linux/tools/testing/selftests/x86/mpx-mini-test.c
<<
>>
Prefs
   1/*
   2 * mpx-mini-test.c: routines to test Intel MPX (Memory Protection eXtentions)
   3 *
   4 * Written by:
   5 * "Ren, Qiaowei" <qiaowei.ren@intel.com>
   6 * "Wei, Gang" <gang.wei@intel.com>
   7 * "Hansen, Dave" <dave.hansen@intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms and conditions of the GNU General Public License,
  11 * version 2.
  12 */
  13
  14/*
  15 * 2014-12-05: Dave Hansen: fixed all of the compiler warnings, and made sure
  16 *             it works on 32-bit.
  17 */
  18
  19int inspect_every_this_many_mallocs = 100;
  20int zap_all_every_this_many_mallocs = 1000;
  21
  22#define _GNU_SOURCE
  23#define _LARGEFILE64_SOURCE
  24
  25#include <string.h>
  26#include <stdio.h>
  27#include <stdint.h>
  28#include <stdbool.h>
  29#include <signal.h>
  30#include <assert.h>
  31#include <stdlib.h>
  32#include <ucontext.h>
  33#include <sys/mman.h>
  34#include <sys/types.h>
  35#include <sys/stat.h>
  36#include <fcntl.h>
  37#include <unistd.h>
  38
  39#include "mpx-hw.h"
  40#include "mpx-debug.h"
  41#include "mpx-mm.h"
  42
  43#ifndef __always_inline
  44#define __always_inline inline __attribute__((always_inline)
  45#endif
  46
  47#ifndef TEST_DURATION_SECS
  48#define TEST_DURATION_SECS 3
  49#endif
  50
  51void write_int_to(char *prefix, char *file, int int_to_write)
  52{
  53        char buf[100];
  54        int fd = open(file, O_RDWR);
  55        int len;
  56        int ret;
  57
  58        assert(fd >= 0);
  59        len = snprintf(buf, sizeof(buf), "%s%d", prefix, int_to_write);
  60        assert(len >= 0);
  61        assert(len < sizeof(buf));
  62        ret = write(fd, buf, len);
  63        assert(ret == len);
  64        ret = close(fd);
  65        assert(!ret);
  66}
  67
  68void write_pid_to(char *prefix, char *file)
  69{
  70        write_int_to(prefix, file, getpid());
  71}
  72
  73void trace_me(void)
  74{
  75/* tracing events dir */
  76#define TED "/sys/kernel/debug/tracing/events/"
  77/*
  78        write_pid_to("common_pid=", TED "signal/filter");
  79        write_pid_to("common_pid=", TED "exceptions/filter");
  80        write_int_to("", TED "signal/enable", 1);
  81        write_int_to("", TED "exceptions/enable", 1);
  82*/
  83        write_pid_to("", "/sys/kernel/debug/tracing/set_ftrace_pid");
  84        write_int_to("", "/sys/kernel/debug/tracing/trace", 0);
  85}
  86
  87#define test_failed() __test_failed(__FILE__, __LINE__)
  88static void __test_failed(char *f, int l)
  89{
  90        fprintf(stderr, "abort @ %s::%d\n", f, l);
  91        abort();
  92}
  93
  94/* Error Printf */
  95#define eprintf(args...)        fprintf(stderr, args)
  96
  97#ifdef __i386__
  98
  99/* i386 directory size is 4MB */
 100#define REG_IP_IDX      REG_EIP
 101#define REX_PREFIX
 102
 103#define XSAVE_OFFSET_IN_FPMEM   sizeof(struct _libc_fpstate)
 104
 105/*
 106 * __cpuid() is from the Linux Kernel:
 107 */
 108static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
 109                unsigned int *ecx, unsigned int *edx)
 110{
 111        /* ecx is often an input as well as an output. */
 112        asm volatile(
 113                "push %%ebx;"
 114                "cpuid;"
 115                "mov %%ebx, %1;"
 116                "pop %%ebx"
 117                : "=a" (*eax),
 118                  "=g" (*ebx),
 119                  "=c" (*ecx),
 120                  "=d" (*edx)
 121                : "0" (*eax), "2" (*ecx));
 122}
 123
 124#else /* __i386__ */
 125
 126#define REG_IP_IDX      REG_RIP
 127#define REX_PREFIX "0x48, "
 128
 129#define XSAVE_OFFSET_IN_FPMEM   0
 130
 131/*
 132 * __cpuid() is from the Linux Kernel:
 133 */
 134static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
 135                unsigned int *ecx, unsigned int *edx)
 136{
 137        /* ecx is often an input as well as an output. */
 138        asm volatile(
 139                "cpuid;"
 140                : "=a" (*eax),
 141                  "=b" (*ebx),
 142                  "=c" (*ecx),
 143                  "=d" (*edx)
 144                : "0" (*eax), "2" (*ecx));
 145}
 146
 147#endif /* !__i386__ */
 148
 149struct xsave_hdr_struct {
 150        uint64_t xstate_bv;
 151        uint64_t reserved1[2];
 152        uint64_t reserved2[5];
 153} __attribute__((packed));
 154
 155struct bndregs_struct {
 156        uint64_t bndregs[8];
 157} __attribute__((packed));
 158
 159struct bndcsr_struct {
 160        uint64_t cfg_reg_u;
 161        uint64_t status_reg;
 162} __attribute__((packed));
 163
 164struct xsave_struct {
 165        uint8_t fpu_sse[512];
 166        struct xsave_hdr_struct xsave_hdr;
 167        uint8_t ymm[256];
 168        uint8_t lwp[128];
 169        struct bndregs_struct bndregs;
 170        struct bndcsr_struct bndcsr;
 171} __attribute__((packed));
 172
 173uint8_t __attribute__((__aligned__(64))) buffer[4096];
 174struct xsave_struct *xsave_buf = (struct xsave_struct *)buffer;
 175
 176uint8_t __attribute__((__aligned__(64))) test_buffer[4096];
 177struct xsave_struct *xsave_test_buf = (struct xsave_struct *)test_buffer;
 178
 179uint64_t num_bnd_chk;
 180
 181static __always_inline void xrstor_state(struct xsave_struct *fx, uint64_t mask)
 182{
 183        uint32_t lmask = mask;
 184        uint32_t hmask = mask >> 32;
 185
 186        asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x2f\n\t"
 187                     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
 188                     :   "memory");
 189}
 190
 191static __always_inline void xsave_state_1(void *_fx, uint64_t mask)
 192{
 193        uint32_t lmask = mask;
 194        uint32_t hmask = mask >> 32;
 195        unsigned char *fx = _fx;
 196
 197        asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x27\n\t"
 198                     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
 199                     :   "memory");
 200}
 201
 202static inline uint64_t xgetbv(uint32_t index)
 203{
 204        uint32_t eax, edx;
 205
 206        asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
 207                     : "=a" (eax), "=d" (edx)
 208                     : "c" (index));
 209        return eax + ((uint64_t)edx << 32);
 210}
 211
 212static uint64_t read_mpx_status_sig(ucontext_t *uctxt)
 213{
 214        memset(buffer, 0, sizeof(buffer));
 215        memcpy(buffer,
 216                (uint8_t *)uctxt->uc_mcontext.fpregs + XSAVE_OFFSET_IN_FPMEM,
 217                sizeof(struct xsave_struct));
 218
 219        return xsave_buf->bndcsr.status_reg;
 220}
 221
 222#include <pthread.h>
 223
 224static uint8_t *get_next_inst_ip(uint8_t *addr)
 225{
 226        uint8_t *ip = addr;
 227        uint8_t sib;
 228        uint8_t rm;
 229        uint8_t mod;
 230        uint8_t base;
 231        uint8_t modrm;
 232
 233        /* determine the prefix. */
 234        switch(*ip) {
 235        case 0xf2:
 236        case 0xf3:
 237        case 0x66:
 238                ip++;
 239                break;
 240        }
 241
 242        /* look for rex prefix */
 243        if ((*ip & 0x40) == 0x40)
 244                ip++;
 245
 246        /* Make sure we have a MPX instruction. */
 247        if (*ip++ != 0x0f)
 248                return addr;
 249
 250        /* Skip the op code byte. */
 251        ip++;
 252
 253        /* Get the modrm byte. */
 254        modrm = *ip++;
 255
 256        /* Break it down into parts. */
 257        rm = modrm & 7;
 258        mod = (modrm >> 6);
 259
 260        /* Init the parts of the address mode. */
 261        base = 8;
 262
 263        /* Is it a mem mode? */
 264        if (mod != 3) {
 265                /* look for scaled indexed addressing */
 266                if (rm == 4) {
 267                        /* SIB addressing */
 268                        sib = *ip++;
 269                        base = sib & 7;
 270                        switch (mod) {
 271                        case 0:
 272                                if (base == 5)
 273                                        ip += 4;
 274                                break;
 275
 276                        case 1:
 277                                ip++;
 278                                break;
 279
 280                        case 2:
 281                                ip += 4;
 282                                break;
 283                        }
 284
 285                } else {
 286                        /* MODRM addressing */
 287                        switch (mod) {
 288                        case 0:
 289                                /* DISP32 addressing, no base */
 290                                if (rm == 5)
 291                                        ip += 4;
 292                                break;
 293
 294                        case 1:
 295                                ip++;
 296                                break;
 297
 298                        case 2:
 299                                ip += 4;
 300                                break;
 301                        }
 302                }
 303        }
 304        return ip;
 305}
 306
 307#ifdef si_lower
 308static inline void *__si_bounds_lower(siginfo_t *si)
 309{
 310        return si->si_lower;
 311}
 312
 313static inline void *__si_bounds_upper(siginfo_t *si)
 314{
 315        return si->si_upper;
 316}
 317#else
 318static inline void **__si_bounds_hack(siginfo_t *si)
 319{
 320        void *sigfault = &si->_sifields._sigfault;
 321        void *end_sigfault = sigfault + sizeof(si->_sifields._sigfault);
 322        void **__si_lower = end_sigfault;
 323
 324        return __si_lower;
 325}
 326
 327static inline void *__si_bounds_lower(siginfo_t *si)
 328{
 329        return *__si_bounds_hack(si);
 330}
 331
 332static inline void *__si_bounds_upper(siginfo_t *si)
 333{
 334        return (*__si_bounds_hack(si)) + sizeof(void *);
 335}
 336#endif
 337
 338static int br_count;
 339static int expected_bnd_index = -1;
 340uint64_t shadow_plb[NR_MPX_BOUNDS_REGISTERS][2]; /* shadow MPX bound registers */
 341unsigned long shadow_map[NR_MPX_BOUNDS_REGISTERS];
 342
 343/*
 344 * The kernel is supposed to provide some information about the bounds
 345 * exception in the siginfo.  It should match what we have in the bounds
 346 * registers that we are checking against.  Just check against the shadow copy
 347 * since it is easily available, and we also check that *it* matches the real
 348 * registers.
 349 */
 350void check_siginfo_vs_shadow(siginfo_t* si)
 351{
 352        int siginfo_ok = 1;
 353        void *shadow_lower = (void *)(unsigned long)shadow_plb[expected_bnd_index][0];
 354        void *shadow_upper = (void *)(unsigned long)shadow_plb[expected_bnd_index][1];
 355
 356        if ((expected_bnd_index < 0) ||
 357            (expected_bnd_index >= NR_MPX_BOUNDS_REGISTERS)) {
 358                fprintf(stderr, "ERROR: invalid expected_bnd_index: %d\n",
 359                        expected_bnd_index);
 360                exit(6);
 361        }
 362        if (__si_bounds_lower(si) != shadow_lower)
 363                siginfo_ok = 0;
 364        if (__si_bounds_upper(si) != shadow_upper)
 365                siginfo_ok = 0;
 366
 367        if (!siginfo_ok) {
 368                fprintf(stderr, "ERROR: siginfo bounds do not match "
 369                        "shadow bounds for register %d\n", expected_bnd_index);
 370                exit(7);
 371        }
 372}
 373
 374void handler(int signum, siginfo_t *si, void *vucontext)
 375{
 376        int i;
 377        ucontext_t *uctxt = vucontext;
 378        int trapno;
 379        unsigned long ip;
 380
 381        dprintf1("entered signal handler\n");
 382
 383        trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
 384        ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
 385
 386        if (trapno == 5) {
 387                typeof(si->si_addr) *si_addr_ptr = &si->si_addr;
 388                uint64_t status = read_mpx_status_sig(uctxt);
 389                uint64_t br_reason =  status & 0x3;
 390
 391                br_count++;
 392                dprintf1("#BR 0x%jx (total seen: %d)\n", status, br_count);
 393
 394#define __SI_FAULT      (3 << 16)
 395#define SEGV_BNDERR     (__SI_FAULT|3)  /* failed address bound checks */
 396
 397                dprintf2("Saw a #BR! status 0x%jx at %016lx br_reason: %jx\n",
 398                                status, ip, br_reason);
 399                dprintf2("si_signo: %d\n", si->si_signo);
 400                dprintf2("  signum: %d\n", signum);
 401                dprintf2("info->si_code == SEGV_BNDERR: %d\n",
 402                                (si->si_code == SEGV_BNDERR));
 403                dprintf2("info->si_code: %d\n", si->si_code);
 404                dprintf2("info->si_lower: %p\n", __si_bounds_lower(si));
 405                dprintf2("info->si_upper: %p\n", __si_bounds_upper(si));
 406
 407                check_siginfo_vs_shadow(si);
 408
 409                for (i = 0; i < 8; i++)
 410                        dprintf3("[%d]: %p\n", i, si_addr_ptr[i]);
 411                switch (br_reason) {
 412                case 0: /* traditional BR */
 413                        fprintf(stderr,
 414                                "Undefined status with bound exception:%jx\n",
 415                                 status);
 416                        exit(5);
 417                case 1: /* #BR MPX bounds exception */
 418                        /* these are normal and we expect to see them */
 419                        dprintf1("bounds exception (normal): status 0x%jx at %p si_addr: %p\n",
 420                                status, (void *)ip, si->si_addr);
 421                        num_bnd_chk++;
 422                        uctxt->uc_mcontext.gregs[REG_IP_IDX] =
 423                                (greg_t)get_next_inst_ip((uint8_t *)ip);
 424                        break;
 425                case 2:
 426                        fprintf(stderr, "#BR status == 2, missing bounds table,"
 427                                        "kernel should have handled!!\n");
 428                        exit(4);
 429                        break;
 430                default:
 431                        fprintf(stderr, "bound check error: status 0x%jx at %p\n",
 432                                status, (void *)ip);
 433                        num_bnd_chk++;
 434                        uctxt->uc_mcontext.gregs[REG_IP_IDX] =
 435                                (greg_t)get_next_inst_ip((uint8_t *)ip);
 436                        fprintf(stderr, "bound check error: si_addr %p\n", si->si_addr);
 437                        exit(3);
 438                }
 439        } else if (trapno == 14) {
 440                eprintf("ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n",
 441                        trapno, ip);
 442                eprintf("si_addr %p\n", si->si_addr);
 443                eprintf("REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
 444                test_failed();
 445        } else {
 446                eprintf("unexpected trap %d! at 0x%lx\n", trapno, ip);
 447                eprintf("si_addr %p\n", si->si_addr);
 448                eprintf("REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
 449                test_failed();
 450        }
 451}
 452
 453static inline void cpuid_count(unsigned int op, int count,
 454                               unsigned int *eax, unsigned int *ebx,
 455                               unsigned int *ecx, unsigned int *edx)
 456{
 457        *eax = op;
 458        *ecx = count;
 459        __cpuid(eax, ebx, ecx, edx);
 460}
 461
 462#define XSTATE_CPUID        0x0000000d
 463
 464/*
 465 * List of XSAVE features Linux knows about:
 466 */
 467enum xfeature_bit {
 468        XSTATE_BIT_FP,
 469        XSTATE_BIT_SSE,
 470        XSTATE_BIT_YMM,
 471        XSTATE_BIT_BNDREGS,
 472        XSTATE_BIT_BNDCSR,
 473        XSTATE_BIT_OPMASK,
 474        XSTATE_BIT_ZMM_Hi256,
 475        XSTATE_BIT_Hi16_ZMM,
 476
 477        XFEATURES_NR_MAX,
 478};
 479
 480#define XSTATE_FP              (1 << XSTATE_BIT_FP)
 481#define XSTATE_SSE            (1 << XSTATE_BIT_SSE)
 482#define XSTATE_YMM            (1 << XSTATE_BIT_YMM)
 483#define XSTATE_BNDREGS    (1 << XSTATE_BIT_BNDREGS)
 484#define XSTATE_BNDCSR      (1 << XSTATE_BIT_BNDCSR)
 485#define XSTATE_OPMASK      (1 << XSTATE_BIT_OPMASK)
 486#define XSTATE_ZMM_Hi256        (1 << XSTATE_BIT_ZMM_Hi256)
 487#define XSTATE_Hi16_ZMM  (1 << XSTATE_BIT_Hi16_ZMM)
 488
 489#define MPX_XSTATES             (XSTATE_BNDREGS | XSTATE_BNDCSR) /* 0x18 */
 490
 491bool one_bit(unsigned int x, int bit)
 492{
 493        return !!(x & (1<<bit));
 494}
 495
 496void print_state_component(int state_bit_nr, char *name)
 497{
 498        unsigned int eax, ebx, ecx, edx;
 499        unsigned int state_component_size;
 500        unsigned int state_component_supervisor;
 501        unsigned int state_component_user;
 502        unsigned int state_component_aligned;
 503
 504        /* See SDM Section 13.2 */
 505        cpuid_count(XSTATE_CPUID, state_bit_nr, &eax, &ebx, &ecx, &edx);
 506        assert(eax || ebx || ecx);
 507        state_component_size = eax;
 508        state_component_supervisor = ((!ebx) && one_bit(ecx, 0));
 509        state_component_user = !one_bit(ecx, 0);
 510        state_component_aligned = one_bit(ecx, 1);
 511        printf("%8s: size: %d user: %d supervisor: %d aligned: %d\n",
 512                name,
 513                state_component_size,       state_component_user,
 514                state_component_supervisor, state_component_aligned);
 515
 516}
 517
 518/* Intel-defined CPU features, CPUID level 0x00000001 (ecx) */
 519#define XSAVE_FEATURE_BIT       (26)  /* XSAVE/XRSTOR/XSETBV/XGETBV */
 520#define OSXSAVE_FEATURE_BIT     (27) /* XSAVE enabled in the OS */
 521
 522bool check_mpx_support(void)
 523{
 524        unsigned int eax, ebx, ecx, edx;
 525
 526        cpuid_count(1, 0, &eax, &ebx, &ecx, &edx);
 527
 528        /* We can't do much without XSAVE, so just make these assert()'s */
 529        if (!one_bit(ecx, XSAVE_FEATURE_BIT)) {
 530                fprintf(stderr, "processor lacks XSAVE, can not run MPX tests\n");
 531                exit(0);
 532        }
 533
 534        if (!one_bit(ecx, OSXSAVE_FEATURE_BIT)) {
 535                fprintf(stderr, "processor lacks OSXSAVE, can not run MPX tests\n");
 536                exit(0);
 537        }
 538
 539        /* CPUs not supporting the XSTATE CPUID leaf do not support MPX */
 540        /* Is this redundant with the feature bit checks? */
 541        cpuid_count(0, 0, &eax, &ebx, &ecx, &edx);
 542        if (eax < XSTATE_CPUID) {
 543                fprintf(stderr, "processor lacks XSTATE CPUID leaf,"
 544                                " can not run MPX tests\n");
 545                exit(0);
 546        }
 547
 548        printf("XSAVE is supported by HW & OS\n");
 549
 550        cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
 551
 552        printf("XSAVE processor supported state mask: 0x%x\n", eax);
 553        printf("XSAVE OS supported state mask: 0x%jx\n", xgetbv(0));
 554
 555        /* Make sure that the MPX states are enabled in in XCR0 */
 556        if ((eax & MPX_XSTATES) != MPX_XSTATES) {
 557                fprintf(stderr, "processor lacks MPX XSTATE(s), can not run MPX tests\n");
 558                exit(0);
 559        }
 560
 561        /* Make sure the MPX states are supported by XSAVE* */
 562        if ((xgetbv(0) & MPX_XSTATES) != MPX_XSTATES) {
 563                fprintf(stderr, "MPX XSTATE(s) no enabled in XCR0, "
 564                                "can not run MPX tests\n");
 565                exit(0);
 566        }
 567
 568        print_state_component(XSTATE_BIT_BNDREGS, "BNDREGS");
 569        print_state_component(XSTATE_BIT_BNDCSR,  "BNDCSR");
 570
 571        return true;
 572}
 573
 574void enable_mpx(void *l1base)
 575{
 576        /* enable point lookup */
 577        memset(buffer, 0, sizeof(buffer));
 578        xrstor_state(xsave_buf, 0x18);
 579
 580        xsave_buf->xsave_hdr.xstate_bv = 0x10;
 581        xsave_buf->bndcsr.cfg_reg_u = (unsigned long)l1base | 1;
 582        xsave_buf->bndcsr.status_reg = 0;
 583
 584        dprintf2("bf xrstor\n");
 585        dprintf2("xsave cndcsr: status %jx, configu %jx\n",
 586               xsave_buf->bndcsr.status_reg, xsave_buf->bndcsr.cfg_reg_u);
 587        xrstor_state(xsave_buf, 0x18);
 588        dprintf2("after xrstor\n");
 589
 590        xsave_state_1(xsave_buf, 0x18);
 591
 592        dprintf1("xsave bndcsr: status %jx, configu %jx\n",
 593               xsave_buf->bndcsr.status_reg, xsave_buf->bndcsr.cfg_reg_u);
 594}
 595
 596#include <sys/prctl.h>
 597
 598struct mpx_bounds_dir *bounds_dir_ptr;
 599
 600unsigned long __bd_incore(const char *func, int line)
 601{
 602        unsigned long ret = nr_incore(bounds_dir_ptr, MPX_BOUNDS_DIR_SIZE_BYTES);
 603        return ret;
 604}
 605#define bd_incore() __bd_incore(__func__, __LINE__)
 606
 607void check_clear(void *ptr, unsigned long sz)
 608{
 609        unsigned long *i;
 610
 611        for (i = ptr; (void *)i < ptr + sz; i++) {
 612                if (*i) {
 613                        dprintf1("%p is NOT clear at %p\n", ptr, i);
 614                        assert(0);
 615                }
 616        }
 617        dprintf1("%p is clear for %lx\n", ptr, sz);
 618}
 619
 620void check_clear_bd(void)
 621{
 622        check_clear(bounds_dir_ptr, 2UL << 30);
 623}
 624
 625#define USE_MALLOC_FOR_BOUNDS_DIR 1
 626bool process_specific_init(void)
 627{
 628        unsigned long size;
 629        unsigned long *dir;
 630        /* Guarantee we have the space to align it, add padding: */
 631        unsigned long pad = getpagesize();
 632
 633        size = 2UL << 30; /* 2GB */
 634        if (sizeof(unsigned long) == 4)
 635                size = 4UL << 20; /* 4MB */
 636        dprintf1("trying to allocate %ld MB bounds directory\n", (size >> 20));
 637
 638        if (USE_MALLOC_FOR_BOUNDS_DIR) {
 639                unsigned long _dir;
 640
 641                dir = malloc(size + pad);
 642                assert(dir);
 643                _dir = (unsigned long)dir;
 644                _dir += 0xfffUL;
 645                _dir &= ~0xfffUL;
 646                dir = (void *)_dir;
 647        } else {
 648                /*
 649                 * This makes debugging easier because the address
 650                 * calculations are simpler:
 651                 */
 652                dir = mmap((void *)0x200000000000, size + pad,
 653                                PROT_READ|PROT_WRITE,
 654                                MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
 655                if (dir == (void *)-1) {
 656                        perror("unable to allocate bounds directory");
 657                        abort();
 658                }
 659                check_clear(dir, size);
 660        }
 661        bounds_dir_ptr = (void *)dir;
 662        madvise(bounds_dir_ptr, size, MADV_NOHUGEPAGE);
 663        bd_incore();
 664        dprintf1("bounds directory: 0x%p -> 0x%p\n", bounds_dir_ptr,
 665                        (char *)bounds_dir_ptr + size);
 666        check_clear(dir, size);
 667        enable_mpx(dir);
 668        check_clear(dir, size);
 669        if (prctl(43, 0, 0, 0, 0)) {
 670                printf("no MPX support\n");
 671                abort();
 672                return false;
 673        }
 674        return true;
 675}
 676
 677bool process_specific_finish(void)
 678{
 679        if (prctl(44)) {
 680                printf("no MPX support\n");
 681                return false;
 682        }
 683        return true;
 684}
 685
 686void setup_handler()
 687{
 688        int r, rs;
 689        struct sigaction newact;
 690        struct sigaction oldact;
 691
 692        /* #BR is mapped to sigsegv */
 693        int signum  = SIGSEGV;
 694
 695        newact.sa_handler = 0;   /* void(*)(int)*/
 696        newact.sa_sigaction = handler; /* void (*)(int, siginfo_t*, void *) */
 697
 698        /*sigset_t - signals to block while in the handler */
 699        /* get the old signal mask. */
 700        rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
 701        assert(rs == 0);
 702
 703        /* call sa_sigaction, not sa_handler*/
 704        newact.sa_flags = SA_SIGINFO;
 705
 706        newact.sa_restorer = 0;  /* void(*)(), obsolete */
 707        r = sigaction(signum, &newact, &oldact);
 708        assert(r == 0);
 709}
 710
 711void mpx_prepare(void)
 712{
 713        dprintf2("%s()\n", __func__);
 714        setup_handler();
 715        process_specific_init();
 716}
 717
 718void mpx_cleanup(void)
 719{
 720        printf("%s(): %jd BRs. bye...\n", __func__, num_bnd_chk);
 721        process_specific_finish();
 722}
 723
 724/*-------------- the following is test case ---------------*/
 725#include <stdint.h>
 726#include <stdbool.h>
 727#include <stdlib.h>
 728#include <stdio.h>
 729#include <time.h>
 730
 731uint64_t num_lower_brs;
 732uint64_t num_upper_brs;
 733
 734#define MPX_CONFIG_OFFSET 1024
 735#define MPX_BOUNDS_OFFSET 960
 736#define MPX_HEADER_OFFSET 512
 737#define MAX_ADDR_TESTED (1<<28)
 738#define TEST_ROUNDS 100
 739
 740/*
 741      0F 1A /r BNDLDX-Load
 742      0F 1B /r BNDSTX-Store Extended Bounds Using Address Translation
 743   66 0F 1A /r BNDMOV bnd1, bnd2/m128
 744   66 0F 1B /r BNDMOV bnd1/m128, bnd2
 745   F2 0F 1A /r BNDCU bnd, r/m64
 746   F2 0F 1B /r BNDCN bnd, r/m64
 747   F3 0F 1A /r BNDCL bnd, r/m64
 748   F3 0F 1B /r BNDMK bnd, m64
 749*/
 750
 751static __always_inline void xsave_state(void *_fx, uint64_t mask)
 752{
 753        uint32_t lmask = mask;
 754        uint32_t hmask = mask >> 32;
 755        unsigned char *fx = _fx;
 756
 757        asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x27\n\t"
 758                     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
 759                     :   "memory");
 760}
 761
 762static __always_inline void mpx_clear_bnd0(void)
 763{
 764        long size = 0;
 765        void *ptr = NULL;
 766        /* F3 0F 1B /r BNDMK bnd, m64                   */
 767        /* f3 0f 1b 04 11    bndmk  (%rcx,%rdx,1),%bnd0 */
 768        asm volatile(".byte 0xf3,0x0f,0x1b,0x04,0x11\n\t"
 769                     : : "c" (ptr), "d" (size-1)
 770                     :   "memory");
 771}
 772
 773static __always_inline void mpx_make_bound_helper(unsigned long ptr,
 774                unsigned long size)
 775{
 776        /* F3 0F 1B /r          BNDMK bnd, m64                  */
 777        /* f3 0f 1b 04 11       bndmk  (%rcx,%rdx,1),%bnd0      */
 778        asm volatile(".byte 0xf3,0x0f,0x1b,0x04,0x11\n\t"
 779                     : : "c" (ptr), "d" (size-1)
 780                     :   "memory");
 781}
 782
 783static __always_inline void mpx_check_lowerbound_helper(unsigned long ptr)
 784{
 785        /* F3 0F 1A /r  NDCL bnd, r/m64                 */
 786        /* f3 0f 1a 01  bndcl  (%rcx),%bnd0             */
 787        asm volatile(".byte 0xf3,0x0f,0x1a,0x01\n\t"
 788                     : : "c" (ptr)
 789                     :   "memory");
 790}
 791
 792static __always_inline void mpx_check_upperbound_helper(unsigned long ptr)
 793{
 794        /* F2 0F 1A /r  BNDCU bnd, r/m64        */
 795        /* f2 0f 1a 01  bndcu  (%rcx),%bnd0     */
 796        asm volatile(".byte 0xf2,0x0f,0x1a,0x01\n\t"
 797                     : : "c" (ptr)
 798                     :   "memory");
 799}
 800
 801static __always_inline void mpx_movbndreg_helper()
 802{
 803        /* 66 0F 1B /r  BNDMOV bnd1/m128, bnd2  */
 804        /* 66 0f 1b c2  bndmov %bnd0,%bnd2      */
 805
 806        asm volatile(".byte 0x66,0x0f,0x1b,0xc2\n\t");
 807}
 808
 809static __always_inline void mpx_movbnd2mem_helper(uint8_t *mem)
 810{
 811        /* 66 0F 1B /r  BNDMOV bnd1/m128, bnd2  */
 812        /* 66 0f 1b 01  bndmov %bnd0,(%rcx)     */
 813        asm volatile(".byte 0x66,0x0f,0x1b,0x01\n\t"
 814                     : : "c" (mem)
 815                     :   "memory");
 816}
 817
 818static __always_inline void mpx_movbnd_from_mem_helper(uint8_t *mem)
 819{
 820        /* 66 0F 1A /r  BNDMOV bnd1, bnd2/m128  */
 821        /* 66 0f 1a 01  bndmov (%rcx),%bnd0     */
 822        asm volatile(".byte 0x66,0x0f,0x1a,0x01\n\t"
 823                     : : "c" (mem)
 824                     :   "memory");
 825}
 826
 827static __always_inline void mpx_store_dsc_helper(unsigned long ptr_addr,
 828                unsigned long ptr_val)
 829{
 830        /* 0F 1B /r     BNDSTX-Store Extended Bounds Using Address Translation  */
 831        /* 0f 1b 04 11  bndstx %bnd0,(%rcx,%rdx,1)                              */
 832        asm volatile(".byte 0x0f,0x1b,0x04,0x11\n\t"
 833                     : : "c" (ptr_addr), "d" (ptr_val)
 834                     :   "memory");
 835}
 836
 837static __always_inline void mpx_load_dsc_helper(unsigned long ptr_addr,
 838                unsigned long ptr_val)
 839{
 840        /* 0F 1A /r     BNDLDX-Load                     */
 841        /*/ 0f 1a 04 11 bndldx (%rcx,%rdx,1),%bnd0      */
 842        asm volatile(".byte 0x0f,0x1a,0x04,0x11\n\t"
 843                     : : "c" (ptr_addr), "d" (ptr_val)
 844                     :   "memory");
 845}
 846
 847void __print_context(void *__print_xsave_buffer, int line)
 848{
 849        uint64_t *bounds = (uint64_t *)(__print_xsave_buffer + MPX_BOUNDS_OFFSET);
 850        uint64_t *cfg    = (uint64_t *)(__print_xsave_buffer + MPX_CONFIG_OFFSET);
 851
 852        int i;
 853        eprintf("%s()::%d\n", "print_context", line);
 854        for (i = 0; i < 4; i++) {
 855                eprintf("bound[%d]: 0x%016lx 0x%016lx(0x%016lx)\n", i,
 856                       (unsigned long)bounds[i*2],
 857                       ~(unsigned long)bounds[i*2+1],
 858                        (unsigned long)bounds[i*2+1]);
 859        }
 860
 861        eprintf("cpcfg: %jx  cpstatus: %jx\n", cfg[0], cfg[1]);
 862}
 863#define print_context(x) __print_context(x, __LINE__)
 864#ifdef DEBUG
 865#define dprint_context(x) print_context(x)
 866#else
 867#define dprint_context(x) do{}while(0)
 868#endif
 869
 870void init()
 871{
 872        int i;
 873
 874        srand((unsigned int)time(NULL));
 875
 876        for (i = 0; i < 4; i++) {
 877                shadow_plb[i][0] = 0;
 878                shadow_plb[i][1] = ~(unsigned long)0;
 879        }
 880}
 881
 882long int __mpx_random(int line)
 883{
 884#ifdef NOT_SO_RANDOM
 885        static long fake = 722122311;
 886        fake += 563792075;
 887        return fakse;
 888#else
 889        return random();
 890#endif
 891}
 892#define mpx_random() __mpx_random(__LINE__)
 893
 894uint8_t *get_random_addr()
 895{
 896        uint8_t*addr = (uint8_t *)(unsigned long)(rand() % MAX_ADDR_TESTED);
 897        return (addr - (unsigned long)addr % sizeof(uint8_t *));
 898}
 899
 900static inline bool compare_context(void *__xsave_buffer)
 901{
 902        uint64_t *bounds = (uint64_t *)(__xsave_buffer + MPX_BOUNDS_OFFSET);
 903
 904        int i;
 905        for (i = 0; i < 4; i++) {
 906                dprintf3("shadow[%d]{%016lx/%016lx}\nbounds[%d]{%016lx/%016lx}\n",
 907                       i, (unsigned long)shadow_plb[i][0], (unsigned long)shadow_plb[i][1],
 908                       i, (unsigned long)bounds[i*2],     ~(unsigned long)bounds[i*2+1]);
 909                if ((shadow_plb[i][0] != bounds[i*2]) ||
 910                    (shadow_plb[i][1] != ~(unsigned long)bounds[i*2+1])) {
 911                        eprintf("ERROR comparing shadow to real bound register %d\n", i);
 912                        eprintf("shadow{0x%016lx/0x%016lx}\nbounds{0x%016lx/0x%016lx}\n",
 913                               (unsigned long)shadow_plb[i][0], (unsigned long)shadow_plb[i][1],
 914                               (unsigned long)bounds[i*2], (unsigned long)bounds[i*2+1]);
 915                        return false;
 916                }
 917        }
 918
 919        return true;
 920}
 921
 922void mkbnd_shadow(uint8_t *ptr, int index, long offset)
 923{
 924        uint64_t *lower = (uint64_t *)&(shadow_plb[index][0]);
 925        uint64_t *upper = (uint64_t *)&(shadow_plb[index][1]);
 926        *lower = (unsigned long)ptr;
 927        *upper = (unsigned long)ptr + offset - 1;
 928}
 929
 930void check_lowerbound_shadow(uint8_t *ptr, int index)
 931{
 932        uint64_t *lower = (uint64_t *)&(shadow_plb[index][0]);
 933        if (*lower > (uint64_t)(unsigned long)ptr)
 934                num_lower_brs++;
 935        else
 936                dprintf1("LowerBoundChk passed:%p\n", ptr);
 937}
 938
 939void check_upperbound_shadow(uint8_t *ptr, int index)
 940{
 941        uint64_t upper = *(uint64_t *)&(shadow_plb[index][1]);
 942        if (upper < (uint64_t)(unsigned long)ptr)
 943                num_upper_brs++;
 944        else
 945                dprintf1("UpperBoundChk passed:%p\n", ptr);
 946}
 947
 948__always_inline void movbndreg_shadow(int src, int dest)
 949{
 950        shadow_plb[dest][0] = shadow_plb[src][0];
 951        shadow_plb[dest][1] = shadow_plb[src][1];
 952}
 953
 954__always_inline void movbnd2mem_shadow(int src, unsigned long *dest)
 955{
 956        unsigned long *lower = (unsigned long *)&(shadow_plb[src][0]);
 957        unsigned long *upper = (unsigned long *)&(shadow_plb[src][1]);
 958        *dest = *lower;
 959        *(dest+1) = *upper;
 960}
 961
 962__always_inline void movbnd_from_mem_shadow(unsigned long *src, int dest)
 963{
 964        unsigned long *lower = (unsigned long *)&(shadow_plb[dest][0]);
 965        unsigned long *upper = (unsigned long *)&(shadow_plb[dest][1]);
 966        *lower = *src;
 967        *upper = *(src+1);
 968}
 969
 970__always_inline void stdsc_shadow(int index, uint8_t *ptr, uint8_t *ptr_val)
 971{
 972        shadow_map[0] = (unsigned long)shadow_plb[index][0];
 973        shadow_map[1] = (unsigned long)shadow_plb[index][1];
 974        shadow_map[2] = (unsigned long)ptr_val;
 975        dprintf3("%s(%d, %p, %p) set shadow map[2]: %p\n", __func__,
 976                        index, ptr, ptr_val, ptr_val);
 977        /*ptr ignored */
 978}
 979
 980void lddsc_shadow(int index, uint8_t *ptr, uint8_t *ptr_val)
 981{
 982        uint64_t lower = shadow_map[0];
 983        uint64_t upper = shadow_map[1];
 984        uint8_t *value = (uint8_t *)shadow_map[2];
 985
 986        if (value != ptr_val) {
 987                dprintf2("%s(%d, %p, %p) init shadow bounds[%d] "
 988                         "because %p != %p\n", __func__, index, ptr,
 989                         ptr_val, index, value, ptr_val);
 990                shadow_plb[index][0] = 0;
 991                shadow_plb[index][1] = ~(unsigned long)0;
 992        } else {
 993                shadow_plb[index][0] = lower;
 994                shadow_plb[index][1] = upper;
 995        }
 996        /* ptr ignored */
 997}
 998
 999static __always_inline void mpx_test_helper0(uint8_t *buf, uint8_t *ptr)
1000{
1001        mpx_make_bound_helper((unsigned long)ptr, 0x1800);
1002}
1003
1004static __always_inline void mpx_test_helper0_shadow(uint8_t *buf, uint8_t *ptr)
1005{
1006        mkbnd_shadow(ptr, 0, 0x1800);
1007}
1008
1009static __always_inline void mpx_test_helper1(uint8_t *buf, uint8_t *ptr)
1010{
1011        /* these are hard-coded to check bnd0 */
1012        expected_bnd_index = 0;
1013        mpx_check_lowerbound_helper((unsigned long)(ptr-1));
1014        mpx_check_upperbound_helper((unsigned long)(ptr+0x1800));
1015        /* reset this since we do not expect any more bounds exceptions */
1016        expected_bnd_index = -1;
1017}
1018
1019static __always_inline void mpx_test_helper1_shadow(uint8_t *buf, uint8_t *ptr)
1020{
1021        check_lowerbound_shadow(ptr-1, 0);
1022        check_upperbound_shadow(ptr+0x1800, 0);
1023}
1024
1025static __always_inline void mpx_test_helper2(uint8_t *buf, uint8_t *ptr)
1026{
1027        mpx_make_bound_helper((unsigned long)ptr, 0x1800);
1028        mpx_movbndreg_helper();
1029        mpx_movbnd2mem_helper(buf);
1030        mpx_make_bound_helper((unsigned long)(ptr+0x12), 0x1800);
1031}
1032
1033static __always_inline void mpx_test_helper2_shadow(uint8_t *buf, uint8_t *ptr)
1034{
1035        mkbnd_shadow(ptr, 0, 0x1800);
1036        movbndreg_shadow(0, 2);
1037        movbnd2mem_shadow(0, (unsigned long *)buf);
1038        mkbnd_shadow(ptr+0x12, 0, 0x1800);
1039}
1040
1041static __always_inline void mpx_test_helper3(uint8_t *buf, uint8_t *ptr)
1042{
1043        mpx_movbnd_from_mem_helper(buf);
1044}
1045
1046static __always_inline void mpx_test_helper3_shadow(uint8_t *buf, uint8_t *ptr)
1047{
1048        movbnd_from_mem_shadow((unsigned long *)buf, 0);
1049}
1050
1051static __always_inline void mpx_test_helper4(uint8_t *buf, uint8_t *ptr)
1052{
1053        mpx_store_dsc_helper((unsigned long)buf, (unsigned long)ptr);
1054        mpx_make_bound_helper((unsigned long)(ptr+0x12), 0x1800);
1055}
1056
1057static __always_inline void mpx_test_helper4_shadow(uint8_t *buf, uint8_t *ptr)
1058{
1059        stdsc_shadow(0, buf, ptr);
1060        mkbnd_shadow(ptr+0x12, 0, 0x1800);
1061}
1062
1063static __always_inline void mpx_test_helper5(uint8_t *buf, uint8_t *ptr)
1064{
1065        mpx_load_dsc_helper((unsigned long)buf, (unsigned long)ptr);
1066}
1067
1068static __always_inline void mpx_test_helper5_shadow(uint8_t *buf, uint8_t *ptr)
1069{
1070        lddsc_shadow(0, buf, ptr);
1071}
1072
1073#define NR_MPX_TEST_FUNCTIONS 6
1074
1075/*
1076 * For compatibility reasons, MPX will clear the bounds registers
1077 * when you make function calls (among other things).  We have to
1078 * preserve the registers in between calls to the "helpers" since
1079 * they build on each other.
1080 *
1081 * Be very careful not to make any function calls inside the
1082 * helpers, or anywhere else beween the xrstor and xsave.
1083 */
1084#define run_helper(helper_nr, buf, buf_shadow, ptr)     do {    \
1085        xrstor_state(xsave_test_buf, flags);                    \
1086        mpx_test_helper##helper_nr(buf, ptr);                   \
1087        xsave_state(xsave_test_buf, flags);                     \
1088        mpx_test_helper##helper_nr##_shadow(buf_shadow, ptr);   \
1089} while (0)
1090
1091static void run_helpers(int nr, uint8_t *buf, uint8_t *buf_shadow, uint8_t *ptr)
1092{
1093        uint64_t flags = 0x18;
1094
1095        dprint_context(xsave_test_buf);
1096        switch (nr) {
1097        case 0:
1098                run_helper(0, buf, buf_shadow, ptr);
1099                break;
1100        case 1:
1101                run_helper(1, buf, buf_shadow, ptr);
1102                break;
1103        case 2:
1104                run_helper(2, buf, buf_shadow, ptr);
1105                break;
1106        case 3:
1107                run_helper(3, buf, buf_shadow, ptr);
1108                break;
1109        case 4:
1110                run_helper(4, buf, buf_shadow, ptr);
1111                break;
1112        case 5:
1113                run_helper(5, buf, buf_shadow, ptr);
1114                break;
1115        default:
1116                test_failed();
1117                break;
1118        }
1119        dprint_context(xsave_test_buf);
1120}
1121
1122unsigned long buf_shadow[1024]; /* used to check load / store descriptors */
1123extern long inspect_me(struct mpx_bounds_dir *bounds_dir);
1124
1125long cover_buf_with_bt_entries(void *buf, long buf_len)
1126{
1127        int i;
1128        long nr_to_fill;
1129        int ratio = 1000;
1130        unsigned long buf_len_in_ptrs;
1131
1132        /* Fill about 1/100 of the space with bt entries */
1133        nr_to_fill = buf_len / (sizeof(unsigned long) * ratio);
1134
1135        if (!nr_to_fill)
1136                dprintf3("%s() nr_to_fill: %ld\n", __func__, nr_to_fill);
1137
1138        /* Align the buffer to pointer size */
1139        while (((unsigned long)buf) % sizeof(void *)) {
1140                buf++;
1141                buf_len--;
1142        }
1143        /* We are storing pointers, so make */
1144        buf_len_in_ptrs = buf_len / sizeof(void *);
1145
1146        for (i = 0; i < nr_to_fill; i++) {
1147                long index = (mpx_random() % buf_len_in_ptrs);
1148                void *ptr = buf + index * sizeof(unsigned long);
1149                unsigned long ptr_addr = (unsigned long)ptr;
1150
1151                /* ptr and size can be anything */
1152                mpx_make_bound_helper((unsigned long)ptr, 8);
1153
1154                /*
1155                 * take bnd0 and put it in to bounds tables "buf + index" is an
1156                 * address inside the buffer where we are pretending that we
1157                 * are going to put a pointer We do not, though because we will
1158                 * never load entries from the table, so it doesn't matter.
1159                 */
1160                mpx_store_dsc_helper(ptr_addr, (unsigned long)ptr);
1161                dprintf4("storing bound table entry for %lx (buf start @ %p)\n",
1162                                ptr_addr, buf);
1163        }
1164        return nr_to_fill;
1165}
1166
1167unsigned long align_down(unsigned long alignme, unsigned long align_to)
1168{
1169        return alignme & ~(align_to-1);
1170}
1171
1172unsigned long align_up(unsigned long alignme, unsigned long align_to)
1173{
1174        return (alignme + align_to - 1) & ~(align_to-1);
1175}
1176
1177/*
1178 * Using 1MB alignment guarantees that each no allocation
1179 * will overlap with another's bounds tables.
1180 *
1181 * We have to cook our own allocator here.  malloc() can
1182 * mix other allocation with ours which means that even
1183 * if we free all of our allocations, there might still
1184 * be bounds tables for the *areas* since there is other
1185 * valid memory there.
1186 *
1187 * We also can't use malloc() because a free() of an area
1188 * might not free it back to the kernel.  We want it
1189 * completely unmapped an malloc() does not guarantee
1190 * that.
1191 */
1192#ifdef __i386__
1193long alignment = 4096;
1194long sz_alignment = 4096;
1195#else
1196long alignment = 1 * MB;
1197long sz_alignment = 1 * MB;
1198#endif
1199void *mpx_mini_alloc(unsigned long sz)
1200{
1201        unsigned long long tries = 0;
1202        static void *last;
1203        void *ptr;
1204        void *try_at;
1205
1206        sz = align_up(sz, sz_alignment);
1207
1208        try_at = last + alignment;
1209        while (1) {
1210                ptr = mmap(try_at, sz, PROT_READ|PROT_WRITE,
1211                                MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1212                if (ptr == (void *)-1)
1213                        return NULL;
1214                if (ptr == try_at)
1215                        break;
1216
1217                munmap(ptr, sz);
1218                try_at += alignment;
1219#ifdef __i386__
1220                /*
1221                 * This isn't quite correct for 32-bit binaries
1222                 * on 64-bit kernels since they can use the
1223                 * entire 32-bit address space, but it's close
1224                 * enough.
1225                 */
1226                if (try_at > (void *)0xC0000000)
1227#else
1228                if (try_at > (void *)0x0000800000000000)
1229#endif
1230                        try_at = (void *)0x0;
1231                if (!(++tries % 10000))
1232                        dprintf1("stuck in %s(), tries: %lld\n", __func__, tries);
1233                continue;
1234        }
1235        last = ptr;
1236        dprintf3("mpx_mini_alloc(0x%lx) returning: %p\n", sz, ptr);
1237        return ptr;
1238}
1239void mpx_mini_free(void *ptr, long sz)
1240{
1241        dprintf2("%s() ptr: %p\n", __func__, ptr);
1242        if ((unsigned long)ptr > 0x100000000000) {
1243                dprintf1("uh oh !!!!!!!!!!!!!!! pointer too high: %p\n", ptr);
1244                test_failed();
1245        }
1246        sz = align_up(sz, sz_alignment);
1247        dprintf3("%s() ptr: %p before munmap\n", __func__, ptr);
1248        munmap(ptr, sz);
1249        dprintf3("%s() ptr: %p DONE\n", __func__, ptr);
1250}
1251
1252#define NR_MALLOCS 100
1253struct one_malloc {
1254        char *ptr;
1255        int nr_filled_btes;
1256        unsigned long size;
1257};
1258struct one_malloc mallocs[NR_MALLOCS];
1259
1260void free_one_malloc(int index)
1261{
1262        unsigned long free_ptr;
1263        unsigned long mask;
1264
1265        if (!mallocs[index].ptr)
1266                return;
1267
1268        mpx_mini_free(mallocs[index].ptr, mallocs[index].size);
1269        dprintf4("freed[%d]:  %p\n", index, mallocs[index].ptr);
1270
1271        free_ptr = (unsigned long)mallocs[index].ptr;
1272        mask = alignment-1;
1273        dprintf4("lowerbits: %lx / %lx mask: %lx\n", free_ptr,
1274                        (free_ptr & mask), mask);
1275        assert((free_ptr & mask) == 0);
1276
1277        mallocs[index].ptr = NULL;
1278}
1279
1280#ifdef __i386__
1281#define MPX_BOUNDS_TABLE_COVERS 4096
1282#else
1283#define MPX_BOUNDS_TABLE_COVERS (1 * MB)
1284#endif
1285void zap_everything(void)
1286{
1287        long after_zap;
1288        long before_zap;
1289        int i;
1290
1291        before_zap = inspect_me(bounds_dir_ptr);
1292        dprintf1("zapping everything start: %ld\n", before_zap);
1293        for (i = 0; i < NR_MALLOCS; i++)
1294                free_one_malloc(i);
1295
1296        after_zap = inspect_me(bounds_dir_ptr);
1297        dprintf1("zapping everything done: %ld\n", after_zap);
1298        /*
1299         * We only guarantee to empty the thing out if our allocations are
1300         * exactly aligned on the boundaries of a boudns table.
1301         */
1302        if ((alignment >= MPX_BOUNDS_TABLE_COVERS) &&
1303            (sz_alignment >= MPX_BOUNDS_TABLE_COVERS)) {
1304                if (after_zap != 0)
1305                        test_failed();
1306
1307                assert(after_zap == 0);
1308        }
1309}
1310
1311void do_one_malloc(void)
1312{
1313        static int malloc_counter;
1314        long sz;
1315        int rand_index = (mpx_random() % NR_MALLOCS);
1316        void *ptr = mallocs[rand_index].ptr;
1317
1318        dprintf3("%s() enter\n", __func__);
1319
1320        if (ptr) {
1321                dprintf3("freeing one malloc at index: %d\n", rand_index);
1322                free_one_malloc(rand_index);
1323                if (mpx_random() % (NR_MALLOCS*3) == 3) {
1324                        int i;
1325                        dprintf3("zapping some more\n");
1326                        for (i = rand_index; i < NR_MALLOCS; i++)
1327                                free_one_malloc(i);
1328                }
1329                if ((mpx_random() % zap_all_every_this_many_mallocs) == 4)
1330                        zap_everything();
1331        }
1332
1333        /* 1->~1M */
1334        sz = (1 + mpx_random() % 1000) * 1000;
1335        ptr = mpx_mini_alloc(sz);
1336        if (!ptr) {
1337                /*
1338                 * If we are failing allocations, just assume we
1339                 * are out of memory and zap everything.
1340                 */
1341                dprintf3("zapping everything because out of memory\n");
1342                zap_everything();
1343                goto out;
1344        }
1345
1346        dprintf3("malloc: %p size: 0x%lx\n", ptr, sz);
1347        mallocs[rand_index].nr_filled_btes = cover_buf_with_bt_entries(ptr, sz);
1348        mallocs[rand_index].ptr = ptr;
1349        mallocs[rand_index].size = sz;
1350out:
1351        if ((++malloc_counter) % inspect_every_this_many_mallocs == 0)
1352                inspect_me(bounds_dir_ptr);
1353}
1354
1355void run_timed_test(void (*test_func)(void))
1356{
1357        int done = 0;
1358        long iteration = 0;
1359        static time_t last_print;
1360        time_t now;
1361        time_t start;
1362
1363        time(&start);
1364        while (!done) {
1365                time(&now);
1366                if ((now - start) > TEST_DURATION_SECS)
1367                        done = 1;
1368
1369                test_func();
1370                iteration++;
1371
1372                if ((now - last_print > 1) || done) {
1373                        printf("iteration %ld complete, OK so far\n", iteration);
1374                        last_print = now;
1375                }
1376        }
1377}
1378
1379void check_bounds_table_frees(void)
1380{
1381        printf("executing unmaptest\n");
1382        inspect_me(bounds_dir_ptr);
1383        run_timed_test(&do_one_malloc);
1384        printf("done with malloc() fun\n");
1385}
1386
1387void insn_test_failed(int test_nr, int test_round, void *buf,
1388                void *buf_shadow, void *ptr)
1389{
1390        print_context(xsave_test_buf);
1391        eprintf("ERROR: test %d round %d failed\n", test_nr, test_round);
1392        while (test_nr == 5) {
1393                struct mpx_bt_entry *bte;
1394                struct mpx_bounds_dir *bd = (void *)bounds_dir_ptr;
1395                struct mpx_bd_entry *bde = mpx_vaddr_to_bd_entry(buf, bd);
1396
1397                printf("  bd: %p\n", bd);
1398                printf("&bde: %p\n", bde);
1399                printf("*bde: %lx\n", *(unsigned long *)bde);
1400                if (!bd_entry_valid(bde))
1401                        break;
1402
1403                bte = mpx_vaddr_to_bt_entry(buf, bd);
1404                printf(" te: %p\n", bte);
1405                printf("bte[0]: %lx\n", bte->contents[0]);
1406                printf("bte[1]: %lx\n", bte->contents[1]);
1407                printf("bte[2]: %lx\n", bte->contents[2]);
1408                printf("bte[3]: %lx\n", bte->contents[3]);
1409                break;
1410        }
1411        test_failed();
1412}
1413
1414void check_mpx_insns_and_tables(void)
1415{
1416        int successes = 0;
1417        int failures  = 0;
1418        int buf_size = (1024*1024);
1419        unsigned long *buf = malloc(buf_size);
1420        const int total_nr_tests = NR_MPX_TEST_FUNCTIONS * TEST_ROUNDS;
1421        int i, j;
1422
1423        memset(buf, 0, buf_size);
1424        memset(buf_shadow, 0, sizeof(buf_shadow));
1425
1426        for (i = 0; i < TEST_ROUNDS; i++) {
1427                uint8_t *ptr = get_random_addr() + 8;
1428
1429                for (j = 0; j < NR_MPX_TEST_FUNCTIONS; j++) {
1430                        if (0 && j != 5) {
1431                                successes++;
1432                                continue;
1433                        }
1434                        dprintf2("starting test %d round %d\n", j, i);
1435                        dprint_context(xsave_test_buf);
1436                        /*
1437                         * test5 loads an address from the bounds tables.
1438                         * The load will only complete if 'ptr' matches
1439                         * the load and the store, so with random addrs,
1440                         * the odds of this are very small.  Make it
1441                         * higher by only moving 'ptr' 1/10 times.
1442                         */
1443                        if (random() % 10 <= 0)
1444                                ptr = get_random_addr() + 8;
1445                        dprintf3("random ptr{%p}\n", ptr);
1446                        dprint_context(xsave_test_buf);
1447                        run_helpers(j, (void *)buf, (void *)buf_shadow, ptr);
1448                        dprint_context(xsave_test_buf);
1449                        if (!compare_context(xsave_test_buf)) {
1450                                insn_test_failed(j, i, buf, buf_shadow, ptr);
1451                                failures++;
1452                                goto exit;
1453                        }
1454                        successes++;
1455                        dprint_context(xsave_test_buf);
1456                        dprintf2("finished test %d round %d\n", j, i);
1457                        dprintf3("\n");
1458                        dprint_context(xsave_test_buf);
1459                }
1460        }
1461
1462exit:
1463        dprintf2("\nabout to free:\n");
1464        free(buf);
1465        dprintf1("successes: %d\n", successes);
1466        dprintf1(" failures: %d\n", failures);
1467        dprintf1("    tests: %d\n", total_nr_tests);
1468        dprintf1(" expected: %jd #BRs\n", num_upper_brs + num_lower_brs);
1469        dprintf1("      saw: %d #BRs\n", br_count);
1470        if (failures) {
1471                eprintf("ERROR: non-zero number of failures\n");
1472                exit(20);
1473        }
1474        if (successes != total_nr_tests) {
1475                eprintf("ERROR: succeded fewer than number of tries (%d != %d)\n",
1476                                successes, total_nr_tests);
1477                exit(21);
1478        }
1479        if (num_upper_brs + num_lower_brs != br_count) {
1480                eprintf("ERROR: unexpected number of #BRs: %jd %jd %d\n",
1481                                num_upper_brs, num_lower_brs, br_count);
1482                eprintf("successes: %d\n", successes);
1483                eprintf(" failures: %d\n", failures);
1484                eprintf("    tests: %d\n", total_nr_tests);
1485                eprintf(" expected: %jd #BRs\n", num_upper_brs + num_lower_brs);
1486                eprintf("      saw: %d #BRs\n", br_count);
1487                exit(22);
1488        }
1489}
1490
1491/*
1492 * This is supposed to SIGSEGV nicely once the kernel
1493 * can no longer allocate vaddr space.
1494 */
1495void exhaust_vaddr_space(void)
1496{
1497        unsigned long ptr;
1498        /* Try to make sure there is no room for a bounds table anywhere */
1499        unsigned long skip = MPX_BOUNDS_TABLE_SIZE_BYTES - PAGE_SIZE;
1500#ifdef __i386__
1501        unsigned long max_vaddr = 0xf7788000UL;
1502#else
1503        unsigned long max_vaddr = 0x800000000000UL;
1504#endif
1505
1506        dprintf1("%s() start\n", __func__);
1507        /* do not start at 0, we aren't allowed to map there */
1508        for (ptr = PAGE_SIZE; ptr < max_vaddr; ptr += skip) {
1509                void *ptr_ret;
1510                int ret = madvise((void *)ptr, PAGE_SIZE, MADV_NORMAL);
1511
1512                if (!ret) {
1513                        dprintf1("madvise() %lx ret: %d\n", ptr, ret);
1514                        continue;
1515                }
1516                ptr_ret = mmap((void *)ptr, PAGE_SIZE, PROT_READ|PROT_WRITE,
1517                                MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1518                if (ptr_ret != (void *)ptr) {
1519                        perror("mmap");
1520                        dprintf1("mmap(%lx) ret: %p\n", ptr, ptr_ret);
1521                        break;
1522                }
1523                if (!(ptr & 0xffffff))
1524                        dprintf1("mmap(%lx) ret: %p\n", ptr, ptr_ret);
1525        }
1526        for (ptr = PAGE_SIZE; ptr < max_vaddr; ptr += skip) {
1527                dprintf2("covering 0x%lx with bounds table entries\n", ptr);
1528                cover_buf_with_bt_entries((void *)ptr, PAGE_SIZE);
1529        }
1530        dprintf1("%s() end\n", __func__);
1531        printf("done with vaddr space fun\n");
1532}
1533
1534void mpx_table_test(void)
1535{
1536        printf("starting mpx bounds table test\n");
1537        run_timed_test(check_mpx_insns_and_tables);
1538        printf("done with mpx bounds table test\n");
1539}
1540
1541int main(int argc, char **argv)
1542{
1543        int unmaptest = 0;
1544        int vaddrexhaust = 0;
1545        int tabletest = 0;
1546        int i;
1547
1548        check_mpx_support();
1549        mpx_prepare();
1550        srandom(11179);
1551
1552        bd_incore();
1553        init();
1554        bd_incore();
1555
1556        trace_me();
1557
1558        xsave_state((void *)xsave_test_buf, 0x1f);
1559        if (!compare_context(xsave_test_buf))
1560                printf("Init failed\n");
1561
1562        for (i = 1; i < argc; i++) {
1563                if (!strcmp(argv[i], "unmaptest"))
1564                        unmaptest = 1;
1565                if (!strcmp(argv[i], "vaddrexhaust"))
1566                        vaddrexhaust = 1;
1567                if (!strcmp(argv[i], "tabletest"))
1568                        tabletest = 1;
1569        }
1570        if (!(unmaptest || vaddrexhaust || tabletest)) {
1571                unmaptest = 1;
1572                /* vaddrexhaust = 1; */
1573                tabletest = 1;
1574        }
1575        if (unmaptest)
1576                check_bounds_table_frees();
1577        if (tabletest)
1578                mpx_table_test();
1579        if (vaddrexhaust)
1580                exhaust_vaddr_space();
1581        printf("%s completed successfully\n", argv[0]);
1582        exit(0);
1583}
1584
1585#include "mpx-dig.c"
1586