linux/arch/mips/sgi-ip27/ip27-irq.c
<<
>>
Prefs
   1/*
   2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
   3 *
   4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
   5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
   7 */
   8
   9#undef DEBUG
  10
  11#include <linux/init.h>
  12#include <linux/irq.h>
  13#include <linux/errno.h>
  14#include <linux/signal.h>
  15#include <linux/sched.h>
  16#include <linux/types.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/timex.h>
  20#include <linux/smp.h>
  21#include <linux/random.h>
  22#include <linux/kernel.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/delay.h>
  25#include <linux/bitops.h>
  26
  27#include <asm/bootinfo.h>
  28#include <asm/io.h>
  29#include <asm/mipsregs.h>
  30
  31#include <asm/processor.h>
  32#include <asm/sn/addrs.h>
  33#include <asm/sn/agent.h>
  34#include <asm/sn/arch.h>
  35#include <asm/sn/hub.h>
  36#include <asm/sn/intr.h>
  37
  38/*
  39 * Linux has a controller-independent x86 interrupt architecture.
  40 * every controller has a 'controller-template', that is used
  41 * by the main code to do the right thing. Each driver-visible
  42 * interrupt source is transparently wired to the appropriate
  43 * controller. Thus drivers need not be aware of the
  44 * interrupt-controller.
  45 *
  46 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
  47 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
  48 * (IO-APICs assumed to be messaging to Pentium local-APICs)
  49 *
  50 * the code is designed to be easily extended with new/different
  51 * interrupt controllers, without having to do assembly magic.
  52 */
  53
  54extern asmlinkage void ip27_irq(void);
  55
  56/*
  57 * Find first bit set
  58 */
  59static int ms1bit(unsigned long x)
  60{
  61        int b = 0, s;
  62
  63        s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
  64        s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
  65        s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
  66        s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
  67        s =  1; if (x >>  1 == 0) s = 0; b += s;
  68
  69        return b;
  70}
  71
  72/*
  73 * This code is unnecessarily complex, because we do
  74 * intr enabling. Basically, once we grab the set of intrs we need
  75 * to service, we must mask _all_ these interrupts; firstly, to make
  76 * sure the same intr does not intr again, causing recursion that
  77 * can lead to stack overflow. Secondly, we can not just mask the
  78 * one intr we are do_IRQing, because the non-masked intrs in the
  79 * first set might intr again, causing multiple servicings of the
  80 * same intr. This effect is mostly seen for intercpu intrs.
  81 * Kanoj 05.13.00
  82 */
  83
  84static void ip27_do_irq_mask0(void)
  85{
  86        int irq, swlevel;
  87        hubreg_t pend0, mask0;
  88        cpuid_t cpu = smp_processor_id();
  89        int pi_int_mask0 =
  90                (cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
  91
  92        /* copied from Irix intpend0() */
  93        pend0 = LOCAL_HUB_L(PI_INT_PEND0);
  94        mask0 = LOCAL_HUB_L(pi_int_mask0);
  95
  96        pend0 &= mask0;         /* Pick intrs we should look at */
  97        if (!pend0)
  98                return;
  99
 100        swlevel = ms1bit(pend0);
 101#ifdef CONFIG_SMP
 102        if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
 103                LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
 104                scheduler_ipi();
 105        } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
 106                LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
 107                scheduler_ipi();
 108        } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
 109                LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
 110                irq_enter();
 111                generic_smp_call_function_interrupt();
 112                irq_exit();
 113        } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
 114                LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
 115                irq_enter();
 116                generic_smp_call_function_interrupt();
 117                irq_exit();
 118        } else
 119#endif
 120        {
 121                /* "map" swlevel to irq */
 122                struct slice_data *si = cpu_data[cpu].data;
 123
 124                irq = si->level_to_irq[swlevel];
 125                do_IRQ(irq);
 126        }
 127
 128        LOCAL_HUB_L(PI_INT_PEND0);
 129}
 130
 131static void ip27_do_irq_mask1(void)
 132{
 133        int irq, swlevel;
 134        hubreg_t pend1, mask1;
 135        cpuid_t cpu = smp_processor_id();
 136        int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
 137        struct slice_data *si = cpu_data[cpu].data;
 138
 139        /* copied from Irix intpend0() */
 140        pend1 = LOCAL_HUB_L(PI_INT_PEND1);
 141        mask1 = LOCAL_HUB_L(pi_int_mask1);
 142
 143        pend1 &= mask1;         /* Pick intrs we should look at */
 144        if (!pend1)
 145                return;
 146
 147        swlevel = ms1bit(pend1);
 148        /* "map" swlevel to irq */
 149        irq = si->level_to_irq[swlevel];
 150        LOCAL_HUB_CLR_INTR(swlevel);
 151        do_IRQ(irq);
 152
 153        LOCAL_HUB_L(PI_INT_PEND1);
 154}
 155
 156static void ip27_prof_timer(void)
 157{
 158        panic("CPU %d got a profiling interrupt", smp_processor_id());
 159}
 160
 161static void ip27_hub_error(void)
 162{
 163        panic("CPU %d got a hub error interrupt", smp_processor_id());
 164}
 165
 166asmlinkage void plat_irq_dispatch(void)
 167{
 168        unsigned long pending = read_c0_cause() & read_c0_status();
 169        extern unsigned int rt_timer_irq;
 170
 171        if (pending & CAUSEF_IP4)
 172                do_IRQ(rt_timer_irq);
 173        else if (pending & CAUSEF_IP2)  /* PI_INT_PEND_0 or CC_PEND_{A|B} */
 174                ip27_do_irq_mask0();
 175        else if (pending & CAUSEF_IP3)  /* PI_INT_PEND_1 */
 176                ip27_do_irq_mask1();
 177        else if (pending & CAUSEF_IP5)
 178                ip27_prof_timer();
 179        else if (pending & CAUSEF_IP6)
 180                ip27_hub_error();
 181}
 182
 183void __init arch_init_irq(void)
 184{
 185}
 186
 187void install_ipi(void)
 188{
 189        int slice = LOCAL_HUB_L(PI_CPU_NUM);
 190        int cpu = smp_processor_id();
 191        struct slice_data *si = cpu_data[cpu].data;
 192        struct hub_data *hub = hub_data(cpu_to_node(cpu));
 193        int resched, call;
 194
 195        resched = CPU_RESCHED_A_IRQ + slice;
 196        __set_bit(resched, hub->irq_alloc_mask);
 197        __set_bit(resched, si->irq_enable_mask);
 198        LOCAL_HUB_CLR_INTR(resched);
 199
 200        call = CPU_CALL_A_IRQ + slice;
 201        __set_bit(call, hub->irq_alloc_mask);
 202        __set_bit(call, si->irq_enable_mask);
 203        LOCAL_HUB_CLR_INTR(call);
 204
 205        if (slice == 0) {
 206                LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
 207                LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
 208        } else {
 209                LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
 210                LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
 211        }
 212}
 213