1
2
3
4
5
6
7
8
9
10
11
12
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/rtc.h>
16#include <linux/sched.h>
17#include <linux/sched_clock.h>
18#include <linux/kernel.h>
19#include <linux/param.h>
20#include <linux/string.h>
21#include <linux/mm.h>
22#include <linux/interrupt.h>
23#include <linux/time.h>
24#include <linux/init.h>
25#include <linux/smp.h>
26#include <linux/profile.h>
27#include <linux/clocksource.h>
28#include <linux/platform_device.h>
29#include <linux/ftrace.h>
30
31#include <asm/uaccess.h>
32#include <asm/io.h>
33#include <asm/irq.h>
34#include <asm/page.h>
35#include <asm/param.h>
36#include <asm/pdc.h>
37#include <asm/led.h>
38
39#include <linux/timex.h>
40
41static unsigned long clocktick __read_mostly;
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
61{
62 unsigned long now, now2;
63 unsigned long next_tick;
64 unsigned long cycles_elapsed, ticks_elapsed = 1;
65 unsigned long cycles_remainder;
66 unsigned int cpu = smp_processor_id();
67 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
68
69
70 unsigned long cpt = clocktick;
71
72 profile_tick(CPU_PROFILING);
73
74
75 next_tick = cpuinfo->it_value;
76
77
78 now = mfctl(16);
79
80 cycles_elapsed = now - next_tick;
81
82 if ((cycles_elapsed >> 6) < cpt) {
83
84
85
86 cycles_remainder = cycles_elapsed;
87 while (cycles_remainder > cpt) {
88 cycles_remainder -= cpt;
89 ticks_elapsed++;
90 }
91 } else {
92
93 cycles_remainder = cycles_elapsed % cpt;
94 ticks_elapsed += cycles_elapsed / cpt;
95 }
96
97
98 cycles_remainder = cpt - cycles_remainder;
99
100
101
102
103
104 next_tick = now + cycles_remainder;
105
106 cpuinfo->it_value = next_tick;
107
108
109
110
111 mtctl(next_tick, 16);
112
113
114
115
116
117
118
119
120
121
122
123 now2 = mfctl(16);
124 if (next_tick - now2 > cpt)
125 mtctl(next_tick+cpt, 16);
126
127#if 1
128
129
130
131 if (unlikely(now2 - now > 0x3000))
132 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
133 " cyc %lX rem %lX "
134 " next/now %lX/%lX\n",
135 cpu, now2 - now, cycles_elapsed, cycles_remainder,
136 next_tick, now );
137#endif
138
139
140
141
142
143
144
145
146
147
148
149 if (unlikely(ticks_elapsed > HZ)) {
150
151 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
152 " cycles %lX rem %lX "
153 " next/now %lX/%lX\n",
154 cpu,
155 cycles_elapsed, cycles_remainder,
156 next_tick, now );
157 }
158
159
160
161
162
163 if (!--cpuinfo->prof_counter) {
164 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
165 update_process_times(user_mode(get_irq_regs()));
166 }
167
168 if (cpu == 0)
169 xtime_update(ticks_elapsed);
170
171 return IRQ_HANDLED;
172}
173
174
175unsigned long profile_pc(struct pt_regs *regs)
176{
177 unsigned long pc = instruction_pointer(regs);
178
179 if (regs->gr[0] & PSW_N)
180 pc -= 4;
181
182#ifdef CONFIG_SMP
183 if (in_lock_functions(pc))
184 pc = regs->gr[2];
185#endif
186
187 return pc;
188}
189EXPORT_SYMBOL(profile_pc);
190
191
192
193
194static cycle_t notrace read_cr16(struct clocksource *cs)
195{
196 return get_cycles();
197}
198
199static struct clocksource clocksource_cr16 = {
200 .name = "cr16",
201 .rating = 300,
202 .read = read_cr16,
203 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
204 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
205};
206
207void __init start_cpu_itimer(void)
208{
209 unsigned int cpu = smp_processor_id();
210 unsigned long next_tick = mfctl(16) + clocktick;
211
212 mtctl(next_tick, 16);
213
214 per_cpu(cpu_data, cpu).it_value = next_tick;
215}
216
217#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
218static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
219{
220 struct pdc_tod tod_data;
221
222 memset(tm, 0, sizeof(*tm));
223 if (pdc_tod_read(&tod_data) < 0)
224 return -EOPNOTSUPP;
225
226
227 rtc_time64_to_tm(tod_data.tod_sec, tm);
228 return rtc_valid_tm(tm);
229}
230
231static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
232{
233 time64_t secs = rtc_tm_to_time64(tm);
234
235 if (pdc_tod_set(secs, 0) < 0)
236 return -EOPNOTSUPP;
237
238 return 0;
239}
240
241static const struct rtc_class_ops rtc_generic_ops = {
242 .read_time = rtc_generic_get_time,
243 .set_time = rtc_generic_set_time,
244};
245
246static int __init rtc_init(void)
247{
248 struct platform_device *pdev;
249
250 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
251 &rtc_generic_ops,
252 sizeof(rtc_generic_ops));
253
254 return PTR_ERR_OR_ZERO(pdev);
255}
256device_initcall(rtc_init);
257#endif
258
259void read_persistent_clock(struct timespec *ts)
260{
261 static struct pdc_tod tod_data;
262 if (pdc_tod_read(&tod_data) == 0) {
263 ts->tv_sec = tod_data.tod_sec;
264 ts->tv_nsec = tod_data.tod_usec * 1000;
265 } else {
266 printk(KERN_ERR "Error reading tod clock\n");
267 ts->tv_sec = 0;
268 ts->tv_nsec = 0;
269 }
270}
271
272
273static u64 notrace read_cr16_sched_clock(void)
274{
275 return get_cycles();
276}
277
278
279
280
281
282
283void __init time_init(void)
284{
285 unsigned long cr16_hz;
286
287 clocktick = (100 * PAGE0->mem_10msec) / HZ;
288 start_cpu_itimer();
289
290 cr16_hz = 100 * PAGE0->mem_10msec;
291
292
293 clocksource_register_hz(&clocksource_cr16, cr16_hz);
294
295
296 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
297}
298