linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/ioctl.h>
  56#include <asm/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  75
  76/* Default doubles per-vcpu halt_poll_ns. */
  77static unsigned int halt_poll_ns_grow = 2;
  78module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
  79
  80/* Default resets per-vcpu halt_poll_ns . */
  81static unsigned int halt_poll_ns_shrink;
  82module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
  83
  84/*
  85 * Ordering of locks:
  86 *
  87 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  88 */
  89
  90DEFINE_SPINLOCK(kvm_lock);
  91static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  92LIST_HEAD(vm_list);
  93
  94static cpumask_var_t cpus_hardware_enabled;
  95static int kvm_usage_count;
  96static atomic_t hardware_enable_failed;
  97
  98struct kmem_cache *kvm_vcpu_cache;
  99EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 100
 101static __read_mostly struct preempt_ops kvm_preempt_ops;
 102
 103struct dentry *kvm_debugfs_dir;
 104EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 105
 106static int kvm_debugfs_num_entries;
 107static const struct file_operations *stat_fops_per_vm[];
 108
 109static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 110                           unsigned long arg);
 111#ifdef CONFIG_KVM_COMPAT
 112static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 113                                  unsigned long arg);
 114#endif
 115static int hardware_enable_all(void);
 116static void hardware_disable_all(void);
 117
 118static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 119
 120static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 121static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 122
 123__visible bool kvm_rebooting;
 124EXPORT_SYMBOL_GPL(kvm_rebooting);
 125
 126static bool largepages_enabled = true;
 127
 128bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 129{
 130        if (pfn_valid(pfn))
 131                return PageReserved(pfn_to_page(pfn));
 132
 133        return true;
 134}
 135
 136/*
 137 * Switches to specified vcpu, until a matching vcpu_put()
 138 */
 139int vcpu_load(struct kvm_vcpu *vcpu)
 140{
 141        int cpu;
 142
 143        if (mutex_lock_killable(&vcpu->mutex))
 144                return -EINTR;
 145        cpu = get_cpu();
 146        preempt_notifier_register(&vcpu->preempt_notifier);
 147        kvm_arch_vcpu_load(vcpu, cpu);
 148        put_cpu();
 149        return 0;
 150}
 151EXPORT_SYMBOL_GPL(vcpu_load);
 152
 153void vcpu_put(struct kvm_vcpu *vcpu)
 154{
 155        preempt_disable();
 156        kvm_arch_vcpu_put(vcpu);
 157        preempt_notifier_unregister(&vcpu->preempt_notifier);
 158        preempt_enable();
 159        mutex_unlock(&vcpu->mutex);
 160}
 161EXPORT_SYMBOL_GPL(vcpu_put);
 162
 163static void ack_flush(void *_completed)
 164{
 165}
 166
 167bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 168{
 169        int i, cpu, me;
 170        cpumask_var_t cpus;
 171        bool called = true;
 172        struct kvm_vcpu *vcpu;
 173
 174        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 175
 176        me = get_cpu();
 177        kvm_for_each_vcpu(i, vcpu, kvm) {
 178                kvm_make_request(req, vcpu);
 179                cpu = vcpu->cpu;
 180
 181                /* Set ->requests bit before we read ->mode. */
 182                smp_mb__after_atomic();
 183
 184                if (cpus != NULL && cpu != -1 && cpu != me &&
 185                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 186                        cpumask_set_cpu(cpu, cpus);
 187        }
 188        if (unlikely(cpus == NULL))
 189                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 190        else if (!cpumask_empty(cpus))
 191                smp_call_function_many(cpus, ack_flush, NULL, 1);
 192        else
 193                called = false;
 194        put_cpu();
 195        free_cpumask_var(cpus);
 196        return called;
 197}
 198
 199#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 200void kvm_flush_remote_tlbs(struct kvm *kvm)
 201{
 202        /*
 203         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 204         * kvm_make_all_cpus_request.
 205         */
 206        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 207
 208        /*
 209         * We want to publish modifications to the page tables before reading
 210         * mode. Pairs with a memory barrier in arch-specific code.
 211         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 212         * and smp_mb in walk_shadow_page_lockless_begin/end.
 213         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 214         *
 215         * There is already an smp_mb__after_atomic() before
 216         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 217         * barrier here.
 218         */
 219        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 220                ++kvm->stat.remote_tlb_flush;
 221        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 222}
 223EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 224#endif
 225
 226void kvm_reload_remote_mmus(struct kvm *kvm)
 227{
 228        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 229}
 230
 231int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 232{
 233        struct page *page;
 234        int r;
 235
 236        mutex_init(&vcpu->mutex);
 237        vcpu->cpu = -1;
 238        vcpu->kvm = kvm;
 239        vcpu->vcpu_id = id;
 240        vcpu->pid = NULL;
 241        init_swait_queue_head(&vcpu->wq);
 242        kvm_async_pf_vcpu_init(vcpu);
 243
 244        vcpu->pre_pcpu = -1;
 245        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 246
 247        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 248        if (!page) {
 249                r = -ENOMEM;
 250                goto fail;
 251        }
 252        vcpu->run = page_address(page);
 253
 254        kvm_vcpu_set_in_spin_loop(vcpu, false);
 255        kvm_vcpu_set_dy_eligible(vcpu, false);
 256        vcpu->preempted = false;
 257
 258        r = kvm_arch_vcpu_init(vcpu);
 259        if (r < 0)
 260                goto fail_free_run;
 261        return 0;
 262
 263fail_free_run:
 264        free_page((unsigned long)vcpu->run);
 265fail:
 266        return r;
 267}
 268EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 269
 270void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 271{
 272        put_pid(vcpu->pid);
 273        kvm_arch_vcpu_uninit(vcpu);
 274        free_page((unsigned long)vcpu->run);
 275}
 276EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 277
 278#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 279static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 280{
 281        return container_of(mn, struct kvm, mmu_notifier);
 282}
 283
 284static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 285                                             struct mm_struct *mm,
 286                                             unsigned long address)
 287{
 288        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 289        int need_tlb_flush, idx;
 290
 291        /*
 292         * When ->invalidate_page runs, the linux pte has been zapped
 293         * already but the page is still allocated until
 294         * ->invalidate_page returns. So if we increase the sequence
 295         * here the kvm page fault will notice if the spte can't be
 296         * established because the page is going to be freed. If
 297         * instead the kvm page fault establishes the spte before
 298         * ->invalidate_page runs, kvm_unmap_hva will release it
 299         * before returning.
 300         *
 301         * The sequence increase only need to be seen at spin_unlock
 302         * time, and not at spin_lock time.
 303         *
 304         * Increasing the sequence after the spin_unlock would be
 305         * unsafe because the kvm page fault could then establish the
 306         * pte after kvm_unmap_hva returned, without noticing the page
 307         * is going to be freed.
 308         */
 309        idx = srcu_read_lock(&kvm->srcu);
 310        spin_lock(&kvm->mmu_lock);
 311
 312        kvm->mmu_notifier_seq++;
 313        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 314        /* we've to flush the tlb before the pages can be freed */
 315        if (need_tlb_flush)
 316                kvm_flush_remote_tlbs(kvm);
 317
 318        spin_unlock(&kvm->mmu_lock);
 319
 320        kvm_arch_mmu_notifier_invalidate_page(kvm, address);
 321
 322        srcu_read_unlock(&kvm->srcu, idx);
 323}
 324
 325static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 326                                        struct mm_struct *mm,
 327                                        unsigned long address,
 328                                        pte_t pte)
 329{
 330        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 331        int idx;
 332
 333        idx = srcu_read_lock(&kvm->srcu);
 334        spin_lock(&kvm->mmu_lock);
 335        kvm->mmu_notifier_seq++;
 336        kvm_set_spte_hva(kvm, address, pte);
 337        spin_unlock(&kvm->mmu_lock);
 338        srcu_read_unlock(&kvm->srcu, idx);
 339}
 340
 341static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 342                                                    struct mm_struct *mm,
 343                                                    unsigned long start,
 344                                                    unsigned long end)
 345{
 346        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 347        int need_tlb_flush = 0, idx;
 348
 349        idx = srcu_read_lock(&kvm->srcu);
 350        spin_lock(&kvm->mmu_lock);
 351        /*
 352         * The count increase must become visible at unlock time as no
 353         * spte can be established without taking the mmu_lock and
 354         * count is also read inside the mmu_lock critical section.
 355         */
 356        kvm->mmu_notifier_count++;
 357        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 358        need_tlb_flush |= kvm->tlbs_dirty;
 359        /* we've to flush the tlb before the pages can be freed */
 360        if (need_tlb_flush)
 361                kvm_flush_remote_tlbs(kvm);
 362
 363        spin_unlock(&kvm->mmu_lock);
 364        srcu_read_unlock(&kvm->srcu, idx);
 365}
 366
 367static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 368                                                  struct mm_struct *mm,
 369                                                  unsigned long start,
 370                                                  unsigned long end)
 371{
 372        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 373
 374        spin_lock(&kvm->mmu_lock);
 375        /*
 376         * This sequence increase will notify the kvm page fault that
 377         * the page that is going to be mapped in the spte could have
 378         * been freed.
 379         */
 380        kvm->mmu_notifier_seq++;
 381        smp_wmb();
 382        /*
 383         * The above sequence increase must be visible before the
 384         * below count decrease, which is ensured by the smp_wmb above
 385         * in conjunction with the smp_rmb in mmu_notifier_retry().
 386         */
 387        kvm->mmu_notifier_count--;
 388        spin_unlock(&kvm->mmu_lock);
 389
 390        BUG_ON(kvm->mmu_notifier_count < 0);
 391}
 392
 393static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 394                                              struct mm_struct *mm,
 395                                              unsigned long start,
 396                                              unsigned long end)
 397{
 398        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 399        int young, idx;
 400
 401        idx = srcu_read_lock(&kvm->srcu);
 402        spin_lock(&kvm->mmu_lock);
 403
 404        young = kvm_age_hva(kvm, start, end);
 405        if (young)
 406                kvm_flush_remote_tlbs(kvm);
 407
 408        spin_unlock(&kvm->mmu_lock);
 409        srcu_read_unlock(&kvm->srcu, idx);
 410
 411        return young;
 412}
 413
 414static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 415                                        struct mm_struct *mm,
 416                                        unsigned long start,
 417                                        unsigned long end)
 418{
 419        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 420        int young, idx;
 421
 422        idx = srcu_read_lock(&kvm->srcu);
 423        spin_lock(&kvm->mmu_lock);
 424        /*
 425         * Even though we do not flush TLB, this will still adversely
 426         * affect performance on pre-Haswell Intel EPT, where there is
 427         * no EPT Access Bit to clear so that we have to tear down EPT
 428         * tables instead. If we find this unacceptable, we can always
 429         * add a parameter to kvm_age_hva so that it effectively doesn't
 430         * do anything on clear_young.
 431         *
 432         * Also note that currently we never issue secondary TLB flushes
 433         * from clear_young, leaving this job up to the regular system
 434         * cadence. If we find this inaccurate, we might come up with a
 435         * more sophisticated heuristic later.
 436         */
 437        young = kvm_age_hva(kvm, start, end);
 438        spin_unlock(&kvm->mmu_lock);
 439        srcu_read_unlock(&kvm->srcu, idx);
 440
 441        return young;
 442}
 443
 444static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 445                                       struct mm_struct *mm,
 446                                       unsigned long address)
 447{
 448        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 449        int young, idx;
 450
 451        idx = srcu_read_lock(&kvm->srcu);
 452        spin_lock(&kvm->mmu_lock);
 453        young = kvm_test_age_hva(kvm, address);
 454        spin_unlock(&kvm->mmu_lock);
 455        srcu_read_unlock(&kvm->srcu, idx);
 456
 457        return young;
 458}
 459
 460static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 461                                     struct mm_struct *mm)
 462{
 463        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 464        int idx;
 465
 466        idx = srcu_read_lock(&kvm->srcu);
 467        kvm_arch_flush_shadow_all(kvm);
 468        srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 472        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 473        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 474        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 475        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 476        .clear_young            = kvm_mmu_notifier_clear_young,
 477        .test_young             = kvm_mmu_notifier_test_young,
 478        .change_pte             = kvm_mmu_notifier_change_pte,
 479        .release                = kvm_mmu_notifier_release,
 480};
 481
 482static int kvm_init_mmu_notifier(struct kvm *kvm)
 483{
 484        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 485        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 486}
 487
 488#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 489
 490static int kvm_init_mmu_notifier(struct kvm *kvm)
 491{
 492        return 0;
 493}
 494
 495#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 496
 497static struct kvm_memslots *kvm_alloc_memslots(void)
 498{
 499        int i;
 500        struct kvm_memslots *slots;
 501
 502        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 503        if (!slots)
 504                return NULL;
 505
 506        /*
 507         * Init kvm generation close to the maximum to easily test the
 508         * code of handling generation number wrap-around.
 509         */
 510        slots->generation = -150;
 511        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 512                slots->id_to_index[i] = slots->memslots[i].id = i;
 513
 514        return slots;
 515}
 516
 517static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 518{
 519        if (!memslot->dirty_bitmap)
 520                return;
 521
 522        kvfree(memslot->dirty_bitmap);
 523        memslot->dirty_bitmap = NULL;
 524}
 525
 526/*
 527 * Free any memory in @free but not in @dont.
 528 */
 529static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 530                              struct kvm_memory_slot *dont)
 531{
 532        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 533                kvm_destroy_dirty_bitmap(free);
 534
 535        kvm_arch_free_memslot(kvm, free, dont);
 536
 537        free->npages = 0;
 538}
 539
 540static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 541{
 542        struct kvm_memory_slot *memslot;
 543
 544        if (!slots)
 545                return;
 546
 547        kvm_for_each_memslot(memslot, slots)
 548                kvm_free_memslot(kvm, memslot, NULL);
 549
 550        kvfree(slots);
 551}
 552
 553static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 554{
 555        int i;
 556
 557        if (!kvm->debugfs_dentry)
 558                return;
 559
 560        debugfs_remove_recursive(kvm->debugfs_dentry);
 561
 562        if (kvm->debugfs_stat_data) {
 563                for (i = 0; i < kvm_debugfs_num_entries; i++)
 564                        kfree(kvm->debugfs_stat_data[i]);
 565                kfree(kvm->debugfs_stat_data);
 566        }
 567}
 568
 569static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 570{
 571        char dir_name[ITOA_MAX_LEN * 2];
 572        struct kvm_stat_data *stat_data;
 573        struct kvm_stats_debugfs_item *p;
 574
 575        if (!debugfs_initialized())
 576                return 0;
 577
 578        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 579        kvm->debugfs_dentry = debugfs_create_dir(dir_name,
 580                                                 kvm_debugfs_dir);
 581        if (!kvm->debugfs_dentry)
 582                return -ENOMEM;
 583
 584        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 585                                         sizeof(*kvm->debugfs_stat_data),
 586                                         GFP_KERNEL);
 587        if (!kvm->debugfs_stat_data)
 588                return -ENOMEM;
 589
 590        for (p = debugfs_entries; p->name; p++) {
 591                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 592                if (!stat_data)
 593                        return -ENOMEM;
 594
 595                stat_data->kvm = kvm;
 596                stat_data->offset = p->offset;
 597                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 598                if (!debugfs_create_file(p->name, 0444,
 599                                         kvm->debugfs_dentry,
 600                                         stat_data,
 601                                         stat_fops_per_vm[p->kind]))
 602                        return -ENOMEM;
 603        }
 604        return 0;
 605}
 606
 607static struct kvm *kvm_create_vm(unsigned long type)
 608{
 609        int r, i;
 610        struct kvm *kvm = kvm_arch_alloc_vm();
 611
 612        if (!kvm)
 613                return ERR_PTR(-ENOMEM);
 614
 615        spin_lock_init(&kvm->mmu_lock);
 616        atomic_inc(&current->mm->mm_count);
 617        kvm->mm = current->mm;
 618        kvm_eventfd_init(kvm);
 619        mutex_init(&kvm->lock);
 620        mutex_init(&kvm->irq_lock);
 621        mutex_init(&kvm->slots_lock);
 622        atomic_set(&kvm->users_count, 1);
 623        INIT_LIST_HEAD(&kvm->devices);
 624
 625        r = kvm_arch_init_vm(kvm, type);
 626        if (r)
 627                goto out_err_no_disable;
 628
 629        r = hardware_enable_all();
 630        if (r)
 631                goto out_err_no_disable;
 632
 633#ifdef CONFIG_HAVE_KVM_IRQFD
 634        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 635#endif
 636
 637        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 638
 639        r = -ENOMEM;
 640        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 641                kvm->memslots[i] = kvm_alloc_memslots();
 642                if (!kvm->memslots[i])
 643                        goto out_err_no_srcu;
 644        }
 645
 646        if (init_srcu_struct(&kvm->srcu))
 647                goto out_err_no_srcu;
 648        if (init_srcu_struct(&kvm->irq_srcu))
 649                goto out_err_no_irq_srcu;
 650        for (i = 0; i < KVM_NR_BUSES; i++) {
 651                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 652                                        GFP_KERNEL);
 653                if (!kvm->buses[i])
 654                        goto out_err;
 655        }
 656
 657        r = kvm_init_mmu_notifier(kvm);
 658        if (r)
 659                goto out_err;
 660
 661        spin_lock(&kvm_lock);
 662        list_add(&kvm->vm_list, &vm_list);
 663        spin_unlock(&kvm_lock);
 664
 665        preempt_notifier_inc();
 666
 667        return kvm;
 668
 669out_err:
 670        cleanup_srcu_struct(&kvm->irq_srcu);
 671out_err_no_irq_srcu:
 672        cleanup_srcu_struct(&kvm->srcu);
 673out_err_no_srcu:
 674        hardware_disable_all();
 675out_err_no_disable:
 676        for (i = 0; i < KVM_NR_BUSES; i++)
 677                kfree(kvm->buses[i]);
 678        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 679                kvm_free_memslots(kvm, kvm->memslots[i]);
 680        kvm_arch_free_vm(kvm);
 681        mmdrop(current->mm);
 682        return ERR_PTR(r);
 683}
 684
 685/*
 686 * Avoid using vmalloc for a small buffer.
 687 * Should not be used when the size is statically known.
 688 */
 689void *kvm_kvzalloc(unsigned long size)
 690{
 691        if (size > PAGE_SIZE)
 692                return vzalloc(size);
 693        else
 694                return kzalloc(size, GFP_KERNEL);
 695}
 696
 697static void kvm_destroy_devices(struct kvm *kvm)
 698{
 699        struct kvm_device *dev, *tmp;
 700
 701        /*
 702         * We do not need to take the kvm->lock here, because nobody else
 703         * has a reference to the struct kvm at this point and therefore
 704         * cannot access the devices list anyhow.
 705         */
 706        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 707                list_del(&dev->vm_node);
 708                dev->ops->destroy(dev);
 709        }
 710}
 711
 712static void kvm_destroy_vm(struct kvm *kvm)
 713{
 714        int i;
 715        struct mm_struct *mm = kvm->mm;
 716
 717        kvm_destroy_vm_debugfs(kvm);
 718        kvm_arch_sync_events(kvm);
 719        spin_lock(&kvm_lock);
 720        list_del(&kvm->vm_list);
 721        spin_unlock(&kvm_lock);
 722        kvm_free_irq_routing(kvm);
 723        for (i = 0; i < KVM_NR_BUSES; i++)
 724                kvm_io_bus_destroy(kvm->buses[i]);
 725        kvm_coalesced_mmio_free(kvm);
 726#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 727        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 728#else
 729        kvm_arch_flush_shadow_all(kvm);
 730#endif
 731        kvm_arch_destroy_vm(kvm);
 732        kvm_destroy_devices(kvm);
 733        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 734                kvm_free_memslots(kvm, kvm->memslots[i]);
 735        cleanup_srcu_struct(&kvm->irq_srcu);
 736        cleanup_srcu_struct(&kvm->srcu);
 737        kvm_arch_free_vm(kvm);
 738        preempt_notifier_dec();
 739        hardware_disable_all();
 740        mmdrop(mm);
 741}
 742
 743void kvm_get_kvm(struct kvm *kvm)
 744{
 745        atomic_inc(&kvm->users_count);
 746}
 747EXPORT_SYMBOL_GPL(kvm_get_kvm);
 748
 749void kvm_put_kvm(struct kvm *kvm)
 750{
 751        if (atomic_dec_and_test(&kvm->users_count))
 752                kvm_destroy_vm(kvm);
 753}
 754EXPORT_SYMBOL_GPL(kvm_put_kvm);
 755
 756
 757static int kvm_vm_release(struct inode *inode, struct file *filp)
 758{
 759        struct kvm *kvm = filp->private_data;
 760
 761        kvm_irqfd_release(kvm);
 762
 763        kvm_put_kvm(kvm);
 764        return 0;
 765}
 766
 767/*
 768 * Allocation size is twice as large as the actual dirty bitmap size.
 769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 770 */
 771static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 772{
 773        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 774
 775        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 776        if (!memslot->dirty_bitmap)
 777                return -ENOMEM;
 778
 779        return 0;
 780}
 781
 782/*
 783 * Insert memslot and re-sort memslots based on their GFN,
 784 * so binary search could be used to lookup GFN.
 785 * Sorting algorithm takes advantage of having initially
 786 * sorted array and known changed memslot position.
 787 */
 788static void update_memslots(struct kvm_memslots *slots,
 789                            struct kvm_memory_slot *new)
 790{
 791        int id = new->id;
 792        int i = slots->id_to_index[id];
 793        struct kvm_memory_slot *mslots = slots->memslots;
 794
 795        WARN_ON(mslots[i].id != id);
 796        if (!new->npages) {
 797                WARN_ON(!mslots[i].npages);
 798                if (mslots[i].npages)
 799                        slots->used_slots--;
 800        } else {
 801                if (!mslots[i].npages)
 802                        slots->used_slots++;
 803        }
 804
 805        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 806               new->base_gfn <= mslots[i + 1].base_gfn) {
 807                if (!mslots[i + 1].npages)
 808                        break;
 809                mslots[i] = mslots[i + 1];
 810                slots->id_to_index[mslots[i].id] = i;
 811                i++;
 812        }
 813
 814        /*
 815         * The ">=" is needed when creating a slot with base_gfn == 0,
 816         * so that it moves before all those with base_gfn == npages == 0.
 817         *
 818         * On the other hand, if new->npages is zero, the above loop has
 819         * already left i pointing to the beginning of the empty part of
 820         * mslots, and the ">=" would move the hole backwards in this
 821         * case---which is wrong.  So skip the loop when deleting a slot.
 822         */
 823        if (new->npages) {
 824                while (i > 0 &&
 825                       new->base_gfn >= mslots[i - 1].base_gfn) {
 826                        mslots[i] = mslots[i - 1];
 827                        slots->id_to_index[mslots[i].id] = i;
 828                        i--;
 829                }
 830        } else
 831                WARN_ON_ONCE(i != slots->used_slots);
 832
 833        mslots[i] = *new;
 834        slots->id_to_index[mslots[i].id] = i;
 835}
 836
 837static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 838{
 839        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 840
 841#ifdef __KVM_HAVE_READONLY_MEM
 842        valid_flags |= KVM_MEM_READONLY;
 843#endif
 844
 845        if (mem->flags & ~valid_flags)
 846                return -EINVAL;
 847
 848        return 0;
 849}
 850
 851static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 852                int as_id, struct kvm_memslots *slots)
 853{
 854        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 855
 856        /*
 857         * Set the low bit in the generation, which disables SPTE caching
 858         * until the end of synchronize_srcu_expedited.
 859         */
 860        WARN_ON(old_memslots->generation & 1);
 861        slots->generation = old_memslots->generation + 1;
 862
 863        rcu_assign_pointer(kvm->memslots[as_id], slots);
 864        synchronize_srcu_expedited(&kvm->srcu);
 865
 866        /*
 867         * Increment the new memslot generation a second time. This prevents
 868         * vm exits that race with memslot updates from caching a memslot
 869         * generation that will (potentially) be valid forever.
 870         */
 871        slots->generation++;
 872
 873        kvm_arch_memslots_updated(kvm, slots);
 874
 875        return old_memslots;
 876}
 877
 878/*
 879 * Allocate some memory and give it an address in the guest physical address
 880 * space.
 881 *
 882 * Discontiguous memory is allowed, mostly for framebuffers.
 883 *
 884 * Must be called holding kvm->slots_lock for write.
 885 */
 886int __kvm_set_memory_region(struct kvm *kvm,
 887                            const struct kvm_userspace_memory_region *mem)
 888{
 889        int r;
 890        gfn_t base_gfn;
 891        unsigned long npages;
 892        struct kvm_memory_slot *slot;
 893        struct kvm_memory_slot old, new;
 894        struct kvm_memslots *slots = NULL, *old_memslots;
 895        int as_id, id;
 896        enum kvm_mr_change change;
 897
 898        r = check_memory_region_flags(mem);
 899        if (r)
 900                goto out;
 901
 902        r = -EINVAL;
 903        as_id = mem->slot >> 16;
 904        id = (u16)mem->slot;
 905
 906        /* General sanity checks */
 907        if (mem->memory_size & (PAGE_SIZE - 1))
 908                goto out;
 909        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 910                goto out;
 911        /* We can read the guest memory with __xxx_user() later on. */
 912        if ((id < KVM_USER_MEM_SLOTS) &&
 913            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 914             !access_ok(VERIFY_WRITE,
 915                        (void __user *)(unsigned long)mem->userspace_addr,
 916                        mem->memory_size)))
 917                goto out;
 918        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 919                goto out;
 920        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 921                goto out;
 922
 923        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 924        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 925        npages = mem->memory_size >> PAGE_SHIFT;
 926
 927        if (npages > KVM_MEM_MAX_NR_PAGES)
 928                goto out;
 929
 930        new = old = *slot;
 931
 932        new.id = id;
 933        new.base_gfn = base_gfn;
 934        new.npages = npages;
 935        new.flags = mem->flags;
 936
 937        if (npages) {
 938                if (!old.npages)
 939                        change = KVM_MR_CREATE;
 940                else { /* Modify an existing slot. */
 941                        if ((mem->userspace_addr != old.userspace_addr) ||
 942                            (npages != old.npages) ||
 943                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 944                                goto out;
 945
 946                        if (base_gfn != old.base_gfn)
 947                                change = KVM_MR_MOVE;
 948                        else if (new.flags != old.flags)
 949                                change = KVM_MR_FLAGS_ONLY;
 950                        else { /* Nothing to change. */
 951                                r = 0;
 952                                goto out;
 953                        }
 954                }
 955        } else {
 956                if (!old.npages)
 957                        goto out;
 958
 959                change = KVM_MR_DELETE;
 960                new.base_gfn = 0;
 961                new.flags = 0;
 962        }
 963
 964        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 965                /* Check for overlaps */
 966                r = -EEXIST;
 967                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 968                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 969                            (slot->id == id))
 970                                continue;
 971                        if (!((base_gfn + npages <= slot->base_gfn) ||
 972                              (base_gfn >= slot->base_gfn + slot->npages)))
 973                                goto out;
 974                }
 975        }
 976
 977        /* Free page dirty bitmap if unneeded */
 978        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 979                new.dirty_bitmap = NULL;
 980
 981        r = -ENOMEM;
 982        if (change == KVM_MR_CREATE) {
 983                new.userspace_addr = mem->userspace_addr;
 984
 985                if (kvm_arch_create_memslot(kvm, &new, npages))
 986                        goto out_free;
 987        }
 988
 989        /* Allocate page dirty bitmap if needed */
 990        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 991                if (kvm_create_dirty_bitmap(&new) < 0)
 992                        goto out_free;
 993        }
 994
 995        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 996        if (!slots)
 997                goto out_free;
 998        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
 999
1000        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001                slot = id_to_memslot(slots, id);
1002                slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004                old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006                /* slot was deleted or moved, clear iommu mapping */
1007                kvm_iommu_unmap_pages(kvm, &old);
1008                /* From this point no new shadow pages pointing to a deleted,
1009                 * or moved, memslot will be created.
1010                 *
1011                 * validation of sp->gfn happens in:
1012                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                 *      - kvm_is_visible_gfn (mmu_check_roots)
1014                 */
1015                kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                /*
1018                 * We can re-use the old_memslots from above, the only difference
1019                 * from the currently installed memslots is the invalid flag.  This
1020                 * will get overwritten by update_memslots anyway.
1021                 */
1022                slots = old_memslots;
1023        }
1024
1025        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026        if (r)
1027                goto out_slots;
1028
1029        /* actual memory is freed via old in kvm_free_memslot below */
1030        if (change == KVM_MR_DELETE) {
1031                new.dirty_bitmap = NULL;
1032                memset(&new.arch, 0, sizeof(new.arch));
1033        }
1034
1035        update_memslots(slots, &new);
1036        old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040        kvm_free_memslot(kvm, &old, &new);
1041        kvfree(old_memslots);
1042
1043        /*
1044         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045         * un-mapped and re-mapped if their base changes.  Since base change
1046         * unmapping is handled above with slot deletion, mapping alone is
1047         * needed here.  Anything else the iommu might care about for existing
1048         * slots (size changes, userspace addr changes and read-only flag
1049         * changes) is disallowed above, so any other attribute changes getting
1050         * here can be skipped.
1051         */
1052        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053                r = kvm_iommu_map_pages(kvm, &new);
1054                return r;
1055        }
1056
1057        return 0;
1058
1059out_slots:
1060        kvfree(slots);
1061out_free:
1062        kvm_free_memslot(kvm, &new, &old);
1063out:
1064        return r;
1065}
1066EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068int kvm_set_memory_region(struct kvm *kvm,
1069                          const struct kvm_userspace_memory_region *mem)
1070{
1071        int r;
1072
1073        mutex_lock(&kvm->slots_lock);
1074        r = __kvm_set_memory_region(kvm, mem);
1075        mutex_unlock(&kvm->slots_lock);
1076        return r;
1077}
1078EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081                                          struct kvm_userspace_memory_region *mem)
1082{
1083        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084                return -EINVAL;
1085
1086        return kvm_set_memory_region(kvm, mem);
1087}
1088
1089int kvm_get_dirty_log(struct kvm *kvm,
1090                        struct kvm_dirty_log *log, int *is_dirty)
1091{
1092        struct kvm_memslots *slots;
1093        struct kvm_memory_slot *memslot;
1094        int r, i, as_id, id;
1095        unsigned long n;
1096        unsigned long any = 0;
1097
1098        r = -EINVAL;
1099        as_id = log->slot >> 16;
1100        id = (u16)log->slot;
1101        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102                goto out;
1103
1104        slots = __kvm_memslots(kvm, as_id);
1105        memslot = id_to_memslot(slots, id);
1106        r = -ENOENT;
1107        if (!memslot->dirty_bitmap)
1108                goto out;
1109
1110        n = kvm_dirty_bitmap_bytes(memslot);
1111
1112        for (i = 0; !any && i < n/sizeof(long); ++i)
1113                any = memslot->dirty_bitmap[i];
1114
1115        r = -EFAULT;
1116        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117                goto out;
1118
1119        if (any)
1120                *is_dirty = 1;
1121
1122        r = 0;
1123out:
1124        return r;
1125}
1126EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129/**
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 *      are dirty write protect them for next write.
1132 * @kvm:        pointer to kvm instance
1133 * @log:        slot id and address to which we copy the log
1134 * @is_dirty:   flag set if any page is dirty
1135 *
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1139 *
1140 *    1. Take a snapshot of the bit and clear it if needed.
1141 *    2. Write protect the corresponding page.
1142 *    3. Copy the snapshot to the userspace.
1143 *    4. Upon return caller flushes TLB's if needed.
1144 *
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry.  This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1149 *
1150 */
1151int kvm_get_dirty_log_protect(struct kvm *kvm,
1152                        struct kvm_dirty_log *log, bool *is_dirty)
1153{
1154        struct kvm_memslots *slots;
1155        struct kvm_memory_slot *memslot;
1156        int r, i, as_id, id;
1157        unsigned long n;
1158        unsigned long *dirty_bitmap;
1159        unsigned long *dirty_bitmap_buffer;
1160
1161        r = -EINVAL;
1162        as_id = log->slot >> 16;
1163        id = (u16)log->slot;
1164        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165                goto out;
1166
1167        slots = __kvm_memslots(kvm, as_id);
1168        memslot = id_to_memslot(slots, id);
1169
1170        dirty_bitmap = memslot->dirty_bitmap;
1171        r = -ENOENT;
1172        if (!dirty_bitmap)
1173                goto out;
1174
1175        n = kvm_dirty_bitmap_bytes(memslot);
1176
1177        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178        memset(dirty_bitmap_buffer, 0, n);
1179
1180        spin_lock(&kvm->mmu_lock);
1181        *is_dirty = false;
1182        for (i = 0; i < n / sizeof(long); i++) {
1183                unsigned long mask;
1184                gfn_t offset;
1185
1186                if (!dirty_bitmap[i])
1187                        continue;
1188
1189                *is_dirty = true;
1190
1191                mask = xchg(&dirty_bitmap[i], 0);
1192                dirty_bitmap_buffer[i] = mask;
1193
1194                if (mask) {
1195                        offset = i * BITS_PER_LONG;
1196                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197                                                                offset, mask);
1198                }
1199        }
1200
1201        spin_unlock(&kvm->mmu_lock);
1202
1203        r = -EFAULT;
1204        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205                goto out;
1206
1207        r = 0;
1208out:
1209        return r;
1210}
1211EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212#endif
1213
1214bool kvm_largepages_enabled(void)
1215{
1216        return largepages_enabled;
1217}
1218
1219void kvm_disable_largepages(void)
1220{
1221        largepages_enabled = false;
1222}
1223EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226{
1227        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228}
1229EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232{
1233        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234}
1235
1236bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237{
1238        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241              memslot->flags & KVM_MEMSLOT_INVALID)
1242                return false;
1243
1244        return true;
1245}
1246EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249{
1250        struct vm_area_struct *vma;
1251        unsigned long addr, size;
1252
1253        size = PAGE_SIZE;
1254
1255        addr = gfn_to_hva(kvm, gfn);
1256        if (kvm_is_error_hva(addr))
1257                return PAGE_SIZE;
1258
1259        down_read(&current->mm->mmap_sem);
1260        vma = find_vma(current->mm, addr);
1261        if (!vma)
1262                goto out;
1263
1264        size = vma_kernel_pagesize(vma);
1265
1266out:
1267        up_read(&current->mm->mmap_sem);
1268
1269        return size;
1270}
1271
1272static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273{
1274        return slot->flags & KVM_MEM_READONLY;
1275}
1276
1277static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                       gfn_t *nr_pages, bool write)
1279{
1280        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281                return KVM_HVA_ERR_BAD;
1282
1283        if (memslot_is_readonly(slot) && write)
1284                return KVM_HVA_ERR_RO_BAD;
1285
1286        if (nr_pages)
1287                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289        return __gfn_to_hva_memslot(slot, gfn);
1290}
1291
1292static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293                                     gfn_t *nr_pages)
1294{
1295        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296}
1297
1298unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299                                        gfn_t gfn)
1300{
1301        return gfn_to_hva_many(slot, gfn, NULL);
1302}
1303EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306{
1307        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308}
1309EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312{
1313        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314}
1315EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317/*
1318 * If writable is set to false, the hva returned by this function is only
1319 * allowed to be read.
1320 */
1321unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322                                      gfn_t gfn, bool *writable)
1323{
1324        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326        if (!kvm_is_error_hva(hva) && writable)
1327                *writable = !memslot_is_readonly(slot);
1328
1329        return hva;
1330}
1331
1332unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333{
1334        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337}
1338
1339unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340{
1341        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344}
1345
1346static int get_user_page_nowait(unsigned long start, int write,
1347                struct page **page)
1348{
1349        int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350
1351        if (write)
1352                flags |= FOLL_WRITE;
1353
1354        return get_user_pages(start, 1, flags, page, NULL);
1355}
1356
1357static inline int check_user_page_hwpoison(unsigned long addr)
1358{
1359        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360
1361        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362        return rc == -EHWPOISON;
1363}
1364
1365/*
1366 * The atomic path to get the writable pfn which will be stored in @pfn,
1367 * true indicates success, otherwise false is returned.
1368 */
1369static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371{
1372        struct page *page[1];
1373        int npages;
1374
1375        if (!(async || atomic))
1376                return false;
1377
1378        /*
1379         * Fast pin a writable pfn only if it is a write fault request
1380         * or the caller allows to map a writable pfn for a read fault
1381         * request.
1382         */
1383        if (!(write_fault || writable))
1384                return false;
1385
1386        npages = __get_user_pages_fast(addr, 1, 1, page);
1387        if (npages == 1) {
1388                *pfn = page_to_pfn(page[0]);
1389
1390                if (writable)
1391                        *writable = true;
1392                return true;
1393        }
1394
1395        return false;
1396}
1397
1398/*
1399 * The slow path to get the pfn of the specified host virtual address,
1400 * 1 indicates success, -errno is returned if error is detected.
1401 */
1402static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403                           bool *writable, kvm_pfn_t *pfn)
1404{
1405        struct page *page[1];
1406        int npages = 0;
1407
1408        might_sleep();
1409
1410        if (writable)
1411                *writable = write_fault;
1412
1413        if (async) {
1414                down_read(&current->mm->mmap_sem);
1415                npages = get_user_page_nowait(addr, write_fault, page);
1416                up_read(&current->mm->mmap_sem);
1417        } else {
1418                unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1419
1420                if (write_fault)
1421                        flags |= FOLL_WRITE;
1422
1423                npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1424                                                   page, flags);
1425        }
1426        if (npages != 1)
1427                return npages;
1428
1429        /* map read fault as writable if possible */
1430        if (unlikely(!write_fault) && writable) {
1431                struct page *wpage[1];
1432
1433                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1434                if (npages == 1) {
1435                        *writable = true;
1436                        put_page(page[0]);
1437                        page[0] = wpage[0];
1438                }
1439
1440                npages = 1;
1441        }
1442        *pfn = page_to_pfn(page[0]);
1443        return npages;
1444}
1445
1446static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1447{
1448        if (unlikely(!(vma->vm_flags & VM_READ)))
1449                return false;
1450
1451        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1452                return false;
1453
1454        return true;
1455}
1456
1457static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1458                               unsigned long addr, bool *async,
1459                               bool write_fault, kvm_pfn_t *p_pfn)
1460{
1461        unsigned long pfn;
1462        int r;
1463
1464        r = follow_pfn(vma, addr, &pfn);
1465        if (r) {
1466                /*
1467                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1468                 * not call the fault handler, so do it here.
1469                 */
1470                bool unlocked = false;
1471                r = fixup_user_fault(current, current->mm, addr,
1472                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1473                                     &unlocked);
1474                if (unlocked)
1475                        return -EAGAIN;
1476                if (r)
1477                        return r;
1478
1479                r = follow_pfn(vma, addr, &pfn);
1480                if (r)
1481                        return r;
1482
1483        }
1484
1485
1486        /*
1487         * Get a reference here because callers of *hva_to_pfn* and
1488         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1489         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1490         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1491         * simply do nothing for reserved pfns.
1492         *
1493         * Whoever called remap_pfn_range is also going to call e.g.
1494         * unmap_mapping_range before the underlying pages are freed,
1495         * causing a call to our MMU notifier.
1496         */ 
1497        kvm_get_pfn(pfn);
1498
1499        *p_pfn = pfn;
1500        return 0;
1501}
1502
1503/*
1504 * Pin guest page in memory and return its pfn.
1505 * @addr: host virtual address which maps memory to the guest
1506 * @atomic: whether this function can sleep
1507 * @async: whether this function need to wait IO complete if the
1508 *         host page is not in the memory
1509 * @write_fault: whether we should get a writable host page
1510 * @writable: whether it allows to map a writable host page for !@write_fault
1511 *
1512 * The function will map a writable host page for these two cases:
1513 * 1): @write_fault = true
1514 * 2): @write_fault = false && @writable, @writable will tell the caller
1515 *     whether the mapping is writable.
1516 */
1517static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1518                        bool write_fault, bool *writable)
1519{
1520        struct vm_area_struct *vma;
1521        kvm_pfn_t pfn = 0;
1522        int npages, r;
1523
1524        /* we can do it either atomically or asynchronously, not both */
1525        BUG_ON(atomic && async);
1526
1527        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1528                return pfn;
1529
1530        if (atomic)
1531                return KVM_PFN_ERR_FAULT;
1532
1533        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1534        if (npages == 1)
1535                return pfn;
1536
1537        down_read(&current->mm->mmap_sem);
1538        if (npages == -EHWPOISON ||
1539              (!async && check_user_page_hwpoison(addr))) {
1540                pfn = KVM_PFN_ERR_HWPOISON;
1541                goto exit;
1542        }
1543
1544retry:
1545        vma = find_vma_intersection(current->mm, addr, addr + 1);
1546
1547        if (vma == NULL)
1548                pfn = KVM_PFN_ERR_FAULT;
1549        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1550                r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1551                if (r == -EAGAIN)
1552                        goto retry;
1553                if (r < 0)
1554                        pfn = KVM_PFN_ERR_FAULT;
1555        } else {
1556                if (async && vma_is_valid(vma, write_fault))
1557                        *async = true;
1558                pfn = KVM_PFN_ERR_FAULT;
1559        }
1560exit:
1561        up_read(&current->mm->mmap_sem);
1562        return pfn;
1563}
1564
1565kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1566                               bool atomic, bool *async, bool write_fault,
1567                               bool *writable)
1568{
1569        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1570
1571        if (addr == KVM_HVA_ERR_RO_BAD) {
1572                if (writable)
1573                        *writable = false;
1574                return KVM_PFN_ERR_RO_FAULT;
1575        }
1576
1577        if (kvm_is_error_hva(addr)) {
1578                if (writable)
1579                        *writable = false;
1580                return KVM_PFN_NOSLOT;
1581        }
1582
1583        /* Do not map writable pfn in the readonly memslot. */
1584        if (writable && memslot_is_readonly(slot)) {
1585                *writable = false;
1586                writable = NULL;
1587        }
1588
1589        return hva_to_pfn(addr, atomic, async, write_fault,
1590                          writable);
1591}
1592EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1593
1594kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1595                      bool *writable)
1596{
1597        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1598                                    write_fault, writable);
1599}
1600EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1601
1602kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1603{
1604        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1605}
1606EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1607
1608kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1609{
1610        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1611}
1612EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1613
1614kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1615{
1616        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1617}
1618EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1619
1620kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1621{
1622        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1623}
1624EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1625
1626kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1627{
1628        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1629}
1630EXPORT_SYMBOL_GPL(gfn_to_pfn);
1631
1632kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1633{
1634        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635}
1636EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1637
1638int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1639                            struct page **pages, int nr_pages)
1640{
1641        unsigned long addr;
1642        gfn_t entry;
1643
1644        addr = gfn_to_hva_many(slot, gfn, &entry);
1645        if (kvm_is_error_hva(addr))
1646                return -1;
1647
1648        if (entry < nr_pages)
1649                return 0;
1650
1651        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1652}
1653EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1654
1655static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1656{
1657        if (is_error_noslot_pfn(pfn))
1658                return KVM_ERR_PTR_BAD_PAGE;
1659
1660        if (kvm_is_reserved_pfn(pfn)) {
1661                WARN_ON(1);
1662                return KVM_ERR_PTR_BAD_PAGE;
1663        }
1664
1665        return pfn_to_page(pfn);
1666}
1667
1668struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1669{
1670        kvm_pfn_t pfn;
1671
1672        pfn = gfn_to_pfn(kvm, gfn);
1673
1674        return kvm_pfn_to_page(pfn);
1675}
1676EXPORT_SYMBOL_GPL(gfn_to_page);
1677
1678struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1679{
1680        kvm_pfn_t pfn;
1681
1682        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1683
1684        return kvm_pfn_to_page(pfn);
1685}
1686EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1687
1688void kvm_release_page_clean(struct page *page)
1689{
1690        WARN_ON(is_error_page(page));
1691
1692        kvm_release_pfn_clean(page_to_pfn(page));
1693}
1694EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1695
1696void kvm_release_pfn_clean(kvm_pfn_t pfn)
1697{
1698        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1699                put_page(pfn_to_page(pfn));
1700}
1701EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1702
1703void kvm_release_page_dirty(struct page *page)
1704{
1705        WARN_ON(is_error_page(page));
1706
1707        kvm_release_pfn_dirty(page_to_pfn(page));
1708}
1709EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1710
1711static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1712{
1713        kvm_set_pfn_dirty(pfn);
1714        kvm_release_pfn_clean(pfn);
1715}
1716
1717void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1718{
1719        if (!kvm_is_reserved_pfn(pfn)) {
1720                struct page *page = pfn_to_page(pfn);
1721
1722                if (!PageReserved(page))
1723                        SetPageDirty(page);
1724        }
1725}
1726EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1727
1728void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1729{
1730        if (!kvm_is_reserved_pfn(pfn))
1731                mark_page_accessed(pfn_to_page(pfn));
1732}
1733EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1734
1735void kvm_get_pfn(kvm_pfn_t pfn)
1736{
1737        if (!kvm_is_reserved_pfn(pfn))
1738                get_page(pfn_to_page(pfn));
1739}
1740EXPORT_SYMBOL_GPL(kvm_get_pfn);
1741
1742static int next_segment(unsigned long len, int offset)
1743{
1744        if (len > PAGE_SIZE - offset)
1745                return PAGE_SIZE - offset;
1746        else
1747                return len;
1748}
1749
1750static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1751                                 void *data, int offset, int len)
1752{
1753        int r;
1754        unsigned long addr;
1755
1756        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1757        if (kvm_is_error_hva(addr))
1758                return -EFAULT;
1759        r = __copy_from_user(data, (void __user *)addr + offset, len);
1760        if (r)
1761                return -EFAULT;
1762        return 0;
1763}
1764
1765int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1766                        int len)
1767{
1768        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1769
1770        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1771}
1772EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1773
1774int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1775                             int offset, int len)
1776{
1777        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1778
1779        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1780}
1781EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1782
1783int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1784{
1785        gfn_t gfn = gpa >> PAGE_SHIFT;
1786        int seg;
1787        int offset = offset_in_page(gpa);
1788        int ret;
1789
1790        while ((seg = next_segment(len, offset)) != 0) {
1791                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1792                if (ret < 0)
1793                        return ret;
1794                offset = 0;
1795                len -= seg;
1796                data += seg;
1797                ++gfn;
1798        }
1799        return 0;
1800}
1801EXPORT_SYMBOL_GPL(kvm_read_guest);
1802
1803int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1804{
1805        gfn_t gfn = gpa >> PAGE_SHIFT;
1806        int seg;
1807        int offset = offset_in_page(gpa);
1808        int ret;
1809
1810        while ((seg = next_segment(len, offset)) != 0) {
1811                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1812                if (ret < 0)
1813                        return ret;
1814                offset = 0;
1815                len -= seg;
1816                data += seg;
1817                ++gfn;
1818        }
1819        return 0;
1820}
1821EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1822
1823static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1824                                   void *data, int offset, unsigned long len)
1825{
1826        int r;
1827        unsigned long addr;
1828
1829        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1830        if (kvm_is_error_hva(addr))
1831                return -EFAULT;
1832        pagefault_disable();
1833        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1834        pagefault_enable();
1835        if (r)
1836                return -EFAULT;
1837        return 0;
1838}
1839
1840int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1841                          unsigned long len)
1842{
1843        gfn_t gfn = gpa >> PAGE_SHIFT;
1844        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1845        int offset = offset_in_page(gpa);
1846
1847        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1848}
1849EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1850
1851int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1852                               void *data, unsigned long len)
1853{
1854        gfn_t gfn = gpa >> PAGE_SHIFT;
1855        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1856        int offset = offset_in_page(gpa);
1857
1858        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1859}
1860EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1861
1862static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1863                                  const void *data, int offset, int len)
1864{
1865        int r;
1866        unsigned long addr;
1867
1868        addr = gfn_to_hva_memslot(memslot, gfn);
1869        if (kvm_is_error_hva(addr))
1870                return -EFAULT;
1871        r = __copy_to_user((void __user *)addr + offset, data, len);
1872        if (r)
1873                return -EFAULT;
1874        mark_page_dirty_in_slot(memslot, gfn);
1875        return 0;
1876}
1877
1878int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1879                         const void *data, int offset, int len)
1880{
1881        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1882
1883        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1884}
1885EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1886
1887int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1888                              const void *data, int offset, int len)
1889{
1890        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1891
1892        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1893}
1894EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1895
1896int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1897                    unsigned long len)
1898{
1899        gfn_t gfn = gpa >> PAGE_SHIFT;
1900        int seg;
1901        int offset = offset_in_page(gpa);
1902        int ret;
1903
1904        while ((seg = next_segment(len, offset)) != 0) {
1905                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1906                if (ret < 0)
1907                        return ret;
1908                offset = 0;
1909                len -= seg;
1910                data += seg;
1911                ++gfn;
1912        }
1913        return 0;
1914}
1915EXPORT_SYMBOL_GPL(kvm_write_guest);
1916
1917int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1918                         unsigned long len)
1919{
1920        gfn_t gfn = gpa >> PAGE_SHIFT;
1921        int seg;
1922        int offset = offset_in_page(gpa);
1923        int ret;
1924
1925        while ((seg = next_segment(len, offset)) != 0) {
1926                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1927                if (ret < 0)
1928                        return ret;
1929                offset = 0;
1930                len -= seg;
1931                data += seg;
1932                ++gfn;
1933        }
1934        return 0;
1935}
1936EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1937
1938int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1939                              gpa_t gpa, unsigned long len)
1940{
1941        struct kvm_memslots *slots = kvm_memslots(kvm);
1942        int offset = offset_in_page(gpa);
1943        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1944        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1945        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1946        gfn_t nr_pages_avail;
1947
1948        ghc->gpa = gpa;
1949        ghc->generation = slots->generation;
1950        ghc->len = len;
1951        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1953        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1954                ghc->hva += offset;
1955        } else {
1956                /*
1957                 * If the requested region crosses two memslots, we still
1958                 * verify that the entire region is valid here.
1959                 */
1960                while (start_gfn <= end_gfn) {
1961                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1962                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1963                                                   &nr_pages_avail);
1964                        if (kvm_is_error_hva(ghc->hva))
1965                                return -EFAULT;
1966                        start_gfn += nr_pages_avail;
1967                }
1968                /* Use the slow path for cross page reads and writes. */
1969                ghc->memslot = NULL;
1970        }
1971        return 0;
1972}
1973EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1974
1975int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976                           void *data, unsigned long len)
1977{
1978        struct kvm_memslots *slots = kvm_memslots(kvm);
1979        int r;
1980
1981        BUG_ON(len > ghc->len);
1982
1983        if (slots->generation != ghc->generation)
1984                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1985
1986        if (unlikely(!ghc->memslot))
1987                return kvm_write_guest(kvm, ghc->gpa, data, len);
1988
1989        if (kvm_is_error_hva(ghc->hva))
1990                return -EFAULT;
1991
1992        r = __copy_to_user((void __user *)ghc->hva, data, len);
1993        if (r)
1994                return -EFAULT;
1995        mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1996
1997        return 0;
1998}
1999EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2000
2001int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002                           void *data, unsigned long len)
2003{
2004        struct kvm_memslots *slots = kvm_memslots(kvm);
2005        int r;
2006
2007        BUG_ON(len > ghc->len);
2008
2009        if (slots->generation != ghc->generation)
2010                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2011
2012        if (unlikely(!ghc->memslot))
2013                return kvm_read_guest(kvm, ghc->gpa, data, len);
2014
2015        if (kvm_is_error_hva(ghc->hva))
2016                return -EFAULT;
2017
2018        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2019        if (r)
2020                return -EFAULT;
2021
2022        return 0;
2023}
2024EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2025
2026int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2027{
2028        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2029
2030        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2031}
2032EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2033
2034int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2035{
2036        gfn_t gfn = gpa >> PAGE_SHIFT;
2037        int seg;
2038        int offset = offset_in_page(gpa);
2039        int ret;
2040
2041        while ((seg = next_segment(len, offset)) != 0) {
2042                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2043                if (ret < 0)
2044                        return ret;
2045                offset = 0;
2046                len -= seg;
2047                ++gfn;
2048        }
2049        return 0;
2050}
2051EXPORT_SYMBOL_GPL(kvm_clear_guest);
2052
2053static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2054                                    gfn_t gfn)
2055{
2056        if (memslot && memslot->dirty_bitmap) {
2057                unsigned long rel_gfn = gfn - memslot->base_gfn;
2058
2059                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060        }
2061}
2062
2063void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2064{
2065        struct kvm_memory_slot *memslot;
2066
2067        memslot = gfn_to_memslot(kvm, gfn);
2068        mark_page_dirty_in_slot(memslot, gfn);
2069}
2070EXPORT_SYMBOL_GPL(mark_page_dirty);
2071
2072void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2073{
2074        struct kvm_memory_slot *memslot;
2075
2076        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077        mark_page_dirty_in_slot(memslot, gfn);
2078}
2079EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2080
2081static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2082{
2083        unsigned int old, val, grow;
2084
2085        old = val = vcpu->halt_poll_ns;
2086        grow = READ_ONCE(halt_poll_ns_grow);
2087        /* 10us base */
2088        if (val == 0 && grow)
2089                val = 10000;
2090        else
2091                val *= grow;
2092
2093        if (val > halt_poll_ns)
2094                val = halt_poll_ns;
2095
2096        vcpu->halt_poll_ns = val;
2097        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2098}
2099
2100static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2101{
2102        unsigned int old, val, shrink;
2103
2104        old = val = vcpu->halt_poll_ns;
2105        shrink = READ_ONCE(halt_poll_ns_shrink);
2106        if (shrink == 0)
2107                val = 0;
2108        else
2109                val /= shrink;
2110
2111        vcpu->halt_poll_ns = val;
2112        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2113}
2114
2115static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2116{
2117        if (kvm_arch_vcpu_runnable(vcpu)) {
2118                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2119                return -EINTR;
2120        }
2121        if (kvm_cpu_has_pending_timer(vcpu))
2122                return -EINTR;
2123        if (signal_pending(current))
2124                return -EINTR;
2125
2126        return 0;
2127}
2128
2129/*
2130 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2131 */
2132void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2133{
2134        ktime_t start, cur;
2135        DECLARE_SWAITQUEUE(wait);
2136        bool waited = false;
2137        u64 block_ns;
2138
2139        start = cur = ktime_get();
2140        if (vcpu->halt_poll_ns) {
2141                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2142
2143                ++vcpu->stat.halt_attempted_poll;
2144                do {
2145                        /*
2146                         * This sets KVM_REQ_UNHALT if an interrupt
2147                         * arrives.
2148                         */
2149                        if (kvm_vcpu_check_block(vcpu) < 0) {
2150                                ++vcpu->stat.halt_successful_poll;
2151                                if (!vcpu_valid_wakeup(vcpu))
2152                                        ++vcpu->stat.halt_poll_invalid;
2153                                goto out;
2154                        }
2155                        cur = ktime_get();
2156                } while (single_task_running() && ktime_before(cur, stop));
2157        }
2158
2159        kvm_arch_vcpu_blocking(vcpu);
2160
2161        for (;;) {
2162                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2163
2164                if (kvm_vcpu_check_block(vcpu) < 0)
2165                        break;
2166
2167                waited = true;
2168                schedule();
2169        }
2170
2171        finish_swait(&vcpu->wq, &wait);
2172        cur = ktime_get();
2173
2174        kvm_arch_vcpu_unblocking(vcpu);
2175out:
2176        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2177
2178        if (!vcpu_valid_wakeup(vcpu))
2179                shrink_halt_poll_ns(vcpu);
2180        else if (halt_poll_ns) {
2181                if (block_ns <= vcpu->halt_poll_ns)
2182                        ;
2183                /* we had a long block, shrink polling */
2184                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2185                        shrink_halt_poll_ns(vcpu);
2186                /* we had a short halt and our poll time is too small */
2187                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2188                        block_ns < halt_poll_ns)
2189                        grow_halt_poll_ns(vcpu);
2190        } else
2191                vcpu->halt_poll_ns = 0;
2192
2193        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2194        kvm_arch_vcpu_block_finish(vcpu);
2195}
2196EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2197
2198#ifndef CONFIG_S390
2199void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2200{
2201        struct swait_queue_head *wqp;
2202
2203        wqp = kvm_arch_vcpu_wq(vcpu);
2204        if (swait_active(wqp)) {
2205                swake_up(wqp);
2206                ++vcpu->stat.halt_wakeup;
2207        }
2208
2209}
2210EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2211
2212/*
2213 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2214 */
2215void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2216{
2217        int me;
2218        int cpu = vcpu->cpu;
2219
2220        kvm_vcpu_wake_up(vcpu);
2221        me = get_cpu();
2222        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223                if (kvm_arch_vcpu_should_kick(vcpu))
2224                        smp_send_reschedule(cpu);
2225        put_cpu();
2226}
2227EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228#endif /* !CONFIG_S390 */
2229
2230int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2231{
2232        struct pid *pid;
2233        struct task_struct *task = NULL;
2234        int ret = 0;
2235
2236        rcu_read_lock();
2237        pid = rcu_dereference(target->pid);
2238        if (pid)
2239                task = get_pid_task(pid, PIDTYPE_PID);
2240        rcu_read_unlock();
2241        if (!task)
2242                return ret;
2243        ret = yield_to(task, 1);
2244        put_task_struct(task);
2245
2246        return ret;
2247}
2248EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2249
2250/*
2251 * Helper that checks whether a VCPU is eligible for directed yield.
2252 * Most eligible candidate to yield is decided by following heuristics:
2253 *
2254 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255 *  (preempted lock holder), indicated by @in_spin_loop.
2256 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2257 *
2258 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259 *  chance last time (mostly it has become eligible now since we have probably
2260 *  yielded to lockholder in last iteration. This is done by toggling
2261 *  @dy_eligible each time a VCPU checked for eligibility.)
2262 *
2263 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2265 *  burning. Giving priority for a potential lock-holder increases lock
2266 *  progress.
2267 *
2268 *  Since algorithm is based on heuristics, accessing another VCPU data without
2269 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2270 *  and continue with next VCPU and so on.
2271 */
2272static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2273{
2274#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275        bool eligible;
2276
2277        eligible = !vcpu->spin_loop.in_spin_loop ||
2278                    vcpu->spin_loop.dy_eligible;
2279
2280        if (vcpu->spin_loop.in_spin_loop)
2281                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2282
2283        return eligible;
2284#else
2285        return true;
2286#endif
2287}
2288
2289void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2290{
2291        struct kvm *kvm = me->kvm;
2292        struct kvm_vcpu *vcpu;
2293        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294        int yielded = 0;
2295        int try = 3;
2296        int pass;
2297        int i;
2298
2299        kvm_vcpu_set_in_spin_loop(me, true);
2300        /*
2301         * We boost the priority of a VCPU that is runnable but not
2302         * currently running, because it got preempted by something
2303         * else and called schedule in __vcpu_run.  Hopefully that
2304         * VCPU is holding the lock that we need and will release it.
2305         * We approximate round-robin by starting at the last boosted VCPU.
2306         */
2307        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308                kvm_for_each_vcpu(i, vcpu, kvm) {
2309                        if (!pass && i <= last_boosted_vcpu) {
2310                                i = last_boosted_vcpu;
2311                                continue;
2312                        } else if (pass && i > last_boosted_vcpu)
2313                                break;
2314                        if (!ACCESS_ONCE(vcpu->preempted))
2315                                continue;
2316                        if (vcpu == me)
2317                                continue;
2318                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319                                continue;
2320                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2321                                continue;
2322
2323                        yielded = kvm_vcpu_yield_to(vcpu);
2324                        if (yielded > 0) {
2325                                kvm->last_boosted_vcpu = i;
2326                                break;
2327                        } else if (yielded < 0) {
2328                                try--;
2329                                if (!try)
2330                                        break;
2331                        }
2332                }
2333        }
2334        kvm_vcpu_set_in_spin_loop(me, false);
2335
2336        /* Ensure vcpu is not eligible during next spinloop */
2337        kvm_vcpu_set_dy_eligible(me, false);
2338}
2339EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2340
2341static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2342{
2343        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2344        struct page *page;
2345
2346        if (vmf->pgoff == 0)
2347                page = virt_to_page(vcpu->run);
2348#ifdef CONFIG_X86
2349        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2350                page = virt_to_page(vcpu->arch.pio_data);
2351#endif
2352#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2354                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2355#endif
2356        else
2357                return kvm_arch_vcpu_fault(vcpu, vmf);
2358        get_page(page);
2359        vmf->page = page;
2360        return 0;
2361}
2362
2363static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2364        .fault = kvm_vcpu_fault,
2365};
2366
2367static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2368{
2369        vma->vm_ops = &kvm_vcpu_vm_ops;
2370        return 0;
2371}
2372
2373static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2374{
2375        struct kvm_vcpu *vcpu = filp->private_data;
2376
2377        debugfs_remove_recursive(vcpu->debugfs_dentry);
2378        kvm_put_kvm(vcpu->kvm);
2379        return 0;
2380}
2381
2382static struct file_operations kvm_vcpu_fops = {
2383        .release        = kvm_vcpu_release,
2384        .unlocked_ioctl = kvm_vcpu_ioctl,
2385#ifdef CONFIG_KVM_COMPAT
2386        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2387#endif
2388        .mmap           = kvm_vcpu_mmap,
2389        .llseek         = noop_llseek,
2390};
2391
2392/*
2393 * Allocates an inode for the vcpu.
2394 */
2395static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2396{
2397        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2398}
2399
2400static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2401{
2402        char dir_name[ITOA_MAX_LEN * 2];
2403        int ret;
2404
2405        if (!kvm_arch_has_vcpu_debugfs())
2406                return 0;
2407
2408        if (!debugfs_initialized())
2409                return 0;
2410
2411        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2412        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2413                                                                vcpu->kvm->debugfs_dentry);
2414        if (!vcpu->debugfs_dentry)
2415                return -ENOMEM;
2416
2417        ret = kvm_arch_create_vcpu_debugfs(vcpu);
2418        if (ret < 0) {
2419                debugfs_remove_recursive(vcpu->debugfs_dentry);
2420                return ret;
2421        }
2422
2423        return 0;
2424}
2425
2426/*
2427 * Creates some virtual cpus.  Good luck creating more than one.
2428 */
2429static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2430{
2431        int r;
2432        struct kvm_vcpu *vcpu;
2433
2434        if (id >= KVM_MAX_VCPU_ID)
2435                return -EINVAL;
2436
2437        mutex_lock(&kvm->lock);
2438        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2439                mutex_unlock(&kvm->lock);
2440                return -EINVAL;
2441        }
2442
2443        kvm->created_vcpus++;
2444        mutex_unlock(&kvm->lock);
2445
2446        vcpu = kvm_arch_vcpu_create(kvm, id);
2447        if (IS_ERR(vcpu)) {
2448                r = PTR_ERR(vcpu);
2449                goto vcpu_decrement;
2450        }
2451
2452        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2453
2454        r = kvm_arch_vcpu_setup(vcpu);
2455        if (r)
2456                goto vcpu_destroy;
2457
2458        r = kvm_create_vcpu_debugfs(vcpu);
2459        if (r)
2460                goto vcpu_destroy;
2461
2462        mutex_lock(&kvm->lock);
2463        if (kvm_get_vcpu_by_id(kvm, id)) {
2464                r = -EEXIST;
2465                goto unlock_vcpu_destroy;
2466        }
2467
2468        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2469
2470        /* Now it's all set up, let userspace reach it */
2471        kvm_get_kvm(kvm);
2472        r = create_vcpu_fd(vcpu);
2473        if (r < 0) {
2474                kvm_put_kvm(kvm);
2475                goto unlock_vcpu_destroy;
2476        }
2477
2478        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2479
2480        /*
2481         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2482         * before kvm->online_vcpu's incremented value.
2483         */
2484        smp_wmb();
2485        atomic_inc(&kvm->online_vcpus);
2486
2487        mutex_unlock(&kvm->lock);
2488        kvm_arch_vcpu_postcreate(vcpu);
2489        return r;
2490
2491unlock_vcpu_destroy:
2492        mutex_unlock(&kvm->lock);
2493        debugfs_remove_recursive(vcpu->debugfs_dentry);
2494vcpu_destroy:
2495        kvm_arch_vcpu_destroy(vcpu);
2496vcpu_decrement:
2497        mutex_lock(&kvm->lock);
2498        kvm->created_vcpus--;
2499        mutex_unlock(&kvm->lock);
2500        return r;
2501}
2502
2503static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2504{
2505        if (sigset) {
2506                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2507                vcpu->sigset_active = 1;
2508                vcpu->sigset = *sigset;
2509        } else
2510                vcpu->sigset_active = 0;
2511        return 0;
2512}
2513
2514static long kvm_vcpu_ioctl(struct file *filp,
2515                           unsigned int ioctl, unsigned long arg)
2516{
2517        struct kvm_vcpu *vcpu = filp->private_data;
2518        void __user *argp = (void __user *)arg;
2519        int r;
2520        struct kvm_fpu *fpu = NULL;
2521        struct kvm_sregs *kvm_sregs = NULL;
2522
2523        if (vcpu->kvm->mm != current->mm)
2524                return -EIO;
2525
2526        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2527                return -EINVAL;
2528
2529#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2530        /*
2531         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2532         * so vcpu_load() would break it.
2533         */
2534        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2535                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2536#endif
2537
2538
2539        r = vcpu_load(vcpu);
2540        if (r)
2541                return r;
2542        switch (ioctl) {
2543        case KVM_RUN:
2544                r = -EINVAL;
2545                if (arg)
2546                        goto out;
2547                if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2548                        /* The thread running this VCPU changed. */
2549                        struct pid *oldpid = vcpu->pid;
2550                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2551
2552                        rcu_assign_pointer(vcpu->pid, newpid);
2553                        if (oldpid)
2554                                synchronize_rcu();
2555                        put_pid(oldpid);
2556                }
2557                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2558                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2559                break;
2560        case KVM_GET_REGS: {
2561                struct kvm_regs *kvm_regs;
2562
2563                r = -ENOMEM;
2564                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2565                if (!kvm_regs)
2566                        goto out;
2567                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2568                if (r)
2569                        goto out_free1;
2570                r = -EFAULT;
2571                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2572                        goto out_free1;
2573                r = 0;
2574out_free1:
2575                kfree(kvm_regs);
2576                break;
2577        }
2578        case KVM_SET_REGS: {
2579                struct kvm_regs *kvm_regs;
2580
2581                r = -ENOMEM;
2582                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2583                if (IS_ERR(kvm_regs)) {
2584                        r = PTR_ERR(kvm_regs);
2585                        goto out;
2586                }
2587                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2588                kfree(kvm_regs);
2589                break;
2590        }
2591        case KVM_GET_SREGS: {
2592                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2593                r = -ENOMEM;
2594                if (!kvm_sregs)
2595                        goto out;
2596                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2597                if (r)
2598                        goto out;
2599                r = -EFAULT;
2600                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2601                        goto out;
2602                r = 0;
2603                break;
2604        }
2605        case KVM_SET_SREGS: {
2606                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2607                if (IS_ERR(kvm_sregs)) {
2608                        r = PTR_ERR(kvm_sregs);
2609                        kvm_sregs = NULL;
2610                        goto out;
2611                }
2612                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2613                break;
2614        }
2615        case KVM_GET_MP_STATE: {
2616                struct kvm_mp_state mp_state;
2617
2618                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2619                if (r)
2620                        goto out;
2621                r = -EFAULT;
2622                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2623                        goto out;
2624                r = 0;
2625                break;
2626        }
2627        case KVM_SET_MP_STATE: {
2628                struct kvm_mp_state mp_state;
2629
2630                r = -EFAULT;
2631                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2632                        goto out;
2633                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2634                break;
2635        }
2636        case KVM_TRANSLATE: {
2637                struct kvm_translation tr;
2638
2639                r = -EFAULT;
2640                if (copy_from_user(&tr, argp, sizeof(tr)))
2641                        goto out;
2642                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2643                if (r)
2644                        goto out;
2645                r = -EFAULT;
2646                if (copy_to_user(argp, &tr, sizeof(tr)))
2647                        goto out;
2648                r = 0;
2649                break;
2650        }
2651        case KVM_SET_GUEST_DEBUG: {
2652                struct kvm_guest_debug dbg;
2653
2654                r = -EFAULT;
2655                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2656                        goto out;
2657                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2658                break;
2659        }
2660        case KVM_SET_SIGNAL_MASK: {
2661                struct kvm_signal_mask __user *sigmask_arg = argp;
2662                struct kvm_signal_mask kvm_sigmask;
2663                sigset_t sigset, *p;
2664
2665                p = NULL;
2666                if (argp) {
2667                        r = -EFAULT;
2668                        if (copy_from_user(&kvm_sigmask, argp,
2669                                           sizeof(kvm_sigmask)))
2670                                goto out;
2671                        r = -EINVAL;
2672                        if (kvm_sigmask.len != sizeof(sigset))
2673                                goto out;
2674                        r = -EFAULT;
2675                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2676                                           sizeof(sigset)))
2677                                goto out;
2678                        p = &sigset;
2679                }
2680                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2681                break;
2682        }
2683        case KVM_GET_FPU: {
2684                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2685                r = -ENOMEM;
2686                if (!fpu)
2687                        goto out;
2688                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2689                if (r)
2690                        goto out;
2691                r = -EFAULT;
2692                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2693                        goto out;
2694                r = 0;
2695                break;
2696        }
2697        case KVM_SET_FPU: {
2698                fpu = memdup_user(argp, sizeof(*fpu));
2699                if (IS_ERR(fpu)) {
2700                        r = PTR_ERR(fpu);
2701                        fpu = NULL;
2702                        goto out;
2703                }
2704                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2705                break;
2706        }
2707        default:
2708                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2709        }
2710out:
2711        vcpu_put(vcpu);
2712        kfree(fpu);
2713        kfree(kvm_sregs);
2714        return r;
2715}
2716
2717#ifdef CONFIG_KVM_COMPAT
2718static long kvm_vcpu_compat_ioctl(struct file *filp,
2719                                  unsigned int ioctl, unsigned long arg)
2720{
2721        struct kvm_vcpu *vcpu = filp->private_data;
2722        void __user *argp = compat_ptr(arg);
2723        int r;
2724
2725        if (vcpu->kvm->mm != current->mm)
2726                return -EIO;
2727
2728        switch (ioctl) {
2729        case KVM_SET_SIGNAL_MASK: {
2730                struct kvm_signal_mask __user *sigmask_arg = argp;
2731                struct kvm_signal_mask kvm_sigmask;
2732                compat_sigset_t csigset;
2733                sigset_t sigset;
2734
2735                if (argp) {
2736                        r = -EFAULT;
2737                        if (copy_from_user(&kvm_sigmask, argp,
2738                                           sizeof(kvm_sigmask)))
2739                                goto out;
2740                        r = -EINVAL;
2741                        if (kvm_sigmask.len != sizeof(csigset))
2742                                goto out;
2743                        r = -EFAULT;
2744                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2745                                           sizeof(csigset)))
2746                                goto out;
2747                        sigset_from_compat(&sigset, &csigset);
2748                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2749                } else
2750                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2751                break;
2752        }
2753        default:
2754                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2755        }
2756
2757out:
2758        return r;
2759}
2760#endif
2761
2762static int kvm_device_ioctl_attr(struct kvm_device *dev,
2763                                 int (*accessor)(struct kvm_device *dev,
2764                                                 struct kvm_device_attr *attr),
2765                                 unsigned long arg)
2766{
2767        struct kvm_device_attr attr;
2768
2769        if (!accessor)
2770                return -EPERM;
2771
2772        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2773                return -EFAULT;
2774
2775        return accessor(dev, &attr);
2776}
2777
2778static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2779                             unsigned long arg)
2780{
2781        struct kvm_device *dev = filp->private_data;
2782
2783        switch (ioctl) {
2784        case KVM_SET_DEVICE_ATTR:
2785                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2786        case KVM_GET_DEVICE_ATTR:
2787                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2788        case KVM_HAS_DEVICE_ATTR:
2789                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2790        default:
2791                if (dev->ops->ioctl)
2792                        return dev->ops->ioctl(dev, ioctl, arg);
2793
2794                return -ENOTTY;
2795        }
2796}
2797
2798static int kvm_device_release(struct inode *inode, struct file *filp)
2799{
2800        struct kvm_device *dev = filp->private_data;
2801        struct kvm *kvm = dev->kvm;
2802
2803        kvm_put_kvm(kvm);
2804        return 0;
2805}
2806
2807static const struct file_operations kvm_device_fops = {
2808        .unlocked_ioctl = kvm_device_ioctl,
2809#ifdef CONFIG_KVM_COMPAT
2810        .compat_ioctl = kvm_device_ioctl,
2811#endif
2812        .release = kvm_device_release,
2813};
2814
2815struct kvm_device *kvm_device_from_filp(struct file *filp)
2816{
2817        if (filp->f_op != &kvm_device_fops)
2818                return NULL;
2819
2820        return filp->private_data;
2821}
2822
2823static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2824#ifdef CONFIG_KVM_MPIC
2825        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2826        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2827#endif
2828
2829#ifdef CONFIG_KVM_XICS
2830        [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2831#endif
2832};
2833
2834int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2835{
2836        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2837                return -ENOSPC;
2838
2839        if (kvm_device_ops_table[type] != NULL)
2840                return -EEXIST;
2841
2842        kvm_device_ops_table[type] = ops;
2843        return 0;
2844}
2845
2846void kvm_unregister_device_ops(u32 type)
2847{
2848        if (kvm_device_ops_table[type] != NULL)
2849                kvm_device_ops_table[type] = NULL;
2850}
2851
2852static int kvm_ioctl_create_device(struct kvm *kvm,
2853                                   struct kvm_create_device *cd)
2854{
2855        struct kvm_device_ops *ops = NULL;
2856        struct kvm_device *dev;
2857        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2858        int ret;
2859
2860        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2861                return -ENODEV;
2862
2863        ops = kvm_device_ops_table[cd->type];
2864        if (ops == NULL)
2865                return -ENODEV;
2866
2867        if (test)
2868                return 0;
2869
2870        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2871        if (!dev)
2872                return -ENOMEM;
2873
2874        dev->ops = ops;
2875        dev->kvm = kvm;
2876
2877        mutex_lock(&kvm->lock);
2878        ret = ops->create(dev, cd->type);
2879        if (ret < 0) {
2880                mutex_unlock(&kvm->lock);
2881                kfree(dev);
2882                return ret;
2883        }
2884        list_add(&dev->vm_node, &kvm->devices);
2885        mutex_unlock(&kvm->lock);
2886
2887        if (ops->init)
2888                ops->init(dev);
2889
2890        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2891        if (ret < 0) {
2892                mutex_lock(&kvm->lock);
2893                list_del(&dev->vm_node);
2894                mutex_unlock(&kvm->lock);
2895                ops->destroy(dev);
2896                return ret;
2897        }
2898
2899        kvm_get_kvm(kvm);
2900        cd->fd = ret;
2901        return 0;
2902}
2903
2904static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2905{
2906        switch (arg) {
2907        case KVM_CAP_USER_MEMORY:
2908        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2909        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2910        case KVM_CAP_INTERNAL_ERROR_DATA:
2911#ifdef CONFIG_HAVE_KVM_MSI
2912        case KVM_CAP_SIGNAL_MSI:
2913#endif
2914#ifdef CONFIG_HAVE_KVM_IRQFD
2915        case KVM_CAP_IRQFD:
2916        case KVM_CAP_IRQFD_RESAMPLE:
2917#endif
2918        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2919        case KVM_CAP_CHECK_EXTENSION_VM:
2920                return 1;
2921#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2922        case KVM_CAP_IRQ_ROUTING:
2923                return KVM_MAX_IRQ_ROUTES;
2924#endif
2925#if KVM_ADDRESS_SPACE_NUM > 1
2926        case KVM_CAP_MULTI_ADDRESS_SPACE:
2927                return KVM_ADDRESS_SPACE_NUM;
2928#endif
2929        case KVM_CAP_MAX_VCPU_ID:
2930                return KVM_MAX_VCPU_ID;
2931        default:
2932                break;
2933        }
2934        return kvm_vm_ioctl_check_extension(kvm, arg);
2935}
2936
2937static long kvm_vm_ioctl(struct file *filp,
2938                           unsigned int ioctl, unsigned long arg)
2939{
2940        struct kvm *kvm = filp->private_data;
2941        void __user *argp = (void __user *)arg;
2942        int r;
2943
2944        if (kvm->mm != current->mm)
2945                return -EIO;
2946        switch (ioctl) {
2947        case KVM_CREATE_VCPU:
2948                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2949                break;
2950        case KVM_SET_USER_MEMORY_REGION: {
2951                struct kvm_userspace_memory_region kvm_userspace_mem;
2952
2953                r = -EFAULT;
2954                if (copy_from_user(&kvm_userspace_mem, argp,
2955                                                sizeof(kvm_userspace_mem)))
2956                        goto out;
2957
2958                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2959                break;
2960        }
2961        case KVM_GET_DIRTY_LOG: {
2962                struct kvm_dirty_log log;
2963
2964                r = -EFAULT;
2965                if (copy_from_user(&log, argp, sizeof(log)))
2966                        goto out;
2967                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2968                break;
2969        }
2970#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2971        case KVM_REGISTER_COALESCED_MMIO: {
2972                struct kvm_coalesced_mmio_zone zone;
2973
2974                r = -EFAULT;
2975                if (copy_from_user(&zone, argp, sizeof(zone)))
2976                        goto out;
2977                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2978                break;
2979        }
2980        case KVM_UNREGISTER_COALESCED_MMIO: {
2981                struct kvm_coalesced_mmio_zone zone;
2982
2983                r = -EFAULT;
2984                if (copy_from_user(&zone, argp, sizeof(zone)))
2985                        goto out;
2986                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2987                break;
2988        }
2989#endif
2990        case KVM_IRQFD: {
2991                struct kvm_irqfd data;
2992
2993                r = -EFAULT;
2994                if (copy_from_user(&data, argp, sizeof(data)))
2995                        goto out;
2996                r = kvm_irqfd(kvm, &data);
2997                break;
2998        }
2999        case KVM_IOEVENTFD: {
3000                struct kvm_ioeventfd data;
3001
3002                r = -EFAULT;
3003                if (copy_from_user(&data, argp, sizeof(data)))
3004                        goto out;
3005                r = kvm_ioeventfd(kvm, &data);
3006                break;
3007        }
3008#ifdef CONFIG_HAVE_KVM_MSI
3009        case KVM_SIGNAL_MSI: {
3010                struct kvm_msi msi;
3011
3012                r = -EFAULT;
3013                if (copy_from_user(&msi, argp, sizeof(msi)))
3014                        goto out;
3015                r = kvm_send_userspace_msi(kvm, &msi);
3016                break;
3017        }
3018#endif
3019#ifdef __KVM_HAVE_IRQ_LINE
3020        case KVM_IRQ_LINE_STATUS:
3021        case KVM_IRQ_LINE: {
3022                struct kvm_irq_level irq_event;
3023
3024                r = -EFAULT;
3025                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3026                        goto out;
3027
3028                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3029                                        ioctl == KVM_IRQ_LINE_STATUS);
3030                if (r)
3031                        goto out;
3032
3033                r = -EFAULT;
3034                if (ioctl == KVM_IRQ_LINE_STATUS) {
3035                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3036                                goto out;
3037                }
3038
3039                r = 0;
3040                break;
3041        }
3042#endif
3043#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3044        case KVM_SET_GSI_ROUTING: {
3045                struct kvm_irq_routing routing;
3046                struct kvm_irq_routing __user *urouting;
3047                struct kvm_irq_routing_entry *entries = NULL;
3048
3049                r = -EFAULT;
3050                if (copy_from_user(&routing, argp, sizeof(routing)))
3051                        goto out;
3052                r = -EINVAL;
3053                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3054                        goto out;
3055                if (routing.flags)
3056                        goto out;
3057                if (routing.nr) {
3058                        r = -ENOMEM;
3059                        entries = vmalloc(routing.nr * sizeof(*entries));
3060                        if (!entries)
3061                                goto out;
3062                        r = -EFAULT;
3063                        urouting = argp;
3064                        if (copy_from_user(entries, urouting->entries,
3065                                           routing.nr * sizeof(*entries)))
3066                                goto out_free_irq_routing;
3067                }
3068                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3069                                        routing.flags);
3070out_free_irq_routing:
3071                vfree(entries);
3072                break;
3073        }
3074#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3075        case KVM_CREATE_DEVICE: {
3076                struct kvm_create_device cd;
3077
3078                r = -EFAULT;
3079                if (copy_from_user(&cd, argp, sizeof(cd)))
3080                        goto out;
3081
3082                r = kvm_ioctl_create_device(kvm, &cd);
3083                if (r)
3084                        goto out;
3085
3086                r = -EFAULT;
3087                if (copy_to_user(argp, &cd, sizeof(cd)))
3088                        goto out;
3089
3090                r = 0;
3091                break;
3092        }
3093        case KVM_CHECK_EXTENSION:
3094                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3095                break;
3096        default:
3097                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3098        }
3099out:
3100        return r;
3101}
3102
3103#ifdef CONFIG_KVM_COMPAT
3104struct compat_kvm_dirty_log {
3105        __u32 slot;
3106        __u32 padding1;
3107        union {
3108                compat_uptr_t dirty_bitmap; /* one bit per page */
3109                __u64 padding2;
3110        };
3111};
3112
3113static long kvm_vm_compat_ioctl(struct file *filp,
3114                           unsigned int ioctl, unsigned long arg)
3115{
3116        struct kvm *kvm = filp->private_data;
3117        int r;
3118
3119        if (kvm->mm != current->mm)
3120                return -EIO;
3121        switch (ioctl) {
3122        case KVM_GET_DIRTY_LOG: {
3123                struct compat_kvm_dirty_log compat_log;
3124                struct kvm_dirty_log log;
3125
3126                r = -EFAULT;
3127                if (copy_from_user(&compat_log, (void __user *)arg,
3128                                   sizeof(compat_log)))
3129                        goto out;
3130                log.slot         = compat_log.slot;
3131                log.padding1     = compat_log.padding1;
3132                log.padding2     = compat_log.padding2;
3133                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3134
3135                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3136                break;
3137        }
3138        default:
3139                r = kvm_vm_ioctl(filp, ioctl, arg);
3140        }
3141
3142out:
3143        return r;
3144}
3145#endif
3146
3147static struct file_operations kvm_vm_fops = {
3148        .release        = kvm_vm_release,
3149        .unlocked_ioctl = kvm_vm_ioctl,
3150#ifdef CONFIG_KVM_COMPAT
3151        .compat_ioctl   = kvm_vm_compat_ioctl,
3152#endif
3153        .llseek         = noop_llseek,
3154};
3155
3156static int kvm_dev_ioctl_create_vm(unsigned long type)
3157{
3158        int r;
3159        struct kvm *kvm;
3160        struct file *file;
3161
3162        kvm = kvm_create_vm(type);
3163        if (IS_ERR(kvm))
3164                return PTR_ERR(kvm);
3165#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3166        r = kvm_coalesced_mmio_init(kvm);
3167        if (r < 0) {
3168                kvm_put_kvm(kvm);
3169                return r;
3170        }
3171#endif
3172        r = get_unused_fd_flags(O_CLOEXEC);
3173        if (r < 0) {
3174                kvm_put_kvm(kvm);
3175                return r;
3176        }
3177        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3178        if (IS_ERR(file)) {
3179                put_unused_fd(r);
3180                kvm_put_kvm(kvm);
3181                return PTR_ERR(file);
3182        }
3183
3184        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185                put_unused_fd(r);
3186                fput(file);
3187                return -ENOMEM;
3188        }
3189
3190        fd_install(r, file);
3191        return r;
3192}
3193
3194static long kvm_dev_ioctl(struct file *filp,
3195                          unsigned int ioctl, unsigned long arg)
3196{
3197        long r = -EINVAL;
3198
3199        switch (ioctl) {
3200        case KVM_GET_API_VERSION:
3201                if (arg)
3202                        goto out;
3203                r = KVM_API_VERSION;
3204                break;
3205        case KVM_CREATE_VM:
3206                r = kvm_dev_ioctl_create_vm(arg);
3207                break;
3208        case KVM_CHECK_EXTENSION:
3209                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3210                break;
3211        case KVM_GET_VCPU_MMAP_SIZE:
3212                if (arg)
3213                        goto out;
3214                r = PAGE_SIZE;     /* struct kvm_run */
3215#ifdef CONFIG_X86
3216                r += PAGE_SIZE;    /* pio data page */
3217#endif
3218#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3219                r += PAGE_SIZE;    /* coalesced mmio ring page */
3220#endif
3221                break;
3222        case KVM_TRACE_ENABLE:
3223        case KVM_TRACE_PAUSE:
3224        case KVM_TRACE_DISABLE:
3225                r = -EOPNOTSUPP;
3226                break;
3227        default:
3228                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3229        }
3230out:
3231        return r;
3232}
3233
3234static struct file_operations kvm_chardev_ops = {
3235        .unlocked_ioctl = kvm_dev_ioctl,
3236        .compat_ioctl   = kvm_dev_ioctl,
3237        .llseek         = noop_llseek,
3238};
3239
3240static struct miscdevice kvm_dev = {
3241        KVM_MINOR,
3242        "kvm",
3243        &kvm_chardev_ops,
3244};
3245
3246static void hardware_enable_nolock(void *junk)
3247{
3248        int cpu = raw_smp_processor_id();
3249        int r;
3250
3251        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3252                return;
3253
3254        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3255
3256        r = kvm_arch_hardware_enable();
3257
3258        if (r) {
3259                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3260                atomic_inc(&hardware_enable_failed);
3261                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3262        }
3263}
3264
3265static int kvm_starting_cpu(unsigned int cpu)
3266{
3267        raw_spin_lock(&kvm_count_lock);
3268        if (kvm_usage_count)
3269                hardware_enable_nolock(NULL);
3270        raw_spin_unlock(&kvm_count_lock);
3271        return 0;
3272}
3273
3274static void hardware_disable_nolock(void *junk)
3275{
3276        int cpu = raw_smp_processor_id();
3277
3278        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3279                return;
3280        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3281        kvm_arch_hardware_disable();
3282}
3283
3284static int kvm_dying_cpu(unsigned int cpu)
3285{
3286        raw_spin_lock(&kvm_count_lock);
3287        if (kvm_usage_count)
3288                hardware_disable_nolock(NULL);
3289        raw_spin_unlock(&kvm_count_lock);
3290        return 0;
3291}
3292
3293static void hardware_disable_all_nolock(void)
3294{
3295        BUG_ON(!kvm_usage_count);
3296
3297        kvm_usage_count--;
3298        if (!kvm_usage_count)
3299                on_each_cpu(hardware_disable_nolock, NULL, 1);
3300}
3301
3302static void hardware_disable_all(void)
3303{
3304        raw_spin_lock(&kvm_count_lock);
3305        hardware_disable_all_nolock();
3306        raw_spin_unlock(&kvm_count_lock);
3307}
3308
3309static int hardware_enable_all(void)
3310{
3311        int r = 0;
3312
3313        raw_spin_lock(&kvm_count_lock);
3314
3315        kvm_usage_count++;
3316        if (kvm_usage_count == 1) {
3317                atomic_set(&hardware_enable_failed, 0);
3318                on_each_cpu(hardware_enable_nolock, NULL, 1);
3319
3320                if (atomic_read(&hardware_enable_failed)) {
3321                        hardware_disable_all_nolock();
3322                        r = -EBUSY;
3323                }
3324        }
3325
3326        raw_spin_unlock(&kvm_count_lock);
3327
3328        return r;
3329}
3330
3331static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3332                      void *v)
3333{
3334        /*
3335         * Some (well, at least mine) BIOSes hang on reboot if
3336         * in vmx root mode.
3337         *
3338         * And Intel TXT required VMX off for all cpu when system shutdown.
3339         */
3340        pr_info("kvm: exiting hardware virtualization\n");
3341        kvm_rebooting = true;
3342        on_each_cpu(hardware_disable_nolock, NULL, 1);
3343        return NOTIFY_OK;
3344}
3345
3346static struct notifier_block kvm_reboot_notifier = {
3347        .notifier_call = kvm_reboot,
3348        .priority = 0,
3349};
3350
3351static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3352{
3353        int i;
3354
3355        for (i = 0; i < bus->dev_count; i++) {
3356                struct kvm_io_device *pos = bus->range[i].dev;
3357
3358                kvm_iodevice_destructor(pos);
3359        }
3360        kfree(bus);
3361}
3362
3363static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3364                                 const struct kvm_io_range *r2)
3365{
3366        gpa_t addr1 = r1->addr;
3367        gpa_t addr2 = r2->addr;
3368
3369        if (addr1 < addr2)
3370                return -1;
3371
3372        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3373         * accept any overlapping write.  Any order is acceptable for
3374         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3375         * we process all of them.
3376         */
3377        if (r2->len) {
3378                addr1 += r1->len;
3379                addr2 += r2->len;
3380        }
3381
3382        if (addr1 > addr2)
3383                return 1;
3384
3385        return 0;
3386}
3387
3388static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3389{
3390        return kvm_io_bus_cmp(p1, p2);
3391}
3392
3393static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3394                          gpa_t addr, int len)
3395{
3396        bus->range[bus->dev_count++] = (struct kvm_io_range) {
3397                .addr = addr,
3398                .len = len,
3399                .dev = dev,
3400        };
3401
3402        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3403                kvm_io_bus_sort_cmp, NULL);
3404
3405        return 0;
3406}
3407
3408static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3409                             gpa_t addr, int len)
3410{
3411        struct kvm_io_range *range, key;
3412        int off;
3413
3414        key = (struct kvm_io_range) {
3415                .addr = addr,
3416                .len = len,
3417        };
3418
3419        range = bsearch(&key, bus->range, bus->dev_count,
3420                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3421        if (range == NULL)
3422                return -ENOENT;
3423
3424        off = range - bus->range;
3425
3426        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3427                off--;
3428
3429        return off;
3430}
3431
3432static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3433                              struct kvm_io_range *range, const void *val)
3434{
3435        int idx;
3436
3437        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3438        if (idx < 0)
3439                return -EOPNOTSUPP;
3440
3441        while (idx < bus->dev_count &&
3442                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3443                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3444                                        range->len, val))
3445                        return idx;
3446                idx++;
3447        }
3448
3449        return -EOPNOTSUPP;
3450}
3451
3452/* kvm_io_bus_write - called under kvm->slots_lock */
3453int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3454                     int len, const void *val)
3455{
3456        struct kvm_io_bus *bus;
3457        struct kvm_io_range range;
3458        int r;
3459
3460        range = (struct kvm_io_range) {
3461                .addr = addr,
3462                .len = len,
3463        };
3464
3465        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3466        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3467        return r < 0 ? r : 0;
3468}
3469
3470/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3471int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3472                            gpa_t addr, int len, const void *val, long cookie)
3473{
3474        struct kvm_io_bus *bus;
3475        struct kvm_io_range range;
3476
3477        range = (struct kvm_io_range) {
3478                .addr = addr,
3479                .len = len,
3480        };
3481
3482        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483
3484        /* First try the device referenced by cookie. */
3485        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3486            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3487                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3488                                        val))
3489                        return cookie;
3490
3491        /*
3492         * cookie contained garbage; fall back to search and return the
3493         * correct cookie value.
3494         */
3495        return __kvm_io_bus_write(vcpu, bus, &range, val);
3496}
3497
3498static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3499                             struct kvm_io_range *range, void *val)
3500{
3501        int idx;
3502
3503        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3504        if (idx < 0)
3505                return -EOPNOTSUPP;
3506
3507        while (idx < bus->dev_count &&
3508                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3509                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3510                                       range->len, val))
3511                        return idx;
3512                idx++;
3513        }
3514
3515        return -EOPNOTSUPP;
3516}
3517EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3518
3519/* kvm_io_bus_read - called under kvm->slots_lock */
3520int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3521                    int len, void *val)
3522{
3523        struct kvm_io_bus *bus;
3524        struct kvm_io_range range;
3525        int r;
3526
3527        range = (struct kvm_io_range) {
3528                .addr = addr,
3529                .len = len,
3530        };
3531
3532        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3533        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3534        return r < 0 ? r : 0;
3535}
3536
3537
3538/* Caller must hold slots_lock. */
3539int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3540                            int len, struct kvm_io_device *dev)
3541{
3542        struct kvm_io_bus *new_bus, *bus;
3543
3544        bus = kvm->buses[bus_idx];
3545        /* exclude ioeventfd which is limited by maximum fd */
3546        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3547                return -ENOSPC;
3548
3549        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3550                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3551        if (!new_bus)
3552                return -ENOMEM;
3553        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3554               sizeof(struct kvm_io_range)));
3555        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3556        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3557        synchronize_srcu_expedited(&kvm->srcu);
3558        kfree(bus);
3559
3560        return 0;
3561}
3562
3563/* Caller must hold slots_lock. */
3564int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3565                              struct kvm_io_device *dev)
3566{
3567        int i, r;
3568        struct kvm_io_bus *new_bus, *bus;
3569
3570        bus = kvm->buses[bus_idx];
3571        r = -ENOENT;
3572        for (i = 0; i < bus->dev_count; i++)
3573                if (bus->range[i].dev == dev) {
3574                        r = 0;
3575                        break;
3576                }
3577
3578        if (r)
3579                return r;
3580
3581        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3582                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3583        if (!new_bus)
3584                return -ENOMEM;
3585
3586        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3587        new_bus->dev_count--;
3588        memcpy(new_bus->range + i, bus->range + i + 1,
3589               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3590
3591        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3592        synchronize_srcu_expedited(&kvm->srcu);
3593        kfree(bus);
3594        return r;
3595}
3596
3597struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3598                                         gpa_t addr)
3599{
3600        struct kvm_io_bus *bus;
3601        int dev_idx, srcu_idx;
3602        struct kvm_io_device *iodev = NULL;
3603
3604        srcu_idx = srcu_read_lock(&kvm->srcu);
3605
3606        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3607
3608        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3609        if (dev_idx < 0)
3610                goto out_unlock;
3611
3612        iodev = bus->range[dev_idx].dev;
3613
3614out_unlock:
3615        srcu_read_unlock(&kvm->srcu, srcu_idx);
3616
3617        return iodev;
3618}
3619EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3620
3621static int kvm_debugfs_open(struct inode *inode, struct file *file,
3622                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3623                           const char *fmt)
3624{
3625        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3626                                          inode->i_private;
3627
3628        /* The debugfs files are a reference to the kvm struct which
3629         * is still valid when kvm_destroy_vm is called.
3630         * To avoid the race between open and the removal of the debugfs
3631         * directory we test against the users count.
3632         */
3633        if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3634                return -ENOENT;
3635
3636        if (simple_attr_open(inode, file, get, set, fmt)) {
3637                kvm_put_kvm(stat_data->kvm);
3638                return -ENOMEM;
3639        }
3640
3641        return 0;
3642}
3643
3644static int kvm_debugfs_release(struct inode *inode, struct file *file)
3645{
3646        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3647                                          inode->i_private;
3648
3649        simple_attr_release(inode, file);
3650        kvm_put_kvm(stat_data->kvm);
3651
3652        return 0;
3653}
3654
3655static int vm_stat_get_per_vm(void *data, u64 *val)
3656{
3657        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3658
3659        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3660
3661        return 0;
3662}
3663
3664static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3665{
3666        __simple_attr_check_format("%llu\n", 0ull);
3667        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3668                                NULL, "%llu\n");
3669}
3670
3671static const struct file_operations vm_stat_get_per_vm_fops = {
3672        .owner   = THIS_MODULE,
3673        .open    = vm_stat_get_per_vm_open,
3674        .release = kvm_debugfs_release,
3675        .read    = simple_attr_read,
3676        .write   = simple_attr_write,
3677        .llseek  = generic_file_llseek,
3678};
3679
3680static int vcpu_stat_get_per_vm(void *data, u64 *val)
3681{
3682        int i;
3683        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684        struct kvm_vcpu *vcpu;
3685
3686        *val = 0;
3687
3688        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3689                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3690
3691        return 0;
3692}
3693
3694static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3695{
3696        __simple_attr_check_format("%llu\n", 0ull);
3697        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3698                                 NULL, "%llu\n");
3699}
3700
3701static const struct file_operations vcpu_stat_get_per_vm_fops = {
3702        .owner   = THIS_MODULE,
3703        .open    = vcpu_stat_get_per_vm_open,
3704        .release = kvm_debugfs_release,
3705        .read    = simple_attr_read,
3706        .write   = simple_attr_write,
3707        .llseek  = generic_file_llseek,
3708};
3709
3710static const struct file_operations *stat_fops_per_vm[] = {
3711        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3712        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3713};
3714
3715static int vm_stat_get(void *_offset, u64 *val)
3716{
3717        unsigned offset = (long)_offset;
3718        struct kvm *kvm;
3719        struct kvm_stat_data stat_tmp = {.offset = offset};
3720        u64 tmp_val;
3721
3722        *val = 0;
3723        spin_lock(&kvm_lock);
3724        list_for_each_entry(kvm, &vm_list, vm_list) {
3725                stat_tmp.kvm = kvm;
3726                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3727                *val += tmp_val;
3728        }
3729        spin_unlock(&kvm_lock);
3730        return 0;
3731}
3732
3733DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3734
3735static int vcpu_stat_get(void *_offset, u64 *val)
3736{
3737        unsigned offset = (long)_offset;
3738        struct kvm *kvm;
3739        struct kvm_stat_data stat_tmp = {.offset = offset};
3740        u64 tmp_val;
3741
3742        *val = 0;
3743        spin_lock(&kvm_lock);
3744        list_for_each_entry(kvm, &vm_list, vm_list) {
3745                stat_tmp.kvm = kvm;
3746                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3747                *val += tmp_val;
3748        }
3749        spin_unlock(&kvm_lock);
3750        return 0;
3751}
3752
3753DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3754
3755static const struct file_operations *stat_fops[] = {
3756        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3757        [KVM_STAT_VM]   = &vm_stat_fops,
3758};
3759
3760static int kvm_init_debug(void)
3761{
3762        int r = -EEXIST;
3763        struct kvm_stats_debugfs_item *p;
3764
3765        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3766        if (kvm_debugfs_dir == NULL)
3767                goto out;
3768
3769        kvm_debugfs_num_entries = 0;
3770        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3771                if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3772                                         (void *)(long)p->offset,
3773                                         stat_fops[p->kind]))
3774                        goto out_dir;
3775        }
3776
3777        return 0;
3778
3779out_dir:
3780        debugfs_remove_recursive(kvm_debugfs_dir);
3781out:
3782        return r;
3783}
3784
3785static int kvm_suspend(void)
3786{
3787        if (kvm_usage_count)
3788                hardware_disable_nolock(NULL);
3789        return 0;
3790}
3791
3792static void kvm_resume(void)
3793{
3794        if (kvm_usage_count) {
3795                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3796                hardware_enable_nolock(NULL);
3797        }
3798}
3799
3800static struct syscore_ops kvm_syscore_ops = {
3801        .suspend = kvm_suspend,
3802        .resume = kvm_resume,
3803};
3804
3805static inline
3806struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3807{
3808        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3809}
3810
3811static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3812{
3813        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3814
3815        if (vcpu->preempted)
3816                vcpu->preempted = false;
3817
3818        kvm_arch_sched_in(vcpu, cpu);
3819
3820        kvm_arch_vcpu_load(vcpu, cpu);
3821}
3822
3823static void kvm_sched_out(struct preempt_notifier *pn,
3824                          struct task_struct *next)
3825{
3826        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3827
3828        if (current->state == TASK_RUNNING)
3829                vcpu->preempted = true;
3830        kvm_arch_vcpu_put(vcpu);
3831}
3832
3833int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3834                  struct module *module)
3835{
3836        int r;
3837        int cpu;
3838
3839        r = kvm_arch_init(opaque);
3840        if (r)
3841                goto out_fail;
3842
3843        /*
3844         * kvm_arch_init makes sure there's at most one caller
3845         * for architectures that support multiple implementations,
3846         * like intel and amd on x86.
3847         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3848         * conflicts in case kvm is already setup for another implementation.
3849         */
3850        r = kvm_irqfd_init();
3851        if (r)
3852                goto out_irqfd;
3853
3854        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3855                r = -ENOMEM;
3856                goto out_free_0;
3857        }
3858
3859        r = kvm_arch_hardware_setup();
3860        if (r < 0)
3861                goto out_free_0a;
3862
3863        for_each_online_cpu(cpu) {
3864                smp_call_function_single(cpu,
3865                                kvm_arch_check_processor_compat,
3866                                &r, 1);
3867                if (r < 0)
3868                        goto out_free_1;
3869        }
3870
3871        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3872                                      kvm_starting_cpu, kvm_dying_cpu);
3873        if (r)
3874                goto out_free_2;
3875        register_reboot_notifier(&kvm_reboot_notifier);
3876
3877        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3878        if (!vcpu_align)
3879                vcpu_align = __alignof__(struct kvm_vcpu);
3880        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3881                                           0, NULL);
3882        if (!kvm_vcpu_cache) {
3883                r = -ENOMEM;
3884                goto out_free_3;
3885        }
3886
3887        r = kvm_async_pf_init();
3888        if (r)
3889                goto out_free;
3890
3891        kvm_chardev_ops.owner = module;
3892        kvm_vm_fops.owner = module;
3893        kvm_vcpu_fops.owner = module;
3894
3895        r = misc_register(&kvm_dev);
3896        if (r) {
3897                pr_err("kvm: misc device register failed\n");
3898                goto out_unreg;
3899        }
3900
3901        register_syscore_ops(&kvm_syscore_ops);
3902
3903        kvm_preempt_ops.sched_in = kvm_sched_in;
3904        kvm_preempt_ops.sched_out = kvm_sched_out;
3905
3906        r = kvm_init_debug();
3907        if (r) {
3908                pr_err("kvm: create debugfs files failed\n");
3909                goto out_undebugfs;
3910        }
3911
3912        r = kvm_vfio_ops_init();
3913        WARN_ON(r);
3914
3915        return 0;
3916
3917out_undebugfs:
3918        unregister_syscore_ops(&kvm_syscore_ops);
3919        misc_deregister(&kvm_dev);
3920out_unreg:
3921        kvm_async_pf_deinit();
3922out_free:
3923        kmem_cache_destroy(kvm_vcpu_cache);
3924out_free_3:
3925        unregister_reboot_notifier(&kvm_reboot_notifier);
3926        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3927out_free_2:
3928out_free_1:
3929        kvm_arch_hardware_unsetup();
3930out_free_0a:
3931        free_cpumask_var(cpus_hardware_enabled);
3932out_free_0:
3933        kvm_irqfd_exit();
3934out_irqfd:
3935        kvm_arch_exit();
3936out_fail:
3937        return r;
3938}
3939EXPORT_SYMBOL_GPL(kvm_init);
3940
3941void kvm_exit(void)
3942{
3943        debugfs_remove_recursive(kvm_debugfs_dir);
3944        misc_deregister(&kvm_dev);
3945        kmem_cache_destroy(kvm_vcpu_cache);
3946        kvm_async_pf_deinit();
3947        unregister_syscore_ops(&kvm_syscore_ops);
3948        unregister_reboot_notifier(&kvm_reboot_notifier);
3949        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3950        on_each_cpu(hardware_disable_nolock, NULL, 1);
3951        kvm_arch_hardware_unsetup();
3952        kvm_arch_exit();
3953        kvm_irqfd_exit();
3954        free_cpumask_var(cpus_hardware_enabled);
3955        kvm_vfio_ops_exit();
3956}
3957EXPORT_SYMBOL_GPL(kvm_exit);
3958