runtime->format) >= 16) {
 792                rec->fmt |= 0x02;
 793                if (snd_pcm_format_width(runtime->format) > 16)
 794                        rec->shift++; /* 24/32bit */
 795        }
 796        if (runtime->channels > 1)
 797                rec->fmt |= 0x01;
 798        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 799                dev_dbg(cm->card->dev, "cannot set dac channels\n");
 800                return -EINVAL;
 801        }
 802
 803        rec->offset = runtime->dma_addr;
 804        /* buffer and period sizes in frame */
 805        rec->dma_size = runtime->buffer_size << rec->shift;
 806        period_size = runtime->period_size << rec->shift;
 807        if (runtime->channels > 2) {
 808                /* multi-channels */
 809                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 810                period_size = (period_size * runtime->channels) / 2;
 811        }
 812
 813        spin_lock_irq(&cm->reg_lock);
 814
 815        /* set buffer address */
 816        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 817        snd_cmipci_write(cm, reg, rec->offset);
 818        /* program sample counts */
 819        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 820        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 821        snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 822
 823        /* set adc/dac flag */
 824        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 825        if (rec->is_dac)
 826                cm->ctrl &= ~val;
 827        else
 828                cm->ctrl |= val;
 829        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 830        /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 831
 832        /* set sample rate */
 833        freq = 0;
 834        freq_ext = 0;
 835        if (runtime->rate > 48000)
 836                switch (runtime->rate) {
 837                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 838                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 839                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 840                default:     snd_BUG(); break;
 841                }
 842        else
 843                freq = snd_cmipci_rate_freq(runtime->rate);
 844        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 845        if (rec->ch) {
 846                val &= ~CM_DSFC_MASK;
 847                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 848        } else {
 849                val &= ~CM_ASFC_MASK;
 850                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 851        }
 852        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 853        dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 854
 855        /* set format */
 856        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 857        if (rec->ch) {
 858                val &= ~CM_CH1FMT_MASK;
 859                val |= rec->fmt << CM_CH1FMT_SHIFT;
 860        } else {
 861                val &= ~CM_CH0FMT_MASK;
 862                val |= rec->fmt << CM_CH0FMT_SHIFT;
 863        }
 864        if (cm->can_96k) {
 865                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 866                val |= freq_ext << (rec->ch * 2);
 867        }
 868        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 869        dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 870
 871        if (!rec->is_dac && cm->chip_version) {
 872                if (runtime->rate > 44100)
 873                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 874                else
 875                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 876        }
 877
 878        rec->running = 0;
 879        spin_unlock_irq(&cm->reg_lock);
 880
 881        return 0;
 882}
 883
 884/*
 885 * PCM trigger/stop
 886 */
 887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 888                                  int cmd)
 889{
 890        unsigned int inthld, chen, reset, pause;
 891        int result = 0;
 892
 893        inthld = CM_CH0_INT_EN << rec->ch;
 894        chen = CM_CHEN0 << rec->ch;
 895        reset = CM_RST_CH0 << rec->ch;
 896        pause = CM_PAUSE0 << rec->ch;
 897
 898        spin_lock(&cm->reg_lock);
 899        switch (cmd) {
 900        case SNDRV_PCM_TRIGGER_START:
 901                rec->running = 1;
 902                /* set interrupt */
 903                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 904                cm->ctrl |= chen;
 905                /* enable channel */
 906                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 907                dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 908                break;
 909        case SNDRV_PCM_TRIGGER_STOP:
 910                rec->running = 0;
 911                /* disable interrupt */
 912                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 913                /* reset */
 914                cm->ctrl &= ~chen;
 915                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 916                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 917                rec->needs_silencing = rec->is_dac;
 918                break;
 919        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 920        case SNDRV_PCM_TRIGGER_SUSPEND:
 921                cm->ctrl |= pause;
 922                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 923                break;
 924        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 925        case SNDRV_PCM_TRIGGER_RESUME:
 926                cm->ctrl &= ~pause;
 927                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 928                break;
 929        default:
 930                result = -EINVAL;
 931                break;
 932        }
 933        spin_unlock(&cm->reg_lock);
 934        return result;
 935}
 936
 937/*
 938 * return the current pointer
 939 */
 940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 941                                                struct snd_pcm_substream *substream)
 942{
 943        size_t ptr;
 944        unsigned int reg, rem, tries;
 945
 946        if (!rec->running)
 947                return 0;
 948#if 1 // this seems better..
 949        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 950        for (tries = 0; tries < 3; tries++) {
 951                rem = snd_cmipci_read_w(cm, reg);
 952                if (rem < rec->dma_size)
 953                        goto ok;
 954        } 
 955        dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 956        return SNDRV_PCM_POS_XRUN;
 957ok:
 958        ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 959#else
 960        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 961        ptr = snd_cmipci_read(cm, reg) - rec->offset;
 962        ptr = bytes_to_frames(substream->runtime, ptr);
 963#endif
 964        if (substream->runtime->channels > 2)
 965                ptr = (ptr * 2) / substream->runtime->channels;
 966        return ptr;
 967}
 968
 969/*
 970 * playback
 971 */
 972
 973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 974                                       int cmd)
 975{
 976        struct cmipci *cm = snd_pcm_substream_chip(substream);
 977        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 978}
 979
 980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 981{
 982        struct cmipci *cm = snd_pcm_substream_chip(substream);
 983        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 984}
 985
 986
 987
 988/*
 989 * capture
 990 */
 991
 992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 993                                     int cmd)
 994{
 995        struct cmipci *cm = snd_pcm_substream_chip(substream);
 996        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 997}
 998
 999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001        struct cmipci *cm = snd_pcm_substream_chip(substream);
1002        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011                                         struct snd_ctl_elem_info *uinfo)
1012{
1013        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014        uinfo->count = 1;
1015        return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019                                        struct snd_ctl_elem_value *ucontrol)
1020{
1021        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022        int i;
1023
1024        spin_lock_irq(&chip->reg_lock);
1025        for (i = 0; i < 4; i++)
1026                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027        spin_unlock_irq(&chip->reg_lock);
1028        return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032                                         struct snd_ctl_elem_value *ucontrol)
1033{
1034        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035        int i, change;
1036        unsigned int val;
1037
1038        val = 0;
1039        spin_lock_irq(&chip->reg_lock);
1040        for (i = 0; i < 4; i++)
1041                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042        change = val != chip->dig_status;
1043        chip->dig_status = val;
1044        spin_unlock_irq(&chip->reg_lock);
1045        return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049{
1050        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1051        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052        .info =         snd_cmipci_spdif_default_info,
1053        .get =          snd_cmipci_spdif_default_get,
1054        .put =          snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058                                      struct snd_ctl_elem_info *uinfo)
1059{
1060        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061        uinfo->count = 1;
1062        return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066                                     struct snd_ctl_elem_value *ucontrol)
1067{
1068        ucontrol->value.iec958.status[0] = 0xff;
1069        ucontrol->value.iec958.status[1] = 0xff;
1070        ucontrol->value.iec958.status[2] = 0xff;
1071        ucontrol->value.iec958.status[3] = 0xff;
1072        return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076{
1077        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1078        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1079        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080        .info =         snd_cmipci_spdif_mask_info,
1081        .get =          snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085                                        struct snd_ctl_elem_info *uinfo)
1086{
1087        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088        uinfo->count = 1;
1089        return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093                                       struct snd_ctl_elem_value *ucontrol)
1094{
1095        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096        int i;
1097
1098        spin_lock_irq(&chip->reg_lock);
1099        for (i = 0; i < 4; i++)
1100                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101        spin_unlock_irq(&chip->reg_lock);
1102        return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106                                       struct snd_ctl_elem_value *ucontrol)
1107{
1108        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109        int i, change;
1110        unsigned int val;
1111
1112        val = 0;
1113        spin_lock_irq(&chip->reg_lock);
1114        for (i = 0; i < 4; i++)
1115                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116        change = val != chip->dig_pcm_status;
1117        chip->dig_pcm_status = val;
1118        spin_unlock_irq(&chip->reg_lock);
1119        return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123{
1124        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1126        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127        .info =         snd_cmipci_spdif_stream_info,
1128        .get =          snd_cmipci_spdif_stream_get,
1129        .put =          snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138        if (! cm->mixer_insensitive) {
1139                struct snd_ctl_elem_value *val;
1140                unsigned int i;
1141
1142                val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143                if (!val)
1144                        return -ENOMEM;
1145                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147                        if (ctl) {
1148                                int event;
1149                                memset(val, 0, sizeof(*val));
1150                                ctl->get(ctl, val);
1151                                cm->mixer_res_status[i] = val->value.integer.value[0];
1152                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153                                event = SNDRV_CTL_EVENT_MASK_INFO;
1154                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155                                        ctl->put(ctl, val); /* toggle */
1156                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157                                }
1158                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159                                snd_ctl_notify(cm->card, event, &ctl->id);
1160                        }
1161                }
1162                kfree(val);
1163                cm->mixer_insensitive = 1;
1164        }
1165        return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172        if (cm->mixer_insensitive) {
1173                struct snd_ctl_elem_value *val;
1174                unsigned int i;
1175
1176                val = kmalloc(sizeof(*val), GFP_KERNEL);
1177                if (!val)
1178                        return;
1179                cm->mixer_insensitive = 0; /* at first clear this;
1180                                              otherwise the changes will be ignored */
1181                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183                        if (ctl) {
1184                                int event;
1185
1186                                memset(val, 0, sizeof(*val));
1187                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188                                ctl->get(ctl, val);
1189                                event = SNDRV_CTL_EVENT_MASK_INFO;
1190                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191                                        val->value.integer.value[0] = cm->mixer_res_status[i];
1192                                        ctl->put(ctl, val);
1193                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194                                }
1195                                snd_ctl_notify(cm->card, event, &ctl->id);
1196                        }
1197                }
1198                kfree(val);
1199        }
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205        if (do_ac3) {
1206                /* AC3EN for 037 */
1207                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208                /* AC3EN for 039 */
1209                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210        
1211                if (cm->can_ac3_hw) {
1212                        /* SPD24SEL for 037, 0x02 */
1213                        /* SPD24SEL for 039, 0x20, but cannot be set */
1214                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216                } else { /* can_ac3_sw */
1217                        /* SPD32SEL for 037 & 039, 0x20 */
1218                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219                        /* set 176K sample rate to fix 033 HW bug */
1220                        if (cm->chip_version == 33) {
1221                                if (rate >= 48000) {
1222                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223                                } else {
1224                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225                                }
1226                        }
1227                }
1228
1229        } else {
1230                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233                if (cm->can_ac3_hw) {
1234                        /* chip model >= 37 */
1235                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238                        } else {
1239                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241                        }
1242                } else {
1243                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246                }
1247        }
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252        int rate, err;
1253
1254        rate = subs->runtime->rate;
1255
1256        if (up && do_ac3)
1257                if ((err = save_mixer_state(cm)) < 0)
1258                        return err;
1259
1260        spin_lock_irq(&cm->reg_lock);
1261        cm->spdif_playback_avail = up;
1262        if (up) {
1263                /* they are controlled via "IEC958 Output Switch" */
1264                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266                if (cm->spdif_playback_enabled)
1267                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268                setup_ac3(cm, subs, do_ac3, rate);
1269
1270                if (rate == 48000 || rate == 96000)
1271                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272                else
1273                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274                if (rate > 48000)
1275                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276                else
1277                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278        } else {
1279                /* they are controlled via "IEC958 Output Switch" */
1280                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284                setup_ac3(cm, subs, 0, 0);
1285        }
1286        spin_unlock_irq(&cm->reg_lock);
1287        return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298        struct cmipci *cm = snd_pcm_substream_chip(substream);
1299        int rate = substream->runtime->rate;
1300        int err, do_spdif, do_ac3 = 0;
1301
1302        do_spdif = (rate >= 44100 && rate <= 96000 &&
1303                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304                    substream->runtime->channels == 2);
1305        if (do_spdif && cm->can_ac3_hw) 
1306                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307        if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308                return err;
1309        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback  (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315        struct cmipci *cm = snd_pcm_substream_chip(substream);
1316        int err, do_ac3;
1317
1318        if (cm->can_ac3_hw) 
1319                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320        else
1321                do_ac3 = 1; /* doesn't matter */
1322        if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323                return err;
1324        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B.  This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337        struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338        unsigned int reg, val;
1339
1340        if (rec->needs_silencing && runtime && runtime->dma_area) {
1341                /* set up a small silence buffer */
1342                memset(runtime->dma_area, 0, PAGE_SIZE);
1343                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345                snd_cmipci_write(cm, reg, val);
1346        
1347                /* configure for 16 bits, 2 channels, 8 kHz */
1348                if (runtime->channels > 2)
1349                        set_dac_channels(cm, rec, 2);
1350                spin_lock_irq(&cm->reg_lock);
1351                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358                if (cm->can_96k)
1359                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361        
1362                /* start stream (we don't need interrupts) */
1363                cm->ctrl |= CM_CHEN0 << rec->ch;
1364                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365                spin_unlock_irq(&cm->reg_lock);
1366
1367                msleep(1);
1368
1369                /* stop and reset stream */
1370                spin_lock_irq(&cm->reg_lock);
1371                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372                val = CM_RST_CH0 << rec->ch;
1373                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375                spin_unlock_irq(&cm->reg_lock);
1376
1377                rec->needs_silencing = 0;
1378        }
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383        struct cmipci *cm = snd_pcm_substream_chip(substream);
1384        setup_spdif_playback(cm, substream, 0, 0);
1385        restore_mixer_state(cm);
1386        snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387        return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392        struct cmipci *cm = snd_pcm_substream_chip(substream);
1393        snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394        return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400        struct cmipci *cm = snd_pcm_substream_chip(substream);
1401        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407        struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409        spin_lock_irq(&cm->reg_lock);
1410        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411        if (cm->can_96k) {
1412                if (substream->runtime->rate > 48000)
1413                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414                else
1415                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416        }
1417        if (snd_pcm_format_width(substream->runtime->format) > 16)
1418                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419        else
1420                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422        spin_unlock_irq(&cm->reg_lock);
1423
1424        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429        struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431        spin_lock_irq(&cm->reg_lock);
1432        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434        spin_unlock_irq(&cm->reg_lock);
1435
1436        return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445        struct cmipci *cm = dev_id;
1446        unsigned int status, mask = 0;
1447        
1448        /* fastpath out, to ease interrupt sharing */
1449        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450        if (!(status & CM_INTR))
1451                return IRQ_NONE;
1452
1453        /* acknowledge interrupt */
1454        spin_lock(&cm->reg_lock);
1455        if (status & CM_CHINT0)
1456                mask |= CM_CH0_INT_EN;
1457        if (status & CM_CHINT1)
1458                mask |= CM_CH1_INT_EN;
1459        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461        spin_unlock(&cm->reg_lock);
1462
1463        if (cm->rmidi && (status & CM_UARTINT))
1464                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466        if (cm->pcm) {
1467                if ((status & CM_CHINT0) && cm->channel[0].running)
1468                        snd_pcm_period_elapsed(cm->channel[0].substream);
1469                if ((status & CM_CHINT1) && cm->channel[1].running)
1470                        snd_pcm_period_elapsed(cm->channel[1].substream);
1471        }
1472        return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487        .rate_min =             5512,
1488        .rate_max =             48000,
1489        .channels_min =         1,
1490        .channels_max =         2,
1491        .buffer_bytes_max =     (128*1024),
1492        .period_bytes_min =     64,
1493        .period_bytes_max =     (128*1024),
1494        .periods_min =          2,
1495        .periods_max =          1024,
1496        .fifo_size =            0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507        .rate_min =             5512,
1508        .rate_max =             48000,
1509        .channels_min =         1,
1510        .channels_max =         2,
1511        .buffer_bytes_max =     (128*1024),
1512        .period_bytes_min =     64,
1513        .period_bytes_max =     (128*1024),
1514        .periods_min =          2,
1515        .periods_max =          1024,
1516        .fifo_size =            0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1526        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527        .rate_min =             5512,
1528        .rate_max =             48000,
1529        .channels_min =         2,
1530        .channels_max =         2,
1531        .buffer_bytes_max =     (128*1024),
1532        .period_bytes_min =     64,
1533        .period_bytes_max =     (128*1024),
1534        .periods_min =          2,
1535        .periods_max =          1024,
1536        .fifo_size =            0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1546        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547        .rate_min =             44100,
1548        .rate_max =             48000,
1549        .channels_min =         2,
1550        .channels_max =         2,
1551        .buffer_bytes_max =     (128*1024),
1552        .period_bytes_min =     64,
1553        .period_bytes_max =     (128*1024),
1554        .periods_min =          2,
1555        .periods_max =          1024,
1556        .fifo_size =            0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567        .rate_min =             44100,
1568        .rate_max =             48000,
1569        .channels_min =         2,
1570        .channels_max =         2,
1571        .buffer_bytes_max =     (128*1024),
1572        .period_bytes_min =     64,
1573        .period_bytes_max =     (128*1024),
1574        .periods_min =          2,
1575        .periods_max =          1024,
1576        .fifo_size =            0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1586                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588        .rate_min =             44100,
1589        .rate_max =             48000,
1590        .channels_min =         2,
1591        .channels_max =         2,
1592        .buffer_bytes_max =     (128*1024),
1593        .period_bytes_min =     64,
1594        .period_bytes_max =     (128*1024),
1595        .periods_min =          2,
1596        .periods_max =          1024,
1597        .fifo_size =            0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601                        32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603                .count = ARRAY_SIZE(rate_constraints),
1604                .list = rate_constraints,
1605                .mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613        int ch = mode & CM_OPEN_CH_MASK;
1614
1615        /* FIXME: a file should wait until the device becomes free
1616         * when it's opened on blocking mode.  however, since the current
1617         * pcm framework doesn't pass file pointer before actually opened,
1618         * we can't know whether blocking mode or not in open callback..
1619         */
1620        mutex_lock(&cm->open_mutex);
1621        if (cm->opened[ch]) {
1622                mutex_unlock(&cm->open_mutex);
1623                return -EBUSY;
1624        }
1625        cm->opened[ch] = mode;
1626        cm->channel[ch].substream = subs;
1627        if (! (mode & CM_OPEN_DAC)) {
1628                /* disable dual DAC mode */
1629                cm->channel[ch].is_dac = 0;
1630                spin_lock_irq(&cm->reg_lock);
1631                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632                spin_unlock_irq(&cm->reg_lock);
1633        }
1634        mutex_unlock(&cm->open_mutex);
1635        return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640        int ch = mode & CM_OPEN_CH_MASK;
1641
1642        mutex_lock(&cm->open_mutex);
1643        if (cm->opened[ch] == mode) {
1644                if (cm->channel[ch].substream) {
1645                        snd_cmipci_ch_reset(cm, ch);
1646                        cm->channel[ch].running = 0;
1647                        cm->channel[ch].substream = NULL;
1648                }
1649                cm->opened[ch] = 0;
1650                if (! cm->channel[ch].is_dac) {
1651                        /* enable dual DAC mode again */
1652                        cm->channel[ch].is_dac = 1;
1653                        spin_lock_irq(&cm->reg_lock);
1654                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655                        spin_unlock_irq(&cm->reg_lock);
1656                }
1657        }
1658        mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666        struct cmipci *cm = snd_pcm_substream_chip(substream);
1667        struct snd_pcm_runtime *runtime = substream->runtime;
1668        int err;
1669
1670        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671                return err;
1672        runtime->hw = snd_cmipci_playback;
1673        if (cm->chip_version == 68) {
1674                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675                                     SNDRV_PCM_RATE_96000;
1676                runtime->hw.rate_max = 96000;
1677        } else if (cm->chip_version == 55) {
1678                err = snd_pcm_hw_constraint_list(runtime, 0,
1679                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680                if (err < 0)
1681                        return err;
1682                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683                runtime->hw.rate_max = 128000;
1684        }
1685        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686        cm->dig_pcm_status = cm->dig_status;
1687        return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692        struct cmipci *cm = snd_pcm_substream_chip(substream);
1693        struct snd_pcm_runtime *runtime = substream->runtime;
1694        int err;
1695
1696        if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697                return err;
1698        runtime->hw = snd_cmipci_capture;
1699        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1700                runtime->hw.rate_min = 41000;
1701                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702        } else if (cm->chip_version == 55) {
1703                err = snd_pcm_hw_constraint_list(runtime, 0,
1704                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705                if (err < 0)
1706                        return err;
1707                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708                runtime->hw.rate_max = 128000;
1709        }
1710        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711        return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716        struct cmipci *cm = snd_pcm_substream_chip(substream);
1717        struct snd_pcm_runtime *runtime = substream->runtime;
1718        int err;
1719
1720        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721                return err;
1722        runtime->hw = snd_cmipci_playback2;
1723        mutex_lock(&cm->open_mutex);
1724        if (! cm->opened[CM_CH_PLAY]) {
1725                if (cm->can_multi_ch) {
1726                        runtime->hw.channels_max = cm->max_channels;
1727                        if (cm->max_channels == 4)
1728                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729                        else if (cm->max_channels == 6)
1730                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731                        else if (cm->max_channels == 8)
1732                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733                }
1734        }
1735        mutex_unlock(&cm->open_mutex);
1736        if (cm->chip_version == 68) {
1737                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738                                     SNDRV_PCM_RATE_96000;
1739                runtime->hw.rate_max = 96000;
1740        } else if (cm->chip_version == 55) {
1741                err = snd_pcm_hw_constraint_list(runtime, 0,
1742                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743                if (err < 0)
1744                        return err;
1745                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746                runtime->hw.rate_max = 128000;
1747        }
1748        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749        return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754        struct cmipci *cm = snd_pcm_substream_chip(substream);
1755        struct snd_pcm_runtime *runtime = substream->runtime;
1756        int err;
1757
1758        if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759                return err;
1760        if (cm->can_ac3_hw) {
1761                runtime->hw = snd_cmipci_playback_spdif;
1762                if (cm->chip_version >= 37) {
1763                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765                }
1766                if (cm->can_96k) {
1767                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768                                             SNDRV_PCM_RATE_96000;
1769                        runtime->hw.rate_max = 96000;
1770                }
1771        } else {
1772                runtime->hw = snd_cmipci_playback_iec958_subframe;
1773        }
1774        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775        cm->dig_pcm_status = cm->dig_status;
1776        return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781        struct cmipci *cm = snd_pcm_substream_chip(substream);
1782        struct snd_pcm_runtime *runtime = substream->runtime;
1783        int err;
1784
1785        if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786                return err;
1787        runtime->hw = snd_cmipci_capture_spdif;
1788        if (cm->can_96k && !(cm->chip_version == 68)) {
1789                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790                                     SNDRV_PCM_RATE_96000;
1791                runtime->hw.rate_max = 96000;
1792        }
1793        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794        return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803        struct cmipci *cm = snd_pcm_substream_chip(substream);
1804        close_device_check(cm, CM_OPEN_PLAYBACK);
1805        return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810        struct cmipci *cm = snd_pcm_substream_chip(substream);
1811        close_device_check(cm, CM_OPEN_CAPTURE);
1812        return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817        struct cmipci *cm = snd_pcm_substream_chip(substream);
1818        close_device_check(cm, CM_OPEN_PLAYBACK2);
1819        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820        return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825        struct cmipci *cm = snd_pcm_substream_chip(substream);
1826        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827        return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832        struct cmipci *cm = snd_pcm_substream_chip(substream);
1833        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834        return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1842        .open =         snd_cmipci_playback_open,
1843        .close =        snd_cmipci_playback_close,
1844        .ioctl =        snd_pcm_lib_ioctl,
1845        .hw_params =    snd_cmipci_hw_params,
1846        .hw_free =      snd_cmipci_playback_hw_free,
1847        .prepare =      snd_cmipci_playback_prepare,
1848        .trigger =      snd_cmipci_playback_trigger,
1849        .pointer =      snd_cmipci_playback_pointer,
1850};
1851
1852static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1853        .open =         snd_cmipci_capture_open,
1854        .close =        snd_cmipci_capture_close,
1855        .ioctl =        snd_pcm_lib_ioctl,
1856        .hw_params =    snd_cmipci_hw_params,
1857        .hw_free =      snd_cmipci_hw_free,
1858        .prepare =      snd_cmipci_capture_prepare,
1859        .trigger =      snd_cmipci_capture_trigger,
1860        .pointer =      snd_cmipci_capture_pointer,
1861};
1862
1863static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864        .open =         snd_cmipci_playback2_open,
1865        .close =        snd_cmipci_playback2_close,
1866        .ioctl =        snd_pcm_lib_ioctl,
1867        .hw_params =    snd_cmipci_playback2_hw_params,
1868        .hw_free =      snd_cmipci_playback2_hw_free,
1869        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1870        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1871        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1872};
1873
1874static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875        .open =         snd_cmipci_playback_spdif_open,
1876        .close =        snd_cmipci_playback_spdif_close,
1877        .ioctl =        snd_pcm_lib_ioctl,
1878        .hw_params =    snd_cmipci_hw_params,
1879        .hw_free =      snd_cmipci_playback_hw_free,
1880        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1881        .trigger =      snd_cmipci_playback_trigger,
1882        .pointer =      snd_cmipci_playback_pointer,
1883};
1884
1885static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886        .open =         snd_cmipci_capture_spdif_open,
1887        .close =        snd_cmipci_capture_spdif_close,
1888        .ioctl =        snd_pcm_lib_ioctl,
1889        .hw_params =    snd_cmipci_hw_params,
1890        .hw_free =      snd_cmipci_capture_spdif_hw_free,
1891        .prepare =      snd_cmipci_capture_spdif_prepare,
1892        .trigger =      snd_cmipci_capture_trigger,
1893        .pointer =      snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902        struct snd_pcm *pcm;
1903        int err;
1904
1905        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906        if (err < 0)
1907                return err;
1908
1909        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912        pcm->private_data = cm;
1913        pcm->info_flags = 0;
1914        strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915        cm->pcm = pcm;
1916
1917        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920        return 0;
1921}
1922
1923static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925        struct snd_pcm *pcm;
1926        int err;
1927
1928        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929        if (err < 0)
1930                return err;
1931
1932        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934        pcm->private_data = cm;
1935        pcm->info_flags = 0;
1936        strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937        cm->pcm2 = pcm;
1938
1939        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942        return 0;
1943}
1944
1945static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947        struct snd_pcm *pcm;
1948        int err;
1949
1950        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951        if (err < 0)
1952                return err;
1953
1954        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957        pcm->private_data = cm;
1958        pcm->info_flags = 0;
1959        strcpy(pcm->name, "C-Media PCI IEC958");
1960        cm->pcm_spdif = pcm;
1961
1962        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966                                     snd_pcm_alt_chmaps, cm->max_channels, 0,
1967                                     NULL);
1968        if (err < 0)
1969                return err;
1970
1971        return 0;
1972}
1973
1974/*
1975 * mixer interface:
1976 * - CM8338/8738 has a compatible mixer interface with SB16, but
1977 *   lack of some elements like tone control, i/o gain and AGC.
1978 * - Access to native registers:
1979 *   - A 3D switch
1980 *   - Output mute switches
1981 */
1982
1983static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984{
1985        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986        outb(data, s->iobase + CM_REG_SB16_DATA);
1987}
1988
1989static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990{
1991        unsigned char v;
1992
1993        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994        v = inb(s->iobase + CM_REG_SB16_DATA);
1995        return v;
1996}
1997
1998/*
1999 * general mixer element
2000 */
2001struct cmipci_sb_reg {
2002        unsigned int left_reg, right_reg;
2003        unsigned int left_shift, right_shift;
2004        unsigned int mask;
2005        unsigned int invert: 1;
2006        unsigned int stereo: 1;
2007};
2008
2009#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014  .info = snd_cmipci_info_volume, \
2015  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017}
2018
2019#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025{
2026        r->left_reg = val & 0xff;
2027        r->right_reg = (val >> 8) & 0xff;
2028        r->left_shift = (val >> 16) & 0x07;
2029        r->right_shift = (val >> 19) & 0x07;
2030        r->invert = (val >> 22) & 1;
2031        r->stereo = (val >> 23) & 1;
2032        r->mask = (val >> 24) & 0xff;
2033}
2034
2035static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036                                  struct snd_ctl_elem_info *uinfo)
2037{
2038        struct cmipci_sb_reg reg;
2039
2040        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2041        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042        uinfo->count = reg.stereo + 1;
2043        uinfo->value.integer.min = 0;
2044        uinfo->value.integer.max = reg.mask;
2045        return 0;
2046}
2047 
2048static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049                                 struct snd_ctl_elem_value *ucontrol)
2050{
2051        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052        struct cmipci_sb_reg reg;
2053        int val;
2054
2055        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2056        spin_lock_irq(&cm->reg_lock);
2057        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058        if (reg.invert)
2059                val = reg.mask - val;
2060        ucontrol->value.integer.value[0] = val;
2061        if (reg.stereo) {
2062                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063                if (reg.invert)
2064                        val = reg.mask - val;
2065                ucontrol->value.integer.value[1] = val;
2066        }
2067        spin_unlock_irq(&cm->reg_lock);
2068        return 0;
2069}
2070
2071static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072                                 struct snd_ctl_elem_value *ucontrol)
2073{
2074        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075        struct cmipci_sb_reg reg;
2076        int change;
2077        int left, right, oleft, oright;
2078
2079        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2080        left = ucontrol->value.integer.value[0] & reg.mask;
2081        if (reg.invert)
2082                left = reg.mask - left;
2083        left <<= reg.left_shift;
2084        if (reg.stereo) {
2085                right = ucontrol->value.integer.value[1] & reg.mask;
2086                if (reg.invert)
2087                        right = reg.mask - right;
2088                right <<= reg.right_shift;
2089        } else
2090                right = 0;
2091        spin_lock_irq(&cm->reg_lock);
2092        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093        left |= oleft & ~(reg.mask << reg.left_shift);
2094        change = left != oleft;
2095        if (reg.stereo) {
2096                if (reg.left_reg != reg.right_reg) {
2097                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099                } else
2100                        oright = left;
2101                right |= oright & ~(reg.mask << reg.right_shift);
2102                change |= right != oright;
2103                snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104        } else
2105                snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106        spin_unlock_irq(&cm->reg_lock);
2107        return change;
2108}
2109
2110/*
2111 * input route (left,right) -> (left,right)
2112 */
2113#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115  .info = snd_cmipci_info_input_sw, \
2116  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118}
2119
2120static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121                                    struct snd_ctl_elem_info *uinfo)
2122{
2123        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124        uinfo->count = 4;
2125        uinfo->value.integer.min = 0;
2126        uinfo->value.integer.max = 1;
2127        return 0;
2128}
2129 
2130static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131                                   struct snd_ctl_elem_value *ucontrol)
2132{
2133        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134        struct cmipci_sb_reg reg;
2135        int val1, val2;
2136
2137        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138        spin_lock_irq(&cm->reg_lock);
2139        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141        spin_unlock_irq(&cm->reg_lock);
2142        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146        return 0;
2147}
2148
2149static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150                                   struct snd_ctl_elem_value *ucontrol)
2151{
2152        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153        struct cmipci_sb_reg reg;
2154        int change;
2155        int val1, val2, oval1, oval2;
2156
2157        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2158        spin_lock_irq(&cm->reg_lock);
2159        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167        change = val1 != oval1 || val2 != oval2;
2168        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170        spin_unlock_irq(&cm->reg_lock);
2171        return change;
2172}
2173
2174/*
2175 * native mixer switches/volumes
2176 */
2177
2178#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180  .info = snd_cmipci_info_native_mixer, \
2181  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183}
2184
2185#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187  .info = snd_cmipci_info_native_mixer, \
2188  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190}
2191
2192#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194  .info = snd_cmipci_info_native_mixer, \
2195  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197}
2198
2199#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201  .info = snd_cmipci_info_native_mixer, \
2202  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204}
2205
2206static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207                                        struct snd_ctl_elem_info *uinfo)
2208{
2209        struct cmipci_sb_reg reg;
2210
2211        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2212        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213        uinfo->count = reg.stereo + 1;
2214        uinfo->value.integer.min = 0;
2215        uinfo->value.integer.max = reg.mask;
2216        return 0;
2217
2218}
2219
2220static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221                                       struct snd_ctl_elem_value *ucontrol)
2222{
2223        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224        struct cmipci_sb_reg reg;
2225        unsigned char oreg, val;
2226
2227        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2228        spin_lock_irq(&cm->reg_lock);
2229        oreg = inb(cm->iobase + reg.left_reg);
2230        val = (oreg >> reg.left_shift) & reg.mask;
2231        if (reg.invert)
2232                val = reg.mask - val;
2233        ucontrol->value.integer.value[0] = val;
2234        if (reg.stereo) {
2235                val = (oreg >> reg.right_shift) & reg.mask;
2236                if (reg.invert)
2237                        val = reg.mask - val;
2238                ucontrol->value.integer.value[1] = val;
2239        }
2240        spin_unlock_irq(&cm->reg_lock);
2241        return 0;
2242}
2243
2244static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245                                       struct snd_ctl_elem_value *ucontrol)
2246{
2247        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248        struct cmipci_sb_reg reg;
2249        unsigned char oreg, nreg, val;
2250
2251        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2252        spin_lock_irq(&cm->reg_lock);
2253        oreg = inb(cm->iobase + reg.left_reg);
2254        val = ucontrol->value.integer.value[0] & reg.mask;
2255        if (reg.invert)
2256                val = reg.mask - val;
2257        nreg = oreg & ~(reg.mask << reg.left_shift);
2258        nreg |= (val << reg.left_shift);
2259        if (reg.stereo) {
2260                val = ucontrol->value.integer.value[1] & reg.mask;
2261                if (reg.invert)
2262                        val = reg.mask - val;
2263                nreg &= ~(reg.mask << reg.right_shift);
2264                nreg |= (val << reg.right_shift);
2265        }
2266        outb(nreg, cm->iobase + reg.left_reg);
2267        spin_unlock_irq(&cm->reg_lock);
2268        return (nreg != oreg);
2269}
2270
2271/*
2272 * special case - check mixer sensitivity
2273 */
2274static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275                                                 struct snd_ctl_elem_value *ucontrol)
2276{
2277        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279}
2280
2281static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282                                                 struct snd_ctl_elem_value *ucontrol)
2283{
2284        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285        if (cm->mixer_insensitive) {
2286                /* ignored */
2287                return 0;
2288        }
2289        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290}
2291
2292
2293static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298        { /* switch with sensitivity */
2299                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300                .name = "PCM Playback Switch",
2301                .info = snd_cmipci_info_native_mixer,
2302                .get = snd_cmipci_get_native_mixer_sensitive,
2303                .put = snd_cmipci_put_native_mixer_sensitive,
2304                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305        },
2306        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319        CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327        CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329};
2330
2331/*
2332 * other switches
2333 */
2334
2335struct cmipci_switch_args {
2336        int reg;                /* register index */
2337        unsigned int mask;      /* mask bits */
2338        unsigned int mask_on;   /* mask bits to turn on */
2339        unsigned int is_byte: 1;                /* byte access? */
2340        unsigned int ac3_sensitive: 1;  /* access forbidden during
2341                                         * non-audio operation?
2342                                         */
2343};
2344
2345#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2346
2347static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348                                   struct snd_ctl_elem_value *ucontrol,
2349                                   struct cmipci_switch_args *args)
2350{
2351        unsigned int val;
2352        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354        spin_lock_irq(&cm->reg_lock);
2355        if (args->ac3_sensitive && cm->mixer_insensitive) {
2356                ucontrol->value.integer.value[0] = 0;
2357                spin_unlock_irq(&cm->reg_lock);
2358                return 0;
2359        }
2360        if (args->is_byte)
2361                val = inb(cm->iobase + args->reg);
2362        else
2363                val = snd_cmipci_read(cm, args->reg);
2364        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365        spin_unlock_irq(&cm->reg_lock);
2366        return 0;
2367}
2368
2369static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370                                  struct snd_ctl_elem_value *ucontrol)
2371{
2372        struct cmipci_switch_args *args;
2373        args = (struct cmipci_switch_args *)kcontrol->private_value;
2374        if (snd_BUG_ON(!args))
2375                return -EINVAL;
2376        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377}
2378
2379static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380                                   struct snd_ctl_elem_value *ucontrol,
2381                                   struct cmipci_switch_args *args)
2382{
2383        unsigned int val;
2384        int change;
2385        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387        spin_lock_irq(&cm->reg_lock);
2388        if (args->ac3_sensitive && cm->mixer_insensitive) {
2389                /* ignored */
2390                spin_unlock_irq(&cm->reg_lock);
2391                return 0;
2392        }
2393        if (args->is_byte)
2394                val = inb(cm->iobase + args->reg);
2395        else
2396                val = snd_cmipci_read(cm, args->reg);
2397        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2398                        args->mask_on : (args->mask & ~args->mask_on));
2399        if (change) {
2400                val &= ~args->mask;
2401                if (ucontrol->value.integer.value[0])
2402                        val |= args->mask_on;
2403                else
2404                        val |= (args->mask & ~args->mask_on);
2405                if (args->is_byte)
2406                        outb((unsigned char)val, cm->iobase + args->reg);
2407                else
2408                        snd_cmipci_write(cm, args->reg, val);
2409        }
2410        spin_unlock_irq(&cm->reg_lock);
2411        return change;
2412}
2413
2414static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415                                  struct snd_ctl_elem_value *ucontrol)
2416{
2417        struct cmipci_switch_args *args;
2418        args = (struct cmipci_switch_args *)kcontrol->private_value;
2419        if (snd_BUG_ON(!args))
2420                return -EINVAL;
2421        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422}
2423
2424#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426  .reg = xreg, \
2427  .mask = xmask, \
2428  .mask_on = xmask_on, \
2429  .is_byte = xis_byte, \
2430  .ac3_sensitive = xac3, \
2431}
2432        
2433#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436#if 0 /* these will be controlled in pcm device */
2437DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439#endif
2440DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454#if CM_CH_PLAY == 1
2455DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456#else
2457DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458#endif
2459DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465#define DEFINE_SWITCH(sname, stype, sarg) \
2466{ .name = sname, \
2467  .iface = stype, \
2468  .info = snd_cmipci_uswitch_info, \
2469  .get = snd_cmipci_uswitch_get, \
2470  .put = snd_cmipci_uswitch_put, \
2471  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472}
2473
2474#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478/*
2479 * callbacks for spdif output switch
2480 * needs toggle two registers..
2481 */
2482static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483                                        struct snd_ctl_elem_value *ucontrol)
2484{
2485        int changed;
2486        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488        return changed;
2489}
2490
2491static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492                                        struct snd_ctl_elem_value *ucontrol)
2493{
2494        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495        int changed;
2496        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498        if (changed) {
2499                if (ucontrol->value.integer.value[0]) {
2500                        if (chip->spdif_playback_avail)
2501                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502                } else {
2503                        if (chip->spdif_playback_avail)
2504                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505                }
2506        }
2507        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508        return changed;
2509}
2510
2511
2512static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513                                        struct snd_ctl_elem_info *uinfo)
2514{
2515        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516        static const char *const texts[3] = {
2517                "Line-In", "Rear Output", "Bass Output"
2518        };
2519
2520        return snd_ctl_enum_info(uinfo, 1,
2521                                 cm->chip_version >= 39 ? 3 : 2, texts);
2522}
2523
2524static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525{
2526        unsigned int val;
2527        if (cm->chip_version >= 39) {
2528                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530                        return 2;
2531        }
2532        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533        if (val & CM_REAR2LIN)
2534                return 1;
2535        return 0;
2536}
2537
2538static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539                                       struct snd_ctl_elem_value *ucontrol)
2540{
2541        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543        spin_lock_irq(&cm->reg_lock);
2544        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545        spin_unlock_irq(&cm->reg_lock);
2546        return 0;
2547}
2548
2549static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550                                       struct snd_ctl_elem_value *ucontrol)
2551{
2552        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553        int change;
2554
2555        spin_lock_irq(&cm->reg_lock);
2556        if (ucontrol->value.enumerated.item[0] == 2)
2557                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558        else
2559                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560        if (ucontrol->value.enumerated.item[0] == 1)
2561                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562        else
2563                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564        spin_unlock_irq(&cm->reg_lock);
2565        return change;
2566}
2567
2568static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569                                       struct snd_ctl_elem_info *uinfo)
2570{
2571        static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573        return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574}
2575
2576static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577                                      struct snd_ctl_elem_value *ucontrol)
2578{
2579        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580        /* same bit as spdi_phase */
2581        spin_lock_irq(&cm->reg_lock);
2582        ucontrol->value.enumerated.item[0] = 
2583                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584        spin_unlock_irq(&cm->reg_lock);
2585        return 0;
2586}
2587
2588static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589                                      struct snd_ctl_elem_value *ucontrol)
2590{
2591        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592        int change;
2593
2594        spin_lock_irq(&cm->reg_lock);
2595        if (ucontrol->value.enumerated.item[0])
2596                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597        else
2598                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599        spin_unlock_irq(&cm->reg_lock);
2600        return change;
2601}
2602
2603/* both for CM8338/8738 */
2604static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606        {
2607                .name = "Line-In Mode",
2608                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609                .info = snd_cmipci_line_in_mode_info,
2610                .get = snd_cmipci_line_in_mode_get,
2611                .put = snd_cmipci_line_in_mode_put,
2612        },
2613};
2614
2615/* for non-multichannel chips */
2616static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619/* only for CM8738 */
2620static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621#if 0 /* controlled in pcm device */
2622        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625#endif
2626        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627        { .name = "IEC958 Output Switch",
2628          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629          .info = snd_cmipci_uswitch_info,
2630          .get = snd_cmipci_spdout_enable_get,
2631          .put = snd_cmipci_spdout_enable_put,
2632        },
2633        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639};
2640
2641/* only for model 033/037 */
2642static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646};
2647
2648/* only for model 039 or later */
2649static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652        {
2653                .name = "Mic-In Mode",
2654                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655                .info = snd_cmipci_mic_in_mode_info,
2656                .get = snd_cmipci_mic_in_mode_get,
2657                .put = snd_cmipci_mic_in_mode_put,
2658        }
2659};
2660
2661/* card control switches */
2662static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667{
2668        struct snd_card *card;
2669        struct snd_kcontrol_new *sw;
2670        struct snd_kcontrol *kctl;
2671        unsigned int idx;
2672        int err;
2673
2674        if (snd_BUG_ON(!cm || !cm->card))
2675                return -EINVAL;
2676
2677        card = cm->card;
2678
2679        strcpy(card->mixername, "CMedia PCI");
2680
2681        spin_lock_irq(&cm->reg_lock);
2682        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2683        spin_unlock_irq(&cm->reg_lock);
2684
2685        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686                if (cm->chip_version == 68) {   // 8768 has no PCM volume
2687                        if (!strcmp(snd_cmipci_mixers[idx].name,
2688                                "PCM Playback Volume"))
2689                                continue;
2690                }
2691                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692                        return err;
2693        }
2694
2695        /* mixer switches */
2696        sw = snd_cmipci_mixer_switches;
2697        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699                if (err < 0)
2700                        return err;
2701        }
2702        if (! cm->can_multi_ch) {
2703                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704                if (err < 0)
2705                        return err;
2706        }
2707        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709                sw = snd_cmipci_8738_mixer_switches;
2710                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712                        if (err < 0)
2713                                return err;
2714                }
2715                if (cm->can_ac3_hw) {
2716                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717                                return err;
2718                        kctl->id.device = pcm_spdif_device;
2719                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720                                return err;
2721                        kctl->id.device = pcm_spdif_device;
2722                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723                                return err;
2724                        kctl->id.device = pcm_spdif_device;
2725                }
2726                if (cm->chip_version <= 37) {
2727                        sw = snd_cmipci_old_mixer_switches;
2728                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730                                if (err < 0)
2731                                        return err;
2732                        }
2733                }
2734        }
2735        if (cm->chip_version >= 39) {
2736                sw = snd_cmipci_extra_mixer_switches;
2737                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739                        if (err < 0)
2740                                return err;
2741                }
2742        }
2743
2744        /* card switches */
2745        /*
2746         * newer chips don't have the register bits to force modem link
2747         * detection; the bit that was FLINKON now mutes CH1
2748         */
2749        if (cm->chip_version < 39) {
2750                err = snd_ctl_add(cm->card,
2751                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752                if (err < 0)
2753                        return err;
2754        }
2755
2756        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757                struct snd_ctl_elem_id elem_id;
2758                struct snd_kcontrol *ctl;
2759                memset(&elem_id, 0, sizeof(elem_id));
2760                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761                strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762                ctl = snd_ctl_find_id(cm->card, &elem_id);
2763                if (ctl)
2764                        cm->mixer_res_ctl[idx] = ctl;
2765        }
2766
2767        return 0;
2768}
2769
2770
2771/*
2772 * proc interface
2773 */
2774
2775static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2776                                 struct snd_info_buffer *buffer)
2777{
2778        struct cmipci *cm = entry->private_data;
2779        int i, v;
2780        
2781        snd_iprintf(buffer, "%s\n", cm->card->longname);
2782        for (i = 0; i < 0x94; i++) {
2783                if (i == 0x28)
2784                        i = 0x90;
2785                v = inb(cm->iobase + i);
2786                if (i % 4 == 0)
2787                        snd_iprintf(buffer, "\n%02x:", i);
2788                snd_iprintf(buffer, " %02x", v);
2789        }
2790        snd_iprintf(buffer, "\n");
2791}
2792
2793static void snd_cmipci_proc_init(struct cmipci *cm)
2794{
2795        struct snd_info_entry *entry;
2796
2797        if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2798                snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2799}
2800
2801static const struct pci_device_id snd_cmipci_ids[] = {
2802        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2803        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2804        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2805        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2806        {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2807        {0,},
2808};
2809
2810
2811/*
2812 * check chip version and capabilities
2813 * driver name is modified according to the chip model
2814 */
2815static void query_chip(struct cmipci *cm)
2816{
2817        unsigned int detect;
2818
2819        /* check reg 0Ch, bit 24-31 */
2820        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2821        if (! detect) {
2822                /* check reg 08h, bit 24-28 */
2823                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2824                switch (detect) {
2825                case 0:
2826                        cm->chip_version = 33;
2827                        if (cm->do_soft_ac3)
2828                                cm->can_ac3_sw = 1;
2829                        else
2830                                cm->can_ac3_hw = 1;
2831                        break;
2832                case CM_CHIP_037:
2833                        cm->chip_version = 37;
2834                        cm->can_ac3_hw = 1;
2835                        break;
2836                default:
2837                        cm->chip_version = 39;
2838                        cm->can_ac3_hw = 1;
2839                        break;
2840                }
2841                cm->max_channels = 2;
2842        } else {
2843                if (detect & CM_CHIP_039) {
2844                        cm->chip_version = 39;
2845                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2846                                cm->max_channels = 6;
2847                        else
2848                                cm->max_channels = 4;
2849                } else if (detect & CM_CHIP_8768) {
2850                        cm->chip_version = 68;
2851                        cm->max_channels = 8;
2852                        cm->can_96k = 1;
2853                } else {
2854                        cm->chip_version = 55;
2855                        cm->max_channels = 6;
2856                        cm->can_96k = 1;
2857                }
2858                cm->can_ac3_hw = 1;
2859                cm->can_multi_ch = 1;
2860        }
2861}
2862
2863#ifdef SUPPORT_JOYSTICK
2864static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2865{
2866        static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2867        struct gameport *gp;
2868        struct resource *r = NULL;
2869        int i, io_port = 0;
2870
2871        if (joystick_port[dev] == 0)
2872                return -ENODEV;
2873
2874        if (joystick_port[dev] == 1) { /* auto-detect */
2875                for (i = 0; ports[i]; i++) {
2876                        io_port = ports[i];
2877                        r = request_region(io_port, 1, "CMIPCI gameport");
2878                        if (r)
2879                                break;
2880                }
2881        } else {
2882                io_port = joystick_port[dev];
2883                r = request_region(io_port, 1, "CMIPCI gameport");
2884        }
2885
2886        if (!r) {
2887                dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2888                return -EBUSY;
2889        }
2890
2891        cm->gameport = gp = gameport_allocate_port();
2892        if (!gp) {
2893                dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2894                release_and_free_resource(r);
2895                return -ENOMEM;
2896        }
2897        gameport_set_name(gp, "C-Media Gameport");
2898        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2899        gameport_set_dev_parent(gp, &cm->pci->dev);
2900        gp->io = io_port;
2901        gameport_set_port_data(gp, r);
2902
2903        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2904
2905        gameport_register_port(cm->gameport);
2906
2907        return 0;
2908}
2909
2910static void snd_cmipci_free_gameport(struct cmipci *cm)
2911{
2912        if (cm->gameport) {
2913                struct resource *r = gameport_get_port_data(cm->gameport);
2914
2915                gameport_unregister_port(cm->gameport);
2916                cm->gameport = NULL;
2917
2918                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2919                release_and_free_resource(r);
2920        }
2921}
2922#else
2923static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2924static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2925#endif
2926
2927static int snd_cmipci_free(struct cmipci *cm)
2928{
2929        if (cm->irq >= 0) {
2930                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2931                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2932                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2933                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2934                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2935                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2936                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2937
2938                /* reset mixer */
2939                snd_cmipci_mixer_write(cm, 0, 0);
2940
2941                free_irq(cm->irq, cm);
2942        }
2943
2944        snd_cmipci_free_gameport(cm);
2945        pci_release_regions(cm->pci);
2946        pci_disable_device(cm->pci);
2947        kfree(cm);
2948        return 0;
2949}
2950
2951static int snd_cmipci_dev_free(struct snd_device *device)
2952{
2953        struct cmipci *cm = device->device_data;
2954        return snd_cmipci_free(cm);
2955}
2956
2957static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2958{
2959        long iosynth;
2960        unsigned int val;
2961        struct snd_opl3 *opl3;
2962        int err;
2963
2964        if (!fm_port)
2965                goto disable_fm;
2966
2967        if (cm->chip_version >= 39) {
2968                /* first try FM regs in PCI port range */
2969                iosynth = cm->iobase + CM_REG_FM_PCI;
2970                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2971                                      OPL3_HW_OPL3, 1, &opl3);
2972        } else {
2973                err = -EIO;
2974        }
2975        if (err < 0) {
2976                /* then try legacy ports */
2977                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2978                iosynth = fm_port;
2979                switch (iosynth) {
2980                case 0x3E8: val |= CM_FMSEL_3E8; break;
2981                case 0x3E0: val |= CM_FMSEL_3E0; break;
2982                case 0x3C8: val |= CM_FMSEL_3C8; break;
2983                case 0x388: val |= CM_FMSEL_388; break;
2984                default:
2985                        goto disable_fm;
2986                }
2987                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2988                /* enable FM */
2989                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2990
2991                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2992                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
2993                        dev_err(cm->card->dev,
2994                                "no OPL device at %#lx, skipping...\n",
2995                                iosynth);
2996                        goto disable_fm;
2997                }
2998        }
2999        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3000                dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3001                return err;
3002        }
3003        return 0;
3004
3005 disable_fm:
3006        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3007        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3008        return 0;
3009}
3010
3011static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3012                             int dev, struct cmipci **rcmipci)
3013{
3014        struct cmipci *cm;
3015        int err;
3016        static struct snd_device_ops ops = {
3017                .dev_free =     snd_cmipci_dev_free,
3018        };
3019        unsigned int val;
3020        long iomidi = 0;
3021        int integrated_midi = 0;
3022        char modelstr[16];
3023        int pcm_index, pcm_spdif_index;
3024        static const struct pci_device_id intel_82437vx[] = {
3025                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3026                { },
3027        };
3028
3029        *rcmipci = NULL;
3030
3031        if ((err = pci_enable_device(pci)) < 0)
3032                return err;
3033
3034        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3035        if (cm == NULL) {
3036                pci_disable_device(pci);
3037                return -ENOMEM;
3038        }
3039
3040        spin_lock_init(&cm->reg_lock);
3041        mutex_init(&cm->open_mutex);
3042        cm->device = pci->device;
3043        cm->card = card;
3044        cm->pci = pci;
3045        cm->irq = -1;
3046        cm->channel[0].ch = 0;
3047        cm->channel[1].ch = 1;
3048        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3049
3050        if ((err = pci_request_regions(pci, card->driver)) < 0) {
3051                kfree(cm);
3052                pci_disable_device(pci);
3053                return err;
3054        }
3055        cm->iobase = pci_resource_start(pci, 0);
3056
3057        if (request_irq(pci->irq, snd_cmipci_interrupt,
3058                        IRQF_SHARED, KBUILD_MODNAME, cm)) {
3059                dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3060                snd_cmipci_free(cm);
3061                return -EBUSY;
3062        }
3063        cm->irq = pci->irq;
3064
3065        pci_set_master(cm->pci);
3066
3067        /*
3068         * check chip version, max channels and capabilities
3069         */
3070
3071        cm->chip_version = 0;
3072        cm->max_channels = 2;
3073        cm->do_soft_ac3 = soft_ac3[dev];
3074
3075        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3076            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3077                query_chip(cm);
3078        /* added -MCx suffix for chip supporting multi-channels */
3079        if (cm->can_multi_ch)
3080                sprintf(cm->card->driver + strlen(cm->card->driver),
3081                        "-MC%d", cm->max_channels);
3082        else if (cm->can_ac3_sw)
3083                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3084
3085        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3086        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3087
3088#if CM_CH_PLAY == 1
3089        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3090#else
3091        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3092#endif
3093
3094        /* initialize codec registers */
3095        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3096        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3097        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3098        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3099        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3100        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3101        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3102
3103        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3104        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3105#if CM_CH_PLAY == 1
3106        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3107#else
3108        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3109#endif
3110        if (cm->chip_version) {
3111                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3112                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3113        }
3114        /* Set Bus Master Request */
3115        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3116
3117        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3118        switch (pci->device) {
3119        case PCI_DEVICE_ID_CMEDIA_CM8738:
3120        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3121                if (!pci_dev_present(intel_82437vx)) 
3122                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3123                break;
3124        default:
3125                break;
3126        }
3127
3128        if (cm->chip_version < 68) {
3129                val = pci->device < 0x110 ? 8338 : 8738;
3130        } else {
3131                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3132                case 0:
3133                        val = 8769;
3134                        break;
3135                case 2:
3136                        val = 8762;
3137                        break;
3138                default:
3139                        switch ((pci->subsystem_vendor << 16) |
3140                                pci->subsystem_device) {
3141                        case 0x13f69761:
3142                        case 0x584d3741:
3143                        case 0x584d3751:
3144                        case 0x584d3761:
3145                        case 0x584d3771:
3146                        case 0x72848384:
3147                                val = 8770;
3148                                break;
3149                        default:
3150                                val = 8768;
3151                                break;
3152                        }
3153                }
3154        }
3155        sprintf(card->shortname, "C-Media CMI%d", val);
3156        if (cm->chip_version < 68)
3157                sprintf(modelstr, " (model %d)", cm->chip_version);
3158        else
3159                modelstr[0] = '\0';
3160        sprintf(card->longname, "%s%s at %#lx, irq %i",
3161                card->shortname, modelstr, cm->iobase, cm->irq);
3162
3163        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3164                snd_cmipci_free(cm);
3165                return err;
3166        }
3167
3168        if (cm->chip_version >= 39) {
3169                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3170                if (val != 0x00 && val != 0xff) {
3171                        iomidi = cm->iobase + CM_REG_MPU_PCI;
3172                        integrated_midi = 1;
3173                }
3174        }
3175        if (!integrated_midi) {
3176                val = 0;
3177                iomidi = mpu_port[dev];
3178                switch (iomidi) {
3179                case 0x320: val = CM_VMPU_320; break;
3180                case 0x310: val = CM_VMPU_310; break;
3181                case 0x300: val = CM_VMPU_300; break;
3182                case 0x330: val = CM_VMPU_330; break;
3183                default:
3184                            iomidi = 0; break;
3185                }
3186                if (iomidi > 0) {
3187                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3188                        /* enable UART */
3189                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3190                        if (inb(iomidi + 1) == 0xff) {
3191                                dev_err(cm->card->dev,
3192                                        "cannot enable MPU-401 port at %#lx\n",
3193                                        iomidi);
3194                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3195                                                     CM_UART_EN);
3196                                iomidi = 0;
3197                        }
3198                }
3199        }
3200
3201        if (cm->chip_version < 68) {
3202                err = snd_cmipci_create_fm(cm, fm_port[dev]);
3203                if (err < 0)
3204                        return err;
3205        }
3206
3207        /* reset mixer */
3208        snd_cmipci_mixer_write(cm, 0, 0);
3209
3210        snd_cmipci_proc_init(cm);
3211
3212        /* create pcm devices */
3213        pcm_index = pcm_spdif_index = 0;
3214        if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3215                return err;
3216        pcm_index++;
3217        if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3218                return err;
3219        pcm_index++;
3220        if (cm->can_ac3_hw || cm->can_ac3_sw) {
3221                pcm_spdif_index = pcm_index;
3222                if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3223                        return err;
3224        }
3225
3226        /* create mixer interface & switches */
3227        if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3228                return err;
3229
3230        if (iomidi > 0) {
3231                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3232                                               iomidi,
3233                                               (integrated_midi ?
3234                                                MPU401_INFO_INTEGRATED : 0) |
3235                                               MPU401_INFO_IRQ_HOOK,
3236                                               -1, &cm->rmidi)) < 0) {
3237                        dev_err(cm->card->dev,
3238                                "no UART401 device at 0x%lx\n", iomidi);
3239                }
3240        }
3241
3242#ifdef USE_VAR48KRATE
3243        for (val = 0; val < ARRAY_SIZE(rates); val++)
3244                snd_cmipci_set_pll(cm, rates[val], val);
3245
3246        /*
3247         * (Re-)Enable external switch spdo_48k
3248         */
3249        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3250#endif /* USE_VAR48KRATE */
3251
3252        if (snd_cmipci_create_gameport(cm, dev) < 0)
3253                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3254
3255        *rcmipci = cm;
3256        return 0;
3257}
3258
3259/*
3260 */
3261
3262MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3263
3264static int snd_cmipci_probe(struct pci_dev *pci,
3265                            const struct pci_device_id *pci_id)
3266{
3267        static int dev;
3268        struct snd_card *card;
3269        struct cmipci *cm;
3270        int err;
3271
3272        if (dev >= SNDRV_CARDS)
3273                return -ENODEV;
3274        if (! enable[dev]) {
3275                dev++;
3276                return -ENOENT;
3277        }
3278
3279        err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3280                           0, &card);
3281        if (err < 0)
3282                return err;
3283        
3284        switch (pci->device) {
3285        case PCI_DEVICE_ID_CMEDIA_CM8738:
3286        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3287                strcpy(card->driver, "CMI8738");
3288                break;
3289        case PCI_DEVICE_ID_CMEDIA_CM8338A:
3290        case PCI_DEVICE_ID_CMEDIA_CM8338B:
3291                strcpy(card->driver, "CMI8338");
3292                break;
3293        default:
3294                strcpy(card->driver, "CMIPCI");
3295                break;
3296        }
3297
3298        if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3299                snd_card_free(card);
3300                return err;
3301        }
3302        card->private_data = cm;
3303
3304        if ((err = snd_card_register(card)) < 0) {
3305                snd_card_free(card);
3306                return err;
3307        }
3308        pci_set_drvdata(pci, card);
3309        dev++;
3310        return 0;
3311
3312}
3313
3314static void snd_cmipci_remove(struct pci_dev *pci)
3315{
3316        snd_card_free(pci_get_drvdata(pci));
3317}
3318
3319
3320#ifdef CONFIG_PM_SLEEP
3321/*
3322 * power management
3323 */
3324static unsigned char saved_regs[] = {
3325        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3326        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3327        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3328        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3329        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3330};
3331
3332static unsigned char saved_mixers[] = {
3333        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3334        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3335        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3336        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3337        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3338        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3339        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3340        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3341};
3342
3343static int snd_cmipci_suspend(struct device *dev)
3344{
3345        struct snd_card *card = dev_get_drvdata(dev);
3346        struct cmipci *cm = card->private_data;
3347        int i;
3348
3349        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3350        
3351        snd_pcm_suspend_all(cm->pcm);
3352        snd_pcm_suspend_all(cm->pcm2);
3353        snd_pcm_suspend_all(cm->pcm_spdif);
3354
3355        /* save registers */
3356        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3357                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3358        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3359                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3360
3361        /* disable ints */
3362        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3363        return 0;
3364}
3365
3366static int snd_cmipci_resume(struct device *dev)
3367{
3368        struct snd_card *card = dev_get_drvdata(dev);
3369        struct cmipci *cm = card->private_data;
3370        int i;
3371
3372        /* reset / initialize to a sane state */
3373        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3374        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3375        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3376        snd_cmipci_mixer_write(cm, 0, 0);
3377
3378        /* restore registers */
3379        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3380                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3381        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3382                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3383
3384        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3385        return 0;
3386}
3387
3388static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3389#define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3390#else
3391#define SND_CMIPCI_PM_OPS       NULL
3392#endif /* CONFIG_PM_SLEEP */
3393
3394static struct pci_driver cmipci_driver = {
3395        .name = KBUILD_MODNAME,
3396        .id_table = snd_cmipci_ids,
3397        .probe = snd_cmipci_probe,
3398        .remove = snd_cmipci_remove,
3399        .driver = {
3400                .pm = SND_CMIPCI_PM_OPS,
3401        },
3402};
3403        
3404module_pci_driver(cmipci_driver);
3405