linux/arch/parisc/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   7 *
   8 * 1994-07-02  Alan Modra
   9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 */
  13#include <linux/errno.h>
  14#include <linux/module.h>
  15#include <linux/rtc.h>
  16#include <linux/sched.h>
  17#include <linux/sched_clock.h>
  18#include <linux/kernel.h>
  19#include <linux/param.h>
  20#include <linux/string.h>
  21#include <linux/mm.h>
  22#include <linux/interrupt.h>
  23#include <linux/time.h>
  24#include <linux/init.h>
  25#include <linux/smp.h>
  26#include <linux/profile.h>
  27#include <linux/clocksource.h>
  28#include <linux/platform_device.h>
  29#include <linux/ftrace.h>
  30
  31#include <asm/uaccess.h>
  32#include <asm/io.h>
  33#include <asm/irq.h>
  34#include <asm/page.h>
  35#include <asm/param.h>
  36#include <asm/pdc.h>
  37#include <asm/led.h>
  38
  39#include <linux/timex.h>
  40
  41static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
  42
  43/*
  44 * We keep time on PA-RISC Linux by using the Interval Timer which is
  45 * a pair of registers; one is read-only and one is write-only; both
  46 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  47 * and increments by 1 every CPU clock tick.  The architecture only
  48 * guarantees us a rate between 0.5 and 2, but all implementations use a
  49 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  50 * 32 bits of the read-only register compare equal to the write-only
  51 * register, it raises a maskable external interrupt.  Each processor has
  52 * an Interval Timer of its own and they are not synchronised.  
  53 *
  54 * We want to generate an interrupt every 1/HZ seconds.  So we program
  55 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  56 * is programmed with the intended time of the next tick.  We can be
  57 * held off for an arbitrarily long period of time by interrupts being
  58 * disabled, so we may miss one or more ticks.
  59 */
  60irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  61{
  62        unsigned long now, now2;
  63        unsigned long next_tick;
  64        unsigned long cycles_elapsed, ticks_elapsed = 1;
  65        unsigned long cycles_remainder;
  66        unsigned int cpu = smp_processor_id();
  67        struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  68
  69        /* gcc can optimize for "read-only" case with a local clocktick */
  70        unsigned long cpt = clocktick;
  71
  72        profile_tick(CPU_PROFILING);
  73
  74        /* Initialize next_tick to the expected tick time. */
  75        next_tick = cpuinfo->it_value;
  76
  77        /* Get current cycle counter (Control Register 16). */
  78        now = mfctl(16);
  79
  80        cycles_elapsed = now - next_tick;
  81
  82        if ((cycles_elapsed >> 6) < cpt) {
  83                /* use "cheap" math (add/subtract) instead
  84                 * of the more expensive div/mul method
  85                 */
  86                cycles_remainder = cycles_elapsed;
  87                while (cycles_remainder > cpt) {
  88                        cycles_remainder -= cpt;
  89                        ticks_elapsed++;
  90                }
  91        } else {
  92                /* TODO: Reduce this to one fdiv op */
  93                cycles_remainder = cycles_elapsed % cpt;
  94                ticks_elapsed += cycles_elapsed / cpt;
  95        }
  96
  97        /* convert from "division remainder" to "remainder of clock tick" */
  98        cycles_remainder = cpt - cycles_remainder;
  99
 100        /* Determine when (in CR16 cycles) next IT interrupt will fire.
 101         * We want IT to fire modulo clocktick even if we miss/skip some.
 102         * But those interrupts don't in fact get delivered that regularly.
 103         */
 104        next_tick = now + cycles_remainder;
 105
 106        cpuinfo->it_value = next_tick;
 107
 108        /* Program the IT when to deliver the next interrupt.
 109         * Only bottom 32-bits of next_tick are writable in CR16!
 110         */
 111        mtctl(next_tick, 16);
 112
 113        /* Skip one clocktick on purpose if we missed next_tick.
 114         * The new CR16 must be "later" than current CR16 otherwise
 115         * itimer would not fire until CR16 wrapped - e.g 4 seconds
 116         * later on a 1Ghz processor. We'll account for the missed
 117         * tick on the next timer interrupt.
 118         *
 119         * "next_tick - now" will always give the difference regardless
 120         * if one or the other wrapped. If "now" is "bigger" we'll end up
 121         * with a very large unsigned number.
 122         */
 123        now2 = mfctl(16);
 124        if (next_tick - now2 > cpt)
 125                mtctl(next_tick+cpt, 16);
 126
 127#if 1
 128/*
 129 * GGG: DEBUG code for how many cycles programming CR16 used.
 130 */
 131        if (unlikely(now2 - now > 0x3000))      /* 12K cycles */
 132                printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
 133                        " cyc %lX rem %lX "
 134                        " next/now %lX/%lX\n",
 135                        cpu, now2 - now, cycles_elapsed, cycles_remainder,
 136                        next_tick, now );
 137#endif
 138
 139        /* Can we differentiate between "early CR16" (aka Scenario 1) and
 140         * "long delay" (aka Scenario 3)? I don't think so.
 141         *
 142         * Timer_interrupt will be delivered at least a few hundred cycles
 143         * after the IT fires. But it's arbitrary how much time passes
 144         * before we call it "late". I've picked one second.
 145         *
 146         * It's important NO printk's are between reading CR16 and
 147         * setting up the next value. May introduce huge variance.
 148         */
 149        if (unlikely(ticks_elapsed > HZ)) {
 150                /* Scenario 3: very long delay?  bad in any case */
 151                printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
 152                        " cycles %lX rem %lX "
 153                        " next/now %lX/%lX\n",
 154                        cpu,
 155                        cycles_elapsed, cycles_remainder,
 156                        next_tick, now );
 157        }
 158
 159        /* Done mucking with unreliable delivery of interrupts.
 160         * Go do system house keeping.
 161         */
 162
 163        if (!--cpuinfo->prof_counter) {
 164                cpuinfo->prof_counter = cpuinfo->prof_multiplier;
 165                update_process_times(user_mode(get_irq_regs()));
 166        }
 167
 168        if (cpu == 0)
 169                xtime_update(ticks_elapsed);
 170
 171        return IRQ_HANDLED;
 172}
 173
 174
 175unsigned long profile_pc(struct pt_regs *regs)
 176{
 177        unsigned long pc = instruction_pointer(regs);
 178
 179        if (regs->gr[0] & PSW_N)
 180                pc -= 4;
 181
 182#ifdef CONFIG_SMP
 183        if (in_lock_functions(pc))
 184                pc = regs->gr[2];
 185#endif
 186
 187        return pc;
 188}
 189EXPORT_SYMBOL(profile_pc);
 190
 191
 192/* clock source code */
 193
 194static cycle_t notrace read_cr16(struct clocksource *cs)
 195{
 196        return get_cycles();
 197}
 198
 199static struct clocksource clocksource_cr16 = {
 200        .name                   = "cr16",
 201        .rating                 = 300,
 202        .read                   = read_cr16,
 203        .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 204        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 205};
 206
 207void __init start_cpu_itimer(void)
 208{
 209        unsigned int cpu = smp_processor_id();
 210        unsigned long next_tick = mfctl(16) + clocktick;
 211
 212        mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 213
 214        per_cpu(cpu_data, cpu).it_value = next_tick;
 215}
 216
 217#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
 218static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 219{
 220        struct pdc_tod tod_data;
 221
 222        memset(tm, 0, sizeof(*tm));
 223        if (pdc_tod_read(&tod_data) < 0)
 224                return -EOPNOTSUPP;
 225
 226        /* we treat tod_sec as unsigned, so this can work until year 2106 */
 227        rtc_time64_to_tm(tod_data.tod_sec, tm);
 228        return rtc_valid_tm(tm);
 229}
 230
 231static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
 232{
 233        time64_t secs = rtc_tm_to_time64(tm);
 234
 235        if (pdc_tod_set(secs, 0) < 0)
 236                return -EOPNOTSUPP;
 237
 238        return 0;
 239}
 240
 241static const struct rtc_class_ops rtc_generic_ops = {
 242        .read_time = rtc_generic_get_time,
 243        .set_time = rtc_generic_set_time,
 244};
 245
 246static int __init rtc_init(void)
 247{
 248        struct platform_device *pdev;
 249
 250        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
 251                                             &rtc_generic_ops,
 252                                             sizeof(rtc_generic_ops));
 253
 254        return PTR_ERR_OR_ZERO(pdev);
 255}
 256device_initcall(rtc_init);
 257#endif
 258
 259void read_persistent_clock(struct timespec *ts)
 260{
 261        static struct pdc_tod tod_data;
 262        if (pdc_tod_read(&tod_data) == 0) {
 263                ts->tv_sec = tod_data.tod_sec;
 264                ts->tv_nsec = tod_data.tod_usec * 1000;
 265        } else {
 266                printk(KERN_ERR "Error reading tod clock\n");
 267                ts->tv_sec = 0;
 268                ts->tv_nsec = 0;
 269        }
 270}
 271
 272
 273static u64 notrace read_cr16_sched_clock(void)
 274{
 275        return get_cycles();
 276}
 277
 278
 279/*
 280 * timer interrupt and sched_clock() initialization
 281 */
 282
 283void __init time_init(void)
 284{
 285        unsigned long cr16_hz;
 286
 287        clocktick = (100 * PAGE0->mem_10msec) / HZ;
 288        start_cpu_itimer();     /* get CPU 0 started */
 289
 290        cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
 291
 292        /* register at clocksource framework */
 293        clocksource_register_hz(&clocksource_cr16, cr16_hz);
 294
 295        /* register as sched_clock source */
 296        sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
 297}
 298