linux/arch/arm/probes/kprobes/test-core.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes-test.c
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11/*
  12 * This file contains test code for ARM kprobes.
  13 *
  14 * The top level function run_all_tests() executes tests for all of the
  15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  16 * fall into two categories; run_api_tests() checks basic functionality of the
  17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  18 * instruction decoding and simulation.
  19 *
  20 * run_test_cases() first checks the kprobes decoding table for self consistency
  21 * (using table_test()) then executes a series of test cases for each of the CPU
  22 * instruction forms. coverage_start() and coverage_end() are used to verify
  23 * that these test cases cover all of the possible combinations of instructions
  24 * described by the kprobes decoding tables.
  25 *
  26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  27 * which use the macros defined in kprobes-test.h. The rest of this
  28 * documentation will describe the operation of the framework used by these
  29 * test cases.
  30 */
  31
  32/*
  33 * TESTING METHODOLOGY
  34 * -------------------
  35 *
  36 * The methodology used to test an ARM instruction 'test_insn' is to use
  37 * inline assembler like:
  38 *
  39 * test_before: nop
  40 * test_case:   test_insn
  41 * test_after:  nop
  42 *
  43 * When the test case is run a kprobe is placed of each nop. The
  44 * post-handler of the test_before probe is used to modify the saved CPU
  45 * register context to that which we require for the test case. The
  46 * pre-handler of the of the test_after probe saves a copy of the CPU
  47 * register context. In this way we can execute test_insn with a specific
  48 * register context and see the results afterwards.
  49 *
  50 * To actually test the kprobes instruction emulation we perform the above
  51 * step a second time but with an additional kprobe on the test_case
  52 * instruction itself. If the emulation is accurate then the results seen
  53 * by the test_after probe will be identical to the first run which didn't
  54 * have a probe on test_case.
  55 *
  56 * Each test case is run several times with a variety of variations in the
  57 * flags value of stored in CPSR, and for Thumb code, different ITState.
  58 *
  59 * For instructions which can modify PC, a second test_after probe is used
  60 * like this:
  61 *
  62 * test_before: nop
  63 * test_case:   test_insn
  64 * test_after:  nop
  65 *              b test_done
  66 * test_after2: nop
  67 * test_done:
  68 *
  69 * The test case is constructed such that test_insn branches to
  70 * test_after2, or, if testing a conditional instruction, it may just
  71 * continue to test_after. The probes inserted at both locations let us
  72 * determine which happened. A similar approach is used for testing
  73 * backwards branches...
  74 *
  75 *              b test_before
  76 *              b test_done  @ helps to cope with off by 1 branches
  77 * test_after2: nop
  78 *              b test_done
  79 * test_before: nop
  80 * test_case:   test_insn
  81 * test_after:  nop
  82 * test_done:
  83 *
  84 * The macros used to generate the assembler instructions describe above
  85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  87 * 99 represent: test_before, test_case, test_after2 and test_done.
  88 *
  89 * FRAMEWORK
  90 * ---------
  91 *
  92 * Each test case is wrapped between the pair of macros TESTCASE_START and
  93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  94 * these call out to the kprobes_test_case_start() and
  95 * kprobes_test_case_end() functions which drive the execution of the test
  96 * case. The specific arguments to use for each test case are stored as
  97 * inline data constructed using the various TEST_ARG_* macros. Putting
  98 * this all together, a simple test case may look like:
  99 *
 100 *      TESTCASE_START("Testing mov r0, r7")
 101 *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 102 *      TEST_ARG_END("")
 103 *      TEST_INSTRUCTION("mov r0, r7")
 104 *      TESTCASE_END
 105 *
 106 * Note, in practice the single convenience macro TEST_R would be used for this
 107 * instead.
 108 *
 109 * The above would expand to assembler looking something like:
 110 *
 111 *      @ TESTCASE_START
 112 *      bl      __kprobes_test_case_start
 113 *      .pushsection .rodata
 114 *      "10:
 115 *      .ascii "mov r0, r7"     @ text title for test case
 116 *      .byte   0
 117 *      .popsection
 118 *      @ start of inline data...
 119 *      .word   10b             @ pointer to title in .rodata section
 120 *
 121 *      @ TEST_ARG_REG
 122 *      .byte   ARG_TYPE_REG
 123 *      .byte   7
 124 *      .short  0
 125 *      .word   0x1234567
 126 *
 127 *      @ TEST_ARG_END
 128 *      .byte   ARG_TYPE_END
 129 *      .byte   TEST_ISA        @ flags, including ISA being tested
 130 *      .short  50f-0f          @ offset of 'test_before'
 131 *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
 132 *      .short  99f-0f          @ offset of 'test_done'
 133 *      @ start of test case code...
 134 *      0:
 135 *      .code   TEST_ISA        @ switch to ISA being tested
 136 *
 137 *      @ TEST_INSTRUCTION
 138 *      50:     nop             @ location for 'test_before' probe
 139 *      1:      mov r0, r7      @ the test case instruction 'test_insn'
 140 *              nop             @ location for 'test_after' probe
 141 *
 142 *      // TESTCASE_END
 143 *      2:
 144 *      99:     bl __kprobes_test_case_end_##TEST_ISA
 145 *      .code   NONMAL_ISA
 146 *
 147 * When the above is execute the following happens...
 148 *
 149 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 150 * for a stack buffer and calls the C function kprobes_test_case_start().
 151 * This C function will do some initial processing of the inline data and
 152 * setup some global state. It then inserts the test_before and test_after
 153 * kprobes and returns a value which causes the assembler wrapper to jump
 154 * to the start of the test case code, (local label '0').
 155 *
 156 * When the test case code executes, the test_before probe will be hit and
 157 * test_before_post_handler will call setup_test_context(). This fills the
 158 * stack buffer and CPU registers with a test pattern and then processes
 159 * the test case arguments. In our example there is one TEST_ARG_REG which
 160 * indicates that R7 should be loaded with the value 0x12345678.
 161 *
 162 * When the test_before probe ends, the test case continues and executes
 163 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 164 * pre-handler for this (test_after_pre_handler) will save a copy of the
 165 * CPU register context. This should now have R0 holding the same value as
 166 * R7.
 167 *
 168 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 169 * an assembler wrapper which switches back to the ISA used by the test
 170 * code and calls the C function kprobes_test_case_end().
 171 *
 172 * For each run through the test case, test_case_run_count is incremented
 173 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 174 * register and stack buffer contents from the test case just run. It then
 175 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 176 * value to cause the test case code to be re-run.
 177 *
 178 * For odd numbered runs, kprobes_test_case_end() compares the register and
 179 * stack buffer contents to those that were saved on the previous even
 180 * numbered run (the one without the kprobe on test_insn). These should be
 181 * the same if the kprobe instruction simulation routine is correct.
 182 *
 183 * The pair of test case runs is repeated with different combinations of
 184 * flag values in CPSR and, for Thumb, different ITState. This is
 185 * controlled by test_context_cpsr().
 186 *
 187 * BUILDING TEST CASES
 188 * -------------------
 189 *
 190 *
 191 * As an aid to building test cases, the stack buffer is initialised with
 192 * some special values:
 193 *
 194 *   [SP+13*4]  Contains SP+120. This can be used to test instructions
 195 *              which load a value into SP.
 196 *
 197 *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
 198 *              this holds the target address of the branch, 'test_after2'.
 199 *              This can be used to test instructions which load a PC value
 200 *              from memory.
 201 */
 202
 203#include <linux/kernel.h>
 204#include <linux/module.h>
 205#include <linux/slab.h>
 206#include <linux/kprobes.h>
 207#include <linux/errno.h>
 208#include <linux/stddef.h>
 209#include <linux/bug.h>
 210#include <asm/opcodes.h>
 211
 212#include "core.h"
 213#include "test-core.h"
 214#include "../decode-arm.h"
 215#include "../decode-thumb.h"
 216
 217
 218#define BENCHMARKING    1
 219
 220
 221/*
 222 * Test basic API
 223 */
 224
 225static bool test_regs_ok;
 226static int test_func_instance;
 227static int pre_handler_called;
 228static int post_handler_called;
 229static int jprobe_func_called;
 230static int kretprobe_handler_called;
 231static int tests_failed;
 232
 233#define FUNC_ARG1 0x12345678
 234#define FUNC_ARG2 0xabcdef
 235
 236
 237#ifndef CONFIG_THUMB2_KERNEL
 238
 239#define RET(reg)        "mov    pc, "#reg
 240
 241long arm_func(long r0, long r1);
 242
 243static void __used __naked __arm_kprobes_test_func(void)
 244{
 245        __asm__ __volatile__ (
 246                ".arm                                   \n\t"
 247                ".type arm_func, %%function             \n\t"
 248                "arm_func:                              \n\t"
 249                "adds   r0, r0, r1                      \n\t"
 250                "mov    pc, lr                          \n\t"
 251                ".code "NORMAL_ISA       /* Back to Thumb if necessary */
 252                : : : "r0", "r1", "cc"
 253        );
 254}
 255
 256#else /* CONFIG_THUMB2_KERNEL */
 257
 258#define RET(reg)        "bx     "#reg
 259
 260long thumb16_func(long r0, long r1);
 261long thumb32even_func(long r0, long r1);
 262long thumb32odd_func(long r0, long r1);
 263
 264static void __used __naked __thumb_kprobes_test_funcs(void)
 265{
 266        __asm__ __volatile__ (
 267                ".type thumb16_func, %%function         \n\t"
 268                "thumb16_func:                          \n\t"
 269                "adds.n r0, r0, r1                      \n\t"
 270                "bx     lr                              \n\t"
 271
 272                ".align                                 \n\t"
 273                ".type thumb32even_func, %%function     \n\t"
 274                "thumb32even_func:                      \n\t"
 275                "adds.w r0, r0, r1                      \n\t"
 276                "bx     lr                              \n\t"
 277
 278                ".align                                 \n\t"
 279                "nop.n                                  \n\t"
 280                ".type thumb32odd_func, %%function      \n\t"
 281                "thumb32odd_func:                       \n\t"
 282                "adds.w r0, r0, r1                      \n\t"
 283                "bx     lr                              \n\t"
 284
 285                : : : "r0", "r1", "cc"
 286        );
 287}
 288
 289#endif /* CONFIG_THUMB2_KERNEL */
 290
 291
 292static int call_test_func(long (*func)(long, long), bool check_test_regs)
 293{
 294        long ret;
 295
 296        ++test_func_instance;
 297        test_regs_ok = false;
 298
 299        ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 300        if (ret != FUNC_ARG1 + FUNC_ARG2) {
 301                pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 302                return false;
 303        }
 304
 305        if (check_test_regs && !test_regs_ok) {
 306                pr_err("FAIL: test regs not OK\n");
 307                return false;
 308        }
 309
 310        return true;
 311}
 312
 313static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 314{
 315        pre_handler_called = test_func_instance;
 316        if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 317                test_regs_ok = true;
 318        return 0;
 319}
 320
 321static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 322                                unsigned long flags)
 323{
 324        post_handler_called = test_func_instance;
 325        if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 326                test_regs_ok = false;
 327}
 328
 329static struct kprobe the_kprobe = {
 330        .addr           = 0,
 331        .pre_handler    = pre_handler,
 332        .post_handler   = post_handler
 333};
 334
 335static int test_kprobe(long (*func)(long, long))
 336{
 337        int ret;
 338
 339        the_kprobe.addr = (kprobe_opcode_t *)func;
 340        ret = register_kprobe(&the_kprobe);
 341        if (ret < 0) {
 342                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 343                return ret;
 344        }
 345
 346        ret = call_test_func(func, true);
 347
 348        unregister_kprobe(&the_kprobe);
 349        the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 350
 351        if (!ret)
 352                return -EINVAL;
 353        if (pre_handler_called != test_func_instance) {
 354                pr_err("FAIL: kprobe pre_handler not called\n");
 355                return -EINVAL;
 356        }
 357        if (post_handler_called != test_func_instance) {
 358                pr_err("FAIL: kprobe post_handler not called\n");
 359                return -EINVAL;
 360        }
 361        if (!call_test_func(func, false))
 362                return -EINVAL;
 363        if (pre_handler_called == test_func_instance ||
 364                                post_handler_called == test_func_instance) {
 365                pr_err("FAIL: probe called after unregistering\n");
 366                return -EINVAL;
 367        }
 368
 369        return 0;
 370}
 371
 372static void __kprobes jprobe_func(long r0, long r1)
 373{
 374        jprobe_func_called = test_func_instance;
 375        if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
 376                test_regs_ok = true;
 377        jprobe_return();
 378}
 379
 380static struct jprobe the_jprobe = {
 381        .entry          = jprobe_func,
 382};
 383
 384static int test_jprobe(long (*func)(long, long))
 385{
 386        int ret;
 387
 388        the_jprobe.kp.addr = (kprobe_opcode_t *)func;
 389        ret = register_jprobe(&the_jprobe);
 390        if (ret < 0) {
 391                pr_err("FAIL: register_jprobe failed with %d\n", ret);
 392                return ret;
 393        }
 394
 395        ret = call_test_func(func, true);
 396
 397        unregister_jprobe(&the_jprobe);
 398        the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 399
 400        if (!ret)
 401                return -EINVAL;
 402        if (jprobe_func_called != test_func_instance) {
 403                pr_err("FAIL: jprobe handler function not called\n");
 404                return -EINVAL;
 405        }
 406        if (!call_test_func(func, false))
 407                return -EINVAL;
 408        if (jprobe_func_called == test_func_instance) {
 409                pr_err("FAIL: probe called after unregistering\n");
 410                return -EINVAL;
 411        }
 412
 413        return 0;
 414}
 415
 416static int __kprobes
 417kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 418{
 419        kretprobe_handler_called = test_func_instance;
 420        if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 421                test_regs_ok = true;
 422        return 0;
 423}
 424
 425static struct kretprobe the_kretprobe = {
 426        .handler        = kretprobe_handler,
 427};
 428
 429static int test_kretprobe(long (*func)(long, long))
 430{
 431        int ret;
 432
 433        the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 434        ret = register_kretprobe(&the_kretprobe);
 435        if (ret < 0) {
 436                pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 437                return ret;
 438        }
 439
 440        ret = call_test_func(func, true);
 441
 442        unregister_kretprobe(&the_kretprobe);
 443        the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 444
 445        if (!ret)
 446                return -EINVAL;
 447        if (kretprobe_handler_called != test_func_instance) {
 448                pr_err("FAIL: kretprobe handler not called\n");
 449                return -EINVAL;
 450        }
 451        if (!call_test_func(func, false))
 452                return -EINVAL;
 453        if (jprobe_func_called == test_func_instance) {
 454                pr_err("FAIL: kretprobe called after unregistering\n");
 455                return -EINVAL;
 456        }
 457
 458        return 0;
 459}
 460
 461static int run_api_tests(long (*func)(long, long))
 462{
 463        int ret;
 464
 465        pr_info("    kprobe\n");
 466        ret = test_kprobe(func);
 467        if (ret < 0)
 468                return ret;
 469
 470        pr_info("    jprobe\n");
 471        ret = test_jprobe(func);
 472#if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
 473        if (ret == -EINVAL) {
 474                pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
 475                tests_failed = ret;
 476                ret = 0;
 477        }
 478#endif
 479        if (ret < 0)
 480                return ret;
 481
 482        pr_info("    kretprobe\n");
 483        ret = test_kretprobe(func);
 484        if (ret < 0)
 485                return ret;
 486
 487        return 0;
 488}
 489
 490
 491/*
 492 * Benchmarking
 493 */
 494
 495#if BENCHMARKING
 496
 497static void __naked benchmark_nop(void)
 498{
 499        __asm__ __volatile__ (
 500                "nop            \n\t"
 501                RET(lr)"        \n\t"
 502        );
 503}
 504
 505#ifdef CONFIG_THUMB2_KERNEL
 506#define wide ".w"
 507#else
 508#define wide
 509#endif
 510
 511static void __naked benchmark_pushpop1(void)
 512{
 513        __asm__ __volatile__ (
 514                "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
 515                "ldmia"wide"    sp!, {r3-r11,pc}"
 516        );
 517}
 518
 519static void __naked benchmark_pushpop2(void)
 520{
 521        __asm__ __volatile__ (
 522                "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
 523                "ldmia"wide"    sp!, {r0-r8,pc}"
 524        );
 525}
 526
 527static void __naked benchmark_pushpop3(void)
 528{
 529        __asm__ __volatile__ (
 530                "stmdb"wide"    sp!, {r4,lr}  \n\t"
 531                "ldmia"wide"    sp!, {r4,pc}"
 532        );
 533}
 534
 535static void __naked benchmark_pushpop4(void)
 536{
 537        __asm__ __volatile__ (
 538                "stmdb"wide"    sp!, {r0,lr}  \n\t"
 539                "ldmia"wide"    sp!, {r0,pc}"
 540        );
 541}
 542
 543
 544#ifdef CONFIG_THUMB2_KERNEL
 545
 546static void __naked benchmark_pushpop_thumb(void)
 547{
 548        __asm__ __volatile__ (
 549                "push.n {r0-r7,lr}  \n\t"
 550                "pop.n  {r0-r7,pc}"
 551        );
 552}
 553
 554#endif
 555
 556static int __kprobes
 557benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 558{
 559        return 0;
 560}
 561
 562static int benchmark(void(*fn)(void))
 563{
 564        unsigned n, i, t, t0;
 565
 566        for (n = 1000; ; n *= 2) {
 567                t0 = sched_clock();
 568                for (i = n; i > 0; --i)
 569                        fn();
 570                t = sched_clock() - t0;
 571                if (t >= 250000000)
 572                        break; /* Stop once we took more than 0.25 seconds */
 573        }
 574        return t / n; /* Time for one iteration in nanoseconds */
 575};
 576
 577static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 578{
 579        struct kprobe k = {
 580                .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
 581                .pre_handler    = benchmark_pre_handler,
 582        };
 583
 584        int ret = register_kprobe(&k);
 585        if (ret < 0) {
 586                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 587                return ret;
 588        }
 589
 590        ret = benchmark(fn);
 591
 592        unregister_kprobe(&k);
 593        return ret;
 594};
 595
 596struct benchmarks {
 597        void            (*fn)(void);
 598        unsigned        offset;
 599        const char      *title;
 600};
 601
 602static int run_benchmarks(void)
 603{
 604        int ret;
 605        struct benchmarks list[] = {
 606                {&benchmark_nop, 0, "nop"},
 607                /*
 608                 * benchmark_pushpop{1,3} will have the optimised
 609                 * instruction emulation, whilst benchmark_pushpop{2,4} will
 610                 * be the equivalent unoptimised instructions.
 611                 */
 612                {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
 613                {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
 614                {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
 615                {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
 616                {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
 617                {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
 618                {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
 619                {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
 620#ifdef CONFIG_THUMB2_KERNEL
 621                {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
 622                {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
 623#endif
 624                {0}
 625        };
 626
 627        struct benchmarks *b;
 628        for (b = list; b->fn; ++b) {
 629                ret = kprobe_benchmark(b->fn, b->offset);
 630                if (ret < 0)
 631                        return ret;
 632                pr_info("    %dns for kprobe %s\n", ret, b->title);
 633        }
 634
 635        pr_info("\n");
 636        return 0;
 637}
 638
 639#endif /* BENCHMARKING */
 640
 641
 642/*
 643 * Decoding table self-consistency tests
 644 */
 645
 646static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 647        [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
 648        [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
 649        [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
 650        [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
 651        [DECODE_TYPE_OR]        = sizeof(struct decode_or),
 652        [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
 653};
 654
 655static int table_iter(const union decode_item *table,
 656                        int (*fn)(const struct decode_header *, void *),
 657                        void *args)
 658{
 659        const struct decode_header *h = (struct decode_header *)table;
 660        int result;
 661
 662        for (;;) {
 663                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 664
 665                if (type == DECODE_TYPE_END)
 666                        return 0;
 667
 668                result = fn(h, args);
 669                if (result)
 670                        return result;
 671
 672                h = (struct decode_header *)
 673                        ((uintptr_t)h + decode_struct_sizes[type]);
 674
 675        }
 676}
 677
 678static int table_test_fail(const struct decode_header *h, const char* message)
 679{
 680
 681        pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 682                                        message, h->mask.bits, h->value.bits);
 683        return -EINVAL;
 684}
 685
 686struct table_test_args {
 687        const union decode_item *root_table;
 688        u32                     parent_mask;
 689        u32                     parent_value;
 690};
 691
 692static int table_test_fn(const struct decode_header *h, void *args)
 693{
 694        struct table_test_args *a = (struct table_test_args *)args;
 695        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 696
 697        if (h->value.bits & ~h->mask.bits)
 698                return table_test_fail(h, "Match value has bits not in mask");
 699
 700        if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 701                return table_test_fail(h, "Mask has bits not in parent mask");
 702
 703        if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 704                return table_test_fail(h, "Value is inconsistent with parent");
 705
 706        if (type == DECODE_TYPE_TABLE) {
 707                struct decode_table *d = (struct decode_table *)h;
 708                struct table_test_args args2 = *a;
 709                args2.parent_mask = h->mask.bits;
 710                args2.parent_value = h->value.bits;
 711                return table_iter(d->table.table, table_test_fn, &args2);
 712        }
 713
 714        return 0;
 715}
 716
 717static int table_test(const union decode_item *table)
 718{
 719        struct table_test_args args = {
 720                .root_table     = table,
 721                .parent_mask    = 0,
 722                .parent_value   = 0
 723        };
 724        return table_iter(args.root_table, table_test_fn, &args);
 725}
 726
 727
 728/*
 729 * Decoding table test coverage analysis
 730 *
 731 * coverage_start() builds a coverage_table which contains a list of
 732 * coverage_entry's to match each entry in the specified kprobes instruction
 733 * decoding table.
 734 *
 735 * When test cases are run, coverage_add() is called to process each case.
 736 * This looks up the corresponding entry in the coverage_table and sets it as
 737 * being matched, as well as clearing the regs flag appropriate for the test.
 738 *
 739 * After all test cases have been run, coverage_end() is called to check that
 740 * all entries in coverage_table have been matched and that all regs flags are
 741 * cleared. I.e. that all possible combinations of instructions described by
 742 * the kprobes decoding tables have had a test case executed for them.
 743 */
 744
 745bool coverage_fail;
 746
 747#define MAX_COVERAGE_ENTRIES 256
 748
 749struct coverage_entry {
 750        const struct decode_header      *header;
 751        unsigned                        regs;
 752        unsigned                        nesting;
 753        char                            matched;
 754};
 755
 756struct coverage_table {
 757        struct coverage_entry   *base;
 758        unsigned                num_entries;
 759        unsigned                nesting;
 760};
 761
 762struct coverage_table coverage;
 763
 764#define COVERAGE_ANY_REG        (1<<0)
 765#define COVERAGE_SP             (1<<1)
 766#define COVERAGE_PC             (1<<2)
 767#define COVERAGE_PCWB           (1<<3)
 768
 769static const char coverage_register_lookup[16] = {
 770        [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 771        [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
 772        [REG_TYPE_SP]           = COVERAGE_SP,
 773        [REG_TYPE_PC]           = COVERAGE_PC,
 774        [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
 775        [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 776        [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
 777        [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 778        [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
 779        [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
 780};
 781
 782unsigned coverage_start_registers(const struct decode_header *h)
 783{
 784        unsigned regs = 0;
 785        int i;
 786        for (i = 0; i < 20; i += 4) {
 787                int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 788                regs |= coverage_register_lookup[r] << i;
 789        }
 790        return regs;
 791}
 792
 793static int coverage_start_fn(const struct decode_header *h, void *args)
 794{
 795        struct coverage_table *coverage = (struct coverage_table *)args;
 796        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 797        struct coverage_entry *entry = coverage->base + coverage->num_entries;
 798
 799        if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 800                pr_err("FAIL: Out of space for test coverage data");
 801                return -ENOMEM;
 802        }
 803
 804        ++coverage->num_entries;
 805
 806        entry->header = h;
 807        entry->regs = coverage_start_registers(h);
 808        entry->nesting = coverage->nesting;
 809        entry->matched = false;
 810
 811        if (type == DECODE_TYPE_TABLE) {
 812                struct decode_table *d = (struct decode_table *)h;
 813                int ret;
 814                ++coverage->nesting;
 815                ret = table_iter(d->table.table, coverage_start_fn, coverage);
 816                --coverage->nesting;
 817                return ret;
 818        }
 819
 820        return 0;
 821}
 822
 823static int coverage_start(const union decode_item *table)
 824{
 825        coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
 826                                sizeof(struct coverage_entry), GFP_KERNEL);
 827        coverage.num_entries = 0;
 828        coverage.nesting = 0;
 829        return table_iter(table, coverage_start_fn, &coverage);
 830}
 831
 832static void
 833coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 834{
 835        int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 836        int i;
 837        for (i = 0; i < 20; i += 4) {
 838                enum decode_reg_type reg_type = (regs >> i) & 0xf;
 839                int reg = (insn >> i) & 0xf;
 840                int flag;
 841
 842                if (!reg_type)
 843                        continue;
 844
 845                if (reg == 13)
 846                        flag = COVERAGE_SP;
 847                else if (reg == 15)
 848                        flag = COVERAGE_PC;
 849                else
 850                        flag = COVERAGE_ANY_REG;
 851                entry->regs &= ~(flag << i);
 852
 853                switch (reg_type) {
 854
 855                case REG_TYPE_NONE:
 856                case REG_TYPE_ANY:
 857                case REG_TYPE_SAMEAS16:
 858                        break;
 859
 860                case REG_TYPE_SP:
 861                        if (reg != 13)
 862                                return;
 863                        break;
 864
 865                case REG_TYPE_PC:
 866                        if (reg != 15)
 867                                return;
 868                        break;
 869
 870                case REG_TYPE_NOSP:
 871                        if (reg == 13)
 872                                return;
 873                        break;
 874
 875                case REG_TYPE_NOSPPC:
 876                case REG_TYPE_NOSPPCX:
 877                        if (reg == 13 || reg == 15)
 878                                return;
 879                        break;
 880
 881                case REG_TYPE_NOPCWB:
 882                        if (!is_writeback(insn))
 883                                break;
 884                        if (reg == 15) {
 885                                entry->regs &= ~(COVERAGE_PCWB << i);
 886                                return;
 887                        }
 888                        break;
 889
 890                case REG_TYPE_NOPC:
 891                case REG_TYPE_NOPCX:
 892                        if (reg == 15)
 893                                return;
 894                        break;
 895                }
 896
 897        }
 898}
 899
 900static void coverage_add(kprobe_opcode_t insn)
 901{
 902        struct coverage_entry *entry = coverage.base;
 903        struct coverage_entry *end = coverage.base + coverage.num_entries;
 904        bool matched = false;
 905        unsigned nesting = 0;
 906
 907        for (; entry < end; ++entry) {
 908                const struct decode_header *h = entry->header;
 909                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 910
 911                if (entry->nesting > nesting)
 912                        continue; /* Skip sub-table we didn't match */
 913
 914                if (entry->nesting < nesting)
 915                        break; /* End of sub-table we were scanning */
 916
 917                if (!matched) {
 918                        if ((insn & h->mask.bits) != h->value.bits)
 919                                continue;
 920                        entry->matched = true;
 921                }
 922
 923                switch (type) {
 924
 925                case DECODE_TYPE_TABLE:
 926                        ++nesting;
 927                        break;
 928
 929                case DECODE_TYPE_CUSTOM:
 930                case DECODE_TYPE_SIMULATE:
 931                case DECODE_TYPE_EMULATE:
 932                        coverage_add_registers(entry, insn);
 933                        return;
 934
 935                case DECODE_TYPE_OR:
 936                        matched = true;
 937                        break;
 938
 939                case DECODE_TYPE_REJECT:
 940                default:
 941                        return;
 942                }
 943
 944        }
 945}
 946
 947static void coverage_end(void)
 948{
 949        struct coverage_entry *entry = coverage.base;
 950        struct coverage_entry *end = coverage.base + coverage.num_entries;
 951
 952        for (; entry < end; ++entry) {
 953                u32 mask = entry->header->mask.bits;
 954                u32 value = entry->header->value.bits;
 955
 956                if (entry->regs) {
 957                        pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 958                                mask, value, entry->regs);
 959                        coverage_fail = true;
 960                }
 961                if (!entry->matched) {
 962                        pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 963                                mask, value);
 964                        coverage_fail = true;
 965                }
 966        }
 967
 968        kfree(coverage.base);
 969}
 970
 971
 972/*
 973 * Framework for instruction set test cases
 974 */
 975
 976void __naked __kprobes_test_case_start(void)
 977{
 978        __asm__ __volatile__ (
 979                "stmdb  sp!, {r4-r11}                           \n\t"
 980                "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 981                "bic    r0, lr, #1  @ r0 = inline data          \n\t"
 982                "mov    r1, sp                                  \n\t"
 983                "bl     kprobes_test_case_start                 \n\t"
 984                RET(r0)"                                        \n\t"
 985        );
 986}
 987
 988#ifndef CONFIG_THUMB2_KERNEL
 989
 990void __naked __kprobes_test_case_end_32(void)
 991{
 992        __asm__ __volatile__ (
 993                "mov    r4, lr                                  \n\t"
 994                "bl     kprobes_test_case_end                   \n\t"
 995                "cmp    r0, #0                                  \n\t"
 996                "movne  pc, r0                                  \n\t"
 997                "mov    r0, r4                                  \n\t"
 998                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 999                "ldmia  sp!, {r4-r11}                           \n\t"
1000                "mov    pc, r0                                  \n\t"
1001        );
1002}
1003
1004#else /* CONFIG_THUMB2_KERNEL */
1005
1006void __naked __kprobes_test_case_end_16(void)
1007{
1008        __asm__ __volatile__ (
1009                "mov    r4, lr                                  \n\t"
1010                "bl     kprobes_test_case_end                   \n\t"
1011                "cmp    r0, #0                                  \n\t"
1012                "bxne   r0                                      \n\t"
1013                "mov    r0, r4                                  \n\t"
1014                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1015                "ldmia  sp!, {r4-r11}                           \n\t"
1016                "bx     r0                                      \n\t"
1017        );
1018}
1019
1020void __naked __kprobes_test_case_end_32(void)
1021{
1022        __asm__ __volatile__ (
1023                ".arm                                           \n\t"
1024                "orr    lr, lr, #1  @ will return to Thumb code \n\t"
1025                "ldr    pc, 1f                                  \n\t"
1026                "1:                                             \n\t"
1027                ".word  __kprobes_test_case_end_16              \n\t"
1028        );
1029}
1030
1031#endif
1032
1033
1034int kprobe_test_flags;
1035int kprobe_test_cc_position;
1036
1037static int test_try_count;
1038static int test_pass_count;
1039static int test_fail_count;
1040
1041static struct pt_regs initial_regs;
1042static struct pt_regs expected_regs;
1043static struct pt_regs result_regs;
1044
1045static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1046
1047static const char *current_title;
1048static struct test_arg *current_args;
1049static u32 *current_stack;
1050static uintptr_t current_branch_target;
1051
1052static uintptr_t current_code_start;
1053static kprobe_opcode_t current_instruction;
1054
1055
1056#define TEST_CASE_PASSED -1
1057#define TEST_CASE_FAILED -2
1058
1059static int test_case_run_count;
1060static bool test_case_is_thumb;
1061static int test_instance;
1062
1063static unsigned long test_check_cc(int cc, unsigned long cpsr)
1064{
1065        int ret = arm_check_condition(cc << 28, cpsr);
1066
1067        return (ret != ARM_OPCODE_CONDTEST_FAIL);
1068}
1069
1070static int is_last_scenario;
1071static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1072static int memory_needs_checking;
1073
1074static unsigned long test_context_cpsr(int scenario)
1075{
1076        unsigned long cpsr;
1077
1078        probe_should_run = 1;
1079
1080        /* Default case is that we cycle through 16 combinations of flags */
1081        cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1082        cpsr |= (scenario & 0xf) << 16; /* GE flags */
1083        cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1084
1085        if (!test_case_is_thumb) {
1086                /* Testing ARM code */
1087                int cc = current_instruction >> 28;
1088
1089                probe_should_run = test_check_cc(cc, cpsr) != 0;
1090                if (scenario == 15)
1091                        is_last_scenario = true;
1092
1093        } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1094                /* Testing Thumb code without setting ITSTATE */
1095                if (kprobe_test_cc_position) {
1096                        int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1097                        probe_should_run = test_check_cc(cc, cpsr) != 0;
1098                }
1099
1100                if (scenario == 15)
1101                        is_last_scenario = true;
1102
1103        } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1104                /* Testing Thumb code with all combinations of ITSTATE */
1105                unsigned x = (scenario >> 4);
1106                unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1107                unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1108
1109                if (mask > 0x1f) {
1110                        /* Finish by testing state from instruction 'itt al' */
1111                        cond_base = 7;
1112                        mask = 0x4;
1113                        if ((scenario & 0xf) == 0xf)
1114                                is_last_scenario = true;
1115                }
1116
1117                cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1118                cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1119                cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1120                cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1121                cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1122                cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1123
1124                probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1125
1126        } else {
1127                /* Testing Thumb code with several combinations of ITSTATE */
1128                switch (scenario) {
1129                case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1130                        cpsr = 0x00000800;
1131                        probe_should_run = 0;
1132                        break;
1133                case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1134                        cpsr = 0xf0007800;
1135                        probe_should_run = 0;
1136                        break;
1137                case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1138                        cpsr = 0x00009800;
1139                        break;
1140                case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1141                        cpsr = 0xf0002800;
1142                        is_last_scenario = true;
1143                        break;
1144                }
1145        }
1146
1147        return cpsr;
1148}
1149
1150static void setup_test_context(struct pt_regs *regs)
1151{
1152        int scenario = test_case_run_count>>1;
1153        unsigned long val;
1154        struct test_arg *args;
1155        int i;
1156
1157        is_last_scenario = false;
1158        memory_needs_checking = false;
1159
1160        /* Initialise test memory on stack */
1161        val = (scenario & 1) ? VALM : ~VALM;
1162        for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1163                current_stack[i] = val + (i << 8);
1164        /* Put target of branch on stack for tests which load PC from memory */
1165        if (current_branch_target)
1166                current_stack[15] = current_branch_target;
1167        /* Put a value for SP on stack for tests which load SP from memory */
1168        current_stack[13] = (u32)current_stack + 120;
1169
1170        /* Initialise register values to their default state */
1171        val = (scenario & 2) ? VALR : ~VALR;
1172        for (i = 0; i < 13; ++i)
1173                regs->uregs[i] = val ^ (i << 8);
1174        regs->ARM_lr = val ^ (14 << 8);
1175        regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1176        regs->ARM_cpsr |= test_context_cpsr(scenario);
1177
1178        /* Perform testcase specific register setup  */
1179        args = current_args;
1180        for (; args[0].type != ARG_TYPE_END; ++args)
1181                switch (args[0].type) {
1182                case ARG_TYPE_REG: {
1183                        struct test_arg_regptr *arg =
1184                                (struct test_arg_regptr *)args;
1185                        regs->uregs[arg->reg] = arg->val;
1186                        break;
1187                }
1188                case ARG_TYPE_PTR: {
1189                        struct test_arg_regptr *arg =
1190                                (struct test_arg_regptr *)args;
1191                        regs->uregs[arg->reg] =
1192                                (unsigned long)current_stack + arg->val;
1193                        memory_needs_checking = true;
1194                        /*
1195                         * Test memory at an address below SP is in danger of
1196                         * being altered by an interrupt occurring and pushing
1197                         * data onto the stack. Disable interrupts to stop this.
1198                         */
1199                        if (arg->reg == 13)
1200                                regs->ARM_cpsr |= PSR_I_BIT;
1201                        break;
1202                }
1203                case ARG_TYPE_MEM: {
1204                        struct test_arg_mem *arg = (struct test_arg_mem *)args;
1205                        current_stack[arg->index] = arg->val;
1206                        break;
1207                }
1208                default:
1209                        break;
1210                }
1211}
1212
1213struct test_probe {
1214        struct kprobe   kprobe;
1215        bool            registered;
1216        int             hit;
1217};
1218
1219static void unregister_test_probe(struct test_probe *probe)
1220{
1221        if (probe->registered) {
1222                unregister_kprobe(&probe->kprobe);
1223                probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1224        }
1225        probe->registered = false;
1226}
1227
1228static int register_test_probe(struct test_probe *probe)
1229{
1230        int ret;
1231
1232        if (probe->registered)
1233                BUG();
1234
1235        ret = register_kprobe(&probe->kprobe);
1236        if (ret >= 0) {
1237                probe->registered = true;
1238                probe->hit = -1;
1239        }
1240        return ret;
1241}
1242
1243static int __kprobes
1244test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1245{
1246        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1247        return 0;
1248}
1249
1250static void __kprobes
1251test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1252                                                        unsigned long flags)
1253{
1254        setup_test_context(regs);
1255        initial_regs = *regs;
1256        initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257}
1258
1259static int __kprobes
1260test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1261{
1262        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1263        return 0;
1264}
1265
1266static int __kprobes
1267test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1268{
1269        struct test_arg *args;
1270
1271        if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1272                return 0; /* Already run for this test instance */
1273
1274        result_regs = *regs;
1275
1276        /* Mask out results which are indeterminate */
1277        result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1278        for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1279                if (args[0].type == ARG_TYPE_REG_MASKED) {
1280                        struct test_arg_regptr *arg =
1281                                (struct test_arg_regptr *)args;
1282                        result_regs.uregs[arg->reg] &= arg->val;
1283                }
1284
1285        /* Undo any changes done to SP by the test case */
1286        regs->ARM_sp = (unsigned long)current_stack;
1287        /* Enable interrupts in case setup_test_context disabled them */
1288        regs->ARM_cpsr &= ~PSR_I_BIT;
1289
1290        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1291        return 0;
1292}
1293
1294static struct test_probe test_before_probe = {
1295        .kprobe.pre_handler     = test_before_pre_handler,
1296        .kprobe.post_handler    = test_before_post_handler,
1297};
1298
1299static struct test_probe test_case_probe = {
1300        .kprobe.pre_handler     = test_case_pre_handler,
1301};
1302
1303static struct test_probe test_after_probe = {
1304        .kprobe.pre_handler     = test_after_pre_handler,
1305};
1306
1307static struct test_probe test_after2_probe = {
1308        .kprobe.pre_handler     = test_after_pre_handler,
1309};
1310
1311static void test_case_cleanup(void)
1312{
1313        unregister_test_probe(&test_before_probe);
1314        unregister_test_probe(&test_case_probe);
1315        unregister_test_probe(&test_after_probe);
1316        unregister_test_probe(&test_after2_probe);
1317}
1318
1319static void print_registers(struct pt_regs *regs)
1320{
1321        pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1322                regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1323        pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1324                regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1325        pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1326                regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1327        pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1328                regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1329        pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1330}
1331
1332static void print_memory(u32 *mem, size_t size)
1333{
1334        int i;
1335        for (i = 0; i < size / sizeof(u32); i += 4)
1336                pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1337                                                mem[i+2], mem[i+3]);
1338}
1339
1340static size_t expected_memory_size(u32 *sp)
1341{
1342        size_t size = sizeof(expected_memory);
1343        int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1344        if (offset > 0)
1345                size -= offset;
1346        return size;
1347}
1348
1349static void test_case_failed(const char *message)
1350{
1351        test_case_cleanup();
1352
1353        pr_err("FAIL: %s\n", message);
1354        pr_err("FAIL: Test %s\n", current_title);
1355        pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1356}
1357
1358static unsigned long next_instruction(unsigned long pc)
1359{
1360#ifdef CONFIG_THUMB2_KERNEL
1361        if ((pc & 1) &&
1362            !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1363                return pc + 2;
1364        else
1365#endif
1366        return pc + 4;
1367}
1368
1369static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1370{
1371        struct test_arg *args;
1372        struct test_arg_end *end_arg;
1373        unsigned long test_code;
1374
1375        current_title = *title++;
1376        args = (struct test_arg *)title;
1377        current_args = args;
1378        current_stack = stack;
1379
1380        ++test_try_count;
1381
1382        while (args->type != ARG_TYPE_END)
1383                ++args;
1384        end_arg = (struct test_arg_end *)args;
1385
1386        test_code = (unsigned long)(args + 1); /* Code starts after args */
1387
1388        test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1389        if (test_case_is_thumb)
1390                test_code |= 1;
1391
1392        current_code_start = test_code;
1393
1394        current_branch_target = 0;
1395        if (end_arg->branch_offset != end_arg->end_offset)
1396                current_branch_target = test_code + end_arg->branch_offset;
1397
1398        test_code += end_arg->code_offset;
1399        test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1400
1401        test_code = next_instruction(test_code);
1402        test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1403
1404        if (test_case_is_thumb) {
1405                u16 *p = (u16 *)(test_code & ~1);
1406                current_instruction = __mem_to_opcode_thumb16(p[0]);
1407                if (is_wide_instruction(current_instruction)) {
1408                        u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1409                        current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1410                }
1411        } else {
1412                current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1413        }
1414
1415        if (current_title[0] == '.')
1416                verbose("%s\n", current_title);
1417        else
1418                verbose("%s\t@ %0*x\n", current_title,
1419                                        test_case_is_thumb ? 4 : 8,
1420                                        current_instruction);
1421
1422        test_code = next_instruction(test_code);
1423        test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1424
1425        if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1426                if (!test_case_is_thumb ||
1427                        is_wide_instruction(current_instruction)) {
1428                                test_case_failed("expected 16-bit instruction");
1429                                goto fail;
1430                }
1431        } else {
1432                if (test_case_is_thumb &&
1433                        !is_wide_instruction(current_instruction)) {
1434                                test_case_failed("expected 32-bit instruction");
1435                                goto fail;
1436                }
1437        }
1438
1439        coverage_add(current_instruction);
1440
1441        if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1442                if (register_test_probe(&test_case_probe) < 0)
1443                        goto pass;
1444                test_case_failed("registered probe for unsupported instruction");
1445                goto fail;
1446        }
1447
1448        if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1449                if (register_test_probe(&test_case_probe) >= 0)
1450                        goto pass;
1451                test_case_failed("couldn't register probe for supported instruction");
1452                goto fail;
1453        }
1454
1455        if (register_test_probe(&test_before_probe) < 0) {
1456                test_case_failed("register test_before_probe failed");
1457                goto fail;
1458        }
1459        if (register_test_probe(&test_after_probe) < 0) {
1460                test_case_failed("register test_after_probe failed");
1461                goto fail;
1462        }
1463        if (current_branch_target) {
1464                test_after2_probe.kprobe.addr =
1465                                (kprobe_opcode_t *)current_branch_target;
1466                if (register_test_probe(&test_after2_probe) < 0) {
1467                        test_case_failed("register test_after2_probe failed");
1468                        goto fail;
1469                }
1470        }
1471
1472        /* Start first run of test case */
1473        test_case_run_count = 0;
1474        ++test_instance;
1475        return current_code_start;
1476pass:
1477        test_case_run_count = TEST_CASE_PASSED;
1478        return (uintptr_t)test_after_probe.kprobe.addr;
1479fail:
1480        test_case_run_count = TEST_CASE_FAILED;
1481        return (uintptr_t)test_after_probe.kprobe.addr;
1482}
1483
1484static bool check_test_results(void)
1485{
1486        size_t mem_size = 0;
1487        u32 *mem = 0;
1488
1489        if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1490                test_case_failed("registers differ");
1491                goto fail;
1492        }
1493
1494        if (memory_needs_checking) {
1495                mem = (u32 *)result_regs.ARM_sp;
1496                mem_size = expected_memory_size(mem);
1497                if (memcmp(expected_memory, mem, mem_size)) {
1498                        test_case_failed("test memory differs");
1499                        goto fail;
1500                }
1501        }
1502
1503        return true;
1504
1505fail:
1506        pr_err("initial_regs:\n");
1507        print_registers(&initial_regs);
1508        pr_err("expected_regs:\n");
1509        print_registers(&expected_regs);
1510        pr_err("result_regs:\n");
1511        print_registers(&result_regs);
1512
1513        if (mem) {
1514                pr_err("current_stack=%p\n", current_stack);
1515                pr_err("expected_memory:\n");
1516                print_memory(expected_memory, mem_size);
1517                pr_err("result_memory:\n");
1518                print_memory(mem, mem_size);
1519        }
1520
1521        return false;
1522}
1523
1524static uintptr_t __used kprobes_test_case_end(void)
1525{
1526        if (test_case_run_count < 0) {
1527                if (test_case_run_count == TEST_CASE_PASSED)
1528                        /* kprobes_test_case_start did all the needed testing */
1529                        goto pass;
1530                else
1531                        /* kprobes_test_case_start failed */
1532                        goto fail;
1533        }
1534
1535        if (test_before_probe.hit != test_instance) {
1536                test_case_failed("test_before_handler not run");
1537                goto fail;
1538        }
1539
1540        if (test_after_probe.hit != test_instance &&
1541                                test_after2_probe.hit != test_instance) {
1542                test_case_failed("test_after_handler not run");
1543                goto fail;
1544        }
1545
1546        /*
1547         * Even numbered test runs ran without a probe on the test case so
1548         * we can gather reference results. The subsequent odd numbered run
1549         * will have the probe inserted.
1550        */
1551        if ((test_case_run_count & 1) == 0) {
1552                /* Save results from run without probe */
1553                u32 *mem = (u32 *)result_regs.ARM_sp;
1554                expected_regs = result_regs;
1555                memcpy(expected_memory, mem, expected_memory_size(mem));
1556
1557                /* Insert probe onto test case instruction */
1558                if (register_test_probe(&test_case_probe) < 0) {
1559                        test_case_failed("register test_case_probe failed");
1560                        goto fail;
1561                }
1562        } else {
1563                /* Check probe ran as expected */
1564                if (probe_should_run == 1) {
1565                        if (test_case_probe.hit != test_instance) {
1566                                test_case_failed("test_case_handler not run");
1567                                goto fail;
1568                        }
1569                } else if (probe_should_run == 0) {
1570                        if (test_case_probe.hit == test_instance) {
1571                                test_case_failed("test_case_handler ran");
1572                                goto fail;
1573                        }
1574                }
1575
1576                /* Remove probe for any subsequent reference run */
1577                unregister_test_probe(&test_case_probe);
1578
1579                if (!check_test_results())
1580                        goto fail;
1581
1582                if (is_last_scenario)
1583                        goto pass;
1584        }
1585
1586        /* Do next test run */
1587        ++test_case_run_count;
1588        ++test_instance;
1589        return current_code_start;
1590fail:
1591        ++test_fail_count;
1592        goto end;
1593pass:
1594        ++test_pass_count;
1595end:
1596        test_case_cleanup();
1597        return 0;
1598}
1599
1600
1601/*
1602 * Top level test functions
1603 */
1604
1605static int run_test_cases(void (*tests)(void), const union decode_item *table)
1606{
1607        int ret;
1608
1609        pr_info("    Check decoding tables\n");
1610        ret = table_test(table);
1611        if (ret)
1612                return ret;
1613
1614        pr_info("    Run test cases\n");
1615        ret = coverage_start(table);
1616        if (ret)
1617                return ret;
1618
1619        tests();
1620
1621        coverage_end();
1622        return 0;
1623}
1624
1625
1626static int __init run_all_tests(void)
1627{
1628        int ret = 0;
1629
1630        pr_info("Beginning kprobe tests...\n");
1631
1632#ifndef CONFIG_THUMB2_KERNEL
1633
1634        pr_info("Probe ARM code\n");
1635        ret = run_api_tests(arm_func);
1636        if (ret)
1637                goto out;
1638
1639        pr_info("ARM instruction simulation\n");
1640        ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1641        if (ret)
1642                goto out;
1643
1644#else /* CONFIG_THUMB2_KERNEL */
1645
1646        pr_info("Probe 16-bit Thumb code\n");
1647        ret = run_api_tests(thumb16_func);
1648        if (ret)
1649                goto out;
1650
1651        pr_info("Probe 32-bit Thumb code, even halfword\n");
1652        ret = run_api_tests(thumb32even_func);
1653        if (ret)
1654                goto out;
1655
1656        pr_info("Probe 32-bit Thumb code, odd halfword\n");
1657        ret = run_api_tests(thumb32odd_func);
1658        if (ret)
1659                goto out;
1660
1661        pr_info("16-bit Thumb instruction simulation\n");
1662        ret = run_test_cases(kprobe_thumb16_test_cases,
1663                                probes_decode_thumb16_table);
1664        if (ret)
1665                goto out;
1666
1667        pr_info("32-bit Thumb instruction simulation\n");
1668        ret = run_test_cases(kprobe_thumb32_test_cases,
1669                                probes_decode_thumb32_table);
1670        if (ret)
1671                goto out;
1672#endif
1673
1674        pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1675                test_try_count, test_pass_count, test_fail_count);
1676        if (test_fail_count) {
1677                ret = -EINVAL;
1678                goto out;
1679        }
1680
1681#if BENCHMARKING
1682        pr_info("Benchmarks\n");
1683        ret = run_benchmarks();
1684        if (ret)
1685                goto out;
1686#endif
1687
1688#if __LINUX_ARM_ARCH__ >= 7
1689        /* We are able to run all test cases so coverage should be complete */
1690        if (coverage_fail) {
1691                pr_err("FAIL: Test coverage checks failed\n");
1692                ret = -EINVAL;
1693                goto out;
1694        }
1695#endif
1696
1697out:
1698        if (ret == 0)
1699                ret = tests_failed;
1700        if (ret == 0)
1701                pr_info("Finished kprobe tests OK\n");
1702        else
1703                pr_err("kprobe tests failed\n");
1704
1705        return ret;
1706}
1707
1708
1709/*
1710 * Module setup
1711 */
1712
1713#ifdef MODULE
1714
1715static void __exit kprobe_test_exit(void)
1716{
1717}
1718
1719module_init(run_all_tests)
1720module_exit(kprobe_test_exit)
1721MODULE_LICENSE("GPL");
1722
1723#else /* !MODULE */
1724
1725late_initcall(run_all_tests);
1726
1727#endif
1728